浙江大学化工原理实验填料塔吸收实验报告

合集下载

填料塔吸收实验报告

填料塔吸收实验报告

实验6 填料吸收塔实验报告第四组成员:王锋,郑义,刘平,吴润杰一、 实验名称填料吸收塔实验 二、 实验目的1、 了解填料吸收塔的构造并实际操作。

2、 了解填料塔的流体力学性能。

3、 学习填料吸收塔传质能力和传质效率的测定方法。

三、实验内容测定填料层压强降与操作气速的关系曲线,并用ΔP/Z —u 曲线转折点与观察现象相结合的办法,确定填料塔在某液体喷淋量下的液泛气速。

四、实验原理1.气体通过填料层的压强降压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气液流量有关,不同喷淋量下填料层的压强降ΔP 与空塔气速u 的关系如下图所示:u , m/s123L 3L 2L 1L 0 =>>0图6-1 填料层的ΔP ~u 关系当无液体喷淋即喷淋量L0=0时,干填料的ΔP ~u 的关系是直线,如图中的直线0。

当有一定的喷淋量时,ΔP ~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将ΔP ~u 关系分为三个区段:恒持液量区、载液区与液泛区。

五、实验装置和流程图6-2 填料吸收塔实验装置流程图1-风机、2-空气流量调节阀、3-空气转子流量计、4-空气温度、5-液封管、6-吸收液取样口、7-填料吸收塔、8-氨瓶阀门、9-氨转子流量计、10-氨流量调节阀、11-水转子流量计、12-水流量调节阀、13-U型管压差计、14-吸收瓶、15-量气管、16-水准瓶、17-氨气瓶、18-氨气温度、20-吸收液温度、21-空气进入流量计处压力实验流程示意图见图一,空气由鼓风机1送入空气转子流量计3计量,空气通过流量计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,•经过氨瓶总阀8进入氨气转子流量计9计量,•氨气通过转子流量计处温度由实验时大气温度代替。

其流量由阀10调节5,然后进入空气管道与空气混合后进入吸收塔7的底部,水由自来水管经水转子流量计11,水的流量由阀12调节,然后进入塔顶。

化工原理实验实验报告

化工原理实验实验报告

篇一:化工原理实验报告吸收实验姓名专业月实验内容吸收实验指导教师一、实验名称:吸收实验二、实验目的:1.学习填料塔的操作;2. 测定填料塔体积吸收系数kya.三、实验原理:对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。

但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。

(一)、空塔气速与填料层压降关系气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。

若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。

当液体喷淋量l0=0时,可知为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z?p值较小时为恒持z折线位置越向左移动,图中l2>l1。

每条折线分为三个区段,液区,?p?p?p~uo关系曲线斜率与干塔的相同。

值为中间时叫截液区,~uo曲zzz?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。

姓名专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。

在液泛区塔已z无法操作。

塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。

图2-2-7-1 填料塔层的?p~uo关系图 z图2-2-7-2 吸收塔物料衡算(二)、吸收系数与吸收效率本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。

若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。

其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2]h——填料层高度[m]?ym——气相对数平均推动力kya——气相体积吸收系数[kmolnh3/m3·h]被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h]l——吸收剂(水)的流量[kmolh20/h]y1——塔底气相浓度[kmolnh3/kmol空气]y2——塔顶气相浓度[kmolnh3/kmol空气]x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20]由式(1)和式(2)联解得:kya?v(y1?y2)(3) ??h??ym为求得kya必须先求出y1、y2和?ym之值。

填料吸收装置实验报告

填料吸收装置实验报告

填料吸收装置实验报告填料吸收装置实验报告引言填料吸收装置是一种常用的化工设备,用于气体与液体之间的物质传递。

本实验旨在通过对填料吸收装置的实验研究,探究填料对气体吸收效果的影响因素,并对实验结果进行分析和讨论。

实验目的1. 研究填料对气体吸收效果的影响因素;2. 掌握填料吸收装置的操作方法;3. 分析实验结果,探讨填料吸收装置的优化设计。

实验原理填料吸收装置是利用填料的表面积增大,增加气体与液体之间的接触面积,从而提高气体吸收效果的装置。

填料吸收装置通常由填料层、液体收集器和气体进出口组成。

实验步骤1. 搭建填料吸收装置实验装置,确保密封性和稳定性;2. 准备实验所需的填料和溶液;3. 将填料均匀填充至填料层,注意填料的密度和均匀性;4. 将溶液注入液体收集器,保证液位在适当范围内;5. 开启气体进出口,调节气体流量;6. 记录实验数据,包括气体流量、液体收集量等;7. 分析实验结果,探讨填料对气体吸收效果的影响因素。

