1初三数学期末试题及答案
2022-2023学年北京东城区初三第一学期数学期末试卷及答案

2022-2023学年北京东城区初三第一学期数学期末试卷及答案一、选择题(每题2分,共16分)1. 若关于的一元二次方程有一个根为,则的值为( ) x 220x x m -+=0m A. 2 B. 1C. 0D.1-【答案】C 【解析】【分析】将代入方程,即可求解.0x =220x x m -+=【详解】解:∵关于的一元二次方程有一个根为, x 220x x m -+=0∴, 0m =故选:C .【点睛】本题考查了一元二次方程的解的定义,将代入方程是解题的关键. 0x =2. 下列图形中是中心对称图形的是( ) A. 正方形 B. 等边三角形C. 直角三角形D. 正五边形 【答案】A 【解析】【分析】根据中心对称图形的概念求解即可. 【详解】解:A 、是中心对称图形,本选项正确; B 、不是中心对称图形,本选项错误; C 、不是中心对称图形,本选项错误; D 、不是中心对称图形,本选项错误. 故选A .【点睛】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,绕对称中心旋转180度后与原图形重合.3. 关于二次函数的最大值或最小值,下列说法正确的是( ) 22(4)6y x =-+A. 有最大值4 B. 有最小值4C. 有最大值6D. 有最小值6 【答案】D 【解析】【分析】根据二次函数的解析式,得到a 的值为2,图象开口向上,函数22(4)6y x =-+有最小值,根据定点坐标(4,6),即可得出函数的最小值.【详解】解:∵在二次函数中,a=2>0,顶点坐标为(4,6), 22(4)6y x =-+∴函数有最小值为6. 故选:D .【点睛】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a 的符号和根据顶点坐标求出最值.4. 一只不透明的袋子中装有3个黑球和2个白球,这些除颜色外无其他差别,从中任意摸出3个球,下列事件是确定事件的为( ) A. 至少有1个球是黑球 B. 至少有1个球是白球 C. 至少有2个球是黑球 D. 至少有2个球是白球【答案】A 【解析】【分析】列出摸出的三个球的颜色的所有可能情况即可.【详解】根据题意可得,摸出的三个球的颜色可能为:两个白球,一个黑球;一个白球,两个黑球;三个黑球,则可知摸出的三个球中,至少有一个黑球, 故必然事件是至少有一个黑球, 故选:A .【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5. 某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A. 180(1﹣x)2=461B. 180(1+x )2=461C. 368(1﹣x)2=442D. 368(1+x )2=442【答案】B 【解析】【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这个增长率为x ,根据“2月份的180万只,4月份的产量将达到461万只”,即可得出方程. 【详解】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程:180(1+x )2=461, 故选:B .【点睛】本题考查了一元二次方程的实际应用,理解题意是解题关键.6. 如图,在中,是直径,弦的长为5,点D 在圆上,且, 则O AB AC 30ADC ∠=︒O 的半径为( )A. B. 5C. D.2.57.510【答案】B 【解析】【分析】连接,由题意易得,在中解三角形求解. BC 30ABC ADC ∠=∠=︒Rt ACB 【详解】连接,BC30ABC ADC ∴∠=∠=︒在中,是直径, O AB ,90ACB ∴∠=︒在中,Rt ACB ,,90ACB ∠=︒30ABC ∠=︒5AC =210AB AC ==5OA =故选:B .【点睛】本题主要考查圆周角定理及含直角三角形的性质;熟练掌握圆周角定理及含30︒直角三角形的性质是解题的关键.30︒7. 抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如图,AC ,BD 分别与⊙O 切于点C ,D ,延长AC ,BD 交于点P .若,⊙O 的半径为6cm ,则图中的120P ∠=︒ CD长为( )A. π cmB. 2π cmC. 3π cmD. 4π cm【答案】B 【解析】【分析】连接OC 、OD ,利用切线的性质得到,根据四边形的内角和90OCP ODP ∠=∠=︒求得,再利用弧长公式求得答案. 60COD ∠=︒【详解】连接OC 、OD ,分别与相切于点C ,D ,,AC BD Q O ∴,90OCP ODP ∠=∠=︒,120360P OCP ODP P COD ∠=︒∠+∠+∠+∠=︒, ∴,60COD ∠=︒的长, CD∴6062(cm)180ππ⨯==故选:B【点睛】此题考查圆的切线的性质定理,四边形的内角和,弧长的计算公式,熟记圆的切线的性质定理及弧长的计算公式是解题的关键.8. 如图,正方形和的周长之和为,设圆的半径为,正方形的边长为ABCD O 20cm cm x ,阴影部分的面积为.当x 在一定范围内变化时,y 和S 都随x 的变化而变化,cm y 2cm S 则y 与x ,S 与x 满足的函数关系分别是( )A. 一次函数关系,一次函数关系B. 一次函数关系,二次函数关系 C .二次函数关系,二次函数关系D. 二次函数关系,一次函数关系【答案】B 【解析】【分析】根据圆的周长公式和正方形的周长公式先得到,再根据152y x π=-+得到,由此即可得到答案.S S S =-阴影正方形圆2215254S x x πππ⎛⎫=--+ ⎪⎝⎭【详解】解:∵正方形和的周长之和为,圆的半径为,正方形的边ABCD O 20cm cm x 长为, cm y ∴, 4220y x π+=∴, 152y x π=-+∵,S S S =-阴影正方形圆∴,22222211552524S y x x x x x ππππππ⎛⎫⎛⎫=-=-+-=--+ ⎪ ⎪⎝⎭⎝⎭∴y 与x ,S 与x 满足的函数关系分别是一次函数关系,二次函数关系, 故选B .【点睛】本题考查二次函数与一次函数的识别、正方形的周长与面积公式,理清题中的数量关系,熟练掌握二次函数与一次函数的解析式是解答的关键. 二、填空题 (每题2分,共16分)9. 在平面直角坐标系中,抛物线与y 轴交于点C ,则点C 的坐标为xOy 245y x x =-+_________. 【答案】 (0,5)【解析】【分析】令,代入抛物线,得到点C 的纵坐标,即可得解. 0x =245y x x =-+【详解】解:依题意,令,得到,0x =5y =故抛物线与y 轴交于点C 的坐标为, 245y x x =-+(0,5)故答案为 :(0,5)【点睛】本题考查了二次函数与y 轴交点问题,令,即可得到抛物线与y 轴交点的纵0x =坐标. 10. 把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线2112y x =+的解析式为_______. 【答案】 21(1)22y x =+-【解析】【分析】直接根据“上加下减,左加右减”进行计算即可. 【详解】解:抛物线, 2112y x =+向左平移1个单位长度,再向下平移3个单位长度, 得到 ()211132y x =++-即 ()21122y x =+-故答案为:. ()21122y x =+-【点睛】本题主要考查函数图像的平移;熟记函数图像的平移方式“上加下减,左加右减”是解题的关键.11. 请写出一个常数c 的值,使得关于x 的方程有两个不相等的实数根,则220x x c ++=c 的值可以是____________.【答案】0,(答案不唯一,即可). 1c <【解析】【分析】利用一元二次方程根的判别式求出c 的取值范围即可得到答案. 【详解】解:因为方程有两个不相等的实数根, 220x x c ++=所以 2Δ240c =->解得1c <故答案为:0,(答案不唯一,即可)1c <【点睛】本题主要考查了一元二次方程根的判别式;熟知一元二次方程根的判别式是解题的关键.12. 2022年3月12日是我国第44个植树节,某林业部门为了考察某种幼树在一定条件下的移植成活率,在同等条件下,对这种幼树进行大量移植,并统计成活情况,下表是这种幼树移植过程中的一组统计数据:幼树移植数(棵)100 1000 5000 8000 10000 15000 20000 幼树移植成活数(棵)87 893 4485 7224 8983 13443 18044 幼树移植成活的频率0.870 0.893 0.897 0.903 0.898 0.896 0.902 估计该种幼树在此条件下移植成活的概率是______.(结果精确到0.1)【答案】0.9【解析】【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【详解】∵幼树移植数20000时,幼树移植成活的频率是0.902,∴估计该种幼树在此条件下移植成活的概率为0.902,精确到0.1,即为0.9,故答案为:0.9.【点睛】本题考查了用大量试验得到的频率可以估计事件的概率,大量反复试验下频率稳定值即概率.13. 以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为_____.【答案】(2,﹣1)【解析】【分析】根据平行四边形是中心对称图形,再根据▱ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.【详解】解:∵▱ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∴点C的坐标为(2,﹣1),故答案为:(2,﹣1).【点睛】此题考查中心对称图形的顶点在坐标系中的表示.14. 如图,在⊙O中,AB切⊙O于点A,连接OB交⊙O于点C,过点A作AD∥OB交⊙O于点D ,连接CD .若∠B=50°,则∠OCD 的度数等于___________.【答案】20°##20度 【解析】【分析】连接OA ,如图,根据切线的性质得到∠OAB=90°,则利用互余可计算出∠AOB=40°,再利用圆周角定理得到∠ADC=20°,然后根据平行线的性质得到∠OCD 的度数.【详解】解:连接OA ,如图,∵AB 切⊙O 于点A , ∴OA⊥AB, ∴∠OAB=90°, ∵∠B=50°,∴∠AOB=90°-50°=40°, ∴∠ADC=∠AOB=20°, 12∵AD∥OB,∴∠OCD=∠ADC=20°. 故答案为:20°.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.15. 《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积(弦×失+失²).弧田(图中阴影部分)由圆弧和其所对的弦所12=围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,半径等于4米的弧田,按照上述公式计算出弧田的面积约为______ 米120︒.)21.73≈【答案】 8.92【解析】【分析】由题意可知于D ,交圆弧于C ,由题意得米,解得OC AB ⊥4AO =120AOB ∠=︒米,再求出,最后由勾股定理得到,由垂径定理求出即可得122OD OA ==CD AD AB 出结果.【详解】解:如图,由题意可知,,,(米),120AOB ∠=︒AB CD ⊥4OA OB ==, 30,90DAO ADO ∴∠=︒∠=︒12AD BD AB ==(米)122OD OA ∴==(米)422CD OC OD ∴=-=-=AD ∴===(米)2AB AD ∴==弧田面积 ∴()212AB CD CD =⨯+()21222=⨯+2=+(平方米)8.92≈故答案为:8.92【点睛】本题考查了勾股定理以及垂径定理的应用;熟练掌握垂径定理是解答本题的关键.16. 我们给出如下定义:在平面内,点到图形的距离是指这个点到图形上所有点的距离的最小值.在平面内有一个矩形,中心为O ,在矩形外有一点P ,,,4,2ABCD AB AD ==3OP =当矩形绕着点O 旋转时,则点P 到矩形的距离d 的取值范围为__________.【答案】 32d ≤≤【解析】【分析】根据题意分别求出当过的中点E 时,此时点P 与矩形上所有点的OP AB ABCD 连线中,;当过顶点A 时,此时点P 与矩形上所有点的连线中,;d PE =OP ABCD d PA =当过顶点边中点F 时,此时点P 与矩形上所有点的连线中,,即OP AD ABCD d PF =可求解.【详解】解:如图,当过的中点E 时,此时点P 与矩形上所有点的连线中,OP AB ABCD ,, d PE =112OE AD ==∴;2d PE OP OE ==-=如图,当过顶点A 时,此时点P 与矩形上所有点的连线中,,OP ABCD d PA =矩形,中心为O ,,4,2ABCD AB AD ==∴,2,90BC AD B ==∠=︒∴, AC ==∴ 12OA AC ==∴;3d AP OP OA ==-=-如图,当过顶点边中点F 时,此时点P 与矩形上所有点的连线中,OP AD ABCD ,, d PF =122OF AB ==∴;1d PF OP OF ==-=综上所述,点P 到矩形的距离d 的取值范围为.32d ≤≤故答案为:32d ≤≤【点睛】本题考查矩形的性质,旋转的性质,根据题意得出临界点时点d 的值是解题的关键.三、解答题(共68分,17-22题,每题5分,23-26题,每题6分,27-28题,每题7分)17. 下面是小美设计的“过圆上一点作圆的切线”的尺规作图过程.已知:点A 在上.O 求作:的切线.O AB作法: ①作射线;OA ②以点A 为圆心,适当长为半径作弧,交射线于点C 和点D ;OA ③分别以点C ,D 为圆心,大于长为半径作弧,两弧交点B ; 12CD ④作直线.AB 则直线即为所求作的的切线.AB O 根据小美设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接,.BC BD 由作图可知,, .AC AD =BC =∴ .BA OA ∵ 点A 在上,O ∴直线是的切线( ) (填写推理依据) .AB O 【答案】(1)见解析;(2);;经过半径的外端并且垂直于这条半径的直线是圆的切线.BD ⊥【解析】【分析】(1)依据题意,按步骤正确尺规作图即可;(2)结合作图,完成证明过程即可.【小问1详解】补全图形如图所示,【小问2详解】证明:连接,.BC BD由作图可知,,.AC AD =BC BD =∴,BA OA ⊥∵ 点A 在上,O ∴直线是的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线,AB O 故答案为:;;经过半径的外端并且垂直于这条半径的直线是圆的切线BD ⊥【点睛】本题考查了尺规作图能力和切线的证明;能够按要求规范作图是解题的关键.18. 如图,是的直径,弦于点E ,,若,求的AB O CD AB ⊥2CD OE =4AB =CD 长.【答案】.CD =【解析】【分析】由垂径定理得到,推出,在中,利用勾股定理即CE DE =CE OE =Rt COE △可求解.【详解】解:如图,连接. OC∵是的直径,弦于点E ,AB O CD AB ⊥∴.CE DE =又∵,2CD OE =∴.CE OE =∵,4AB =∴.2OC =在中,,Rt COE △222CE OE OC +=∴CE =∴.CD =【点睛】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键.19. 下面是小聪同学用配方法解方程:的过程,请仔细阅读后,2240x x p --=()0p >解答下面的问题.2240x x p --=解:移项,得:.①224x x p -=二次项系数化为1,得:.② 222p x x -=配方,得.③ 2212p x x -+=即. 2(1)2p x -=∵,0p >∴ 1x -=∴ 11x =+11x =(1)第②步二次项系数化为1的依据是什么?(2)整个解答过程是否正确?若不正确,说出从第几步开始出现的错误,并直接写出此方程的解.【答案】(1)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等(2)不正确,解答从第③步开始出错, 1x =2x =【解析】【分析】(1)根据等式的性质2即可写出依据;(2)根据配方法解一元二次方程的步骤即可求解. 【小问1详解】等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等;【小问2详解】不正确,解答从第③步开始出错,正确的步骤为:配方,得.③ 22112p x x -+=+即 22(1)2p x +-=∵,0p >∴.④ 1x -=∴.⑤ 1x =2x =此方程的解为. 1x =2x =【点睛】本题考查等式的性质和解一元二次方程,解题的关键是读懂材料,明确每一步的做题依据.20. 如图,已知抛物线L :y =x 2+bx+c 经过点A(0,﹣5),B(5,0).(1)求b ,c 的值;(2)连结AB ,交抛物线L 的对称轴于点M .求点M 的坐标;【答案】(1),;(2)交点M 的坐标为(2,-3).4b =-5c =-【解析】【分析】(1)将点A 、点B 坐标代入函数解析式,求解方程组即可;(2)设直线AB 的解析式为:,将点A 、点B 坐标代入函数解析式求解确()0y kx b k =+≠定解析式,然后根据(1)中确定二次函数解析式,求出其对称轴,求两条之间交点即可确定点M 的坐标.【详解】解:(1)将点A 、点B 坐标代入函数解析式可得:, 50255c b c -=⎧⎨=++⎩解得:, 45b c =-⎧⎨=-⎩∴,;4b =-5c =-(2)设直线AB 的解析式为:,()0y kx b k =+≠将点A 、点B 坐标代入函数解析式可得:, 505b k b-=⎧⎨=+⎩解得:, 15k b =⎧⎨=-⎩∴一次函数解析式为:,5y x =-由(1)得二次函数解析式为:,245y x x =--对称轴为:, 22b x a=-=直线与的交点为M ,5y x =-2x =∴当时,,2x ==3y -∴交点M 的坐标为(2,-3).【点睛】题目主要考查利用待定系数法确定二次函数与一次函数解析式,两条直线的交点问题,二次函数的基本性质,理解题意,熟练运用待定系数法确定解析式是解题关键.21. 如图,在边长均为1个单位长度的小正方形组成的网格中,点,,均为格点(每A B O 个小正方形的顶点叫做格点).(1)作点关于点的对称点;A O 1A (2)连接,将线段绕点顺时针旋转得到线段,点的对应点为,1AB 1A B 1A 90︒11A B B 1B 画出旋转后的线段;11A B (3)连接,,求出的面积(直接写出结果即可).1AB 1BB 1ABB 【答案】(1)见解析 (2)见解析(3)8【解析】【分析】(1)根据网格的特点作出点关于点的对称点;A O 1A(2)根据题意,画出旋转后的线段,即可求解;11A B (3)根据网格的特点,以及三角形面积公式求得面积即可求解.【小问1详解】解:如图所示,点即为所求;1A 【小问2详解】解:如图所示,线段即为所求;11A B 【小问3详解】解:如图所示,. 118282ABB S =⨯⨯= 【点睛】本题考查了画中心对称图形,画旋转图形,网格中求三角形面积,数形结合是解题的关键.22. 2022年3月23日,“天宫课堂”第二课在中国空间站开讲,神舟十三号飞行乘组航天员翟志刚、王亚平、叶光富讲了又一堂精彩的太空科普课.这场充满奇思妙想的太空授课,让科学的种子在亿万青少年的心里生根发芽.小明和小亮对航天知识产生了极大兴趣,他们在中国载人航天网站了解到,航天知识分为“梦圆天路”、“飞天英雄”、“探秘太空”、“巡天飞船”等模块.他们决定先从“梦圆天路”、“飞天英雄”、“探秘太空”三个模块中随机选择一个进行学习,分别设这三个模块为A ,B ,C ,用画树状图或列表的方法求出小明和小亮选择相同模块的概率. 【答案】 13【解析】【分析】先画出树状图,从而可得所有等可能的结果,再找出小明和小亮选择相同模块的结果,然后利用概率公式计算即可得. 【详解】解:由题意,画树状图如下:由图可知,所有等可能的结果共有9种,其中,小明和小亮选择相同模块的结果有3种. 则小明和小亮选择相同模块的概率为, 3193P ==答:小明和小亮选择相同模块的概率为. 13【点睛】本题考查了利用列举法求概率,正确画出树状图是解题关键.23. 已知关于x 的一元二次方程. ()22120x m x m +++-=(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)当该方程的判别式的值最小时,写出m 的值,并求出此时方程的解.【答案】(1)见解析 (2),m =122,1x x =-=【解析】【分析】(1)判断判别式的符号,即可得证;(2)求出判别式的值最小时的m 的值,再解一元二次方程即可.【小问1详解】证明:∵,22(21)4(2)49m m m ∆=+-⨯-=+∵,20m ≥∴.2Δ490m =+>∴无论m 取何值,方程总有两个不相等的实数根.【小问2详解】解:由题意可知,当时,的值最小.0m =249m ∆=+将代入,得0m =2(21)20x m x m +++-=220x x +-=解得:.122,1x x =-=【点睛】本题考查一元二次方程的判别式与根的个数的关系,以及解一元二次方程.熟练掌握判别式与根的个数的关系,以及解一元二次方程的方法,是解题的关键.24. 掷实心球是中考体育考试项目之一,实心球投掷后的运动轨迹可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从投掷到着陆的过程中,实心球的竖直高度(单位:y m)与水平距离(单位:m)近似满足函数关系.某位同学进行了两x 2()y a x h k =-+(0)a <次投掷.(1)第一次投掷时,实心球的水平距离与竖直高度的几组数据如下:x y 水平距离x/m 0 2 4 6 8 10竖直距离y/m 1.67 2.632.95 2.63 1.670.07根据上述数据,直接写出实心球竖直高度的最大值,并求出满足的函数关系;2()y a x h k =-+(0)a <(2)第二次投掷时,实心球的竖直高度y 与水平距离近似满足函数关系x .记实心球第一次着地点到原点的距离为,第二次着地点到原点20.09( 3.8) 2.97y x =--+1d 的距离为,则_____ (填“>”“=”或“<”).2d 1d 2d 【答案】(1),2.9520.08(4) 2.95y x =--+(2)>【解析】【分析】(1)先根据表格中的数据找到顶点坐标,即可得出实心球竖直高度的最大值,并利用待定系数法得到抛物线解析式;(2)设着陆点的纵坐标为0,分别代入第一次和第二次的函数关系式,求出着陆点的横坐标即为 和,然后进行比较即可.1d 2d 【小问1详解】解:由表格数据可知,抛物线的顶点坐标为, (42.95),所以实心球竖直高度的最大值为,2.95设抛物线的解析式为:,2(4) 2.95y a x =-+将点代入,得, (01.67),1.67162.95a =+解得,0.08a =-∴抛物线的解析式为:;20.08(4) 2.95y x =--+【小问2详解】解:第一次抛物线解析式为,20.08(4) 2.95y x =--+令,得到(负值舍去), 0y =4x =+第二次抛物线的解析式为,20.09( 3.8) 2.97y x =--+令,得到(负值舍去)0y = 3.8x =+, 4 3.8+>+ ,12d d ∴>故答案为:>【点睛】本题主要考查了二次函数的应用,待定系数法求函数关系式,解题的关键是读懂题意,列出函数关系式.25. 如图,点在以为直径的上,平分交于点D ,交于点E ,C AB O CD ACB ∠O AB 过点D 作交F .DF AB CO(1)求证:直线是的切线;DF O(2)若°,DF 的长.30A ∠=AC =【答案】(1)见解析 (2) FD =【解析】【分析】(1)连接,证明可得结论;OD DF OD AB OD ⊥⊥,,(2)再中,,,得到,,再在Rt ACB △30A ∠=︒AC =4AB =2OD =Rt ODF △中,由,继而求得;60F ∠=︒FD 【小问1详解】证明:连接. OD∵ 是的直径,平分,AB O CD ACB ∠ AD DB∴=∴ .90AOD BOD ∠=∠=︒又∵ ,FD AB ∥∴ .90ODF BOD ∠=∠=︒即 .OD DF ⊥∴ 直线为的切线.DF O 【小问2详解】解:∵ 是的直径,AB O ∴.90ACB ∠=︒又∵,,30A ∠=︒AC =∴ .4AB =∴ .2OD =∵ ,AO CO =30ACO A ∴∠=∠=︒∴ .60COB A ACO ∠=∠+∠=︒∵ ,DF AB ∴ ,60F ∠=︒,30FOD ∴∠=︒设则,,FD x =22OF FD x ==又,2OD =在中,由勾股定理得:,Rt ODF △22224x x +=解得:, x =故 FD =【点睛】本题属于圆综合题,考查了垂径定理,圆周角定理,平行线的判定,特殊角的直角三角形性质,等知识,解题的关键是学会添加常用辅助线解决问题.26. 已知二次函数. ()2430y ax ax a =-+≠(1)求该二次函数的图象与y 轴交点的坐标及对称轴.(2)已知点都在该二次函数图象上,()()()()12343,1,12,,,,,y y y y --①请判断与的大小关系: (用“”“”“”填空);1y 2y 1y 2y >=<②若,,,四个函数值中有且只有一个小于零,求a 的取值范围.1y 2y 3y 4y 【答案】(1)抛物线与y 轴交点的坐标为,对称轴()0,32x =(2)①; ② =3154a -≤<-【解析】【分析】(1),可得抛物线与y 轴交点的坐标,再根据抛物线对称轴公式解答,即可0x =求解;(2)①根据题意可得点关于直线对称,即可求解;②根据题意可得点()()12,3,1,y y 2x =在对称轴的左侧,点在对称轴的右侧,然后分两种情况:()()()2341,,,1,2,y y y --()13,y 当时,当时,即可求解.0a >a<0【小问1详解】解:令,则,0x =3y =∴抛物线与y 轴交点的坐标为 .()0,3对称轴. 422a x a-=-=【小问2详解】解:① ∵函数图象的对称轴为直线,2x =∴点关于直线对称,()()12,3,1,y y 2x =∴,12y y =故答案为:;=②∵函数图象的对称轴为直线,,2x =3112>>->-∴点在对称轴的左侧,点在对称轴的右侧.()()()2341,,,1,2,y y y --()13,y 当时,在对称轴的左侧,y 随x 的增大而减小,0a >∴,不合题意.1234y y y y =<<当时,在对称轴的左侧,y 随x 的增大而增大,则,a<01234y y y y =>>,,,四个函数值可以满足,1y 2y 3y 4y 12340y y y y >=≥>∴,340,0y y ≥<即当时,,当时,.=1x -3430y a a =++≥2x =-44830y a a =++<解得 . 3154a -≤<-【点睛】本题考查了二次函数图象与性质,掌握二次函数图象与性质是解题的关键.27.