实验结果与讨论通过实验数据的记录和分析,我们可以得出以下结论:1. 填料的种类和形状对气体吸收效果有显著影响。

不同种类和形状的填料具有不同的表面积和孔隙结构,从而影响气体与液体之间的传质速率。

例如,表面积较大的填料能够提高气体吸收效果。

2. 填料的密度和均匀性对气体吸收效果也有一定影响。

过高或过低的填料密度都会影响气体与液体的接触,从而降低吸收效果。

此外,填料的均匀性也会影响气体吸收的均匀性。

3. 液体流量和气体流量对气体吸收效果有一定影响。

适当增加液体流量和气体流量可以提高气体吸收效果,但过大的流量可能导致液体的溢出或气体的泄漏。

结论通过本次实验,我们深入了解了填料吸收装置的原理和操作方法,并探讨了填料对气体吸收效果的影响因素。

实验结果表明,填料的种类、形状、密度和均匀性以及液体流量和气体流量都会对气体吸收效果产生影响。

因此,在设计填料吸收装置时,应根据具体需求选择合适的填料,并合理调节操作参数,以提高吸收效果。

填料塔吸收综合实验报告

填料塔吸收综合实验报告

竭诚为您提供优质文档/双击可除填料塔吸收综合实验报告篇一:实验七填料塔吸收实验实验七填料吸收塔的操作和吸收系数的测定一、实验目的1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。

2.熟悉填料塔的流体力学性能。

3.掌握总传质系数KYa测定方法。

4.了解空塔气速和液体喷淋密度对传质系数的影响。

二、实验内容1.测定干填料及不同液体喷淋密度下填料的阻力降?p 与空塔气速u的关系曲线,并确定液泛气速。

2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数KYa。

三、基本原理1.填料塔流体力学特性填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。

支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、?网环都属于实体填料。

填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。

液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。

吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降?p的产生。

填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。

了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。

填料塔的流体力学特性的测定主要是确定适宜操作气速。

在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降?p与空塔气速u的关系可用式?p=u1.8-2.0表示。

在双对数坐标系中为一条直线,斜率为1.8-2.0。

在有液体喷淋(L?0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。

在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守?p?u1.8-2.0这一关系。

但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。

化原实验报告-填料塔流体力学性能

化原实验报告-填料塔流体力学性能

扬州大学
化工原理实验报告
班级姓名学号实验日期
同组人姓名指导教师
实验名称填料塔流体力学特性及吸收传质系数的测定
一、实验预习
1. 实验目的
2. 实验原理
3. 写出下图所示的实验流程示意图中各编号所代表的设备、仪器或仪表的名称。

填料塔吸收实验流程示意图
4. 简述实验所需测定的参数及其测定方法
5. 实验操作要点
二、实验数据表
(一)原始数据表
1. 填料塔液体力学实验测定记录
指导教师(签字)
2. 体积吸收系数测定记录
指导教师(签字)
(二)数据处理结果
1. 填料塔液体力学实验
(1)水流量:
(2)水流量:
(3)水流量:
2. 体积吸收系数
三、计算举例(并绘制填料塔压降与空塔气速关系图)
四、问题讨论
1. 测定a K y ⋅ 和p ∆有何实际意义?为测定a K y ⋅
需测得哪些参数?
2. 实验中气速对a K y ⋅
及p ∆有何影响?
3. 若气体温度与吸收液温度不同,应按哪种温度计算享利系数?。

实验九 填料塔吸收实验

实验九  填料塔吸收实验

实验九 填料塔吸收实验一、实验目的1、了解填料吸收塔的结构和基本流程2、熟悉填料吸收塔的操作3、观察填料吸收塔的流体力学行为并测定在干、湿填料状态下填料层压降与空塔气速的关系4、测定总传质系数Kya ,并了解其影响因素二、基本原理气体吸收是常见的传质过程,它是利用液体吸收剂选择性吸收气体混合物中某种组分,从而使该组分从混合气体中得以分离的一种操作。

对稳定的低浓度物理吸收过程,根据吸收过程的物料衡算及传质速率方程有:V (Y 1-Y 2)=ya K 'Ω·Z·△Y m故m21ya Y Z )Y Y (V K ∆⋅⋅Ω-=' 式中:V ,通过吸收塔的惰性气体量即空气的摩尔流量,kmol/h1Y 、2Y ,气相入口、出口溶质摩尔比,kmol 溶质/kmol 惰性气体Ω,塔的有效吸收面积即塔的截面积,2mZ ,填料层高度,m m Y ∆,对数平均推动力可见,通过测定操作过程吸收系统的V 、Y 1、Y 2、Ω、Z 及△Y m ,即可计算出ya K '值。

(1)空气流量V 的测定空气流量按下式计算即可:11T P T P P T Q C Q O oair o air o ⋅⋅⋅= 及 air o Q V 4.221= 式中:o T 、o P 、air o Q ,空气在标准状态下的温度、压力、流量,K 、a P 、m 3/hT 、P 、air Q ,转子流量计标定状态下空气的温度、压力、流量,单位同上 1T 、1P ,空气进入转子流量计前的温度、压力,K 、a PC ,转子流量计系数,本实验为1.00V ,空气的摩尔流量,Kmol/h(2)溶质(气体)入塔浓度1Y 的测定air P P Y 丙酮=1 或 丙酮丙酮P P P Y T -=1 kmol 3NH /kmol air式中:P T ,入塔前混合气体总压(Pa ),本装置可设定在0.02MPa (表压)左右 丙酮P ,入塔温度t 下丙酮分压,可近似认为丙酮在t 温度下达到饱和,其饱和蒸汽压服从Antoine 方程:In 丙酮P =A- B/(C+1),式中丙酮P 、t 单位分别为mmHg 及0C ,常数A 、B 、C 分别为16.6513、2940.46和237.22。

填料塔吸收实验报告

实验6 填料吸收塔实验报告第四组成员:王锋,郑义,刘平,吴润杰一、 实验名称填料吸收塔实验 二、 实验目的1、 了解填料吸收塔的构造并实际操作。

2、 了解填料塔的流体力学性能。

3、 学习填料吸收塔传质能力和传质效率的测定方法。

三、实验内容测定填料层压强降与操作气速的关系曲线,并用ΔP/Z —u 曲线转折点与观察现象相结合的办法,确定填料塔在某液体喷淋量下的液泛气速。

四、实验原理1.气体通过填料层的压强降压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气液流量有关,不同喷淋量下填料层的压强降ΔP 与空塔气速u 的关系如下图所示:u , m/s123L 3L 2L 1L 0 =>>0图6-1 填料层的ΔP ~u 关系当无液体喷淋即喷淋量L0=0时,干填料的ΔP ~u 的关系是直线,如图中的直线0。

当有一定的喷淋量时,ΔP ~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将ΔP ~u 关系分为三个区段:恒持液量区、载液区与液泛区。

五、实验装置和流程图6-2 填料吸收塔实验装置流程图1-风机、2-空气流量调节阀、3-空气转子流量计、4-空气温度、5-液封管、6-吸收液取样口、7-填料吸收塔、8-氨瓶阀门、9-氨转子流量计、10-氨流量调节阀、11-水转子流量计、12-水流量调节阀、13-U型管压差计、14-吸收瓶、15-量气管、16-水准瓶、17-氨气瓶、18-氨气温度、20-吸收液温度、21-空气进入流量计处压力实验流程示意图见图一,空气由鼓风机1送入空气转子流量计3计量,空气通过流量计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,•经过氨瓶总阀8进入氨气转子流量计9计量,•氨气通过转子流量计处温度由实验时大气温度代替。

其流量由阀10调节5,然后进入空气管道与空气混合后进入吸收塔7的底部,水由自来水管经水转子流量计11,水的流量由阀12调节,然后进入塔顶。

化工原理实验报告吸收实验要点

化工原理实验报告吸收实验要点————————————————————————————————作者:————————————————————————————————日期:ﻩ一、 实验名称:吸收实验二、实验目的:1.学习填料塔的操作;2. 测定填料塔体积吸收系数K Y a.三、实验原理:对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。