如图,是等腰直角三角形,,为延长线上一点,ABC 90ACB AC BC ∠=︒=,D AC 连接,将线段绕点逆时针旋转得到线段,过点作于点,BD BD D 90︒DE E EFAC ⊥F 连接. AE(1)依题意补全图形;(2)比较与的大小,并证明;AF CD (3)连接,为的中点,连接,用等式表示线段之间的数量BE G BE CG CD CG BC ,,关系,并证明.【答案】(1)见解析 (2),见解析AF CD =(3),见解析BC CD =【解析】【分析】(1)根据旋转的性质画图即可;(2)根据旋转的性质以及等腰直角三角形可以得到全等三角形,再根据全等三角形的性质即可求出结论;(3)根据题意画出已知图形,再根据图形得到全等三角形,利用全等三角形的性质和等腰直角三角形的性质即可求出结论.【小问1详解】解:补全图形如图所示【小问2详解】解:,理由如下:AF CD =∵EF AD ⊥∴90EFD ∠=︒∵90ACB ∠=︒∴EFD BCD ∠=∠∵90ACB ∠=︒∴90CBD CDB ∠∠=︒+由题意可知,90BDE ∠=︒∴90EDF BDC ∠∠=︒+∴EDF CBD ∠=∠在和中EFD △DCB △EDF CBD EFD DCB ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴≌EFD △()AAS DCB ∴EF CD DF BC ==,∵BC AC =∴AC DF =∴AF CD =【小问3详解】解: 理由如下:BC CD =连接,DGFG∵ ,为的中点,DE BD =G BE 90BDE ∠=︒∴EG BG DG ==,90DGB ∠=︒∵90EFD DGE ∠=∠=︒∴GEF CDG ∠=∠在和中EFG DCG △EF DC GEF CDG EG DG =⎧⎪∠=∠⎨⎪=⎩∴≌ EFG SAS DCG ()∴,FG CG =EGF DGC ∠=∠∴90EGF EGC DGC EGC ∠+∠=∠+∠=︒即90CGF ∠=︒∴为等腰直角三角形CGF △∴CF =∵ ,BC AC AF CF ==+AF CD =∴BC CD =+【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等相关知识点,掌握全等三角形的性质和旋转的性质是解题的关键.28. 在平面直角坐标系中,我们给出如下定义:将图形M 绕直线上某一点P 顺时xOy 3x =针旋转,再关于直线对称,得到图形N ,我们称图形N 为图形M 关于点P 的二次90︒3x =关联图形.已知点.()0,1A (1)若点P 的坐标是,直接写出点A 关于点P 的二次关联图形的坐标________;()3,0(2)若点A 关于点P 的二次关联图形与点A 重合,求点P 的坐标(直接写出结果即可);(3)已知的半径为1,点A 关于点P 的二次关联图形在上且不与点A 重合. O O 若线段,其关于点P 的二次关联图形上的任意一点都在及其内部,求此时 P 点1AB =O 坐标及点B 的纵坐标的取值范围.B y 【答案】(1)()2,3(2)()3,2-(3),, ()3,3-12102B y ≤≤【解析】【分析】(1)根据二次关联图形的定义分别找到和,过点作轴于点D ,可A 'A ''A 'A D x '⊥证得,从而得到,即可求解;AOP PDA ' ≌1,3OA PD OP A D '====(2)根据题意得:点P 位于x 轴的下方,设点P 的纵坐标为m ,过点P 作轴于点PE y ⊥E ,过点作轴交延长线于点F ,坐标为m ,表达点的坐标,可得出结论;A 'A F x '⊥EP A '(3)由(2)可知,点的坐标,由A 关于点P 的二次关联图形在上且不与点A 重合A ''O 可得出点的坐标,由线段,其关于点P 的二次关联图形上的任意一点都在及A ''1AB =O 其内部,找到临界点,可得出的坐标,进而可得出点B 的坐标,即可得出的取值B ''B ''B y 范围.【小问1详解】如图1,根据二次关联图形的定义分别找到和,过点作轴于点D ,A 'A ''A 'A D x '⊥∴90A DP AOP '∠=∠=︒由旋转可知,,90,APA AP A P ''∠=︒=∴,90APO A PD A PD PA D '''∠+∠=∠+=︒∴,APO PA D '∠=∠∴,()AAS AOP PDA ' ≌∴,1,3OA PD OP A D '====∴,()4,3A '∵点和关于直线对称,A 'A ''3x =∴点,()2,3A ''即点A 关于点P 的二次关联图形的坐标为;()2,3故答案为:()2,3【小问2详解】解:根据题意得:点P 位于x 轴的下方,设点P 的纵坐标为m ,如图,过点P 作轴于点E ,过点作轴交延长线于点F ,PE y ⊥A 'A F x '⊥EP由(1)得: ,AEP PFA ' ≌∴,1,3AE PF m EP A F '==-==∴,()4,3A m m '-+根据题意得:点A 和点关于直线对称,A '3x =∴,46m -=解得:,2m =-∴点P 的坐标为,()3,2-【小问3详解】解:设点P 的纵坐标为n ,由(2)得:,()4,3A n n '-+∴,()2,3A n n ''++∵在上,A ''O ∴,()()22231n n +++=解得:(舍去)或,2n =-3-∴点P 的坐标为,()3,3-∵,其关于点P 的二次关联图形上的任意一点都在及其内部,1AB =AB O 此时点是一个临界点,连接,如图, B ''OB∵,1OA A B OB ''''''''===∴是等边三角形,OA B '''' 过点作轴于点M ,则, B ''B M x ''⊥12A M OM ''==∴ B M ''=∴, 1,2B ⎛''- ⎝∴, 13,2B ⎛' ⎝∴, 12B ⎫⎪⎭由对称性得:另一个点的坐标为, 12B ⎛⎫ ⎪ ⎪⎝⎭∴的取值范围为. B y 102B y ≤≤【点睛】本题属于新定义类问题,主要考查轴对称最值问题,等边三角形的性质与判定,圆的定义等相关知识,关键是理解给出新定义,画出对应的图形.。
初三数学期末测试题5套与答案模板

初三数学模拟试题1(满分:100分,时间:100分钟)一、填空题(每题2分,共24分)1.计算:2-1+0)13(41 =_________. 2.函数y =2x /(x 2-4)中自变量取值围是______________.3.若x 2-xy -2y 2=0,且xy ≠0,则y x 的值是_________.4.已知方程2x 2-4x -1=0的两根为x 1、x 2,则以1/x 1、1/x 2为根的一元二次方程是_________.5.某问题的两个变量y 、x 有如下关系:y =-x3,并且x 的取值围是1≤x ≤3,则变量y 的最大值是_________.6.圆接正十二边形中心角的度数等于_________.7.如图△ABC 中,AD =1,DC =2,AB =4,点D 在AC 上,请你在AB 上取点E ,且使△DEC 的面积等于△ABC 的面积的一半,则点E 到点B 的距离是_________.8.如图,△ABC 中,AB >AC ,过AC 上一点D 作直线DE ,使△ADE 和原三角形相似,这样的直线可作_________条.9.若把矩形沿它的一个角平分线折叠,把另一分成2 cm 和3 cm 两部分,则这个矩形的周长为_________cm .10.扇形的圆心角是150°,半径是12 cm ,这个扇形的面积是_________.11.某二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =-acx +b 的图象不经过_________象限.12.若|x -2|+(y -3)2=0,则代数式:62++-x y x y 的值是_________.二、选择题(每小题3分,共18分)13.下列计算正确的是( )A .a 3·a 2=a 6B .552332=+C .2x 2-3xy 2=-xy 2D .(-a )4/(-a )3=-a14.若正比例函数y =kx (k >0)与反比例函数y =x2的图象相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC ,若△ABC 的面积为S ,则( )A .S =1B .S =2C .S =3D .S =415.Rt △ABC 中,∠C =90°,如果sin A=54,那么tanB 的值是( ) A .53 B .45 C .43 D .34 16.两圆半径相等,当这两个圆的位置关系变化时,它们的公切线的条数最小是( )A .0B .1C .2D .317.若太线与地面成37°角,一棵树的影长为10米,则树高h 的围是(取3=1.7)( )A .3<h ≤5B .5<h <10C .10<h <15D .h >1518.若a 满足不等式组⎩⎨⎧->≤34312a a a ,则化简式子2441a a +-+|2a -1|等于( )A .2-4aB .2C .4aD .0三、(每小题6分,共30分)19.已知a =2,b =1,求代数式a b b ab a b a b a a ⋅+÷--22224)(的值. 20.周日老师从家里出发步行去看望父母,她全部活动的函数关系图象如右图,x 轴表示时间(时),y 轴表示离老师家的距离(单位:千米).(1)看图象后你能得到哪些结论(至少四个结论)?(2)求出老师从父母家回来一段图CD 所在直线的方程.21.如图∠B =∠B =90°,AC =DF ,AB =DE ,求证:BF =EC .22.如图,要计算小山上电视塔BC 的高度,已知山角A 到塔的水平距离AD =800 m,由A 测得塔顶B 的仰角α=30°,山坡的倾角β=18°,求电视塔高BC(精确到1 m).(参考数据:tan30°=0.58,tan18°=0.32)23.如表,方程1,方程2,方程3,……是按照一定规律排列的一列方程(1)解方程2,并将它的解填在表中的空白处.(2)请写出这列方程中的第n列方程和它的解,并验证所写出的解适合第n 个方程.四、(每小题7分,共28分)24.一副三角板如图叠合在一起,∠C=∠DAE=90°,∠D=30°,∠B =45°,DE与AC交于点F,当AB=2,AE=1时,求阴影面积.25.如图:某旅游区山上有甲、乙两条石级路(图中数字表示每一级的高度,单位:厘米).(1)为方便游客,旅游区打算整修石级路,山的高度不变,石级个数不变,应把每一石级定为多少厘米时走起路来最舒适(石级路起伏小,走起来舒适些)(2)整修前走这两条石级路中的哪一条更舒适,说明理由.26.已知:在一条东西方向的河流的北侧有A、B两个村压,O是河边的一码头,在O处测得A村在西北方向且距码头1.41千米处(为计算方便,取1.41千米=2千米),B村在北偏东30°方向且距码头2米,现要在河边修建一个水泵站C,分别向A、B两村送水,并使所用的水管最短.(1)试以O为原点,河流北岸所在直线为x轴建立如图的直角坐标系,在图中求出A、B两村的位置的坐标,并标出水泵站C的位置.(2)求出水泵站到码头OC的距离.27.已知二次函数y=x2-2x+t的图象与x轴有交点,解答下列各句:(1)求t的取值围.(2)设方程x2-2x+t=0两实根的平方和为S,求S与t之间的函数关系式,并画出所求函数的图象.(3)在(2)问的条件下,利用函数的性质说明函数S有没有最大值和最小值,若有求这个最大或最小值,若没有说明理由.年初三数学模拟试题(四)答案一、1. 1 2. x ≠±2 3. 2或-1 4.y 2+4y -2=0 5.-16.30° 7. 18. 2 9. 14 10. 60πcm 2 11.三 12. 5二、13.D 14.B 15.C 16.C 17.B 18.A三、192+120.(1)老师8点去父母家老师每小时走6千米老师在家休息(父母家)3个小时老师12点回家老师回家速度还是每小时6千米老师9点到父母家老师13点到家(2)y =-6x +7821.略 22. 208米.23.(1)x 1=4,x 2=6 (2))1(142+--+n x x n =1,x 1=n +2 x 2=2(n +1)四、24.)33(41 25.(1)14 cm (2)S甲2=32 S乙2=310 ∴S甲2<S乙2∴走甲要舒适些26.(1)A(-1,1),B(1,3),C(3-2,0) (2)2-327.(1)t ≤1 (2)S=4-2t(t ≤1) (3)t =1时,S最小=2年初三数学模拟试题2(满分:100分,时间:100分钟)一、填空题(每小题2分,共28分)1.计算:(a -2b )(a +3b )=_________.2.科学计数法表示:0.000328=_________.3.如图,BA 是半圆O 的直径,点C 在圆上,若∠ABC =50°,则∠A =_________度.4.不等式组⎩⎨⎧<->-125023x x 的解集为_________. 5.如图,已知AB 为⊙O直径,且AB ⊥CD ,垂足为M ,CD =8,AM =2,则OM =_________.6.分解因式:1-m 2-n 2+2mn =_________.7.3tan60°-sin30°cos60°=_________.8.如图,⊙O中的弦AC =2 cm ,∠ABC =45°,则图中阴影部分的面积是_________cm 2.9.函数y =7-x 中自变量x 的取值围是_________.10.在圆接四形边ABCD 中,∠A 、∠B 、∠C =4∶3∶5,则∠D =_________度.11.半径为6 cm 的圆,60°圆周角所对弧的弧长为_______cm .12.如图,△ABC中,DE∥FG∥BC,且AD=DF=FB,则S△AFG∶S△ABC =_________.13.两圆相切,大圆半径长为5 cm,圆心距为3 cm,则小圆半径为_________.14.如果一次函数y=kx+3的图象经过点(-1,2),那么一次函数的解析式为_________.二、选择题(每小题2分,共16分)15.下列各图形中,既是轴对称图形,又是中心对称图形的是( )A.等边三角形B.平行四边形C.等腰三角形D.菱形16.若a>b,且c为实数,则( )A.ac>bc B.ac<bc C.ac2>bc2 D.ac2≥bc217.下列计算正确的是( )A.2x2·3x3=6x6 B.x3+x3=x6 C.(x+y)2=x2+y2 D.(x3)m/x2m =x m18.若菱形的周长为16,相邻两角度数比为1∶2,则该菱形的面积为( )A.43B.83C.103D.12319.平面直角坐标系,与点(3,-5)关于y轴对称的点的坐标是( )A.(-3,5)B.(3,5)C.(-3,-5)D.(3,-5)20.如图,铁道口的栏杆短臂长1米,长臂长16米,当短臂端点下降0.5米时,长臂端点升高( )A.11.25米B.6.6米C.8米D.10.5米k(k≠0)在同一平面21.下列各图中,能表示函数y=k(1-x)和y=x直角坐标系中的图象大致是( )22.数据13,8,11,7,10,12,11,7,9,14的中位数是( )A.10 B.11 C.10.5D.11.5三、(每小题8分,共32分)23.解方程x2-2x-2=3/(x2-2x)24.某公司存入银行甲、乙两种不同性质的存款共20万元,甲种存款的年利率为1.4%,乙种存款的年利率为3.7%,该公司一年共得利息0.625万元,求甲、乙两种存款各多少万元?25.如图,已知:在△ABC中,∠C=90°,BE平分∠ABC,DE⊥BE,交AB于D,⊙O是△BDE的外接圆.(1)求证:AC是⊙O的切线.(2)若AD=6,AE=62,求DE的长.26.为了了解某中学初中三年级175名男学生的身高情况,从中抽测了50名男学生的身高,表中是数据整理与计算的一部分:(1)在这个问题中,总体和样本各指什么?(2)填写频率分布表中未完成的部分.(3)根据数据整理与计算回答下列问题:①该校初中三年级男学生身高在155.5~159.5(cm)围的人数约为多少?占多大比例?②估计该校初中三年级男学生的平均身高.四、(每小题12分,共24分)27.市实施容貌工程期间,基本学校在教学楼前辅设小广场地面,其图案设计如图:正方形广场地面的边长是40 cm,中心建一直径为20 cm的圆形花坛,四角各留一个边长为10 cm的小正方形种植高大树木,图中阴影处辅设广场砖.(1)计算阴影部分的面积S(π取3).(2)某施工队承包辅设广场的任务,计算在一定时间完成,按计划工作一天后,改进了铺设工艺比原计划多辅60 m2,结果提前3天完成任务,原计划每天铺设多少m2?28.如图,在平面直角坐标中,O为坐标原点,A点坐标为(-8,0),B点坐标为(2,0),以AB的中点为圆心,AB为直径作⊙P与y 轴的负半轴交于点C.(1)求图象经过A、B、C三点的抛物线解析式;(2)设M点为(1)中抛物线的顶点,求出顶点M的坐标和直线MC的解析式;(3)判断(2)中的直线MC与⊙P的位置关系,并说明理由;(4)过坐标原点O作直线BC的平行线OG,与(2)中直线MC相交于点G,连结AG,求出点G的坐标并证明AG⊥MC.年初三数学模拟试题(五)答案一、1.a2+ab-6b22.3.28×10-4 3. 40 4.{x|x>2}5.36.(1+m-n)(1-m+n) 7.11/4 8.π/2 9.x≥7 10.12011.2π12. 4∶9 13.2 cm 14.y=x+3二、15.D 16.D 17.D 18.B 19.C 20.C 21.D 22.C三、23.设x2-2x=y,原方程化为y-2=3/y,y2-2y-3=0∴y1=3,y2=-1.当y=3时,x2-2x=3,x1=3,x2=-1,当y=-1时,x2-2x+1=0,x3=x4=1.经检验x1=3,x2=-1,x3=x4=1是原方程的根.24.设甲种存款为x万元,乙种存款为y万元,根据题意,得x+y=20,1.4x /100+3.7y /100=0.625 解得x =5,y =1525.(1)证明:连结OE∵⊙O 是△BDE 的外接圆,∠DEB =90° ∴BD 是⊙O 的直径∵BE 平分∠ABC ,∴∠CBE =∠OBE , ∵OB =OE ,∴∠OBE =∠OEB , ∴∠OEB =∠CBE∴OE ∥BC ,∵∠C =90°,∴∠AEO =90° ∴AC 是⊙O 的切线.(2)AE 是⊙O 切线,AE =62,AD =6 ∵AE 2=AD ·AB∴AB =AE 2/AD =6)26(2=12∴BD =AB -AD =12-6=6∵∠A =∠A ,∠AED =∠ABE ,∴△AED ∽△ABE ∴2/212/26===ABAEBE DE 设DE =2x ,BE =2x ,∵DE 2+BE 2=BD 2 ∴2x 2+4x 2=36解得x =±6 (负的舍去) ∴DE =2·6=2326.(1)在这个问题中,总体是指某中学初中三年级175名男学生的身高的全体,所抽取的50名男学生的身高是总体的一个样本.(2)第一列为163.5~167.5,第三列为4,第四列为0.30,1.00 (3)①约为14人,占8% ②约为164 cm .四、27.(1)S=402-4×102-π(20/2)2≈1600-400-300=900( m 2) (2)设工程队原计划每天铺设x m 2依题意,得6090013900+-+=-x xx 解得x 1=-180, x 2=100.经检验x 1、x 2都是原方程的根,但x =-180不合题意,舍去∴x =100 28.(1)∵OA =8,OB =2,OC ⊥直径AB , ∴OC =OB OA ⋅=4,∴C(0,-4)∴抛物线解析式为y =23412+x x -4(2)∵425)3(414234122-+=-+=x x x y∴抛物线顶点坐标为(-3,-425)设过M 、C 两点的直线解析式为y =kx +b ,则-4=b ,-425=k ·(-3)+b解得:k =3/4,b =-4,∴y =43x -4 (3)直线MC 与⊙P 相切,连结PC ,设直线MC 与x 轴交点为N ,则点N 的坐标为(16/3,0)∵PO =3,OC =4,∴PC 2=PO 2+OC 2=25,C N2=O N2+OC 2=400/9,P N2=(3+16/3)2=625/9而PC 2+C N2=625/9=P N2,∴直线MC 与⊙P 相切(4)设直线BC 的解析式为y =mx -4,B 点坐标代入∴y =2x -4∴OG 解析式为y=2x∴G(-16/5,-32/5),利用BC∥OG和切割线定理证得△NOC∽△NGA∴∠NGA=90°三 年 数 学 试 题 答 案一、填空题(每题2分,共30分)1..二、一.2.y=12-0.1x.. 0≤x ≤120.3.x ≥-1且x ≠0.4.a+c=1.5.二、三、四.6.上、(2,-16)、x=2.7.右、3、上、5.8.-1.9. 6. 10.二、四. 11.5cm. 12.34、37. 13.16cm.14.1:2. 15.1:16.二、选择题(每题3分,共30分)1.D.2.C.3.A.4.A.5.C.6.D.7.C.8.B.9.B. 10.D. 三、解答题(共60分)1、y 是x 的一次函数;43-=x y ……………………………………7分2、x x y 2412+=…………………………………………………………8分 3、1234+………………………………………………………………8分4、(1)m ﹥34-…………………………………………………………2分 (2)m ≠34-且n ﹥2…………………………………………………2分(3)m ≠34-且n =2…………………………………………………2分(4)m ﹤34-且n ≤2…………………………………………………2分5、证△ACE ∽△BEA (连接AE )……………………………………9分6、图2:a n m =+…………………………………………………………1分 图3:a n m =-…………………………………………………………1分 图4:a m n =-…………………………………………………………1分证明过程(略)………………………………………………………7分 7、(1)能够确定,一次函数:6+=x y ,反比例函数:xy 6=……3分 (2)3==∆∆AOB ODE S S ………………………………………………3分 (3)证:OA=OD ,△AOD 为等腰三角形…………………………4分初 三 数 学 试 题3考生注意:1、考试时间120分钟2、全卷共三道大题,总分120分一、填空题(每题2分,共30分)1. 如果a<0,b>0,则点A(a ,b)在第_____象限,点Q(-a ,b)在第______象限?2. 一支蜡烛长12厘米,点燃时每分钟缩短0.1厘米,写出点燃后蜡烛长y (厘米)关于点燃时间x (分钟)之间的函数表达式是_______________,自变量x 的取值围是__________。
2020年初三数学下期末试题带答案(1)

2020年初三数学下期末试题带答案(1)一、选择题1.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°2.如图A,B,C是上的三个点,若,则等于()A.50°B.80°C.100°D.130°3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°4.下列命题中,其中正确命题的个数为()个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A.1B.2C.3D.45.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是()A.94B.95分C.95.5分D.96分6.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是()A.B.C.D.⊥于点D,连接BD,BC,且7.如图,AB,AC分别是⊙O的直径和弦,OD ACAC=,则BD的长为()10AB=,8A.25B.4C.213D.4.88.如图,是一个几何体的表面展开图,则该几何体是()A.三棱柱B.四棱锥C.长方体D.正方体9.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+43与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P 在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6B.8C.10D.1210.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是().A.B.C.D.11.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A .B .C .D .12.cos45°的值等于( )A .2B .1C .32D .22二、填空题13.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.14.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x的图象上,则k 的值为________.15.分解因式:x 3﹣4xy 2=_____.16.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.17.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a +的值等于_______.18.当m =____________时,解分式方程533x m x x-=--会出现增根. 19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 .20.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.矩形ABCD 的对角线相交于点O .DE ∥AC ,CE ∥BD .(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的而积为83,求AC的长.22.(问题背景)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点E、F 分别是边BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使GD=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.(探索延伸)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是边BC、CD 上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.(学以致用)如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是边AB上一点,当∠DCE=45°,BE=2时,则DE的长为.23.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?24.已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=12.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.25.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60 B组60≤x<70 C组70≤x<80 D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?26.