但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。

(一)、空塔气速与填料层压降关系气体通过填料层压降△P 与填料特性及气、液流量大小等有关,常通过实验测定。

若以空塔气速o u [m/s]为横坐标,单位填料层压降ZP∆[mmH 20/m]为纵坐标,在双对数坐标纸上标绘如图2-2-7-1所示。

当液体喷淋量L 0=0时,可知ZP∆~o u 关系为一直线,其斜率约1.0—2,当喷淋量为L 1时,ZP∆~o u 为一折线,若喷淋量越大,折线位置越向左移动,图中L 2>L 1。

每条折线分为三个区段,ZP∆值较小时为恒持液区,Z P ∆~o u 关系曲线斜率与干塔的相同。

Z P ∆值为中间时叫截液区,ZP∆~o u 曲线斜率大于2,持液区与截液区之间的转折点叫截点A。

Z P ∆值较大时叫液泛区,ZP∆~o u 曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B 。

在液泛区塔已无法操作。

塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。

吸收实验图2-2-7-1 填料塔层的ZP∆~o u 关系图图2-2-7-2 吸收塔物料衡算(二)、吸收系数与吸收效率本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。

若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收平均推动力可用对数平均浓度差法进行计算。

其吸收速率方程可用下式表示:m Ya A Y H K N ∆⋅⋅Ω⋅=(1)式中:N A ——被吸收的氨量[kmolN H3/h];Ω——塔的截面积[m 2]H ——填料层高度[m ]∆Y m ——气相对数平均推动力KY a ——气相体积吸收系数[k molN H3/m 3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):)()(2121X X L Y Y V N A -=-=(2)式中:V ——空气的流量[kmol 空气/h]L——吸收剂(水)的流量[kmol H20/h] Y 1——塔底气相浓度[kmolNH 3/kmol 空气] Y 2——塔顶气相浓度[kmolNH 3/km ol空气]X 1,X 2——分别为塔底、塔顶液相浓度[kmo lNH 3/kmolH 20]由式(1)和式(2)联解得:mYa Y H Y Y V K ∆⋅⋅Ω-=)(21(3)为求得KYa 必须先求出Y 1、Y 2和∆Y m 之值。

填料塔吸收传质系数的测定实验报告

填料塔吸收传质系数的测定实验报告1. 实验目的和背景大家好,今天我们要聊聊填料塔的吸收传质系数测定。

这听起来有点高大上,但其实就是在说我们如何通过实验来搞清楚填料塔里物质是怎么转移的。

简单来说,就是想知道在这个塔里,气体和液体交换的效率如何。

为了让大家更清楚,我们不妨用个比喻:就像在厨房里,你把一大锅水煮开了,往里面放盐,盐在水里溶解的速度就是我们实验要探讨的“传质系数”。

当你把这锅盐水煮开得再热一点,盐溶解得就会更快;同样的,填料塔里气体和液体的接触也影响了它们的传质效率。

2. 实验装置和材料2.1 填料塔的选择说到实验装置,我们用的是一个高大上的填料塔。

你可以把它想象成一根长长的管子,里面塞满了各种填料,就像一个巨大的“搅拌机”。

这些填料的作用就是增加气体和液体的接触面积,让它们能够更好地“拥抱”在一起。

我们选择的塔很精致,内部填料都是按照标准配置的,保证实验的准确性。

2.2 试剂和操作在试剂方面,我们用的是气体和液体的混合物,比如说氮气和水。

氮气在这里是我们的“主角”,水则是“配角”。

我们设定了不同的操作条件,比如流量、温度这些,确保实验的数据能真实反映传质的情况。

操作的时候,我们小心翼翼,就像对待宝贝一样,确保每一个步骤都尽可能完美。

3. 实验过程3.1 实验步骤好了,进入实际操作了。

首先,我们把填料塔组装好,像拼乐高一样把各种组件搭配在一起。

接下来,我们把液体和气体分别送入塔中。

你可以想象一下,这就像是在塔里开了一场“舞会”,气体和液体在里面跳舞。

为了让这场舞会更有趣,我们调节了不同的流量和温度,这样就能观察到它们的互动效果。

3.2 数据收集和分析接着就是收集数据的部分了。

我们记录下每一组实验的结果,像记笔记一样详细。

这些数据会告诉我们不同条件下气体和液体的传质系数。

然后,我们用这些数据计算出吸收传质系数,看看它在不同条件下的表现如何。

分析数据的时候,我们得像破案一样,仔细找出规律,看看哪种条件下传质效果最好。

填料吸收塔实验报告结果与讨论

填料吸收塔实验报告结果与讨论一、实验目的本次实验旨在通过填料吸收塔对水溶液中二氧化碳的吸收进行实验研究,探究不同操作条件下填料吸收塔的吸收效果,并对实验结果进行分析和讨论。

二、实验原理填料吸收塔是一种用于气体-液体传质的设备,其主要原理是通过将气体与液体接触,使气体中的成分被溶解到液体中。

在本次实验中,我们使用了水溶液作为液相,二氧化碳作为气相,通过调整操作条件和填料种类等因素来探究其对二氧化碳的吸收效果。

三、实验步骤1. 准备工作:清洗填料、称量试剂、准备水溶液等。

2. 将水溶液倒入填料吸收塔内,并加热至所需温度。

3. 将二氧化碳通入填料吸收塔内,并调节流量和压力。

4. 记录进出口流量计读数、温度计读数和压力计读数。

5. 持续测量并记录数据直至达到平衡状态。

6. 更换不同种类或大小的填料,重复以上步骤。

四、实验结果1. 不同温度下填料吸收塔的吸收效果温度(℃) | 进口二氧化碳流量(L/h) | 出口二氧化碳流量(L/h) | 吸收效率(%)---|---|---|---25 | 5 | 2.5 | 5035 | 5 | 3.2 | 6445 | 5 | 4.0 | 80由表可知,随着温度升高,填料吸收塔对二氧化碳的吸收效率逐渐提高。

2. 不同填料种类下填料吸收塔的吸收效果填料种类 | 进口二氧化碳流量(L/h) | 出口二氧化碳流量(L/h) | 吸收效率(%)---|---|---|---A型填料 | 5 | 3.8 | 76B型填料 | 5 | 4.0 | 80C型填料 | 5 | 3.6 |72由表可知,不同种类的填料对二氧化碳的吸收效果有一定影响,其中B型填料的吸收效率最高。

五、讨论与分析1. 温度对填料吸收塔的影响在常温下,水溶液对二氧化碳的吸收效率较低,随着温度升高,溶解度逐渐提高,因此填料吸收塔对二氧化碳的吸收效率也随之提高。

但是当温度过高时,水溶液中的二氧化碳会发生反应,产生其他物质,影响吸收效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江大学化工原理实验填料塔吸收实验报告

Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】 实验报告 课程名称:过程工程原理实验(乙) 指导老师: 叶向群 成绩:__________________ 实验名称:吸收实验 实验类型:工程实验 同组学生姓名:

一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得

填料塔吸收操作及体积吸收系数测定 1 实验目的: 了解填料吸收塔的构造并熟悉吸收塔的操作; 观察填料塔的液泛现象,测定泛点空气塔气速; 测定填料层压降ΔP与空塔气速u的关系曲线; 测定含氨空气—水系统的体积吸收系数Kya。 2 实验装置: 本实验的装置流程图如图1: 物系:水—空气—氨气。惰性气体由漩涡气泵提供,氨气由液氮钢瓶提供,吸收剂水采用自来水,他们的流量分别通过转子流量计。水从塔顶喷淋至调料层与自下而上的含氮空

专业: 姓名: 学号: 日期:20 地点:教十2109 气进行吸收过程,溶液由塔底经过液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 3 基本原理: 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定相同,故转子流量计的读数值必须进行校正。校正方法如下: 体积吸收系数的测定 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系为: 相平衡常数m与系统总压P和亨利系数E的关系如下: 式中:E—亨利系数,Pa P—系统总压(实验中取塔内平均压力),Pa 亨利系数E与温度T的关系为: lg E= / T 式中:T—液相温度(实验中取塔底液相温度),K。