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理3.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.4.C解析:C【解析】【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.【详解】①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题;③折线统计图反映一组数据的变化趋势,正确,是真命题;④水中捞月是随机事件,故错误,是假命题,真命题有3个,故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.5.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.C解析:C【解析】【分析】按照题中所述,进行实际操作,答案就会很直观地呈现.【详解】解:将图形按三次对折的方式展开,依次为:.故选:C.【点睛】本题主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.7.C解析:C【解析】【分析】先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到142CD AD AC ===,然后利用勾股定理计算BD 的长. 【详解】 ∵AB 为直径,∴90ACB ︒∠=,∴6BC ==,∵OD AC ⊥, ∴142CD AD AC ===,在Rt CBD ∆中,BD ==故选C .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.8.A解析:A【解析】【分析】本题可以根据三棱柱展开图的三类情况分析解答【详解】三棱柱的展开图大致可分为三类:1.一个三角在中间,每边上一个长方体,另一个在某长方形另一端.2.三个长方形并排,上下各一个三角形.3.中间一个三角形,其中两条边上有长方形,这两个长方形某一个的另一端有三角形,在这三角形的一条(只有一条,否则拼不上)边有剩下的那个长方形.此题目中图形符合第2种情况故本题答案应为:A【点睛】熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.9.A解析:A【解析】试题解析:∵直线l :与x 轴、y 轴分别交于A 、B ,∴B (0,∴在RT △AOB 中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=12PA=6-12x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.一次函数图象上点的坐标特征.10.C解析:C【解析】从上面看,看到两个圆形,故选C.11.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.12.D解析:D【解析】【分析】将特殊角的三角函数值代入求解.【详解】解:cos45°= 2.故选D.【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.二、填空题13.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.14.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 15.x (x+2y )(x ﹣2y )【解析】分析:原式提取x 再利用平方差公式分解即可详解:原式=x (x2-4y2)=x (x+2y )(x-2y )故答案为x (x+2y )(x-2y )点睛:此题考查了提公因式法与公式解析:x (x+2y )(x ﹣2y )【解析】分析:原式提取x ,再利用平方差公式分解即可.详解:原式=x (x 2-4y 2)=x (x+2y )(x-2y ),故答案为x (x+2y )(x-2y )点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.【解析】根据弧长公式可得:=故答案为 解析:2π3【解析】 根据弧长公式可得:602180π⨯⨯=23π, 故答案为23π.17.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:解析:【解析】【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:12ca -=-,则12ca+=,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.18.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:2解析:2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.20.【解析】【分析】连接BD 根据中位线的性质得出EFBD 且EF=BD 进而根据勾股定理的逆定理得到△BDC 是直角三角形求解即可【详解】连接BD 分别是ABAD 的中点EFBD 且EF=BD 又△BDC 是直角三角形 解析:43【解析】【分析】连接BD ,根据中位线的性质得出EF //BD ,且EF=12BD ,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.【详解】连接BD ,E F Q 分别是AB 、AD 的中点∴EF //BD ,且EF=12BD 4EF =Q8BD ∴=又Q 8106BD BC CD ===,,∴△BDC 是直角三角形,且=90BDC ∠︒∴tanC=BD DC =86=43. 故答案为:43.三、解答题21.(1)证明见解析;(2)8.【解析】【分析】(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.【详解】解:(1)∵DE∥AC,CE∥BD∴四边形OCED是平行四边形∵四边形ABCD是矩形∴AO=OC=BO=OD∴四边形OCED是菱形(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°又∵OD=OC∴△OCD是等边三角形过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.在Rt△DFC中,tan60°=DF FC,∴DF=3x.∴OC•DF=83.∴x=2.∴AC=4×2=8.【点睛】本题考查了矩形的性质,对角线相等且互相平分,菱形的判定和性质,以及解直角三角形等知识点.22.【问题背景】:EF=BE+FD;【探索延伸】:结论EF=BE+DF仍然成立,见解析;【学以致用】:5.【解析】【分析】[问题背景]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE =AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;[探索延伸]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE =AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;[学以致用]过点C作CG⊥AD交AD的延长线于点G,利用勾股定理求得DE的长.【详解】[问题背景】解:如图1,在△ABE和△ADG中,∵DG BEB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;故答案为:EF=BE+FD.[探索延伸]解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,∵DG BEB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;[学以致用]如图3,过点C作CG⊥AD,交AD的延长线于点G,由【探索延伸】和题设知:DE=DG+BE,设DG=x,则AD=6﹣x,DE=x+3,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(6﹣x)2+32=(x+3)2,解得x=2.∴DE=2+3=5.故答案是:5.【点睛】此题是一道把等腰三角形的判定、勾股定理、全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力,解决问题的关键是在直角三角形中运用勾股定理列方程求解.23.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意得:1200090001501.5x x+=解得:x=120,经检验x=120是原分式方程的解,∴1.5x=180.答:银杏树的单价为120元,则玉兰树的单价为180元.24.(1)(-8,0)(2)k=-19225(3)(﹣1,3)或(0,2)或(0,6)或(2,6)【解析】【分析】(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;(2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO=12 OBOA=,∴OA=8,∴A(﹣8,0).(2)∵EC⊥AB,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245-,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣19225.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P(0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.25.(1)答案见解析;(2)a=15,72°;(3)700人.【解析】试题分析:(1)用随机抽取的总人数减去A、B、C、E组的人数,求出D组的人数,从而补全统计图;(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.试题解析:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%;C组扇形的圆心角θ的度数为360×=72°(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图26.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b,则有400100900bk b=⎧⎨+=⎩,解得5400kb=⎧⎨=⎩,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.。
九年级数学第一学期期末考试综合复习测试题(含答案)

九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。
【易错题】初三数学下期末试题含答案(1)

【易错题】初三数学下期末试题含答案(1)一、选择题1.如图所示,已知A (12,y 1),B(2,y 2)为反比例函数1y x =图像上的两点,动点P(x ,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .(12,0)B .(1,0)C .(32,0)D .(52,0) 2.下列计算正确的是( )A .2a +3b =5abB .( a -b )2=a 2-b 2C .( 2x 2 )3=6x 6D .x 8÷x 3=x 5 3.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯ 4.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--5.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A .108° B .90° C .72° D .60°6.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( )A .12B .24C .123D .1637.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°8.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数A .61B .72C .73D .869.如图,点A ,B 在反比例函数y =(x >0)的图象上,点C ,D 在反比例函数y =(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为,则k 的值为( )A .2B .3C .4D .10.下列二次根式中的最简二次根式是( )A .30B .12C .8D .0.511.如图,直线//AB CD ,AG 平分BAE ∠,40EFC ∠=o ,则GAF ∠的度数为( )A .110oB .115oC .125oD .130o 12.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A .B .C .D .13.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是 .14.如图,添加一个条件: ,使△ADE ∽△ACB ,(写出一个即可)15.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.16.分解因式:2x 3﹣6x 2+4x =__________.17.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.18.若a ,b 互为相反数,则22a b ab +=________.19.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是 .20.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.三、解答题21.矩形ABCD 的对角线相交于点O .DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 是菱形;(2)若∠ACB =30°,菱形OCED 的而积为83AC 的长.22.如图,点B 、C 、D 都在⊙O 上,过点C 作AC ∥BD 交OB 延长线于点A ,连接CD ,且∠CDB=∠OBD=30°,DB=63cm .(1)求证:AC 是⊙O 的切线;(2)求由弦CD 、BD 与弧BC 所围成的阴影部分的面积.(结果保留π)23.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .24.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?25.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 26.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52, 即P (52,0), 故选D .【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.2.D解析:D【解析】分析:A .原式不能合并,错误;B .原式利用完全平方公式展开得到结果,即可做出判断;C .原式利用积的乘方运算法则计算得到结果,即可做出判断;D .原式利用同底数幂的除法法则计算得到结果,即可做出判断.详解:A .不是同类项,不能合并,故A 错误;B .(a ﹣b )2=a 2﹣2ab +b 2,故B 错误;C .( 2x 2 )3=8x 6,故C 错误;D .x 8÷x 3=x 5,故D 正确.故选D .点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.3.C解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】460 000 000=4.6×108.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 5.C解析:C【解析】【分析】首先设此多边形为n 边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n 边形,根据题意得:180(n-2)=540,解得:n=5, ∴这个正多边形的每一个外角等于:3605︒=72°. 故选C .【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°. 6.D解析:D【解析】如图,连接BE,∵在矩形ABCD中,AD∥BC,∠EFB=60°,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°=60°.在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=23.∵AE=2,DE=6,∴AD=AE+DE=2+6=8.∴矩形ABCD的面积=AB•AD=23×8=163.故选D.考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.7.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.8.C解析:C【解析】【分析】设第n个图形中有a n个点(n为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=9即可求出结论.【详解】设第n个图形中有a n个点(n为正整数),观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,∴a n=2n+1+2+3+…+(n+1)=n2+n+1(n为正整数),∴a9=×92+×9+1=73.故选C.【点睛】本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n=n2+n+1(n为正整数)”是解题的关键.9.C解析:C【解析】【分析】由题意,可得A(1,1),C(1,k),B(2,),D(2,k),则△OAC面积=(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),根据△OAC与△CBD的面积之和为,即可得出k的值.【详解】∵AC∥BD∥y轴,点A,B的横坐标分别为1、2,∴A(1,1),C(1,k),B(2,),D(2,k),∴△OAC面积=×1×(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),∵△OAC与△CBD的面积之和为,∴(k-1)+ (k-1)=,∴k=4.故选C.【点睛】本题考查反比例函数系数k的几何意义,三角形面积的计算,解题的关键是用k表示出△OAC 与△CBD 的面积.10.A解析:A【解析】【分析】根据最简二次根式的概念判断即可.【详解】ABC ,不是最简二次根式;D 故选:A .【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式. 11.A解析:A【解析】【分析】依据AB//CD ,EFC 40∠=o ,即可得到BAF 40∠=o ,BAE 140∠=o ,再根据AG 平分BAF ∠,可得BAG 70∠=o ,进而得出GAF 7040110∠=+=o o o .【详解】解:AB//CD Q ,EFC 40∠=o ,BAF 40∠∴=o ,BAE 140∠∴=o ,又AG Q 平分BAF ∠,BAG 70∠∴=o ,GAF 7040110∠∴=+=o o o ,故选:A .【点睛】本题考查的是平行线的性质和角平分线的定义,理解两直线平行,内错角相等是解题的关键.12.D解析:D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a >0, ∵对称轴为直线02b x a=->, ∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】 考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.二、填空题13.【解析】【分析】连接BD 交AC 于点O 由勾股定理可得BO=3根据菱形的性质求出BD 再计算面积【详解】连接BD 交AC 于点O 根据菱形的性质可得AC ⊥BDAO=C O=4由勾股定理可得BO=3所以BD=6即可解析:【解析】【分析】连接BD ,交AC 于点O ,由勾股定理可得BO=3,根据菱形的性质求出BD ,再计算面积.【详解】连接BD ,交AC 于点O ,根据菱形的性质可得AC ⊥BD ,AO=CO=4,由勾股定理可得BO=3,所以BD=6,即可得菱形的面积是12×6×8=24.考点:菱形的性质;勾股定理.14.∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;解析:∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:由题意得,∠A=∠A(公共角),则添加:∠ADE=∠ACB或∠AED=∠ABC,利用两角法可判定△ADE∽△ACB;添加:AD AEAC AB,利用两边及其夹角法可判定△ADE∽△ACB.15.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.16.2x(x﹣1)(x﹣2)【解析】分析:首先提取公因式2x再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2)故答案为2x(x﹣1)(x﹣2)点解析:2x(x﹣1)(x﹣2).【解析】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为2x(x﹣1)(x﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.17.2【解析】【分析】设这个圆锥的底面圆的半径为R 根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R 由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R ,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R ,由题意: 2πR=1804180π⨯, 解得R=2.故答案为2. 18.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab (a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab += ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.19.【解析】试题分析:要求PE+PC 的最小值PEPC 不能直接求可考虑通过作辅助线转化PEPC 的值从而找出其最小值求解试题解析:如图连接AE∵点C 关于BD 的对称点为点A∴PE+PC=PE+AP 根据两点之间【解析】试题分析:要求PE+PC 的最小值,PE ,PC 不能直接求,可考虑通过作辅助线转化PE ,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE ,∵点C 关于BD 的对称点为点A ,∴PE+PC=PE+AP ,根据两点之间线段最短可得AE 就是AP+PE 的最小值,∵正方形ABCD 的边长为2,E 是BC 边的中点,∴BE=1,∴22125+考点:1.轴对称-最短路线问题;2.正方形的性质.20.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.三、解答题21.(1)证明见解析;(2)8.【解析】【分析】(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.【详解】解:(1)∵DE∥AC,CE∥BD∴四边形OCED是平行四边形∵四边形ABCD是矩形∴AO=OC=BO=OD∴四边形OCED是菱形(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°又∵OD=OC∴△OCD是等边三角形过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.在Rt△DFC中,tan60°=DF FC,∴DF=3x.∴OC•DF=83.∴x=2.∴AC=4×2=8.【点睛】本题考查了矩形的性质,对角线相等且互相平分,菱形的判定和性质,以及解直角三角形等知识点.22.(1)证明见解析;(2)6πcm2.【解析】【分析】连接BC,OD,OC,设OC与BD交于点M.(1)求出∠COB的度数,求出∠A的度数,根据三角形的内角和定理求出∠OCA的度数,根据切线的判定推出即可;(2)证明△CDM≌△OBM,从而得到S阴影=S扇形BOC.【详解】如图,连接BC,OD,OC,设OC与BD交于点M.(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC∥BD,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC⊥AC,∵OC为半径,∴AC是⊙O的切线;(2)由(1)知,AC为⊙O的切线,∴OC⊥AC.∵AC∥BD,∴OC⊥BD.由垂径定理可知,MD=MB=1 2BD=33.在Rt△OBM中,∠COB=60°,OB=33cos303MB︒==6.在△CDM与△OBM中3090CDM OBMMD MBCMD OMB︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩,∴△CDM≌△OBM(ASA),∴S△CDM=S△OBM∴阴影部分的面积S阴影=S扇形BOC=2606360π⋅=6π(cm2).考点:1.切线的判定;2.扇形面积的计算.23.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DF A=∠F AB,根据等腰三角形的判定与性质,可得∠DAF=∠DF A,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE 是矩形;(2)∵四边形ABCD 是平行四边形,∴AB ∥DC ,∴∠DF A =∠F AB .在Rt △BCF 中,由勾股定理,得BC =,∴AD =BC =DF =5,∴∠DAF =∠DF A ,∴∠DAF =∠F AB ,即AF 平分∠DAB .【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF =∠DF A 是解题关键.24.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.25.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-, ()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.26.(1)8%,16;(2)P (1名男生和1名女生)23=;(3)至少需要选取6人进行集训. 【解析】【分析】(1)一等奖所占的百分比=1减去其它奖项的百分比即可求解;根据优秀奖比例和人数可计算总数,进而计算出三等奖人数.(2)求出一等奖男女各有多少人,然后列表或画树形图即可解;(3)设需要选取x 人进行集训,依据使获得一等奖的人数不少于二等奖人数的2倍,列不等式解答即可.【详解】(1)一等奖所占的百分比=1-40%-30%-32=8%;总人数=20÷40%=50(人), 三等奖的人数是=50×32%=16(人); (2)一等奖的人数=508%4⨯=,男女都有的人数14211⨯=+, 列表得:∴一等奖有两位男生两位女生,一共有12种等可能结果,其中恰是一男一女的结果数是8,∴P (1名男生和1名女生)82123==. (3)设需要选取x 人进行集训,根据题意得:()4210x x +≥-,解得 163x ≥, 因为x 是整数,所以x 取6.答:至少需要选取6人进行集训.【点睛】本题主要考查了条形统计图及扇形统计图以及求随机事件的概率,不等式的应用,解题的关键是能从条形统计图及扇形统计图得出相关数据.列表或画出树形图解答.。