根据实验中所测的塔顶表压及塔顶塔底压差△p,即可求得塔内平均压力P。根据实验中所测的塔底液相温度T,利用式(4)、(5)便可求得相平衡常数m。 体积吸收常数 体积吸收常数是反映填料塔性能的主要参数之一,其值也是设计填料塔的重要依据。本实验属于低浓气体吸收,近似取Y≈y、X≈x。 (X1-X2) 式中:V—惰性气体空气的流量,kmol/h;

—进塔气相的组成,比摩尔分率,kmol(A)/ kmol(B); —出塔气相(尾气)的组成,比摩尔分率,kmol(A)/ kmol(B); X1—出塔液相组成,比摩尔分率,kmol(A)/ kmol(B); X2=0; L—吸收剂水的流量,kmol/h。 式中:—氨气的流量,kmol/h。 根据转子流量计测取得空气和氨气的体积流量和实际测量状态(压力、温度)。应对其刻度流量进行校正而得到实际体积流量,再由气体状态方程得到空气和氨气的摩尔流量,并由式(8)即可求取进塔气相浓度。 用移液管移取体积为Va ml、浓度为Ma mol/l的标准硫酸溶液置于吸收瓶中,加入适量的水及2-3滴百里酚兰(指示剂),将吸收瓶连接在抽样尾气管线上(如装置图)。当吸收塔操作稳定时,尾气通过吸收瓶后尾气中的氨气被硫酸吸收,其余空气通过湿式流量计计量。为使所取尾气能反映塔内实际情况,在取样分析前应使取样管尾气保持畅通,然后改变三通旋塞流动方向,使尾气通过吸收瓶。 式中:—氨气的摩尔数,mol; —空气的摩尔数,mol。 尾气样品中氨的摩尔数可用下列方式之一测得: (i)若尾气通入吸收瓶吸收至终点(瓶内溶液颜色由黄棕色变至黄绿色),则 10-3 mol (ii)若通入吸收瓶中的尾气已过量(瓶中溶液颜色呈蓝色),可用同样标准硫酸溶液滴定

至终点(瓶中溶液呈黄绿色)。若耗去酸量为ml,则 10-3 mol 尾气样品中空气摩尔数的求取

尾气样品中的空气量由湿式流量计读取,并测定温度 mol 式中:—尾气通过湿式流量计时的压力(由室内大气压代替),Pa;

—通过湿式流量计的空气量,l; —通过湿式流量计的空气温度, K; R—气体常数,R=8314N·m/(mol·K)。 由式(10)(11)可求得和,代人(9)即可得到,根据得到的和,由(7)即可得到。 4 实验步骤: 先开启吸收剂(水)调节阀,当填料充分润湿后,调节阀门使水流量控制在适当的数值,维持恒定; 启动风机,调节风量由小到大,观察填料塔内的流体力学状况,并测取数据,根据液泛时空气转子流量计的读数,来选择合适的空气流量,本实验要求在两至三个不同气体流量下测定; 为使进塔气相浓度约为5%,须根据空气的流量来估算氨气的流量,然后打开氨气钢瓶,调节阀门,使氨气流量满足要求; 水吸收氨,在很短时间内操作过程便达到稳定,故应在通氨气之前将一切准备工作做好,在操作稳定之后,开启三通阀,使尾气通入吸收瓶进行尾气组成分析。在实验过程中,尤其是测量时,要确保空气、氨气和水流量的稳定; 改变气体流量或吸收剂(水)流量重复实验:本次实验,控制空气流量分别为 m3/h,水流量则相对应为30-36-30 l/h; 实验完毕,关闭氨气钢瓶阀门、水调节阀,切断风机电源,洗净分析仪器等。 5 实验数据处理: 大气压102400Pa 室温 填料层高度 塔径70mm 硫酸10ml浓度l 液泛气速11-12m3/h 原始数据记录: 体积吸收系数实验 单位 组1-1 组1-2 组2-1 组2-2 组3-1 组3-2 空气 流量计读数 m3/h 8 8 8 8 空气温度 ℃ 空气表压 kPa 氨气 流量计读数 m3/h 氨气温度 ℃ 12 12 12 氨气表压 kPa 水流量计读数 L/h 30 30 36 36 30 30 塔顶底压差 kPa 塔顶表压 kPa 塔底液温 ℃ 塔顶气相浓度分析 吸收瓶加酸量 mL 10 10 10 10 10 10 脱氨后空气量 L 脱氨后空气温度 ℃ 12 12 12 12 12 12

数据处理:

塔截面积Ω=24Dπ= P=P0+P表 1-1 1-2 2-1 2-2 3-1 3-2 V体

G

L V体·氨气 nair Y1 Y2 X1 X2 0 0 0 0 0 0 E 29341 29507 29341 29507 29591 P m ΔYm η KYa KYa平均

ΔP-u数据表格以及关系曲线图 ΔP kpa u m/s

由图表可知,大概的液泛点气速为s.

计算示例(以组1-1为例):

V体 =00PTTPVN=8*)22.14.102(*15.273)1.1215.273(*4.102= m3/h; G =RTPV体=314.8*1.1215.2731272.8*22.14.102)()(= kmol/h; L=ρL0/M=*30/18/1000= kmol/h; V体·氨气=00PTTPVN=*)()(25.14.102*15.2734.1215.273*4.102= m3/h; V氨气=RTPV体=314.8*4.1215.2733049.0*25.14.102)()(= kmol/h; nair=RTPV=*+12)=; Y1=G氨气V==; Y2=nn氨气=**2/=; X1=Y2)-(Y1LG=*; E=T/1992468.1110=)4.1115.273/(1992468.1110=29341; P=(2*+)/2+=,P为塔内平均压力; m=E/P=29341/1000=; mY=2121lnYYYY=2121lnYYYmXY=0029.02838.0*00737.003748.0l0029.02838.0*00737.003748.0n=;

η=1-Y2/Y1==; mAYYhGaK**

=01229.0*405.0*0385.00029.003748.0*3551.0)(=

6 结果分析、讨论: 1 本次实验分别通过改变吸收剂流量或者空气流量+氨气流量来讨论对吸收的影响。从实验数据处理的结果可以看出,第1组和第2组之间,空气氨气流量不变,增大水的流量20%,出口气体浓度变小,体积吸收系数变大;而第1组和第3组之间,水流量保持不变,增大空气和氨气流量20%,出口气体浓度变大,体积吸收系数也跟着变大,且大得多。 根据氨气易容于水的性质,理论上氨气应该属于气模控制,而根据化工原理理论知识,气模控制的时候,增大吸收剂流量时,出口气体浓度减小,吸收率增大,Kya 增 大;当增大气体流速时,出口气体浓度增大, 吸收率减小,Kya 也增大,且比前者要大得多。 结论:根据实验数据可以看出,本次实验得到的结果相对来说是比较准确的。实验比较理想。 2 从实验基本数据可以看出,不论是改变吸收剂流量或是空气流量,实验中测得的塔底液体温度和脱氨后空气温度发生变化,且者波动很小,随着气体或者吸收剂流量的改变,脱氨后空气温度也会发生变。 3 从实验数据处理结果可以看出,当保持空气流量不变而增大水流量时,吸收效率提升,不是很大;而相反地,保持水流量不变,增大空气流量时,吸收效率大幅度下降。 7思考题: 1 测定体积吸收系数kya和Δp-u有什么实际意义 曲线是描述流体力学的特性也是吸收设备主要参数,为了计算填料塔的动力消耗也需流体力学特性,确定填料塔适宜操作范围及选择适宜的气液负荷。 2 实验时,如何确定水、空气和氨气的流量 水的体积流量可直接从转子流量计上读取,再转化为摩尔流量;空气和氨气的体积流量则先从转子流量计上读取,利用校正公式进行校正,然后再转化为摩尔流量。 3 为什么吸收时氨气从气相转移到液相 吸收的基本原理就是利用气体在吸收剂中溶解度不同来分离气体,在本实验中,氨气易溶于水,在气相和液相之间存在浓度差,这是发生传质过程的根本动力和原因。 4理论上气体流量改变和液体流量改变改变对KYa有何影响 增大吸收剂流量时,出口气体浓度减小,吸收率增大,Kya 增大;当增大气体流量时,出口气体浓度增大, 吸收率减小,Kya 也增大,且比前者要大得多。

相关文档
最新文档