北师大版九年级数学第一学期期末试题及答案

北师大版九年级数学第一学期期末试题及答案一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)已知a、b、c、d是成比例线段,其中a=3,b=0.6,c=2,则线段d的长为()A.0.4B.0.6C.0.8D.42.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)如图,四边形ABCD与四边形AEFG是位似图形,点A是位似中心,且AC:AF=2:3,则四边形ABCD 与四边形AEFG的面积之比等于()A.2:3B.4:9C.1:4D.1:24.(3分)关于x的一元二次方程x2﹣3x+n=0没有实数根,则实数n的值可以为()A.0B.1C.2D.35.(3分)已知反比例函数y=,在下列结论中,不正确的是()A.图象必经过点(1,2)B.图象在第一、二象限C.图象在第一、三象限D.若x=2,则y=16.(3分)如图,在矩形ABCD中,AC,BD相交于点O,若△AOB的面积是3,则矩形ABCD的面积是()A.6B.9C.12D.157.(3分)笼子里关着一只小松鼠(如图).笼子主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先过第一道门(A或B),再过第二道门(C,D或E)才能出去,则松鼠走出笼子的路线是“先经过A门、再经过D门”的概率为()A.B.C.D.8.(3分)如图,△ABC中,∠ACB=90°,分别以AB,AC为边作正方形ABPQ,ACFH,BP交FH于点O.若BC=BF=2,则OP的长为()A.B.2C.D.2二、填空题(共5小题,每小题3分,计15分)9.(3分)已知关于x的一元二次方程x2﹣mx+6=0.其中一个解x=3,则m的值为.10.(3分)地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而(增大、变小).11.(3分)在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是.12.(3分)如图,点A在反比例函数的图象上,点B在反比例函数的图象上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为.13.(3分)如图,在平行四边形ABCD中,E是AB的中点,F在AD上,且AF:AD=1:3,EF交AC于G.若AC=40,则AG=.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:y(y﹣7)+2y﹣14=0.15.(5分)画出如图所示的正三棱柱的三视图.16.(5分)如图,菱形ABCD的边长为4,∠B=60°,以AC为边长作正方形ACEF,求这个正方形的周长.17.(5分)已知反比例函数y=,当x<0时,y随x的增大而减小,求正整数m的值.18.(5分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形.19.(5分)某游泳池有1200立方米水,设放水的平均速度为v立方米/小时,将池内的水放完需t小时.(1)求v关于t的函数表达式;(2)若要求在3小时之内把游泳池的水放完,则每小时应至少放水多少立方米?20.(5分)如图,延长正方形ABCD的一边CB至E,ED与AB相交于点F,过F作FG∥BE交AE于点G,求证:GF=FB.21.(6分)解读诗词(通过列方程算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?诗词大意:周瑜三十岁当东吴都督,去世时的年龄是两位数,十位数字比个位数字小三,个位数字的平方等于他去世时的年龄.22.(7分)学习了相似三角形相关知识后,小明和同学们想利用“标杆”测量大楼的高度.如图,小明站立在地面点F处,他的同学在点B处竖立“标杆”AB,使得小明的头顶E、标杆顶端A、大楼顶端C在一条直线上(点F、B、D也在一条直线上).已知小明的身高EF=1.5米,“标杆“AB=2.5米,BD=23米,FB=2米,EF、AB、CD均垂直于地面BD.求大楼的高度CD.23.(7分)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有三个种类的奶制品:A:纯牛奶,B:酸奶,C:核桃奶;伊利品牌有两个种类的奶制品:D:纯牛奶,E:核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请用列表法或画树状图法求出两人选购到同一种类奶制品的概率.24.(8分)如图,在△ABC中,D为AC延长线上一点,AC=3CD,∠CBD=∠A,过点D作DE∥AB交BC的延长线于点E.(1)求证:△ECD∽△EDB;(2)求△DCE与△ACB的周长比.25.(8分)如图,直角坐标系中,点B坐标为(6,0),且AO=AB=5,AH⊥x轴于点H,过B作BC⊥x轴交过点A的双曲线于点C,连接OC交AB于点D,交AH于点M.(1)求双曲线的表达式;(2)求的值.26.(10分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长交AD于点E,交BA的延长线于点F.(1)求证:△APD≌△CPD;(2)求证:△APE∽△FP A;(3)若PE=4,PF=12,求PC的长.参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)已知a、b、c、d是成比例线段,其中a=3,b=0.6,c=2,则线段d的长为()A.0.4B.0.6C.0.8D.4【分析】由a、b、c、d四条线段是成比例的线段,根据成比例线段的定义,即可得=,又由a=3,b=0.6,c=2,即可求得d的值.【解答】解:∵a、b、c、d四条线段是成比例的线段,∴=,∵a=3,b=0.6,c=2,∴=解得:d=0.4.故选:A.【点评】此题考查了比例线段,此题比较简单,解题的关键是注意掌握比例线段的定义.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是两个同心圆,内圆要画成实线.故选:C.【点评】本题考查了简单几何体的三视图,从左边看得到的图形是左视图.3.(3分)如图,四边形ABCD与四边形AEFG是位似图形,点A是位似中心,且AC:AF=2:3,则四边形ABCD 与四边形AEFG的面积之比等于()A.2:3B.4:9C.1:4D.1:2【分析】根据位似图形的概念得到EF∥BC,证明△BAC∽△EAF,根据相似三角形的性质求出,根据相似多边形的性质计算即可.【解答】解:∵四边形ABCD与四边形AEFG是位似图形,∴四边形ABCD∽四边形AEFG,EF∥BC,∴△BAC∽△EAF,∴==,∴四边形ABCD与四边形AEFG的面积之比为4:9,故选:B.【点评】本题考查的是位似变换的概念和性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.4.(3分)关于x的一元二次方程x2﹣3x+n=0没有实数根,则实数n的值可以为()A.0B.1C.2D.3【分析】根据方程没有实数根得出(﹣3)2﹣4×1×n<0,解之求出n的范围,结合各选项可得答案.【解答】解:根据题意,得:(﹣3)2﹣4×1×n<0,解得:n>,∴n的值可以是3,故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.5.(3分)已知反比例函数y=,在下列结论中,不正确的是()A.图象必经过点(1,2)B.图象在第一、二象限C.图象在第一、三象限D.若x=2,则y=1【分析】由k=2>0即可判断B,C;把x=2,代入y=可判断A,D.【解答】解:A.把(2,1)代入y=得:左边=右边,故本选项不符合题意;B.k=2>0,图象在第一、三象限内,故本选项符合题意;C.k=2>0,图象在第一、三象限内,故本选项不符合题意;D.把x=2,代入y=得y=1,故本选项不符合题意;故选:B.【点评】本题主要考查了反比例函数的性质,能熟练地根据反比例函数的性质进行判断是解此题的关键.6.(3分)如图,在矩形ABCD中,AC,BD相交于点O,若△AOB的面积是3,则矩形ABCD的面积是()A.6B.9C.12D.15【分析】由矩形的性质可得AO=CO=BO=DO,可得S△AOB=S△BOC=S△AOD=S△OCD=3,即可求解.【解答】解:∵四边形ABCD是矩形,∴AO=CO=BO=DO,∴S△AOB=S△BOC=S△AOD=S△OCD=3,∴矩形ABCD的面积=12,故选:C.【点评】本题考查了矩形的性质,掌握矩形的对角线互相平分且相等是解题的关键.7.(3分)笼子里关着一只小松鼠(如图).笼子主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先过第一道门(A或B),再过第二道门(C,D或E)才能出去,则松鼠走出笼子的路线是“先经过A门、再经过D门”的概率为()A.B.C.D.【分析】画树状图,即可得出答案.【解答】解:画树状图如下:共有6种等可能的结果,先经过A门、再经过D门只有1种结果,所以先经过A门、再经过D门的概率为,故选:D.【点评】此题考查的是用树状图法.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;正确画出树状图是解题的关键.8.(3分)如图,△ABC中,∠ACB=90°,分别以AB,AC为边作正方形ABPQ,ACFH,BP交FH于点O.若BC=BF=2,则OP的长为()A.B.2C.D.2【分析】根据正方形的性质得到△FOB∽△CBA,根据相似三角形的性质得到OF,利用勾股定理分别求出OB,PB进而可求.【解答】解:∵四边形ABPQ,ACFH为正方形,∴PB=AB,AC=CF=CB+BF=4,∠F=∠C=90°,∠PBA=90°,∴∠FOB+∠FBO=90°,∠ABC+∠FBO=90°∴∠FOB=∠ABC,∴△FOB∽△CBA,∴=,即=,∴OF=1,在Rt△FBO中,由勾股定理得,OB===,在Rt△ABC中,由勾股定理得,AB===2,∴OP=PB﹣OB=,故选:A.【点评】本题考查了正方形的性质和相似三角形的性质与判定,利用正方形的性质得到△FOB∽△CBA,根据相似三角形的性质得到OF是解题的关键.二、填空题(共5小题,每小题3分,计15分)9.(3分)已知关于x的一元二次方程x2﹣mx+6=0.其中一个解x=3,则m的值为5.【分析】把x=3代入方程x2﹣mx+6=0得到关于m的方程,然后解关于m的方程即可.【解答】解:把x=3代入方程x2﹣mx+6=0得9﹣3m+6=0,解得m=5.故答案为:5.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.(3分)地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而变小(增大、变小).【分析】可连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.【解答】解:连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.则他在墙上投影长度随着他离墙的距离变小而变小.故答案为变小.【点评】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.11.(3分)在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是10.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,=0.2,解得,a=10.故可以推算出a大约是10个.故答案为:10.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.12.(3分)如图,点A在反比例函数的图象上,点B在反比例函数的图象上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【分析】首先延长BA交y轴于点E,易得四边形ADOE与四边形BCOE是矩形,又由点A在反比例函数的图象上,点B在反比例函数的图象上,即可得S矩形ADOE=1,S矩形BCOE=3,继而求得答案.【解答】解:延长BA交y轴于点E,∵四边形ABCD为矩形,且AB∥x轴,点C、D在x轴上,∴AE⊥y轴,∴四边形ADOE与四边形BCOE是矩形,∵点A在反比例函数的图象上,点B在反比例函数的图象上,∴S矩形ADOE=1,S矩形BCOE=3,∴S矩形ABCD=S矩形BCOE﹣S矩形ADOE=3﹣1=2.故答案为:2.【点评】此题考查了反比例函数的系数k的几何意义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)如图,在平行四边形ABCD中,E是AB的中点,F在AD上,且AF:AD=1:3,EF交AC于G.若AC=40,则AG=8.【分析】设AC的中点为O,连接EO,根据题意可得OE是△ABC的中位线,从而可得OE=BC,OE∥BC,进而可证8字模型相似三角形△AFG∽△OEG,然后利用相似三角形的性质进行计算即可解答.【解答】解:设AC的中点为O,连接EO,∴AO=AC=20,∵E是AB的中点,∴OE是△ABC的中位线,∴OE=BC,OE∥BC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD∥OE,∴∠F AG=∠AOE,∠AFG=∠OEG,∴△AFG∽△OEG,∴=,∵AF:AD=1:3,∴=,∴==,∴=,∴AG=8,故答案为:8.【点评】本题考查了平行四边形的性质,相似三角形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:y(y﹣7)+2y﹣14=0.【分析】根据因式分解法即可求出答案.【解答】解:y(y﹣7)+2y﹣14=0,y(y﹣7)+2(y﹣7)=0,分解因式得:(y﹣7)(y+2)=0,则y﹣7=0或y+2=0,解得:y1=7,y2=﹣2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.15.(5分)画出如图所示的正三棱柱的三视图.【分析】根据题意可得正三棱柱的主视图为中间有一条竖的实心线的矩形,左视图为矩形,俯视图为正三角形,从而可画出三视图.【解答】解:如图所示:【点评】此题考查了作图﹣三视图,属于基础题,解答本题的关键是掌握三视图的观察方法,要求一定的空间想象能力.16.(5分)如图,菱形ABCD的边长为4,∠B=60°,以AC为边长作正方形ACEF,求这个正方形的周长.【分析】根据已知可求得△ABC是等边三角形,从而得到AC=AB,再根据正方形的周长公式计算即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是16.【点评】本题考查菱形与正方形的性质,关键是根据已知可求得△ABC是等边三角形.17.(5分)已知反比例函数y=,当x<0时,y随x的增大而减小,求正整数m的值.【分析】先根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵反比例函数y=,当x<0时,y随x的增大而减小,∴3﹣2m>0,解得m<,∴正整数m的值是1.【点评】本题考查的是反比例函数的性质,即反比例函数y=(k≠0)的图象是双曲线;当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.18.(5分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形.【分析】根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.【点评】本题考查了平行四边形的性质,矩形的判定,熟练掌握矩形的判定定理是解题关键.19.(5分)某游泳池有1200立方米水,设放水的平均速度为v立方米/小时,将池内的水放完需t小时.(1)求v关于t的函数表达式;(2)若要求在3小时之内把游泳池的水放完,则每小时应至少放水多少立方米?【分析】(1)由题意得vt=900,即v=,自变量的取值范围为t>0,(2)把t=3代入求出相应的v的值,即可求出放水速度.【解答】解:(1)由题意得:vt=1200,即:v=,答:v关于t的函数表达式为v=,自变量的取值范围为t>0.(2)当t=3时,v==400,所以每小时应至少放水400立方米.【点评】考查求反比例函数的应用,根据常用的数量关系得出函数关系式是解题的关键.20.(5分)如图,延长正方形ABCD的一边CB至E,ED与AB相交于点F,过F作FG∥BE交AE于点G,求证:GF=FB.【分析】结合条件可得到GF∥AD,则有=,由BF∥CD可得到=,又因为AD=CD,可得到GF =FB.【解答】证明:∵四边形ABCD为正方形,∴BF∥CD,∴=,∵FG∥BE,∴GF∥AD,∴=,∴=,且AD=CD,∴GF=BF.【点评】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.21.(6分)解读诗词(通过列方程算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?诗词大意:周瑜三十岁当东吴都督,去世时的年龄是两位数,十位数字比个位数字小三,个位数字的平方等于他去世时的年龄.【分析】设周瑜去世时的年龄的个位数字为x,则十位数字为x﹣3.根据题意建立方程求出其值就可以求出其结论.【解答】解:设周瑜去世时的年龄的个位数字为x,则十位数字为x﹣3,依题意得:10(x﹣3)+x=x2,解得x1=5,x2=6,当x=5时,25<30,(不合题意,舍去),当x=6时,36>30(符合题意),答:周瑜去世时的年龄为36岁.【点评】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人30岁的年龄是关键.22.(7分)学习了相似三角形相关知识后,小明和同学们想利用“标杆”测量大楼的高度.如图,小明站立在地面点F处,他的同学在点B处竖立“标杆”AB,使得小明的头顶E、标杆顶端A、大楼顶端C在一条直线上(点F、B、D也在一条直线上).已知小明的身高EF=1.5米,“标杆“AB=2.5米,BD=23米,FB=2米,EF、AB、CD均垂直于地面BD.求大楼的高度CD.【分析】如图1中,过点E作EH⊥CD于点H,交AB于点J.则四边形EFBJ,四边形EFDH都是矩形.利用相似三角形的性质求出CH,可得结论.【解答】解:如图中,过点E作EH⊥CD于点H,交AB于点J.则四边形EFBJ,四边形EFDH都是矩形.∴EF=BJ=DH=1.5米,BF=EJ=2米,DB=JH=23米,∵AB=2.5米.∴AJ=AB﹣BJ=2.5﹣1.5=1(米),∵AJ∥CH,∴△EAJ∽△ECH,∴=,∴=,∴CH=12.5(米),∴CD=CH+DH=12.5+1.5=14(米).答:大楼的高度CD为14米.【点评】本题考查相似三角形的应用,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.23.(7分)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有三个种类的奶制品:A:纯牛奶,B:酸奶,C:核桃奶;伊利品牌有两个种类的奶制品:D:纯牛奶,E:核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请用列表法或画树状图法求出两人选购到同一种类奶制品的概率.【分析】(1)根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是,故答案为:;(2)列表如下:A B CD(A,D)(B,D)(C,D)E(A,E)(B,E)(C,E)由表知,共有6种等可能结果,其中两人选购到同一种类奶制品的有2种结果,所以两人选购到同一种类奶制品的概率为=.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.24.(8分)如图,在△ABC中,D为AC延长线上一点,AC=3CD,∠CBD=∠A,过点D作DE∥AB交BC的延长线于点E.(1)求证:△ECD∽△EDB;(2)求△DCE与△ACB的周长比.【分析】(1)由DE∥AB得∠EDC=∠A,因为∠CBD=∠A,所以∠EDC=∠EBD,而∠A=∠A,可证明△ECD ∽△EDB;(2)由DE∥AB可证明△DCE∽△ACB,而AC=3CD,所以△DCE的周长:△ACB的周长=CD:AC=1:3,即可得出问题的答案.【解答】(1)证明:如图,∵DE∥AB,∴∠EDC=∠A,∵∠CBD=∠A,∴∠EDC=∠CBD,即∠EDC=∠EBD,∵∠E=∠E,∴△ECD∽△EDB;(2)解:∵DE∥AB,∴△DCE∽△ACB,∵AC=3CD,∴△DCE的周长:△ACB的周长=CD:AC=1:3=,∴△DCE与△ACB的周长比为.【点评】此题考查平行线的性质、相似三角形的判定与性质等知识,其中证明△DCE∽△ACB是解题的关键.25.(8分)如图,直角坐标系中,点B坐标为(6,0),且AO=AB=5,AH⊥x轴于点H,过B作BC⊥x轴交过点A的双曲线于点C,连接OC交AB于点D,交AH于点M.(1)求双曲线的表达式;(2)求的值.【分析】(1)根据B坐标为(6,0),得到OB=6,根据等腰三角形的性质得到OH=BH=OB=3,根据勾股定理得到AH===4,求得A坐标为(3,4),于是得到结论;(2)设C坐标为(6,m),根据y=(x>0)经过点C,求得BC=2,根据相似三角形的性质得到=,根据三角形的中位线定理得到MH=BC=×2=1于是得到结论.【解答】解:(1)∵B坐标为(6,0),∴OB=6,∵AO=AB=5,AH⊥x轴于点H,∴OH=BH=OB=3,在Rt△AOH中,AO2=AH2+OH2,∴AH===4,∴A坐标为(3,4),∵y=(x>0)经过点A,∴4=,∴k=12,∴双曲线表达式为y=(x>0);(2)设C坐标为(6,m),∵y=(x>0)经过点C,∴m==2,∴BC=2,∵AH⊥x轴,BC⊥x轴,∴AM∥CB,∴△ADM∼△ABC,∴=,∵OH=BH,∴OM=CM,∴MH是△OBC的中位线,∴MH=BC=×2=1,∴AM=AH﹣MH=3,∴=.【点评】本题考查了待定系数法求反比例函数的解析式,相似三角形的判定和性质,三角形的中位线定理,熟练掌握待定系数法求函数的解析式是解题的关键.26.(10分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长交AD于点E,交BA的延长线于点F.(1)求证:△APD≌△CPD;(2)求证:△APE∽△FP A;(3)若PE=4,PF=12,求PC的长.【分析】(1)由四边形ABCD是菱形,根据菱形的性质得AD=CD=AB=CB,还有BD是公共边,可证明△ADB ≌△CDB,得∠PDA=∠PDC,再证明△APD≌△CPD即可;(2)由CD∥AB得∠F=∠PCD,由△APD≌△CPD得∠P AE=∠PCD,所以∠P AE=∠F,而∠P AE=∠FP A,即可证明△APE∽△FP A;(3)由△APE∽△FP A得=,其中PE=4,PF=12,可求出P A的长,由△APD≌△CPD可知PC=P A,即可求得PC的长.【解答】(1)证明:如图,∵四边形ABCD是菱形,∴AD=CD=AB=CB,在△ADB和△CDB中,,∴△ADB≌△CDB(SSS),∴∠PDA=∠PDC,在△APD和△CPD中,,∴△APD≌△CPD(SAS).(2)证明:如图,∵CD∥AB,∴∠F=∠PCD,∵∠P AE=∠PCD,∴∠P AE=∠F,∵∠P AE=∠FP A,∴△APE∽△FP A.(3)解:如图,∵△APE∽△FP A,∴=,∵PE=4,PF=12,∴P A2=PE•PF=4×12=48,∴P A==4,∴PC=P A=4.∴PC的长为4.【点评】此题考查菱形的性质、全等三角形的判定与性质、相似三角形的判定与性质等知识,根据菱形的性质找出相等的角并证明角相等是解题的关键.。
2022-2023学年北京海淀区初三第一学期数学期末试卷及答案
2022-2023学年北京海淀区初三第一学期数学期末试卷及答案第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 刺绣是中国民间传统手工艺之一.下列刺绣图案中,是中心对称图形的为( )A. B.C. D.【答案】B 【解析】【分析】如果一个图形绕某一点旋转180度后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.依据中心对称图形的概念即可解答. 【详解】解:A 、是轴对称图形不是中心对称图形,故此选项不符合题意; B 、是中心对称图形,故此选项符合题意; C 、不是中心对称图形,故此选项不符合题意; D 、不是中心对称图形,故此选项不符合题意; 故选:B .【点睛】本题考查中心对称图形,熟练掌握中心对称图形的概念是解题的关键. 2. 点关于原点对称的点的坐标是( ) ()1,2A A. B.C. D.()1,2-()1,2-()1,2--()2,1【答案】C 【解析】【分析】根据关于原点对称点的坐标特点:横、纵坐标均取相反数可直接得到答案. 【详解】解:点A (1,2)关于原点对称的点的坐标是(-1,-2), 故选:C .【点睛】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律. 3. 二次函数的图象向左平移1个单位长度,得到的二次函数解析式为( ) 22y x =+A.B.23y x =+()212y x =-+C. D.21y x =+()212y x =++【答案】D 【解析】【分析】根据函数平移规律:左加右减,上加下减即可得到答案. 【详解】解:由题意可得,的图象向左平移1个单位长度可得,22y x =+, 2(1)2y x =++故选D .【点睛】本题考查函数图像平移规律,解题关键是熟练掌握规律:左加右减,上加下减. 4. 如图,已知正方形,以点为圆心,长为半径作,点与的位置关ABCD A AB A C A 系为( )A. 点在外B. 点在内C. 点在上D. 无法确C A C A C A 定 【答案】A 【解析】【分析】设正方形的边长为,用勾股定理求得点到的圆心之间的距离,为a C A AC AB 的半径,通过比较二者的大小,即可得到结论.A 【详解】解:设正方形的边长为, a则,,AB a =AC ==,AB AC < 点在外,∴C A 故选:A .【点睛】本题考查了点与圆的位置关系,解题的关键是确定圆的半径和点到圆心之间的距离的大小关系.5. 若点,在抛物线上,则的值为( )()0,5M ()2,5N ()223y x m =-+m A. 2 B. 1 C. 0 D.1-【答案】B 【解析】【分析】由函数的解析式可知函数对称轴为,从而得出的值. 022x m +==m 【详解】由函数可知对称轴是直线, ()223y x m =-+x m =由,可知,M ,N 两点关于对称轴对称,即 ()0,5M ()2,5N 0212x +==,,1m ∴=故选B .【点睛】本题考查二次函数图象上点的坐标特征,注意掌握二次函数图像上点的对称性是解题的关键.6. 勒洛三角形是分别以等边三角形的顶点为圆心,以其边长为半径作圆弧,由三段圆弧组成的曲边三角形.如图,该勒洛三角形绕其中心旋转一定角度后能与自身重合,则该O α角度可以为( )αA. B. C. D.30︒60︒120︒150︒【答案】C 【解析】【分析】连接,可得,从而得到,即可,OA OB AB AC BC==13601203AOC ∠=⨯︒=︒求解.【详解】解:如图,连接,,OA OC∵是等边三角形, ABC ∴,AB AC BC ==即, AB AC BC==∴. 13601203AOC ∠=⨯︒=︒∴该角度可以为.α120︒故选:C【点睛】本题主要考查了弧,弦,圆心角的关系,图形的旋转,等边三角形的性质,熟练掌握弧,弦,圆心角的关系是解题的关键.7. 如图,过点作的切线,,切点分别是,,连接.过上一点A O AB AC B C BC BC作的切线,交,于点,.若,的周长为4,则的D O AB ACEF 90A ∠=︒AEF △BC 长为( )A. 2B.C. 4D. 【答案】B 【解析】【分析】利用切线长定理得出,,,再根据三角形周长等于AB AC =DF FC =DE EB =4,可求得,从而利用勾股定理可求解.2AB AC ==【详解】解:∵,是的切线,切点分别是,, AB AC O B C ∴,AB AC =∵、是的切线,切点是D ,交,于点,, DF DE O AB AC E F ∴,,DF FC =DE EB =∵的周长为4,即, AEF △4AF EF AE AF DF DE AE AC AB ++=+++=+=∴, 2AB AC ==∵, 90A ∠=︒∴BC ===故选:B .【点睛】本题考查切线长定理,勾股定理,熟练掌握切线长定理是解题的关键. 8. 遥控电动跑车竞速是青少年喜欢的活动.如图是某赛道的部分通行路线示意图,某赛车从人口A 驶入,行至每个岔路口选择前方两条线路的可能性相同,则该赛车从口驶出的F 概率是( )A.B.C.D.13141516【答案】B 【解析】【分析】根据“在每个岔路口都有向左或向右两种可能,且可能性相等”可知在点H 、G 、E 、F 处都是等可能情况,从而得到在四个出口H 、G 、E 、F 也都是等可能情况,然后根据概率的意义列式即可得解.【详解】解:由图可知,在每个岔路口都有向左或向右两种可能,且可能性相等, 赛车最终驶出的点共有H 、G 、E 、F 四个, 所以,最终从点F 驶出的概率为, 14故选:B .【点睛】本题考查了概率,读懂题目信息,得出所给的图形的对称性以及可能性相等是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.第二部分 非选择题二、填空题(共16分,每题2分) 9. 二次函数的图象与轴的交点坐标为______.243y x x =-+y 【答案】 ()0,3【解析】【分析】令,求得的值即可. 0x =y 【详解】令,得, 0x =2433y x x =-+=∴二次函数的图象与轴的交点坐标为, y ()0,3故答案为:.()0,3【点睛】本题考查的是二次函数与轴的交点,正确计算是解答此题的关键. y 10. 半径为3且圆心角为的扇形的面积为________. 120︒【答案】3π. 【解析】【分析】直接利用扇形的面积公式S=,进而求出即可.2360n r π【详解】解:∵半径为3,圆心角为120°的扇形,∴S 扇形===3π.2360n r π21203360π⨯⨯故答案为3π.【点睛】此题主要考查了扇形面积公式应用,熟练记忆扇形面积公式是解题关键. 11. 下表记录了一名球员在罚球线上投篮的结果. 投篮次数 n 50 100 150 200 300 400 500 投中次数 m 284978102153208255投中频率m n0.56 0.49 0.52 0.51 0.51 0.52 0.51根据以上数据,估计这名球员在罚球线上投篮一次,投中的概率为______. 【答案】0.51(答案不唯一) 【解析】【分析】根据频率估计概率的方法结合表格数据可得答案.【详解】解:由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.51附近,∴这名球员在罚球线上投篮一次,投中的概率为0.51, 故答案为:0.51(答案不唯一).【点睛】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.12. 若关于的一元二次方程有两个不相等的实数根,则的取值范围是x 230x x m -+=m ______. 【答案】 94m <【解析】【分析】根据一元二次方程根的判别式列出关于m 的不等式,即可解得答案. 【详解】解:∵的一元二次方程有两个不相等的实数根, 230x x m -+=∴,即, 0∆>()2340m -->解得:, 94m <故答案为:. 94m <【点睛】本题考查一元二次方程根的判别式,解题的关键是掌握时,一元二次方程有0∆>两个不相等的实数根.13. 二次函数的图象如图所示,则______0(填“”,“”或“”).2y ax bx =+ab ><=【答案】 <【解析】【分析】根据抛物线的开口方向,判断的符号,根据对称轴的位置,判断的符号,进而a b 得到的符号.ab 【详解】解:由图象,可知:抛物线的开口向上:, 0a >对称轴在的右侧:,即:, y bx 02a=->0b <∴; 0ab <故答案为:.<【点睛】本题考查二次函数的图象与二次函数的系数之间的关系.熟练掌握二次函数的图象和性质,是解题的关键.14. 如图,是的内接三角形,于点,若,ABC O OD AB ⊥E O ,则______.45ACB ∠=︒OE =【答案】1 【解析】【分析】连接,,由圆周角定理求得,再由等腰三角OA OB 224590AOB ACB ∠=∠=⨯︒=︒形三线合一性质求得,从而求得,1452AOE BOE AOB ∠=∠=∠=︒45AOE OAE ∠=∠=︒得到,然后在中,,由勾股定理求解即可. OE AE =Rt AOE △90AEO ∠=︒【详解】解:连接,,OA OB∴, 224590AOB ACB ∠=∠=⨯︒=︒∵于点, OD AB ⊥E OA OB =∴, 1452AOE BOE AOB ∠=∠=∠=︒∴, 45AOE OAE ∠=∠=︒∴,OE AE =在中,,由勾股定理,得Rt AOE △90AEO ∠=︒,222OE AE OA +=∴,2222OE OA ==∴, 1OE =故答案为:1.【点睛】本题考查圆周角定理,等腰三角形的性质,勾股定理,熟练掌握圆周角定理,等腰三角形三线合一性质是解题的关键.15. 对于二次函数,与的部分对应值如表所示.在某一范围内,2y ax bx c =++y x x y 随的增大而减小,写出一个符合条件的的取值范围______.x xx …1-0 1 2 3 …y …3- 1331…【答案】(答案不唯一,满足即可) 2x >32x ≥【解析】【分析】根据表格,用待定系数法求出二次函数解析式,再根据二次函数的性质求解即可.【详解】解:把,;,;,分别代入=1x -=3y -0x =1y =1x =3y =,得2y ax bx c =++,解得:, 313a b c c a b c -+=-⎧⎪=⎨⎪++=⎩131a b c =-⎧⎪=⎨⎪=⎩∴,22373124y x x x ⎛⎫=-++=--+ ⎪⎝⎭∵, 10a =-<∴当时,随的增大而减小, 32x >y x ∴当时,随的增大而减小, 2x >y x 故答案为:(答案不唯一,满足即可). 2x >32x ≥【点睛】本题考查待定系数法求二次函数解析式,二次函数的性质,熟练掌握二次函数的性质是解题的关键.16. 如图,,,分别是某圆内接正六边形、正方形、等边三角形的一边.若AB AC AD ,下面四个结论中,2AB =①该圆的半径为2; ②的长为; AC π2③平分; ④连接,,则与的面积比为AC BAD ∠BC CD ABC ACD .所有正确结论的序号是______.【答案】①③④ 【解析】【分析】根据圆内接正六边形、内接正方形的性质、弧长公式,勾股定理逐一判断可选项即可.【详解】解:根据题干补全图形,连接,BC CD OA OB OC OD OE ,,,,,,根据内接正六边形的性质可知:, 60AOB ∠=︒OA OB =∴是等边三角形,AOB ,圆的半径为2,所以①正确;2OA OB AB ===根据内接正方形的性质可知:,=90AOC ︒∠的长为:,所以②错误; AC90π2π180⨯=∵,, OA OD =120AOD ∠=︒∴,30OAD ∠=︒∵,, OA OC ==90AOC ︒∠∴, 45OAC ∠=︒∵,60OAB ∠=︒∴, 604515BAC =︒-︒=︒∠∴,BAC DAC ∠=∠∴平分, 所以③正确;AC BAD ∠过点A 作交延长线于点H ,交延长线于点G , AH BC ⊥CB AG CD ⊥DC ∵, 1302ACB AOB ∠=∠=︒∴, 12AH AC =∵AC==∴AH =, 1245ADC AOC ∠=∠=︒∴, AG AD =设交于点M ,OB AD ∵,60AOM ∠=︒∴,,OM AD ⊥2AD AM =∵,30OAM ∠=︒∴, 112MD OA ==∴,AM==∴,2AD AM ==∴AG =∵,=BAC CAD ∠∠∴,CD BC =∴,所以④正确;1212ABCACD BC AH S AH S AG DC AG ∙====∙ 因此正确的结论:①③④故答案为:①③④【点睛】本题考查圆内接正六边形、内接正方形的性质、弧长公式,勾股定理,得出圆形的半径是解题的关键.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 解方程:.226x x -=【答案】,11x =+21x =-【解析】【分析】用配方法求解即可.【详解】解:,22161x x -+=+,()217x -=∴1x -=∴,.11x =+21x =-【点睛】本题考查解一元二次方程,熟练掌握用配方法求解一元二次方程是解题的关键.18. 已知抛物线过点和,求该抛物线的解析式.22y x bx c =++()1,3()0,4【答案】2234y x x =-+【解析】【分析】把和代入,解方程组求出b 、c 的值即可得答案.()1,3()0,422y x bx c =++【详解】解:∵抛物线过点和,∴ 22y x bx c =++()1,3()0,432,4.b c c =++⎧⎨=⎩解方程组,得 3,4.b c =-⎧⎨=⎩∴抛物线的解析式是.2234y x x =-+【点睛】本题考查待定系数法求二次函数解析式,把抛物线上的点的坐标代入解析式确定字母的值是解题关键.19. 已知为方程的一个根,求代数式的值.a 22310x x --=()()()1132a a a a +-+-【答案】1【解析】【分析】将a 代入方程中得,将所求代数式化简整理后,把整体2231a a -=2231a a -=代入即可.【详解】解:∵为方程的一个根,a 22310x x --=∴.22310a a --=∴.2231a a -=∴原式=.()222213646122312111a a a a a a a -+-=--=--=⨯-=【点睛】本题主要考查了一元二次方程的解的概念,以及用整体代入法求代数式的值.解题的关键是掌握整体代入法. 20. 如图,四边形内接于,为直径,.若,求的ABCD O AB BCCD =50A ∠=︒B ∠度数.【答案】65B ∠=︒【解析】【分析】连接.利用等弧所对圆周角相等,得出,从而得出AC DAC BAC ∠=∠,再利用直径所对圆周角是直角,最后由直角 三角形两锐角互1252BAC DAB ∠=∠=︒余求解即可.【详解】解:如图,连接. AC∵, BCCD =∴.DAC BAC ∠=∠∵,50DAB ∠=︒∴. 1252BAC DAB ∠=∠=︒∵为直径,AB ∴.90ACB ∠=︒∴.9065B BAC ∠=︒-∠=︒【点睛】本题考查圆周角定理的推论,直角三角形的性质,熟练掌握圆周角定理的推论是解题的关键.21. 为了发展学生的兴趣爱好,学校利用课后服务时间开展了丰富的社团活动.小明和小天参加的篮球社共有甲、乙、丙三个训练场.活动时,每个学生用抽签的方式从三个训练场中随机抽取一个场地进行训练.(1)小明抽到甲训练场的概率为______;(2)用列表或画树状图的方法,求小明和小天在某次活动中抽到同一场地训练的概率.【答案】(1) 13(2) 13【解析】【分析】(1)直接根据概率公式求解即可;(2)画树状图得出所有等可能结果,从中找到符合条件的结果,再根据概率公式求解即可.【小问1详解】 解:小明抽到甲训练场的概率为, 13故答案为:; 13【小问2详解】根据题意,可以画出如下树状图:由树状图可以看出,所有可能出现的结果有9种,并且这些结果出现的可能性相等. 小明和小天抽到同一场地训练(记为事件)的结果有3种,A 所以,. ()3193P A ==【点睛】此题考查了树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.22. 已知:如图,是的切线,为切点.PA O A 求作:的另一条切线,为切点.O PB B 作法:以为圆心,长为半径画弧,交于点;P PA O B 作直线. PB 直线即为所求.PB(1)根据上面的作法,补全图形(保留作图痕迹);(2)完成下面证明过程.证明:连接,,.OA OB OP ∵是的切线,为切点,PA O A ∴.OA PA ⊥∴.90PAO ∠=︒在与中,PAO PBO ,,______,PA PB OP OP =⎧⎪=⎨⎪⎩∴.∴.PAO PBO ≌△△90∠=∠=︒PAO PBO ∴于点.∵是的半径,OB PB ⊥B OB O ∴是的切线(____________________)(填推理的依据).PB O 【答案】(1)见解析 (2),经过半径外端并且垂直于这条半径的直线是圆的OA OB =切线【解析】【分析】(1)按照作法作出图形即可;(2)连接,,,证明即可证明是的切线.OA OB OP PAO PBO ≌△△PB O 【小问1详解】补全图形,如图所示:【小问2详解】连接,,.OA OBOP∵是的切线,A 为切点,PA O ∴.OA PA ⊥∴.90PAO ∠=︒在与中,PAO PBO ,,,PA PB OP OP OA OB =⎧⎪=⎨⎪=⎩∴.∴.PAO PBO ≌△△90∠=∠=︒PAO PBO ∴于点.∵是的半径,OB PB ⊥B OB O ∴是的切线(经过半径外端并且垂直于这条半径的直线是圆的切线).PB O 故答案为:,经过半径外端并且垂直于这条半径的直线是圆的切线.OA OB =【点睛】本题考查了尺柜作图,切线的性质和判定,以及全等三角形的判定与性质,熟练掌握切线的判定与性质是解答本题的关键.23. 紫砂壶是我国特有的手工制造陶土工艺品,其制作过程需要几十种不同的工具,其中有一种工具名为“带刻度嘴巴架”,其形状及使用方法如图1.当制显艺人把“带刻度嘴巴架”上圆弧部分恰好贴在壶口边界时,就可以保证需要粘贴的壶嘴、壶把、壶口中心在一条直线上.图2是正确使用该工具时的示意图.如图3,为某紫砂壶的壶口,已知,两点O A B 在上,直线过点,且于点,交于点.若,O l O l AB ⊥D O C 30mm AB =,求这个紫砂壶的壶口半径的长.5mm CD =r【答案】25mm 【解析】【分析】连接,根据垂径定理求得,又由,即可由勾股定OB 1152BD AB ==5DO r =-理求解.【详解】解:如图,连接.OB∵过圆心,,,l O l AB ⊥30AB =∴. 1152BD AB ==∵,5CD =∴.5DO r =-∵,222BO BD DO =+∴.()222155r r =+-解得.25r =∴这个紫砂壶的壶口半径的长为.r 25mm 【点睛】本题考查垂径定理,勾股定理,熟练掌握垂径定理是解题的关键.24. 如图,是的直径,点在上.过点作的切线,过点作AB O C O C O l B BD l ⊥于点. D(1)求证:平分;BC ABD ∠(2)连接,若,,求的长.OD 60ABD ∠=︒3CD =OD【答案】(1)见解析 (2)OD =【解析】【分析】(1)连接,求得,得到,即可求得平分.OC OC BD ∥OBC CBD ∠=∠BC ABD ∠(2)连接,求得,在中,求得;在中,AC 90ACB ∠=︒Rt BDC 6BC =Rt ACB △,;在中,利用勾股定理可求得.2AB AC =OC =Rt OCD △OD =【小问1详解】证明:如图,连接. OC∵直线与相切于点,l O C ∴于点.OC l ⊥C ∴.90OCD ∠=︒∵于点,BD l ⊥D ∴.=90BDC ∠︒∴.180OCD BDC ︒∠+∠=∴.OC BD ∥∴.OCB CBD ∠=∠∵,OC OB =∴.OBC OCB ∠=∠∴.OBC CBD ∠=∠∴平分.BC ABD ∠【小问2详解】解:连接. AC∵是的直径,AB O ∴.90ACB ∠=︒∵,60ABD ∠=︒∴. 1302OBC CBD ABD ︒∠=∠=∠=在中,Rt BDC ∵,,30CBD ∠=︒3CD =∴.26BC CD ==在中,Rt ACB △∵,30ABC ∠=︒∴.2AB AC =∵,222AC BC AB +=∴ AB =∴. 12OC AB ==在中,Rt OCD △∵,222OC CD OD +=∴OD =【点睛】本题是圆与三角形综合题,考查了切线的性质、角平分线的判定和和勾股定理,作出恰当的辅助线是解决问题的关键25. 学校举办“科技之星”颁奖典礼,颁奖现场人口为一个拱门.小明要在拱门上顺次粘贴“科”“技”“之”“星”四个大字(如图1),其中,“科”与“星”距地面的高度相同,“技”与“之”距地面的高度相同,他发现拱门可以看作是抛物线的一部分,四个字和五角星可以看作抛物线上的点.通过测量得到拱门的最大跨度是10米,最高点的五角星距地面6.25米.(1)请在图2中建立平面直角坐标系,并求出该抛物线的解析式;xOy (2)“技”与“之”的水平距离为米.小明想同时达到如下两个设计效果: 2a ① “科”与“星”的水平距离是“技”与“之”的水平距离的2倍;②“技”与“科”距地面的高度差为1.5米.小明的设计能否实现?若能实现,直接写出的值;若不能实现,请说明理由.a 【答案】(1)(答案不唯一)20.25y x =-(2)能实现;a =【解析】【分析】(1)建立平面直角坐标系,写出点的坐标,代入求解析式即可; (2)设“技”的坐标,表示“科”,列出方程解方程即可. ()20.25a a --,()22a a --,【小问1详解】 解:如图,以抛物线顶点为原点,以抛物线对称轴为轴,建立平面直角坐标系. y设这条抛物线表示的二次函数为.2y ax =∵抛物线过点,()5, 6.25-∴25 6.25a =-∴0.25a =-∴这条抛物线表示的二次函数为.20.25y x =-【小问2详解】能实现;.a =由“技”与“之”的水平距离为米,设“技”,“之”, 2a ()20.25a a --,()20.25a a -,则 “科”,()22a a --,“技”与“科”距地面的高度差为1.5米,,()220.25 1.5a a ∴---=解得:舍去)a =a =【点睛】本题考查运用二次函数解决实际问题,建立适当的平面直角坐标系,求出函数解析式是解题的关键.26. 在平面直角坐标系中,抛物线过点.xOy 21y ax bx =++()2,1(1)求(用含的式子表示); b a(2)抛物线过点,,.()2,M m -()1,N n ()3,P p ①判断:______0(填“>”“<”或“=”);()()11m n --②若,,恰有两个点在轴上方,求的取值范围.M N P x a 【答案】(1)2b a =-(2)①<②的取值范围是或 a 1138a -<≤-1a ≥【解析】【分析】(1)把代入,计算即可;()2,121y ax bx =++(2)①把代入,得,把代入()2,M m -21y ax bx =++18m a -=()1,N n ,得,当时,,,得21y ax bx =++1n a -=-0a >180m a -=>10n a -=-<;当时,,,得;()()110m n --<a<0180m a -=<10n a -=->()()110m n --<即可得出结论;②把,,代入,得,,()2,M m -()1,N n ()3,P p 21y ax bx =++81m a =+1n a =-+.当时,抛物线开口向上,对称轴为,则抛物线在时,取得最31p a =+0a >1x =1x =小值.所以,在轴上方,在轴上或轴下方,则,解得.当n M P x N x x 81031010a a a +>⎧⎪+>⎨⎪-+≤⎩1a ≥时,抛物线开口向下,对称轴为,所以抛物线在时,取得最大值,且0a <1x =1x =n .所以,在轴上方,在轴上或轴下方.则,解得<m p N P x M x x 10310810a a a -+>⎧⎪+>⎨⎪+≤⎩. 1138a -<≤-【小问1详解】解:把代入,得()2,121y ax bx =++,4211a b ++=∴;2b a =-【小问2详解】解:①把代入,得()2,M m -21y ax bx =++,421m a b =-+由(1)知:,2b a =-∴,18m a -=把代入,得()1,N n 21y ax bx =++,1n a b =++,1n a -=-当时,,,0a >180m a -=>10n a -=-<∴,()()110m n --<当时,,,a<0180m a -=<10n a -=->∴,()()110m n --<绽上,;()()110m n --<②由(1)知,2b a =-∴221y ax ax =-+∴抛物线对称轴为.1x =∵抛物线过点,,,()2,M m -()1,N n ()3,P p ∴,,.81m a =+1n a =-+31p a =+当时,抛物线开口向上,对称轴为,0a >1x =∴抛物线在时,取得最小值.1x =n ∵,,恰有两点在轴上方,M N P x ∴,在轴上方,在轴上或轴下方.M P x N x x ∴,解得.81031010a a a +>⎧⎪+>⎨⎪-+≤⎩1a ≥当时,抛物线开口向下,对称轴为,0a <1x =∴抛物线在时,取得最大值,且.1x =n <m p ∵,,恰有两点在轴上方,M N P x ∴,在轴上方,在轴上或轴下方.N P x M x x ∴,解得. 10310810a a a -+>⎧⎪+>⎨⎪+≤⎩1138a -<≤-综上,的取值范围是或. a 1138a -<≤-1a ≥【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的图象性质是解题的关键.27. 如图,在中,,.是边上一点,交ABC AB AC =120BAC ∠=︒D AB DE AC ⊥的延长线于点.CA E(1)用等式表示与的数量关系,并证明;AD AE (2)连接,延长至,使.连接,,.BE BE F EF BE =DC CF DF ①依题意补全图形;②判断的形状,并证明.DCF 【答案】(1),理由见解析;2AD AE =(2)①如图;②结论:是等边三角形,理由见解析.DCF 【解析】【分析】(1)根据,可知,DE AC ⊥120BAC ∠=︒90DEA ∠=︒,利用含角的直角三角形性质:角所对直角边等30ADE BAC DEA ∠=∠-∠=︒30︒30︒于斜边的一半,可得.2AD AE =(2)①根据题意补全图形即可;②延长至点使,连接,,根据可知,由BA H AH AB =CH FH AB AC =AH AC =,得是等边三角形,,18060HAC BAC ∠=︒-∠=︒ACH HC AC =, 根据,,可知,,60AHC ACH ∠=∠=︒AH AB =EF BE =2HF AE =HF AE ∥得,,,由60FHA HAC ∠=∠=︒120FHC FHA AHC ∠=∠+∠=︒FHC DAC ∠=∠,得,由,可证明,可得,2AD AE =HF AD =HA AC =FHC DAC ≌△△FC DC =,,从而可证明是等边三角形.HCF ACD ∠=∠60FCD ACH ∠=∠=︒DCF 【小问1详解】解:线段与的数量关系:.AD AE 2AD AE =证明: ,DE AC ⊥ .90DEA ∴∠=︒,120BAC ∠=︒30ADE BAC DEA ∴∠=∠-∠=︒;2AD AE ∴=【小问2详解】解:①补全图形,如图.②结论:是等边三角形.DCF 证明:延长至点使,连接,,如图.BA H AH AB =CH FH,AB AC =. ∴AH AC =,18060HAC BAC ∠=︒-∠=︒是等边三角形.∴ACH ,.∴HC AC =60AHC ACH ∠=∠=︒,,AH AB =EF BE =,.∴2HF AE =HF AE ∥.∴60FHA HAC ∠=∠=︒.∴120FHC FHA AHC ∠=∠+∠=︒,∴FHC DAC ∠=∠,2AD AE =.∴HF AD =,HC AC =()∴FHC DAC ≌△△SAS ,.∴FC DC =HCF ACD ∠=∠.∴60FCD ACH ∠=∠=︒是等边三角形.∴DCF【点睛】此题考查了含角的直角三角形性质,等边三角形的判定和性质,全等三角形的30︒判定和性质,综合掌握相关知识点是解题关键.28. 在平面直角坐标系中,对于点和线段,若线段或的垂直平分线与线xOy P AB PA PB 段有公共点,则称点为线段的融合点.AB P AB(1)已知,, ()30A ,()50B ,①在点,,中,线段的融合点是______; ()160P ,()212P -,()332P ,AB ②若直线上存在线段的融合点,求的取值范围;y t =AB t (2)已知的半径为4,,,直线过点,记线段关于O (),0A a ()1,0B a +l ()0,1T -AB 的对称线段为.若对于实数,存在直线,使得上有的融合点,直接写出l A B ''a l O A B ''a 的取值范围.【答案】(1)①,;②当时,直线上存在线段的融合点 1P 3P 22t -≤≤y t =AB(2或1a -≤≤1a -≤≤【解析】【分析】(1)①画出对应线段的垂直平分线,再根据融合点的定义进行判断即可;②先确定线段融合点的轨迹为分别以点,为圆心,长为半径的圆及两圆内区域,则当直AB A B AB 线与两圆相切时是临界点,据此求解即可;y t =(2)先推理出的融合点的轨迹即为以T 为圆心,的长为半径的圆和以T 为圆A B ''()1TA -心,以的长为半径的圆的组成的圆环上(包括两个圆上),再求出两个圆分别与()1TB +O 内切,外切时a 的值即可得到答案. 【小问1详解】解:①如图所示,根据题意可知,是线段的融合点,1P 3P AB故答案为;,;1P 3P②如图1所示,设的垂直平分线与线段的交点为Q ,PA AB ∵点Q 在线段的垂直平分线上,PA ∴,PQ AQ =∴当点Q 固定时,则点P 在以Q 为圆心,的长为半径的圆上,AQ ∴当点Q 在上移动时,此时点P 的轨迹即线段的融合点的轨迹为分别以点,为AB AB A B 圆心,长为半径的圆及两圆内区域. AB当直线与两圆相切时,记为,,如图2所示.y t =1l 2l∵,, ()30A ,()50B ,∴,2AB =∴或.2t =2t =-∴当时,直线上存在线段的融合点.22t -≤≤y t =AB 【小问2详解】解:如图3-1所示,假设线段位置确定,AB 由轴对称的性质可知,TA TA TB TB ''==,∴点在以T 为圆心,的长为半径的圆上运动,点在以T 为圆心,以的长为半径A 'TA B 'TB 的圆上运动,∴的融合点的轨迹即为以T 为圆心,的长为半径的圆和以T 为圆心,以A B ''()1TA -的长为半径的圆的组成的圆环上(包括两个圆上);()1TB +当时,TA TB <如图3-2所示,当以T 为圆心,为半径的圆与外切时,()1TA -O ∴,141TA -=+, 6=∴,2136a +=∴(负值舍去); a =如图3-3所示,当以为圆心,为半径的圆与内切时,T ()1TB +O ∴,13TB +=, 2=∴,22114a a +++=∴(负值舍去);1a -时,存在直线,使得上有的融合点;1a ≤≤l O A B ''同理当时,TA TB >当以T 为圆心,为半径的圆与外切时,()1TB -O ∴,141TB -=+, 6=∴,221136a a +++=∴(正值舍去);1a =-当以为圆心,为半径的圆与内切时,T ()1TA +O ∴,13TA +=, 2=∴,214a +=∴;a =∴时,存在直线,使得上有的融合点;1a ≤≤l O A B ''或时存在直线,使得上有1a -≤≤1a -≤≤l O A B ''的融合点.【点睛】本题主要考查了坐标与图形,轴对称的性质,线段垂直平分线的性质,勾股定理,圆与圆的位置关系等等,正确推理出对应线段的融合点的轨迹是解题的关键.。
2022-2023学年北京昌平区初三第一学期数学期末试卷及答案
2022-2023学年北京昌平区初三第一学期数学期末试卷及答案一、选择题(本题共8道小题,每小题3分,共24分)1. 如图,在一块直角三角板中,,则的值是( )ABC 30A ∠=︒sin AB. 12【答案】B【解析】【分析】根据特殊角的三角函数值求解即可.【详解】解:∵,30A ∠=︒∴. 1sin sin 302A =︒=故选:B .【点睛】本题词考查特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.2. 为一根轻质杠杆的支点,,,处挂着重的物体.若在O cm OA a =cm OB b =A 4N B 端施加一个竖直向上大小为的力,使杠杆在水平位置上保持静止,则和需要满足的3N a b 关系是,那么下列式子正确的是( ) 43a b =A. B. C. D. 43a b =43a b =43a b =43b a =【答案】D 【解析】【分析】将根据等式的性质将原式进行变形,即可判断.【详解】解:由题意知, ,在下列选项中:0a b ≠、A .将两边同除以12得:,故此选项错误; 43a b =34a b =B .将两边同除以得:,故此选项错误; 43a b =ab 34a b=C .将两边同除以得:,故此选项错误; 43a b =4b 34a b =B .将两边同除以得:,故此选项正确; 43a b =3a 43b a =故选:D . 【点睛】本题考查等式的变形,能够根据等式的性质进行正确的变形是解题的关键.3. 关于四个函数,,,的共同点,下列说法正确的是( 22y x =-213y x =23y x =2y x =-)A. 开口向上B. 都有最低点C. 对称轴是轴D. 随增大而增大 y y x 【答案】C【解析】【分析】根据a 值得函数图象的开口方向,从而判定A ;根据a 值得函数图象的开口方向,即可得出函数有最高点或电低点,从而判定B ;根据函数的对称轴判定C ;根据函数的增减性判定D .【详解】解:A .函数与的开口向下,函数与开口向上, 22y x =-2y x =-213y x =23y x =故此选项不符合题意;B .函数与的开口向下,有最高点;函数与开口向上,有22y x =-2y x =-213y x =23y x =最低点, 故此选项不符合题意;C .函数,,,的对称轴都是y 轴,故此选项符合题意; 22y x =-213y x =23y x =2y x =-D .函数与,当时,y 随x 增大而增大,当时,y 随x 增大而减22y x =-2y x =-0x <0x >小;函数与,当时,y 随x 增大而减小,当时,y 随x 增大而213y x =23y x =0x <0x >增大;故此选项不符合题意.故选:C .【点睛】本题考查函数图象性质,熟练掌握函数的图象性质是解题的关2(0)y ax a =≠键.4. 为做好校园防疫工作,每日会对教室进行药物喷酒消毒,药物喷洒完成后,消毒药物在教室内空气中的浓度和时间满足关系(),已知测得当()3mg/m y ()min t ky t=0k ≠时,药物浓度,则的值为( )10min t =35mg/m y =kA. 50B. C. 5 D. 1550-【答案】A【解析】 【分析】把,代入即可. 10min t =35mg/m y =k y t=【详解】解:∵当时,药物浓度,10min t =35mg/m y =∴代入得, k y t =510k =解得:50k =故选:A .【点睛】本题主要考查反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.5. 如图,是直径,,点,是圆上点,,,点是AB O 10AB =C D 6AC = AD BC=E 劣弧上的一点(不与,重合),则的长可能为( )BD B D AEA. 7B. 8C. 9D. 10【答案】C【解析】 【分析】先依次求出、的长,即可根据得到的范围,最后判BC AD AD AE AB <<AE 断即可.【详解】解:连接、,BC AD∵是直径,AB O ∴,90C ∠=︒∵,10AB =6AC =∴,8BC ==∵, AD BC=∴,8AD BC ==∴810AE <<∴的长可能为,AE 9故选:C .【点睛】本题考查圆周角定理,弧弦之间的关系,解题的关键是根据得到 AD BC=.AD BC =6. 怎样平移抛物线就可以得到抛物线( )22y x =()2211y x =+-A. 左移1个单位长度、上移1个单位长度B. 左移1个单位长度、下移1个单位长度C. 右移1个单位长度、上移1个单位长度D. 右移1个单位长度、下移1个单位长度【答案】B【解析】【分析】按照“左加右减,上加下减”的规律,即可判断.【详解】解:由抛物线, 左移1个单位长度,下移1个单位长度,可得到抛物线22y x =,()2211y x =+-故选:B .【点睛】此题考查了抛物线的平移规律,熟练掌握“左加右减,上加下减”的规律是解题的关键.7. 如图,为测楼房BC 的高,在距离楼房30米的A 处测得楼顶的仰角为α,则楼高BC 为( )A. 30tanα米B. 米C. 30sinα米D. 30tan α30sin α米【答案】A【解析】 【详解】在Rt△ABC 中,,∴BC=AC·tanα,即BC =30tanα米. tan BC ACα=故选A . 8. 我们都知道蜂巢是很多个正六边形组合来的.正六边形蜂巢的建筑结构密合度最高、用材最少、空间最大、也最为坚固.如图,某蜂巢的房孔是边长为6的正六边形,ABCDEF 若的内接正六边形为正六边形,则的长为( )O ABCDEF BFA. 12B. C. D.【答案】C【解析】 【分析】根据题意可得,则,再根据平分弧的直径垂直平分这条弧所AB AF = AB AF =对的弦可得,,再根据可得90OMB ∠=︒12BM FM BF ==60OA OB AOB =∠=︒,是等边三角形,则,最后结合三角函数即可求解.OAB 6OB AB ==【详解】解:连接,交于点M ,连接,OA BF OB∵六边形是的内接正六边形,ABCDEF O ∴,, AB AF =1360606AOB ∠=⨯︒=︒∴,AB AF =∵经过圆心O , OA∴,, =OA BF 12BM FM BF ==∴, 90OMB ∠=︒∵,60OA OB AOB =∠=︒,∴是等边三角形,OAB ∴,6OB AB ==∵在中,,,, Rt OBM △90OMB ∠=︒60AOB ∠=︒sin BM AOB OB∠=∴, sin 606BM OB =︒==∴22BF BM ==⨯=故选C .【点睛】本题考查了等边三角形的判定和性质、三角函数综合和圆周角定理,灵活运用所学知识求解是解决本题的关键.二、填空题(本题共8道小题,每小题3分,共24分)9. 写出一个开口向上,过的抛物线的函数表达式______.()0,2【答案】(答案不唯一)22y x =+【解析】【分析】根据开口向上,所以,又经过点,则,即可写出一个a 为正数,0a >()0,22c =的解析式即可.2c =【详解】解:∵开口向上,∴,0a >又经过点,()0,2∴抛物线解析式为:(答案不唯一),22y x =+故答案为:(答案不唯一)22y x =+【点睛】本题考查二次函数图象与系数关系,熟练掌握二次函数图象性质是解题的关键.10. 在半径为的圆中,的圆心角所对弧的弧长是______.1cm 60︒cm 【答案】3π【解析】 【分析】根据弧长公式进行计算即可求解.【详解】解:半径为的圆中,的圆心角所对弧的弧长是. 1cm 60︒6011803ππ⨯=故答案为:.3π【点睛】本题考查了求弧长,掌握弧长公式:是解题的关键. 180n r l π=11. 如图,中,,以为直径作,交于,交于.若ABC AC AB =AB O BC D AC E ,则______.25BAD ∠=︒EDC ∠=【答案】##50度50︒【解析】【分析】在等腰三角形中,根据三线合一可求得,然后利用圆内接四ABC 50BAC ∠=︒边形的性质可求得即可EDC BAC ∠=∠【详解】解:∵为的直径,AB O ∴,90ADB ∠=︒即,AD BC ⊥∵,AB AC =∴是等腰三角形,ABC ∴,250BAC BAD ∠=∠=︒∵,180BAC BDE ∠=︒-∠∴,18050EDC BDE ∠=︒-∠=︒故答案为:50︒【点睛】本题考查了圆内接四边形的性质和等腰三角形三线合一,熟练掌握圆内接四边形的对角互补是解题的关键12. 在平面直角坐标系中,直线与双曲线交于A ,B 两点.若点A ,B 的纵xOy y x =m y x=坐标分别为,则的值为_______.12,y y 12y y +【答案】0【解析】【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.【详解】解:∵正比例函数和反比例函数均关于坐标原点O 对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴,120y y +=故答案为:0.【点睛】本题考查正比例函数和反比例函数的图像性质,根据正比例函数与反比例函数的交点关于原点对称这个特点即可解题.13. 我国古代著名数学著作《九章算术》总共收集了246个数学问题,这些问题的算法要比欧洲同类算法早1500年.其中有这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可以表述为:“如图,为CD O 的直径,弦于点,寸,寸(注:1尺=10寸),则可得直径AB CD ⊥E 1CE =10AB =CD 的长为______寸.”【答案】26【解析】【分析】根据垂径定理得出的长,设半径为r 寸,再利用勾股定理求解.AE 【详解】解:连接OA ,,AB CD ⊥由垂径定理知,点E 是AB 的中点,∴ ∴152AE AB OE OC CE OA CE ===-=-,,设半径为r 寸,由勾股定理得,,()22222++OA AE OE AE OA CE ==- 即,()2225+1r r =-解得:, 13r =,∴226CD r ==即圆的直径为26寸.故答案为:26.【点睛】本题利用了垂径定理和勾股定理,正确构造直角三角形求出半径长是解题关键.14. 如图,在中,,,,则的长为______. ABC 3AB =2sin 3B =45C ∠=︒AC【答案】【解析】【分析】过点作于点,解,得出,进而解,即A AD BC ⊥D Rt △ABD 2AD =Rt ADC 可求解.【详解】解:如图,过点作于点,A AD BC ⊥D∵, 3AB =2sin 3B =∴, 2sin 323AD B AB =⨯=⨯=∵,45C ∠=︒AD DC ⊥∴ sin AD AC C==故答案为:【点睛】本题考查了解直角三角形,掌握三角形的边角关系是解题的关键.15. 如图,,分别与相切于点,,为的直径,,PA PB O A B AC O 4AC =,则______. 60C ∠=︒PA =【答案】【解析】【分析】根据已知条件得出,,根据含30度角的直角三角形的90ABC ∠=︒30CAB ∠=︒性质得出,勾股定理求得2BC =AB =PAB 是等边三角形,根据等边三角形的性质即可求解.【详解】解:∵为的直径,,,AC O 4AC =60C ∠=︒∴,,90ABC ∠=︒30CAB ∠=︒∴, 122BC AC ==∴AB ==∵是的切线,PA O ∴90CAP ∠=︒∴,903060BAP CAP CAB ∠=∠-∠=︒-︒=︒∵,分别与相切于点,,PA PB O A B ∴PA PB =∴是等边三角形,PAB∴,PA AB ==故答案为:【点睛】本题考查了直径所对的圆周角是直角,切线的性质,切线长定理,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,掌握以上知识是解题的关键.16. 某快递员负责为,,,,五个小区取送快递,每送一个快递收益1元,每A B C D E 取一个快递收益2元,某天5个小区需要取送快递数量下表. 小区 需送快递数量 需取快递数量A 15 6B 105 C 85 D 47E 13 4 (1)如果快递员一个上午最多前往3个小区,且要求他最少送快递30件,最少取快递15件,写出一种满足条件的方案______(写出小区编号);(2)在(1)的条件下,如果快递员想要在上午达到最大收益,写出他的最优方案______(写出小区编号).【答案】 ①. A ,B ,C(答案不唯一) ②. A ,B ,E【解析】【分析】(1)根据三个小区需送快递总数量,需取快递总数量,求解即可;30≥15≥(2)先求出第个小区总收益,再比较,选择收益最多的,且又满足需送快递总数量,30≥需取快递总数量的三个小区即可.15≥【详解】解:(1)∵A 小区需送快递数量15,需取快递数量6,B 小区需送快递数量10,需取快递数量5,C 小区需送快递数量8,需取快递数量5,∴若前往A 、B 、C 小区,需取快递数量为,151083330++=>需取快递数量为,6551615++=>∴前往A ,B ,C 小区满足条件,故答案为:A ,B ,C(答案不唯一);(2)前往A 小区收益为:(元),1516228⨯+⨯=前往B 小区收益为:(元),1015220⨯+⨯=前往C 小区收益为:(元),815218⨯+⨯=前往D 小区收益为:(元),417218⨯+⨯=前往E 小区收益为:(元),1314221⨯+⨯=∵,,,28212018>>>15101330++>65415++=∴他的最优方案是前往A 、B 、E 小区收益最大,故答案为∶A,B ,E .【点睛】本题考查有理数混合运算,有理数比较大小,属基础题目,难度不大.三、解答题(本题共52分,第17-20题,每小题5分,第21-23题,每小题6分,第24-25题,每小题7分)解答应写出文字说明,演算步骤或证明过程.17. .22cos45sin 60︒︒︒+-【答案】 14【解析】【分析】先将特殊角的三角函数值代入,再进行化简.22+-34=14=【点睛】本题考查特殊角的三角函数值的运算,掌握特殊角的三角函数值是解答本题的关键.18. 如图,矩形中,点在边上,,连接并延长,交的延ABCD P AD 2PD AP =CP BA 长线于点,连接交于点.E BD CP Q(1)写出图中两对相似的三角形(相似比不为1)(2)求的值. BE CD【答案】(1),(答案不唯一)EAP EBC ∽EQB CQD ∽(2) 32BE CD =【解析】【分析】(1)先根据矩形的性质求出,,再证明三角形相似即可;AB CD AD BC ∥(2)先根据求出,再根据矩形的性质求解. EAP EBC ∽BE AB【小问1详解】∵四边形是矩形,ABCD ∴,,AB CD AD BC ∥∴,;E QCD ∠=∠EAP EBC ∠=∠∵,,EAP EBC ∠=∠E E ∠=∠∴;EAP EBC ∽∵,,E QCD ∠=∠EQB CQD ∠=∠∴.EQB CQD ∽【小问2详解】∵,2PD AP =∴,3AD AP =∵四边形是矩形,ABCD ∴,,AD BC =AB CD =∴,3BC AP =∵,EAP EBC ∽∴, 3BE BC AE AP==∴,3BE AE =∴,2AB AE =∴, 32BE AB =即, 32BE AB =∵,AB CD =∴. 32BE CD =【点睛】本题考查了矩形的性质和相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.19. 已知二次函数.2=23y x x --(1)求二次函数图象的顶点坐标;2=23y x x --(2)在平面直角坐标系中,画出二次函数的图象;xOy 2=23y x x --(3)结合图象直接写出自变量时,函数的最大值和最小值.03x ≤≤【答案】(1)()1,4-(2)见解析 (3)函数最大值为0,最小值为.4-【解析】【分析】(1)利用配方法把一般式转化为顶点式,由此求得顶点坐标;(2)根据题意画出函数的图象即可;(3)观察图象写出函数y 的取值范围.【小问1详解】解:∵.()222314y x x x ---==-∴抛物线的顶点坐标是.()1,4-【小问2详解】解:二次函数的图象如图所示: 2=23y x x --【小问3详解】解:观察图象得,当自变量时03x ≤≤当时,取最小值,此时,1x =y 4y =-当时,取最大值,此时,3x =y 0y =∴当时,.03x ≤≤40y -≤≤即:函数最大值为0,最小值为.4-【点睛】本题考查的是二次函数的性质,画二次函数图像,解题的关键是正确的画出函数图像.20. 我们在课上证明圆周角定理时,需要讨论圆心与圆周角的三种不同位置分别证明,下面给出了情形(1)的证明过程,请你在情形(2)和情形(3)中选择其一证明即可. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.已知:如图,在中,弧所对的圆周角是,圆心角是O AB ACB ∠.AOB ∠求证:. 12ACB AOB ∠=∠情形(1)证明:如图(1),当圆心在的边上时O ACB ∠∵,OC OB =∴.C B ∠=∠∵是中的外角,AOB ∠OBC △COB ∠∴.AOB C B ∠=∠+∠∴.2AOB C ∠=∠即. 12∠=∠C AOB 请你选择情形(2)或情形(3),并证明.【答案】见解析【解析】【分析】情形(2):延长交于点,连接,利用同弧所对的圆周角相等及三AO O D BD 角形外角的性质求解即可求得答案;情形(3):延长交于点,连接,利用同弧所对的圆周角相等及三角形外角AO O D BD 的性质求解即可求得答案.【详解】情形(2):如图2,当圆心在的内部时,延长交于点,连O ACB ∠AO O D 接,BD则(同弧或等弧所对的圆周角都相等),D C ∠=∠,OB OD = ,D OBD ∴∠=∠(三角形的一个外角等于与它不相等的两个内角的和), AOB D OBD ∠=∠+∠ ,22AOB D C ∴∠=∠=∠即. 12∠=∠C AOB 情形(3):如图3,当圆心在的外部时,延长交于点,连接,O ACB ∠AO O D BD则(同弧或等弧所对的圆周角都相等),D C ∠=∠,OB OD = ,D OBD ∴∠=∠(三角形的一个外角等于与它不相邻的两个内角的和), AOB D OBD ∠=∠+∠ ,22AOB D C ∴∠=∠=∠即. 12∠=∠C AOB 【点睛】此题考查了圆周角定理以及等腰三角形的性质,熟记等腰三角形的性质及三角形外角性质是解此题的关键.21. 已知:如图,过正方形的顶点,,且与边相切于点.点是O ABCD A B CD E F BC 与的交点,连接,,,点是延长线上一点,连接,且O OB OF AF G AB FG . 1902G BOF ∠+∠=︒(1)求证:是的切线;FG O (2)如果正方形边长为2,求的长.BG 【答案】(1)见解析 (2) 98BG =【解析】【分析】(1)根据圆周角定理得出,结合已知条件得出12BAF BOF ∠=∠,即可得证;90G BAF ∠+∠=︒(2)连接并延长交于点,根据题意得出,设,则EO AB H OH AB ⊥AO r =,在中,,求得,根据2OH r =-Rt AOH △222AH OH AO +=54r =,求得的长,进而即可求解. cos cos AB AF FAB FAB AF AG∠==∠=AG 【小问1详解】证明:∵, BFBF =∴, 12BAF BOF ∠=∠∵ 1902G BOF ∠+∠=︒∴90G BAF ∠+∠=︒∴,90AFG ∠=︒∵四边形是正方形,ABCD ∴,90ABF ∠=︒为的直径,AF ∴O 即点在上,O AF ∴,OF FG ⊥∴是的切线;FG O 【小问2详解】解:如图,连接并延长交于点,EO ABH∵过正方形的顶点,,且与边相切于点,O ABCD A B CD E ∴,OH AB ⊥∴,1AH HB ==设,则,AO r =2OH r =-在中,Rt AOH △222AH OH AO +=()22212r r +-=解得: 54r =∴ 52AF =∵,FG AF ⊥FB AB ⊥∴ cos cos AB AF FAB FAB AF AG∠==∠=即, 52252AG =解得:, 258AG =∴. 259288BG AG AB =-=-=【点睛】本题考查了圆周角定理,切线的判定,余弦的定义,勾股定理,掌握正方形的性质以及圆的性质是解题的关键.22. 小张在学校进行定点处投篮练习,篮球运行的路径是抛物线,篮球在小张头正上方M 出手,篮球架上篮圈中心的高度是3.05米,当球运行的水平距离为米时,球心距离地面x 的高度为米,现测量第一次投篮数据如下:y/m x 0 2 4 6 …/m y 1.8 3 3.4 3 …请你解决以下问题:(1)根据已知数据描点,并用平滑曲线连接;(2)若小吴在小张正前方1米处,沿正上方跳起想要阻止小张投篮(手的最大高度不小于球心高度算为成功阻止),他跳起时能摸到的最大高度为2.4米,请问小昊能否阻止此次投篮?并说明理由;(3)第二次在定点处投篮,篮球出手后运行的轨迹也是抛物线,并且与第一次抛物线的M 形状相同,篮球出手时和达到最高点时,球的位置恰好都在第一次的正上方,当篮球运行的水平距离是6.5米时恰好进球(恰好进球时篮圈中心与球心重合),问小张第二次篮球刚出手比第一次篮球刚出手时的高度高多少米?【答案】(1)见解析 (2)小昊不能阻止此次投篮(3)0.275米【解析】【分析】(1)先描出点,,,,再用平滑曲线连接即可;()0,1.8()2,3()4,3.4()6,3(2)先求出抛物线解析式,再求出当的y 值与2.4比较即可;1x =(3)求出当时的y 值,再用即可.6.5x = 3.05y -【小问1详解】解:如图所示,【小问2详解】解:小昊不能阻止此次投篮.理由:设抛物线解析式为,把,,代入,得 2y ax bx c =++()0,1.8()2,3()6,3,解得:,1.84233663c a b c a b c =⎧⎪++=⎨⎪++=⎩0.10.81.8a b c =-⎧⎪=⎨⎪=⎩∴,20.10.8 1.8y x x =-++当时,则,1x = 2.5y =∵,2.5 2.4>∴小昊不能阻止此次投篮.【小问3详解】解:对于抛物线,20.10.8 1.8y x x =-++当时,,6.5x =20.1 6.50.8 6.5 1.8 2.775y =-⨯+⨯+=(米),3.05 2.7750.275-=∵第二次在定点处投篮,篮球出手后运行的轨迹也是抛物线,并且与第一次抛物线的形M 状相同,篮球出手时和达到最高点时,球的位置恰好都在第一次的正上方,∴小张第二次篮球刚出手比第一次篮球刚出手时的高度高0.275米.【点睛】本题考查二次函数的应用,熟练掌握用待定系数法求二次函数解析式和二次函数的图象性质是解题的关键.23. 在平面直角坐标系中,点,,(点,不重合)xOy ()11,A y -()23,B a y ()32,C y B C 在抛物线()上. 212y x x a=-0a ≠(1)当时,求二次函数的顶点坐标;1a =(2)①若,则的值为______;23y y =a ②已知二次函数的对称轴为,当时,求的取值范围.t 132y y y >>t 【答案】(1)()1,1-(2)①;②或 2a =-1223t <<2t <-【解析】【分析】(1)先将代入抛物线,然后再化成顶点式即可解答; 1a =212y x x a=-(2)①先分别求得,再根据得到关于a 的分式方程求得a 的值,再看是否32y y 、23y y =与B 、C 重合即可解答;先求得抛物线的对称轴为,然后分和两种情况,分t a =0a >a<0别根据二次函数的增减性和对称性即可解答.【小问1详解】解:将代入抛物线可得:. 1a =212y x x a=-()22211y x x x =-=--所以二次函数的顶点坐标为.()1,1-【小问2详解】解:①将代入可得: ()23,B a y 212y x x a =-2963a y a a =-=将代入可得: ()32,C y 212y x x a =-344y a =-∵23y y =∴ 434a a=-解得: 1222,3a a =-=经检验:是分式方程的解 1222,3a a =-=∴当时, 23a =()22,B y ∵()32,C y ∴点B 与点C 重合,故,即; 23a ≠2a =-②二次函数的对称轴为,即 212y x x a =-212x a a-=-=⨯t a =当时,,二次函数图像开口向上,当 时,y 随x 的增大而增大 0a >10a>0a >由轴对称可得点关于的对称点为()11,A y -x a =()121,a y +∵132y y y >>∴,即2123a a +>>1223a <<当时,,二次函数图像开口向下,当 时,y 随x 的增大而增大 a<010a<a<0由轴对称可得点关于的对称点为()32,C y x a =()322,a y -∵132y y y >>∴,即1223a a ->->2a <-综上,或,即或. 1223a <<2a <-1223t <<2t <-【点睛】本题主要考查了二次函数顶点式的性质、二次函数的增减性和对称性等知识点,灵活应用二次函数的性质成为解答本题的关键.24. 如图,在中,,点在上,,连接,点是ABC 90ACB ∠=︒D AB AD AC =CD E CB 上一点,,过点作的垂线分别交,于,.CE DB =E CD CD AB F G(1)依题意补全图形;(2),求的大小(用含的式子表示);BCD α∠=CAB ∠α(3)用等式表示线段,,之间的数量关系,并证明.AG AC BC 【答案】(1)见解析 (2)2CAB α∠=(3)AG AC BC +=【解析】【分析】(1)根据题意画出图形即可;(2)先求出,再在中根据等腰三角形性质求出即可;ACD ∠ACD CAB ∠(3)设,,再证明,求出的长即可.AD AC a ==CE DB b ==BCD BGE BG 【小问1详解】解:补齐图形如下:【小问2详解】∵,,BCD α∠=90ACB ∠=︒∴,90ACD α∠=︒-∵,AD AC =∴,90ACD ADC α∠=∠=︒-∴()1801802902CAB ACD ADC αα∠=︒-∠-∠=︒-︒-=【小问3详解】设,,AD AC a ==CE DB b ==∴,AB AD BD a b =+=+∴BC ===∴,BE BC CE b =-=∵ CD EF ⊥∴,90ADC EGD ∠+∠=︒∴,EGD BCD α∠==∠∴BCD BGE ∴ BG BE BC BD==∴2BG b a ==+-∴ (2AG AB BG a b b a a =-=+-+=-∵,BC =AC a =∴AG BC AC =-即AG AC BC +=【点睛】本题考查了相似三角形的判定和性质,等腰三角形的性质,数形结合,用代数式表示线段长,准确的计算是本题的关键.25. 已知:对于平面直角坐标系中的点和,的半径为4,交轴于点A ,xOy P O O x ,对于点给出如下定义:过点的直线与交于点,,点为线段的中B P C O M N P MN 点,我们把这样的点叫做关于的“折弦点”.P MN(1)若()2,0C -①点,,中是关于的“折弦点”的是______; ()10,0P ()21,1P -()32,2PMN②若直线()上只存在一个关于的“折弦点”,求的值;y kx =+0k ≠MN k (2)点在线段上,直线上存在关于的“折弦点”,直接写出的取值C AB y x b =+MN b 范围.【答案】(1)①点、点;②k 1P 2P (2).-44b ≤≤【解析】【分析】(1)①根据题意P 点是弦MN 的中点,则,因此.分别计算OP MN ⊥CP CO ≤,,的长度,与OC 的长作比较即可判断.1OP 2OP 3OP②将C 点坐标代入 中求出值即可.y kx =+k (2)分别计算过A 点和B 点时b 的值,即可写出b 的取值范围.y x b =+【小问1详解】解:①如图,∵P 为MN 的中点,∴,OP MN ⊥∴,CP CO ≤即.2C P ≤∵,()10,0P ∴12CP =此时,P 点是直径MN 的中点,符合题意. ∵,()21,1P -∴, 22CP ==<∴符合题意.()21,1P -∵,()32,2P∴, 32CP ==>∴不符合题意.()32,2P ∴、点是折弦点.1P 2P 故答案为:点、点1P 2P②把代入中得 ()2,0C -y kx =,-20k +=解得, k =此时直线MN 是定直线,它只有一个折弦点.【小问2详解】解:把代入中得, (4,0)A -y x b =+4b =把代入中得,(4,0)B y x b =+4b =-∴b 的范围是-44b ≤≤【点睛】本题主要考查了垂径定理,能够读懂题意,会画图分析是解题的关键.。
人教版九年级数学上学期期末考试试题及答案一
人教版九年级数学上学期期末考试试题及答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.关于抛物线y =-(x +3)2+2,下列说法中错误的是 ( )A .开口向下B .对称轴是直线x =-3C .顶点坐标(-3,2)D .与y 轴交点坐标(0,2)2.下列图形中是中心对称图形的是 ( )3.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )A .10πB .15πC .20πD .30π4.在△ABC 中,点D ,E 分别为边AB ,AC 的中点,则△ADE 与△ABC 的面积之比为 ( ) A.12 B.13 C.14 D.165.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC =α,∠ADC =β,则竹竿AB 与AD 的长度之比为 ( )A.tan αtan βB.sin βsin αC.sin αsin βD.cos βcos α6.已知点A (x 1,3),B (x 2,6)都在反比例函数y =-3x 的图象上,则下列关系式中一定正确的是 ( )A .x 1<x 2<0B .x 1<0<x 2C .x 2<x 1<0D .x 2<0<x 17.在同一平面直角坐标系中,反比例函数y =b x (b ≠0)与二次函数y=ax 2+bx (a ≠0)的图象大致是 ( )A B C D8.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为 ( )A.34B.13C.12D.149.如图,扇形OAB 中,∠AOB =100°,OA =12,点C 是OB 的中点,CD ⊥OB 交AB ︵于点D ,以OC 为半径的CE ︵交OA 于点E ,则图中阴影部分的面积是() A.12π+183B.12π+363C.6π+183D.6π+36310.如图,抛物线y=(x-1)2-4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,经过点C作x轴的平行线,与抛物线的另一个交点为点D,M为抛物线的顶点,P(m,n)是抛物线上点A,C之间的一点(不与点A,C重合),有结论:①OC=4;②点D的坐标为(2,-3);③n+3>0;④存在点P,使PM⊥DM.其中正确的是() A.①③B.②③C.②④D.①④二、填空题(本大题共4小题,每小题5分,满分20分)11.若100个产品中有98个正品,2个次品,从中随机抽取一个,抽到次品的概率是____.12.如图是抛物线型拱桥,当拱顶离水面2 m时,水面宽4 m,水面下降2 m,水面宽度增加____m.13.如图,正比例函数y =kx 与反比例函数y =6x 的图象有一个交点A (2,m ),AB ⊥x 轴于点B ,平移直线y =kx ,使其经过点B ,得到直线l ,则直线l 对应的函数表达式是____.14.如图,小明想用长为12米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD ,则矩形ABCD的最大面积是____平方米.三、(本大题共2小题,每小题8分,满分16分)15.(湖州中考)如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连接BC.(1)求证:AE =ED ;(2)若AB =10,∠CBD =36°,求AC ︵的长.16.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2;(3)△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;(4)△A 1B 1C 1与△A 2B 2C 2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.四、(本大题共2小题,每小题8分,满分16分)17.(黔南州中考)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,八年级数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=______,n=______;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2 000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A,B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”,从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.18.图①是一辆在平地上滑行的滑板车,图②是其示意图.已知车杆AB长92 cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6 cm,求把手A离地面的高度(结果保留小数点后一位,参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75).五、(本大题共2小题,每小题10分,满分20分)19.(白银中考)如图,一次函数y =x +4的图象与反比例函数y =k x (k 为常数且k ≠0)的图象交于A (-1,a ),B 两点,与x 轴交于点C .(1)求此反比例函数的表达式;(2)若点P 在x 轴上,且S △ACP =32S △BOC ,求点P 的坐标.20.如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点.(1)求证:AC 2=AB ·AD ;(2)求证:△AFD ∽△CFE .21.如图,AB是⊙O的弦,点D为半径OA 的中点,过点D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果CD=15,BE=10,sin A=513,求⊙O的半径.七、(本题满分12分)22.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…152025…y/件…252015…已知y是x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?(3)销售价定为多少时,每日的销售利润最大?最大利润是多少?23.在平面直角坐标系xOy 中,矩形ABCO 的顶点A ,C 分别在y 轴,x 轴正半轴上,点P 在AB 上,P A =1,AO =2.经过原点的抛物线y =mx 2-x +n 的对称轴是直线x =2.(1)求出该抛物线的表达式;(2)如图甲,将一块两直角边足够长的三角板的直角顶点放在P 点处,两直角边恰好分别经过点O 和C .现在利用图乙进行如下探究: ①将三角板从图甲中的位置开始,绕点P 顺时针旋转,两直角边分别交OA ,OC 于点E ,F ,当点E 和点A 重合时停止旋转.请你观察、猜想,在这个过程中,PE PF 的值是否发生变化?若发生变化,说明理由;若不发生变化,求出PE PF 的值;②设(1)中的抛物线与x 轴的另一个交点为D ,顶点为M ,在①的旋转过程中,是否存在点F ,使△DMF 为等腰三角形?若存在,求出点F 的坐标;若不存在,说明理由.答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.关于抛物线y =-(x +3)2+2,下列说法中错误的是 ( D )A .开口向下B .对称轴是直线x =-3C .顶点坐标(-3,2)D .与y 轴交点坐标(0,2)2.下列图形中是中心对称图形的是 ( B )3.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( B )A .10πB .15πC .20πD .30π4.(广东中考)在△ABC 中,点D ,E 分别为边AB ,AC 的中点,则△ADE 与△ABC 的面积之比为 ( C ) A.12 B.13 C.14 D.165.(金华中考)如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC =α,∠ADC =β,则竹竿AB 与AD 的长度之比为 ( B )A.tan αtan βB.sin βsin αC.sin αsin βD.cos βcos α6.(扬州中考)已知点A (x 1,3),B (x 2,6)都在反比例函数y =-3x 的图象上,则下列关系式中一定正确的是 ( A )A .x 1<x 2<0B .x 1<0<x 2C .x 2<x 1<0D .x 2<0<x 17.(永州中考)在同一平面直角坐标系中,反比例函数y =b x (b ≠0)与二次函数y =ax 2+bx (a ≠0)的图象大致是 ( D )A B C D8.(徐州中考)如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( C )A.34B.13C.12D.149.如图,扇形OAB 中,∠AOB =100°,OA =12,点C 是OB 的中点,CD ⊥OB 交AB ︵于点D ,以OC 为半径的CE ︵交OA 于点E ,则图中阴影部分的面积是 ( C )A .12π+183B .12π+363C .6π+183D .6π+36310.★如图,抛物线y =(x -1)2-4与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,经过点C 作x 轴的平行线,与抛物线的另一个交点为点D ,M 为抛物线的顶点,P (m ,n )是抛物线上点A ,C 之间的一点(不与点A ,C 重合),有结论:①OC =4;②点D 的坐标为(2,-3);③n +3>0;④存在点P ,使PM ⊥DM .其中正确的是( B )A .①③B .②③C .②④D .①④二、填空题(本大题共4小题,每小题5分,满分20分)11.(黔南州中考)若100个产品中有98个正品,2个次品,从中随机抽取一个,抽到次品的概率是__150__.12.(绵阳中考)如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m ,水面下降2 m ,水面宽度增加__42-4__m. 13.(安徽中考)如图,正比例函数y =kx 与反比例函数y =6x 的图象有一个交点A (2,m ),AB ⊥x轴于点B ,平移直线y =kx ,使其经过点B ,得到直线l ,则直线l 对应的函数表达式是__y =32x -3__.14.如图,小明想用长为12米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD ,则矩形ABCD的最大面积是__18__平方米.三、(本大题共2小题,每小题8分,满分16分)15.(湖州中考)如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连接BC.(1)求证:AE =ED ;证明:∵AB 是⊙O 的直径,∴∠ADB =90°,∵OC ∥BD ,∴∠AEO =∠ADB =90°,即OC ⊥AD ,∴AE =ED.(2)若AB =10,∠CBD =36°,求AC ︵的长.解:∵OC ⊥AD ,∴AC ︵=CD ︵,∴∠ABC =∠CBD =36°,∴∠AOC =2∠ABC =2×36°=72°,∴AC ︵=72π×5180=2π.16.(徐州中考)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2;(3)△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;(4)△A 1B 1C 1与△A 2B 2C 2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.解:(1)(2)如图所示.(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段B 1B 2,作它的垂直平分线,或连接A 1C 1,A 2C 2的中点的连线为对称轴.(4)成中心对称,对称中心为线段B 1B 2的中点P ,坐标是⎝ ⎛⎭⎪⎫12,12. 四、(本大题共2小题,每小题8分,满分16分)17.(黔南州中考)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,八年级数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=______,n=______;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2 000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A,B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”,从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.解:(1)10035.(2)如图.(3)估算全校2 000名学生中,最认可“微信”这一新生事物的人数为2 000×40%=800人.(4)列表如下:D A ,D B ,D C ,D —共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为1012=56.18.图①是一辆在平地上滑行的滑板车,图②是其示意图.已知车杆AB 长92 cm ,车杆与脚踏板所成的角∠ABC =70°,前后轮子的半径均为6 cm ,求把手A 离地面的高度(结果保留小数点后一位,参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75).解:过点A 作AD ⊥BC 于点D ,延长AD 交地面于点E ,∵sin ∠ABD =AD AB ,∴AD =92×0.94≈86.48.∵DE =6,∴AE =AD +DE ≈92.5,∴把手A 离地面的高度约为92.5 cm.五、(本大题共2小题,每小题10分,满分20分)19.(白银中考)如图,一次函数y =x +4的图象与反比例函数y =k x (k 为常数且k ≠0)的图象交于A (-1,a ),B 两点,与x 轴交于点C .(1)求此反比例函数的表达式;(2)若点P 在x 轴上,且S △ACP =32S △BOC ,求点P 的坐标.解:(1)把点A(-1,a)代入y =x +4,得a =3,∴A(-1,3),把A(-1,3)代入反比例函数y =k x ,∴k =-3,∴反比例函数的表达式为y =-3x .(2) 联立两个函数表达式得⎩⎨⎧y =x +4,y =-3x ,解得⎩⎪⎨⎪⎧x =-1,y =3或⎩⎪⎨⎪⎧x =-3,y =1, ∴点B 的坐标为B(-3,1),当y =x +4=0时,得x =-4, ∴点C(-4,0),设点P 的坐标为(x ,0),∵S △ACP =32S △BOC ,∴12×3×|x -(-4)|=32×12×4×1,解得x 1=-6,x 2=-2,(3) ∴点P(-6,0)或(-2,0).20.如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点.(1)求证:AC 2=AB ·AD ;(2)求证:△AFD ∽△CFE .证明:(1)∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD∶AC=AC∶AB,∴AC2=AB·AD.(2)∵E为AB的中点,∴CE=BE=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD,∴△AFD∽△CFE.六、(本题满分12分)21.如图,AB是⊙O的弦,点D为半径OA 的中点,过点D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果CD=15,BE=10,sin A=513,求⊙O的半径.(1)证明:连接OB,由圆的半径相等和已知条件证明∠OBC=90°,即可证明BC是⊙O的切线.(2)解:连接OF,AF,BF,首先证明△OAF是等边三角形,再利用圆周角定理(即同弧所对的圆周角是所对圆心角的一半)即可求出∠ABF 的度数为30°.(3)解:过点C 作CG ⊥BE 于点G ,由CE =CB ,可求出EG =12BE=5,又Rt △ADE ∽Rt △CGE 和三角函数求出DE =2,由Rt △ADE∽Rt △CGE 求出AD 的长为245,进而求出⊙O 的半径为485.七、(本题满分12分)22.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表:已知y 是x 的一次函数.(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?(3)销售价定为多少时,每日的销售利润最大?最大利润是多少?解:(1)设y =kx +b ,根据题意可得,⎩⎪⎨⎪⎧20=20k +b ,25=15k +b ,解得⎩⎪⎨⎪⎧k =-1,b =40, ∴日销售量y(件)与每件产品的销售价x(元)之间的函数表达式为y =-x +40.(2)当每件产品的销售价定为35元时,此时每日的销售利润 w =(35-10)(-35+40)=125(元).答:此时每日的销售利润是125元.(3)设总利润为w ,根据题意可得,w =(x -10)(-x +40)=-x 2+50x -400=-(x -25)2+225, ∵a =-1<0,∴销售价定为25元时,每日的销售利润最大,最大利润是225元.八、(本题满分14分)23.在平面直角坐标系xOy 中,矩形ABCO 的顶点A ,C 分别在y 轴,x 轴正半轴上,点P 在AB 上,P A =1,AO =2.经过原点的抛物线y =mx 2-x +n 的对称轴是直线x =2.(1)求出该抛物线的表达式;(2)如图甲,将一块两直角边足够长的三角板的直角顶点放在P 点处,两直角边恰好分别经过点O 和C .现在利用图乙进行如下探究: ①将三角板从图甲中的位置开始,绕点P 顺时针旋转,两直角边分别交OA ,OC 于点E ,F ,当点E 和点A 重合时停止旋转.请你观察、猜想,在这个过程中,PE PF 的值是否发生变化?若发生变化,说明理由;若不发生变化,求出PE PF 的值;②设(1)中的抛物线与x 轴的另一个交点为D ,顶点为M ,在①的旋转过程中,是否存在点F ,使△DMF 为等腰三角形?若存在,求出点F 的坐标;若不存在,说明理由.解:(1)y =14x 2-x.(2)易知△PAO ∽△CBP ,BC =AO =2,PA =1,∴PB =4,故AB =OC =5,①PE PF 的值不发生变化,PE PF =12,根据旋转的性质知,∠EPO =∠FPC ,∵∠POE +∠POC =90°,∠POC +∠PCO =90°,∴∠POE =∠PCO ,故△PEO ∽△PFC ,∴PE PF =PO PC =PA BC =12.②存在.设点F 的横坐标为m ,由(1)得D(4,0),M(2,-1),过点M 作MN ⊥x 轴于点N ,则DM 2=12+22=5.DF 2=(4-m)2,MF 2=12+(m -2)2,下面分三种情况讨论:Ⅰ.当以MD 为底边时.DF =MF.则(4-m)2=12+(m -2)2,解得m =114;Ⅱ.当以DF 为底边时,MF =MD ,则12+(m -2)2=5,解得m 1=0,m 2=4;Ⅲ.当以MF 为底边时,DF =DM ,则(4-m)2=5,解得m 3=4+5,m 4=4-5;由①当点E 与点A 重合时,m =1,1≤m ≤5,所以m =114或m =4或m =4-5,又因为当m =4时,点F 与点D 重合,不符合题意.综上所述,存在点F 1(114,0)和F 2(4-5,0),使△DMF 为等腰三角形.。
江苏省苏州市2022-2023学年第一学期初三数学期末试卷及参考答案
2022~2023学年第一学期初三期末试卷数 学本卷由选择题、填空题和解答题组成,共27题,满分130分,调研时间120分钟. 注意事项:1.答题前,考生务必将学校、班级、姓名、调研号等信息填写在答题卡相应的位置上. 2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效;如需作图,先用2B 铅笔画出图形,再用0.5毫米黑色墨水签字笔描黑,不得用其他笔答题.3.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效.一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置.......上) 1.有一组数据:11,11,12,15,16,则这组数据的中位数是A .11B .12C .15D .162.方程24x =的根是AB .2C或D .2或2-3.已知⊙O 的半径是4,点A 到圆心O 的距离为3,则点A 与⊙O 的位置关系是A .点A 在圆内B .点A 在圆上C .点A 在圆外D .无法确定4.若抛物线y =x 2+ax +2的对称轴是y 轴,则a 的值是A .2-B .1-C .0D .25.如图,点A ,B ,C 在⊙O 上,若∠AOB =100°,则∠ACB 的度数为A .40︒B .50︒C .80︒D .100︒6.我们可用“斜尺”测量管道的内径(如图),若玻璃管的内径DE 正对“30”刻度线,已知AB 长为5mm ,DE ∥AB ,则玻璃管内径DE 的长度等于 A .2.5mm B .3mm C .3.5mm D .4mm(第5题)(第6题)0EDCBA504030OCBA7.如图,C 为⊙O 上一点,AB 是⊙O 的直径,AB =4,∠ABC =30°,现将△ABC 绕点B 按顺时针方向旋转30°后得到△A BC '',BC '交⊙O 于点D ,则图中阴影部分的面积为 A .3πB.3πC .23π D.23π+8.如图,已知抛物线2y ax c =+与直线y kx m =+交于1(3)A y -,,2(1)B y ,两点,则关于x 的不等式2ax kx c ++≥m 的解集是 A .3x -≤或1x ≥ B .1x -≤或3x ≥ C .31x -≤≤ D .13x -≤≤二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.某体育用品专卖店在一段时间内销售了20双男生运动鞋,各种尺码运动鞋的销售量如下表.则由这20双运动鞋尺码组成的数据的众数是 ▲ cm .10 11.一只蚂蚁在一块黑白两色的正六边形地砖上任意爬行,并随机停留在地砖上某处,则蚂蚁停留在黑色区域的概率是 ▲ .12.已知1x ,2x 是一元二次方程2560x x +-=的两个根,则1211x x +的值为 ▲ . BA(第8题)(第7题)CBA(第10题)(第11题)13.如图,MN 与⊙O 相切于点A ,AB 是⊙O 的弦,且AB =1,30BAN ∠=︒,则⊙O 的半径长为 ▲ .14.如图,四边形ABCD 中,点E 在AD 上,且EC ∥AB ,EB ∥DC ,已知△ABE 的面积为3,△ECD 的面积为1,则△BCE 的面积为 ▲ .15.在△ABC 中,AB =2,BC,则∠A 度数的最大值为 ▲ °.16.已知抛物线2y x bx c =++过(10)A -,,(0)B m ,两点.若2<m <3,则下列四个结论中正确的是 ▲ .(请将所有正确结论的序号都填写到横线上): ①b >0; ②0c <;③点11()M x y ,,22()N x y ,在抛物线上,若x 1<x 2,x 1+x 2=1,则y 1>y 2; ④关于x 的一元二次方程220x bx c +++=必有两个不相等的实数根.三、解答题(本大题共11小题,共82分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分5分)计算:2cos30tan 60sin 45︒-︒+︒.18.(本题满分5分)解方程:2450x x --=.ANME DCBA(第13题)(第14题)为落实“双减”政策,某中学在课后服务时间开设了四个兴趣小组,分别为A :机器人,B :交响乐,C :油画,D :古典舞.为了解学生的报名情况(每名学生只报一个兴趣小组),现随机抽取部分学生进行调查,并根据调查结果绘制了如下两幅不完整的统计图.请根据以上图文信息回答下列问题: (1)此次调查共抽取 ▲ 名学生; (2)请将条形统计图补充完整;(3)扇形统计图中,项目A 所对应的扇形圆心角的度数为 ▲ °.20.(本题满分6分)为深入学习贯彻党的二十大精神,我市某中学决定举办“青春心向党,奋进新征程”主题演讲比赛.该校九年级有二男二女共4名学生报名参加演讲比赛.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是 ▲ ; (2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生都是男生的概率.21.(本题满分6分)如图,测绘飞机在同一高度沿直线BC 由B 向C 飞行,且飞行路线经过观测目标A 的正上方.在第一观测点B 处测得目标A 的俯角为60°,航行1000米后在第二观测点C 处测得目标A 的俯角为75°.求第二观测点C 与目标A 之间的距离.CBA60°75°(第21题)把一根长8米的绳子剪成两段,并把每一段绳子围成一个正方形. (1)要使这两个正方形面积的和等于2平方米,应该怎么剪? (2)这两个正方形面积的和可能等于418平方米吗?请说明理由.23.(本题满分8分)60°的扇形(图中的阴影部分). (1)求这个扇形的半径;(2)若用剪得的扇形纸片围成一个圆锥的侧面,求所围成圆锥的底面圆半径.24.(本题满分8分)已知二次函数244y ax ax =-+的图像与x 轴有唯一公共点(1)求a 的值;(2)当0≤x ≤m 时(0m >),函数的最大值为4,且最小值为0,则实数m 的取值范围是 ▲ .25.(本题满分10分)如图,矩形ABCD 中,AD =3,CD =4,点P 从点A 出发,以每秒1个单位长度的速度在射线AB 上向右运动,运动时间为t 秒,连接DP 交AC 于点Q .(1)求证:DCQ PAQ △∽△;(2)若△ADQ 是以AD 为腰的等腰三角形,求运动时间t 的值.(第25题)如图,以AB 为直径的⊙O 经过△ABC 的顶点C ,AE ,BE 分别平分∠BAC 和∠ABC ,AE 的延长线交BC 于点F ,交⊙O 于点D ,连接BD .(1)求证:CBD BAD ∠=∠; (2)求证:BD =DE ;(3)若AB=BE=BC 的长.27.(本题满分10分)在平面直角坐标系中,O 为坐标原点,直线3y x =-+与x 轴交于点B ,与y 轴交于点C .二次函数y =ax 2+2x +c 的图像过B ,C 两点,且与x 轴交于另一点A ,点M 为线段OB 上的一个动点(不与端点O ,B 重合).(1)求二次函数的表达式;(2)如图①,过点M 作y 轴的平行线l 交BC 于点F ,交二次函数y =ax 2+2x +c 的图像于点E .记CEF △的面积为1S ,BMF △的面积为2S ,当1212S S =时,求点E 的坐标; (3)如图②,连接CM ,过点M 作CM 的垂线1l ,过点B 作BC 的垂线2l ,1l 与2l 交于点G .试探究CG CM 的值是否为定值?若是,请求出CGCM的值;若不是,请说明理由.(第26题)苏州市阳光指标学业水平调研测试初三数学参考答案及评分标准2023.019.25 10.1211.1312.5613.1 1415.45︒16.②③④三、解答题(共11小题,共82分)17.(本题满分5分)················································································ 3分. ························································································· 5分18.(本题满分5分)解:原方程可化为:(5)(1)0x x-+=······························································· 3分∴原方程的解为:15x=,21x=-. ··························································· 5分19.(本题满分6分)解:(1)100;··························································································· 2分(2)图(略); ······················································································· 4分(3)144.····························································································· 6分20.(本题满分6分)解:(1)12; ····························································································· 2分(2)树状图或表格(略); ······································································ 4分2名学生都是男生的概率为16. ································································· 6分答:这两名学生都是男生的概率为16.21.(本题满分6分)解:如图,过点C作CH AB⊥,垂足为H. ····························· 1分CH AB⊥90CHB CHA∴∠=∠=︒.在Rt△CHB中,60B∠=︒,1000BC=CH∴=.······· 3分在Rt△CHA中,∵45A∠=︒,CH=AC∴=··························· 5分答:第二观测点C与目标A之间的距离为 ···································· 6分22.(本题满分8分)解:设剪成的两段绳子长分别为x米,(8)x-米.CHBA60°75°(1)由题意可得:228()()244x x -+=. ····················································· 2分 解得:124x x ==.················································································· 4分 ∴应该剪成两段长度均为4米的绳子,可使得两个正方形的面积和为2平方米. (2)由题意可得:22841()()448x x -+=. ······················································ 5分 解得:11x =-,29x =. ·········································································· 7分 经检验,11x =-,29x =均不符合题意.∴两个正方形的面积和不可能为418平方米. ················································ 8分 23.(本题满分8分)解:(1)连接OA ,OB ,过点O 作OH AB ⊥,垂足为H .由图形的轴对称性可得:30OAB ∠=︒. ············ 1分OA OB =.在等腰三角形OAB中,OA OB =30OAB ∠=︒,OH AB ⊥∴32AH =且H 为AB 中点. ····································································· 3分 ∴23AB AH ==,即扇形ABC 的半径为3. ················································ 4分 (2)设圆锥的底面圆半径为r .603=180180n R l ππ⨯==π扇形. ······································································· 6分 又2r π=π,12r ∴=. ··········································································· 8分 ∴圆锥底面圆的半径为12. 24.(本题满分8分)解:(1)由题意得:2=16160a a -=△. ························································· 2分解得:10a =,21a =. ············································································ 4分 ∵0a ≠,∴1a =. ················································································· 5分 (2)24m ≤≤. ·················································································· 8分 25.(本题满分10分)解:(1)∵矩形ABCD ,∴DC ∥AP . ······························································· 1分 ∴∠CDQ =∠APQ ,∠DCQ =∠P AQ . ·························································· 2分 DCQ PAQ ∴△∽△. ··············································································· 3分 (2)设点P 运动的时间为t 秒.①如图1,若AQ AD =.矩形ABCD ,3AD =,4DC =,90ADC ∠=︒,∴5AC =.AQ AD =,3AD =,3AQ ∴=,CQ =2. ·················································· 4分DCQ PAQ △∽△,DC CQ PA AQ ∴=,即:423t =. ·········································· 5分 解得:6t =. ························································································ 6分②如图2,若AD DQ =.过点D 作DH AC ⊥,垂足为H .DH AC ⊥,90AHD ∴∠=︒,又矩形ABCD ,90ADC ∴∠=︒,∴.AHD ADC ∠=∠ 又∵DAH CAD ∠=∠,ADH ACD ∴△∽△. AH AD AD AC ∴=,335AH ∴=,95AH ∴=.DA DQ =,DH AC ⊥,1825AQ AH ∴==,75CQ ∴=. ····························· 8分又DCQ PAQ △∽△,DC QC PA QA ∴=,∴47/518/5t =. ···································· 9分 解得:727t =. ···················································································· 10分综上所述:6t =或727. 26.(本题满分10分) 解:(1)AE 平分BAC ∠,BAD CAD ∴∠=∠. ················································ 1分DBC DAC ∠=∠. ················································································ 2分CBD BAD ∴∠=∠. ················································································ 3分 (2)BE 平分ABC ∠,ABE CBE ∴∠=∠. ················································ 4分 DBE DBC EBC ∠=∠+∠,DEB BAE EBA ∠=∠+∠.DBE DEB ∴∠=∠. ············ 5分 ∴BD =DE . ··························································································· 6分 (3)解法一:如图①,延长BD , 交AC 的延长线于点G . AB 是直径,=90BDA ∴∠︒,=90GDA ∠︒.在ABD △和AGD △中,∵BDA GDAAD AD BAD GAD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABD AGD △≌△.∴=BD DG ,AB =AG . ················· 7分 在△BDE中,∵BE =90BDA ∠︒,BD DE =,∴=2BD . ····················· 8分 在△ABD 中,∠BDA =90°,AB=,BD=2,由勾股定理可得:4AD =. 在△ABG 中,AB =AG=,=BD DG =2,4AD =,∠BDA=∠BCA =90°.由等面积法可得:BG AD AG BC ⋅=⋅,即44BC ⨯=. ··························· 9分解得:BC =. ··············································································· 10分B Q P DC B A (图1) (图2)解法二:如图②,连接CD ,过D 作DH ⊥BC 于H . ∵∠BAD =∠CAD ,∴BD =CD ,即△BDC 为等腰三角形. ································································· 7分 又∵DH ⊥BC ,∴H 为BC 中点. 在△BHD 和△ADB 中:∠BAD =∠BCD =∠DBH ;∠BDA =∠DHB =90°. ∴△ABD ∽△BDH ,∴AB BDAD BH=. ·················· 8分 同解法一可得:=2BD ,4AD =. ··················· 9分2BH =,解得:BH =∴2BC BH ==. ··································· 10分 27.(本题满分10分) 解:(1)直线3y x =-+与x 轴交于点B ,与y 轴交于点C ,(3,0)B ∴,(0,3)C . ·· 1分将B ,C 两点的坐标代入22y ax x c =++可得:9603a c c ++=⎧⎨=⎩. ······················ 2分解得:1a =-,3c =.∴二次函数的解析式为:223y x x =-++. ··················· 3分 (2)EM y ∥轴,EM x ∴⊥轴.设(,0)M t (03t <<),则(,3)F t t -,2(,23)E t t t -++,23EF t t ∴=-+,3FM t =-+. ∴211(3)2S t t =-,221(3)2S t =-,2122(3)1(3)2S t t S t -∴==-. ·································· 5分 2230t t ∴+-=,1t ∴=或32t =-(舍去).·················································· 6分(1,4)E ∴. ···························································································· 7分(3)如图,在线段OC 上取点N ,使得ON OM = 3OB OC ==,ON OM =,CN BM ∴=. CM MG ⊥,90OMC GMB ∴∠+∠=︒. 90BOC ∠=︒,90OMC NCM ∴∠+∠=︒. 90OMC GMB ∠+∠=︒,90OMC NCM ∠+∠=︒, NCM BMG ∴∠=∠.135MBG CBG CBO ∠=∠+∠=︒, 180135CNM MNO ∠=︒-∠=︒,CNM MBG ∴∠=∠. ··············································································· 8分在CNM △和MBG △中CNM MBGCN BMNCM BMG ∠=∠⎧⎪=⎨⎪∠=∠⎩,CNM MBG ∴△≌△. ··············································· 9分 CM MG ∴=.90CMG ∠=︒,CG ∴=.CGCM∴=····················· 10分图② 图①。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.. ;.. 初三第一学期期末学业水平调研
数 学 2018. 1
学校 姓名 准考证号
考 1.本试卷共 8 页,共三道大题, 28 道小题,满分 100 分。考试时间 120 分钟。 2. 在试卷和答题卡上准确填写学校名称、班级和准考证号。 生
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 须 4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。 知 5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题 (本题共 16 分,每小题 2 分) 第 1-8 题均有四个选项,符合题意的选项只有一个 ... 2 1. 抛物线 y x 1 2 的对称轴为
A . x 1 B . x 1 C. x 2 D. x 2
2. 在△ ABC 中,∠ C 90°.若 AB 3, BC 1,则 sin A 的值为
A . 1 B . 2 2 C. 2 2 3 3 D. 3
B 3. 如图,线段 BD , CE 相交于点 A, DE∥ BC.若 AB 4, AD 2, DE 1.5, E 则 BC 的长为 A
A .1 B .2 D
C.3 D .4 C
4. 如图,将△ ABC 绕点 A 逆时针旋转 100 °,得到△ ADE .若点 D 在线段 A
BC 的延长线上,则 B 的大小为 E
A .30° B .40° C.50° D .60° B C D
5. 如图,△ OAB∽△ OCD ,OA :OC 3:2,∠ A α,∠ C β,△ OAB 与△ OCD 的面积分别是 S1 和 S2 ,△ OAB
与△ OCD 的周长分别是 C1和 C2
,则下列等式一定成立的是
C
OB 3 A . CD 2
S1 3 C. S2 2
3 D
B . O
2
A B C1 3 D . C2 2 ;..
6. 如图,在平面直角坐标系 xOy 中,点 A 从( 3,4)出发,绕点 O 顺时针 M 旋转一周,则点 A 不.经过
A .点 M
y ..
5
4 A
3 2 1 Q
B .点 N C.点 P D .点 Q
–6–5–4–3–2–O1 –1
–2 –3
1 2 3 4 5 6 x P
7. 如图,反比例函数 y 范围是 A . x 0 或 x 4 k 的图象经过点 A( 4, 1),当 y x 1 时, x 的取值 N 4
–5 y
A 1
O 4 x B . 0 x 4
C. x 4 D . x 4
8. 两个少年在绿茵场上游戏.小红从点 A 出发沿线段 AB 运动到点 B,小兰 C A
从点 C 出发, 以相同的速度沿⊙ O 逆时针运动一周回到点 C,两人的运动 O
路线如图 1 所示,其中 AC DB.两人同时开始运动,直到都停止运动时 D B
游戏结束,其间他们与点 C 的距离 y 与时间 x(单位:秒)的对应关系如
图 2 所示.则下列说法正确的是
y A
C
O D O 1.09 B 7.49 9.68 17.12 x
图 1 图 2 A .小红的运动路程比小兰的长 B .两人分别在 1.09 秒和 7.49 秒的时刻相遇 C.当小红运动到点 D 的时候,小兰已经经过了点 D D .在 4.84 秒时,两人的距离正好等于⊙ O 的半径 ;..
.. 二、填空题 (本题共 16 分,每小题 2 分)
9. 方程 2 x 2 x 0 的根为 .
10. 已知∠ A 为锐角,且 tan A 3 ,那么∠ A 的大小是 °.
y x=1
11. 若一个反比例函数图象的每一支上, y 随 x 的增大而减小,则此反比例函数表
达式可以是 .(写出一个即可)
12. 如图,抛物线 y ax2 bx c 的对称轴为 x 1 ,点 P,点 Q 是抛物线与 x O P x
轴的两个交点,若点 P 的坐标为( 4, 0),则点 Q 的坐标为 .
13. 若一个扇形的圆心角为 60°,面积为 6π,则这个扇形的半径为 . B C 14. 如图, AB 是⊙ O 的直径, PA,PC 分别与⊙ O 相切于点 A,点 C,若∠ P 60°, O
PA 3 ,则 AB 的长为 . A P 15. 在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离.如图,在一个路口,一辆 长为 10m 的大巴车遇红灯后停在距交通信号灯 20m 的停止线处,小张驾驶一辆小轿车跟随大巴车行驶.设 小张距大巴车尾 x m,若大巴车车顶高于小张的水平视线 0.8m,红灯下沿高于小张的水平视线 3.2m,若小张能看到整个红灯,则 x 的最小值为 .
红黄
3.2m 绿
0.8m
交通信号灯
20m 停止线 10m x m
16. 下面是“作一个 30°角”的尺规作图过程. 已知:平面内一点 A. D 求作: ∠ A,使得 ∠A 30°.
作法:如图, A ( 1) 作射线 AB; O C B
( 2) 在射线 AB 上取一点 O,以 O 为圆心, OA 为半径作圆,与射线 AB 相交于点 C; ( 3) 以 C 为圆心, OC 为半径作弧,与 ⊙ O 交于点 D,作射线 AD . ∠DAB 即为所求的角 . 请回答: 该尺规作图的依据是 . 三、解答题 (本题共 68 分,第 17~22 题,每小题 5 分;第 23~26 小题,每小题 6 分;第 27~28 小题,每小题 7 ;..
.. 分)
解答应写出文字说明、演算步骤或证明过程 .
17.计算: 2sin 30 ° 2cos 45 ° 8 . 18. 已知 x 1 是关于 x 的方程 x2 mx 2 m2 0 的一个根,求 m(2 m 1) 的值. 3 19. 如图,在△ ABC 中,∠ B 为锐角, AB 3 2 , AC 5, sin C ,求 BC 的长. 5
A
B C 20. 码头工人每天往一艘轮船上装载 30 吨货物,装载完毕恰好用了 8 天时间.轮船到达目的地后开始卸货,记平均卸货速度为 v(单位:吨 /天),卸货天数为 t. ( 1)直接写出 v 关于 t 的函数表达式: v= ;(不需写自变量的取值范围) ( 2)如果船上的货物 5 天卸载完毕,那么平均每天要卸载多少吨? 21. 如图,在△ ABC 中,∠ B 90°, AB 4, BC 2,以 AC 为边作△ ACE,∠ ACE 90°, AC=CE,延长 BC 至点 D,使 CD 5,连接 DE.求证:△ ABC∽△ CED .
A
E
B C D 22. 古代阿拉伯数学家泰比特 ·伊本 ·奎拉对勾股定理进行了推广研究: 如图(图 1 中 BAC 为锐角,图 2 中 BAC 为直角,图 3 中 BAC 为钝角).
A
B C' B' C A B B'(C') C A B B' C' C 图 1 图 2 图 3
在△ ABC 的边 BC 上取 B , C 两点,使 AB B AC C BAC ,则 △ABC ∽ △ B BA ∽ △C AC , AB B B AB AC
, C C AC ,进而可得 AB2 AC 2 ;(用 BB, CC , BC 表示)
若 AB=4, AC=3, BC=6,则 B C . 23. 如图,函数 y k ( x x 0 )与 y ax b 的图象交于点 A( -1, n)和点 B( -2, 1). ;..
.. ( 1)求 k, a, b 的值;
( 2)直线 x m 与 y
k ( x
x 0 )的图象交于点 P,与 y x 1 的图象交于点 Q,当 PAQ 90 时,直
接写出 m 的取值范围. y
A B O x
24. 如图, A, B, C 三点在⊙ O 上,直径 BD 平分∠ ABC,过点 D 作 DE ∥ AB 交弦 BC 于点 E,在 BC 的延长线上取一点 F,使得 EF DE. ( 1)求证: DF 是⊙ O 的切线; ( 2)连接 AF 交 DE 于点 M ,若 AD 4, DE 5,求 DM 的长.
A
D O
B E C F
25. 如图, 在△ ABC 中, ABC 90 , C 40 °,点 D 是线段 BC 上的动点, 将线段 AD 绕点 A 顺时针旋转 50° 至 AD ,连接 BD .已知 AB 2cm,设 BD 为 x cm, B D 为 y cm.
A
D' B D C
小明根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行了探究,下面是小明的探究过程, 请补充完整. (说明:解答中所填数值均保留一位小数) ( 1)通过取点、画图、测量,得到了 x 与 y 的几组值,如下表: