高一数学期中考试试题及答案
高一数学期中试题及答案

高一数学期中试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+m的图象与x轴有两个交点,则m的取值范围是()。
A. m>4B. m<4C. m≥4D. m≤42. 已知函数f(x)=3x-2,g(x)=2x+1,若f[g(x)]=7x-1,则x的值为()。
A. 1B. 2C. 3D. 43. 已知集合A={x|x^2-5x+6=0},B={x|x^2-2x-3=0},则A∩B=()。
A. {1}B. {2}C. {1,2}D. {3}4. 若函数f(x)=x^3-3x+1,则f'(x)=()。
A. 3x^2-3B. x^2-3xC. 3x^2-9x+3D. x^3-35. 已知等差数列{an}的前n项和为Sn,若a1=1,a4=7,则S5=()。
A. 25B. 26C. 27D. 286. 若函数f(x)=x^2-6x+8,g(x)=2x+3,则f[g(x)]的表达式为()。
A. 4x^2-9x+14B. 4x^2-12x+17C. 4x^2-15x+19D. 4x^2-18x+227. 已知函数f(x)=x^2-4x+3,若f(x)>0,则x的取值范围是()。
A. x<1或x>3B. x<3或x>1C. x<1或x>3D. x<-1或x>38. 已知等比数列{bn}的前n项和为Tn,若b1=2,q=2,则T4=()。
A. 30B. 32C. 34D. 369. 若函数f(x)=x^3-3x+1,则f(-x)=()。
A. -x^3+3x-1B. -x^3+3x+1C. -x^3-3x-1D. -x^3-3x+110. 已知函数f(x)=x^2-6x+8,若f(x)=0,则x的值为()。
A. 2B. 4C. 2或4D. 无解二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,若f(x)=0,则x的值为_________。
高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷(基础模块第一章、第二章)一、选择题(每小题5分,共60分)1.下列表示正确的是().A.{ 0 }=∅B.{全体实数}=RC.{ a }∈{a,b,c } D.{ x∈R∣x2+1=0 }=∅2.已知全集U={ 0,1,2,3,4,5},集合A={1,2,5},B={2,3,4},则(U C A)B=().A.{2}B.{0,2,3,4}C.{3,4}D.{1,2,3,4,5}3.已知A={ (x,y) | 2x-y=0 },B={ (x,y) | 3x+2y=7 },则A B=().A.{(2,1)}B.{1,2}C.{(1,2)}D.{x=1,y=2}4.设A={ x | 0< x < 1 },B={ x | x < a } ,若A⊆B,则a的取值范围是().A.[1,+∞) B.(-∞,0]C.[0,+∞)D.(-∞,1]5.已知集合A={ x | x2+14= 0 },若A∩R =∅,则实数m的取值范围是().A.m<1B.m≥1C.0<m<1D.0≤m<16.“A⊆B”是“A B=A”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.不等式21-+xx≤0的解集为().A.{ x | x≥2}B.{ x | x≥2或x<-1 }C.{ x|-1<x≤2 }D.{x| x≥2或x≤-1 }8.已知a<b<0,c>0,那么().A.a2<b2B.a b<1C.ca<cb D.ca>cb9.绝对值不等式| 2x-3 |<5的解集是().A.{ x | x<-1或x>4 }B.{ x |-1<x<4 }C.{ x | x<-1 }D.{ x | x>4 }10.与不等式-x2-2x+3>0同解的不等式(组)是().A. x2+2x-3>0B. (x+3)(x-1)<0C.x+3>0x-1D.x+3<0x-1>0⎧⎨⎩a 、b 、c 的大小顺序是( ). A.a>b>c B.c>b>a C.b>a>c D.a>c>b12.若实数0<a <1,则)0>1(a-x)(x-a的解集为( ). A.{ x |1<x<a a } B.{ x | 1<<a x a} C.{ x | 1< >x a 或x a } D.{ x | 1<a >x 或x a}二、填空题(每小题4分,共16分)13.设全集U={ 1,2,3,4,5 },A={ 2,5 },则U C A 的所有子集的个数为 _________. 14.符合条件{a}⊆M {a,c,d}的集合M的个数是 _________.15.设a,b为实数,则“a2=b2”是“a=b”的 _________条件.(填充分或必要)16.不等式2+2m x x+n>0的解集是(11,32-),则不等式2-nx +2x-m >0的解集是 _________.三、解答题(共74分,解答应写出文字说明及演算步骤) 17.已知U={ x |-2<x<7 ,x ∈N },A={ 1,2,4 },B={ 2,3,5}.求: ⑴ A U B ;⑵ A B ;⑶ B C C U U A;⑷ B C C U U A .(12分)18.若集合A={ x | mx 2+2x -1 = 0 , m ∈R , x ∈R }中有且仅有一个元素,那么m 的值是多少?(12分)19.设集合A={ x | x 2-3x +2 = 0 },B = { x | x 2+2(a +1)x +(a 2-5) = 0 },若A B = { 2 },求实数a的值.(12分) 20.解不等式x+23-x≤1.(12分) 21.设全集为R ,A={ x | |x-1|<3 },B={ x | x 2-x -2≥0 },求A B ,A U B ,A CB .(12分)22.已知集合A={ x | x 2-x -12 ≤0 },集合B={ x | m -1≤x ≤2m +3 },若A U B=A ,求实数m 的取值范围.(14分)高一年级第一学期期中考试数学试卷参考答案二、填空题(每小题4分,共16分)13、 8 14、 3 15、 必要 16、 (-2,3)三、解答题:(22题14分,17~21题每题12分,共计74分)17.解:U={ 0,1,2,3,4,5,6 }. ⑴A U B={1,2,3,4,5}.⑵A B={2}.⑶B C C U U A ={ 0,3,5,6 }U { 0,1,4,6 }={ 0,1,3,4,5,6, }. ⑷ B C C U U A={ 0,3,5,6 } { 0,1,4,6 }={ 0,6 }.18. 解:当m=0时, A=12⎧⎫⎨⎬⎩⎭,符合题意.当m ≠0时,要使集合A 中有且仅有一个元素,必须 方程mx 2+2x -1 = 0有两个相等实数根, ∴ 2∆=2+4m =0, 即m=-1,综上所述,m=0或m=-1. 19. 解:A={ 1,2 }∵ A B={ 2 }, ∴ 2 B, ∴ 2是方程x 2+2(a +1)x +(a 2-5) = 0的根,把x=2代入此方程得2a +4a+3=0, ∴ a=-1或a=-3, 当a=-1时,B={ -2,2 }, A B={ 2 },符合题意. 当a=-3时,B={ 2 }, A B={ 2 },符合题意. 综上所述,a 的值为-1或3. 20. 解:原不等式⇔x+2-13-x ≤0⇔x+2-(3-x)3-x ≤0⇔2x-13-x≤0 ⇔2x-1x-3≥00≠⎧⇔⎨⎩x-3(2x-1)(x-3)≥012⇔x ≤或x>3, ∴ 解集为12{x |x ≤或x>3}. 21. 解:解|x-1|<3得-2<x<4, 故A=(-2,4).解x 2-x -2≥0得x ≤-1或x ≥2, 故B=(-∞,-1]∪[2,+∞).∴ A B=(-2,-1]∪[2,4),A U B=R,A C B=(-2,4) (-1,2)=(-1,2).22.解: 解x2-x-12 ≤0得-3≤x≤4, 故A=[-3,4],由A U B=A,知B A,∴⎧⎪⎨⎪⎩m-1≤2m+3,m-1≥-3,2m+3≤4,即12⎧⎪⎪⎨⎪⎪⎩m≥-4,m≥-2,m≤,∴ -2≤m≤12.。
2024-2025学年度第一学期高一期中考试题数学试卷参考答案(评分标准)

哈工大附中2024-2025学年度第一学期期中试题高一学年 数学试卷参考答案一、单选题CCDD CBCB二、多选题9.AC. 10.BC.11.ABD.三、填空题12.2.13. 14..四、解答题15.(13分)已知集合,或.(1)求;(2)若,实数的取值范围.【答案】(1)或,;(2).【详解】(1)∵,或,∴,.......................3又,∴; .......................3(2),且,则需,解得,故实数的取值范围为. ......................716.(15分)求值:(1)(2)求值:.(3)已知,,求【详解】(1); ......................5(2);......................5(3)由,,则,,则,,所以.......................517.(15分)已知二次函数满足,且.(1)求的解析式;(2)当时,函数的图象恒在函数的图象下方,试确定实数的取值范围.224x x ---23{|42}A x x =-<<{|5B x x =<-1}x >11{|}C x m x m =-≤≤+(),R A B A C B ⋂ B C φ⋂=m {|5x x <-}4x >-{|41}x x -<≤[4,0]-{|42}A x x =-<<{|5B x x =<-1}x >{|12A B x x ⋂=<<}{|51}R C B x x =-≤≤(){|41}R A C B x x ⋂=-<≤B C =∅ C φ≠1511m m -≥-⎧⎨+≤⎩40m m ≥-⎧⎨≤⎩m [4,0]-()20π2-+-()92log 43lg5lg2lg50++⨯102m =105n =1125m n+()20π2-+-+131(244=++-()92log 43lg5lg2lg50++⨯3log 223(lg5l )lg 2(2lg 5g 2)++=+2222lg g (lg52l 5(lg ))2=+++22(lg 5lg 2)3=++=102m =105n =lg 2m =lg 5n =21log 10m =51log 10n =52log 10log 01112510102025m n ==+++=()f x ()()12f x f x x +-=()01f =()f x 11,2x ⎡⎤∈-⎢⎥⎣⎦()y f x =2y x m =+m【答案】(1)(2)【详解】(1)设,∵,∴, (1)又,∴,∴, (2)∴,∴, ......................2∴; (2)(2)当时,的图象恒在图象下方, ∴时,恒成立,即恒成立, ......................2令,,对称轴为,故函数在上单调递减, . (2)所以当时,, ......................2故只要,即,所以实数的范围......................218.(17分)已知函数(,且).(1)若点在函数的图象上,求实数的值;(2)已知,函数,.若的最大值为8,求实数的值.【答案】(1);(2).【详解】(1)依题意,,即,而,且,解得,所以. (5)(2)依题意,,,, ......................4令,有 ,函数是关于t 的开口向上,对称轴为 的二次函数,......................4显然,且,因此函数在时取得最大值,则,又,解得,所以. (4)19.(17分)如图,某居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形和构成的十字形地域.四个小矩形、、、与小正方形面积之和为,()21f x x x =-+()5,+∞()()20f x ax bx c a =++≠()01f =1c =()()12f x f x x +-=()()()22112a x b x c ax bx c x ++++-++=22ax a b x ++=220a a b =⎧⎨+=⎩11a b =⎧⎨=-⎩()21f x x x =-+11,2x ⎡⎤∈-⎢⎥⎣⎦()21y f x x x ==-+2y x m =+11,2x ⎡⎤∈-⎢⎥⎣⎦212x x x m -+<+2310x x m -+-<()231g x x x m =-+-11,2x ⎡⎤∈-⎢⎥⎣⎦32x =()g x 11,2⎡⎤-⎢⎥⎣⎦11,2x ⎡⎤∈-⎢⎥⎣⎦()()max 11315g x g m m =-=++-=-50m -<5m >m ()5,+∞()log a f x x =0a >1a ≠()16,2P ()f x a 1a >()28x x g x f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1[,8]2x ∈()g x a 4a =2a =(16)2f =2log 16216a a =⇔=0a >1a ≠4a =4a =1a >()log log (log log 2)(log 3log 2)28a a a a a a x x g x x x =⋅=--1[,8]2x ∈log a t x =[]log 2,3log 2a a t ∈-()()()log 23log 2a a h t t t =--2log 2a t =log 22log 23log 2a a a -<<log 22log 23log 22log 2a a a a -->-()h t log 2a t =-()28log 2a ()28log 28a =1a >2a =2a =ABCD EFGH AMQD MNFE BCPN PQHG MNPQ 2400m且.计划在正方形上建一座花坛,造价为元;在四个矩形(图中阴影部分)上铺花岗岩地坪,造价为元;在四个空角(图中四个三角形)上铺草坪,造价为元.设长为(单位:).(1)用表示的长度,并写出的取值范围;(2)用表示花坛与地坪的造价之和;(3)设总造价为元,当长为何值时,总造价最低?并求出最低总造价.【答案】(1),(2)(3)当时,总造价最小为元【详解】(1)由题意:矩形的面积为,因此, (3)因为,所以. (2)(2). (5)(3)由题意可得:,() ......................3由基本不等式,当且仅当,即时,等号成立,所以当最小,最小值为元. ......................43AM ME NB ==MNPQ 10002/m 4002/m 2002/m AD x m x AM x x ()C x AD 24004x AM x-=020x <<2600160000y x =+AD =240000AMQD 203408x -()234008x AM x -=⋅0AM >020x <<2221000400(400)600160000y x x x =+⨯-=+222216914001000400(400)2009642x y x x x ⎛⎫-=+⨯-+⨯⨯⨯⨯ ⎪⎝⎭2225400001001400004x x ⎛⎫=++ ⎪⎝⎭020x <<100140000240000y ≥⨯=2225400004x x =x =x =y 240000。
贵州省六盘水市2024-2025学年高一上学期11月期中考试 数学(含答案)

六盘水市2024-2025学年度第一学期期中质量监测高一年级数学试题卷(考试时长:120分钟试卷满分:150分)注意事项:1.答题前,务必在答题卡上填写姓名和准考证号等相关信息并贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试题卷上无效.3.考试结束后,将答题卡交回.一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个符合题目要求.)1. 命题“,”的否定为()A. ,B. ,C. ,D. ,2. 已知集合,,则下列关系正确的是()A.B. C. D. 3. “”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 下列函数中既是奇函数又在区间上为增函数是()A. B. C. D.5. 已知,,,则的最小值为()A. 9B. 8C. 4D. 36. 已知函数的部分图象如图所示,则()的x ∃∈Q 220x -=x ∃∉Q 220x -≠x ∃∈Q 220x -≠x ∀∈Q 220x -≠x ∀∉Q 220x -≠{}22A x x =-≤≤{}0,1,2B =AA ⊆Z 1B ⊆B A⊆1x >2x >()0,∞+1y x=21y x =+y x x =1y x x=+0a >0b >21a b +=12a b+()1f x x x=-A. 的定义域为B. 的值域为C. 在区间上单调递减D. 的解集为7. 若关于的不等式对一切实数都成立,则的取值范围为()A. B. C. D. 8. 已知是上的偶函数,当时,.若,则的取值范围为()A. B. C. D. 二、多项选择题(本大题共3小题,每小题6分,共18分,在每小题给出的四个选项中,至少有两个符合题目要求,全选对得6分,部分选对得部分分,有选错的得0分.)9. 下列命题为真命题的是()A. 若,则 B. 若,,则C. 若,,则 D. 若,则10. 下列说法正确的是()A 若,则B. 若,则C. 若是偶函数,则是偶函数D. 若是奇函数,则的图象关于轴对称11. 已知函数,.,用表示,中的较大者,记为,则()()f x ()f x ()f x (),0∞-()0f x >()()1,01,∞-⋃+x ()()21110a x a x -+--<x a (]3,1-()3,1-()(),31,-∞-+∞ ()[),31,-∞-⋃+∞()y f x =R 0x ≥()11f x x =+()1122f m ->m ()1,+∞()0,1()(),01,-∞⋃+∞(),0-∞a b >22ac bc >a b >c d >a d b c ->-a b >c d >ac bd >a b >1212b a->-()21f x x +=()39f =()21f x x =-()212f x x x+=+()y f x =()2y f x =-()y f x =()y f x =y ()3f x x =+()()21g x ax =+x ∀∈R ()M x ()f x ()g x ()()(){}max ,M x f x g x =A. 的解集为B. 当时,的值域为C. 若在上单调递增,则D. 当时,不等式有4个整数解三、填空题(本大题共3个小题,每小题5分,共15分.)12. 函数的定义域为_________.13. 如图所示,动物园要建造一面靠墙的矩形熊猫居室,墙长.如果可供建造围墙的材料总长是,则当宽为_________时,才能使所建造的熊猫居室面积最大,熊猫居室的最大面积是_________.14. 已知定义在上的函数满足:①;②,,;③在上单调递减.则不等式解集为_________.四、解答题(本大题共5个小题,共77分,解答应写出文字说明,证明过程或演算步骤.)15. 已知函数(1)求,的值;(2)若,求的取值范围.16. 设全集,集合,.(1)若,求,;(2)若,求的取值范围.17. 已知二次不等式的解集为.的()0f x >()3,-+∞1a =()M x [)1,+∞()M x 2,9⎡⎫-+∞⎪⎢⎣⎭3a ≥-106a -≤<()214g x x >()1f x =-20m 36m x m 2m R ()f x ()124f =x ∀y ∈R ()()()f x y f x f y +=()f x R ()()244f xf x ≥+()22,0,1,0.x x x f x x x ⎧-<=⎨+≥⎩()1f -()()3ff -()3f a ≤a U =R {}13A x m x m =+≤≤224B y y x x ⎧⎫==+⎨⎬⎩⎭2m =U A ðA B A B A = m 220ax bx ++<()2,1--(1)求不等式的解集;(2)已知,且,求最小值.18. 已知函数.(1)若是偶函数,求的值;(2)求关于的不等式的解集;(3)若在区间上最小值为,求的值.19. 已知集合,其中且.若集合满足:①;②对于中的任意两个元素,(,),满足;则称集合是关于实数的“压缩集”.例如,集合是关于的“压缩集”,理由如下:①;②,,.(1)判断集合是否是关于的“压缩集”,并说明理由:(2)若集合是关于的“压缩集”,(i )求证:,;(提示:)(ii )求中元素个数的最大值.的的2340x x a -+≥0m >0n >mn m n b =++m n +()()2122f x x a x a =-++-()f x a x ()0f x <()f x []1,2-1-a {}123,,,,n A x x x x +=⊆N n +∈N 3n ≥A 123n x x x x <<<< A i x j x i {}1,2,3,,j n ∈ 111i j x x K-≥A K {}2,3,4A =12K =234<<1112412-≥1113412-≥1112312-≥{}3,4,5A =20K =A 20K =1120i n n i x x --≥{}1,2,3,,i n ∈ 11202020n in i --++= A六盘水市2024-2025学年度第一学期期中质量监测高一年级数学试题卷一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个符合题目要求.)1.【答案】C2.【答案】D3.【答案】B4.【答案】C5.【答案】A6.【答案】D7.【答案】A8.【答案】B二、多项选择题(本大题共3小题,每小题6分,共18分,在每小题给出的四个选项中,至少有两个符合题目要求,全选对得6分,部分选对得部分分,有选错的得0分.)9.【答案】BD10.【答案】BCD11.【答案】ABD三、填空题(本大题共3个小题,每小题5分,共15分.)12.【答案】13.【答案】 ①. ②. 14.【答案】四、解答题(本大题共5个小题,共77分,解答应写出文字说明,证明过程或演算步骤.)15.【答案】(1),(2)16. 【解析】【分析】(1)利用基本不等式求得函数的值域,从而解得集合,再求结果即可;(2)根据题意可得,对参数的取值进行分类讨论,列出满足题意的不等式,求解即可.【小问1详解】因,当且仅当,也即,故,又时,,故或,.【小问2详解】由可得:;①若,即时,,满足题意;②若时,要满足题意,则,解得.综上所述,实数的取值范围为:.17.【解析】为[)3,∞-+9162[]1,2-()13f -=()()316f f -=[]1,2-224y x x=+B m 2244y x x =+≥=224x x =x =[)4,+∞224B y y x x ⎧⎫==+⎨⎬⎩⎭[)4,=+∞2m ={|36}A x x =≤≤U A ð{|3x x =<6}x >A B {|3}x x =≥A B A = 13m m +>12m <A =∅12m ≥14m +≥[)3,m ∈+∞m [)1,3,2⎛⎫-∞⋃+∞ ⎪⎝⎭【分析】(1)根据不等式的解集,求得,再解一元二次不等式即可;(2)根据(1)中所求,结合不等式,即可求得的最小值.【小问1详解】根据题意可得:,且,解得,经检验满足题意;,也即,,解得,故不等式的解集为:.【小问2详解】由(1)可知,也即,因为,故可得,也即,故,解得或,又,故,当且仅当,也即时取得等号;故的最小值为.18.【答案】(1)(2)答案见解析(3)【解析】【分析】(1)求出二次函数的对称轴,代入计算,即可得到结果;(2)将不等式因式分解,然后按照两根的大小关系讨论,即可得到结果;(3)求出二次函数的对称轴,然后结合二次函数的图像特点,分类讨论,即可得到结果.【小问1详解】因为二次函数的对称轴为,,a b b ()214mn m n ≤+m n +()()221,21b a a-+-=--⨯-=1,3a b ==2340x x a -+≥23410x x -+≥()()3110x x --≥[)1,1,3x ⎛⎤∈-∞⋃+∞ ⎥⎝⎦2340x x a -+≥[)1,1,3⎛⎤-∞⋃+∞ ⎥⎝⎦mn m n b =++3mn m n =++()214mn m n ≤+()2134m n m n ++≤+()()24120m n m n +-+-≥()()620m n m n +-++≥6m n +≥2m n +≤-0,0m n >>6m n +≥,3m n mn m n ==++3m n ==m n +61a =-1a =()()2122f x x a x a =-++-12a x +=若是偶函数,则对称轴为,即.【小问2详解】由可得,即,当时,即,不等式的解集为;当时,即,不等式的解集为;当时,即,不等式的解集为;综上所述,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;【小问3详解】二次函数的对称轴为,当时,即,此时函数在上单调递减,则,不符合题意;当时,即,此时,即,化简可得,解得或(舍);当时,即,此时函数在上单调递增,则,即,解得(舍);综上所述,.19. 【解析】【分析】(1)根据的“压缩集”定义判断即可;(2)设且,则,()f x 102a x +==1a =-()0f x <()21220x a x a -++-<()()210x x a ---<⎡⎤⎣⎦12a ->3a >21x a <<-12a -=3a =∅12a -<3a <12a x -<<3a >{}21x x a <<-3a =∅3a <{}12x a x -<<()()2122f x x a x a =-++-12a x +=122a +≥3a ≥()f x []1,2-()()min 20f x f ==1122a +-<<33a -<<()min 112a f x f +⎛⎫==- ⎪⎝⎭()211122122a a a a ++⎛⎫-+⋅+-=- ⎪⎝⎭()()150a a --=1a =5a =112a +≤-3a ≤-()f x []1,2-()()min 11f x f =-=-31a =-13a =-1a =20K =12{,,,,,,,}N i j n A x x x x x +=⊆ 121i j n n x x x x x x -<<<<<<<< 1211111i j nx x x x x >>>>>>>(i)根据,结合即可证;(ii )根据定义,要使中元素个数最大必有,以为界点判断两侧最多能有几个元素属于集合A ,即可得答案.【小问1详解】集合是关于的“压缩集”,理由如下:由题意,对于有,且,,,所以,对于其中任意两个元素都有成立,故是关于的“压缩集”.【小问2详解】设且,所以,(i )由题意,中的任意两个元素,(),满足,所以,得证;(ii )由题意随递减,而,,所以中元素个数最大,则,即,若存在,则,可得,所以,若时,此时,显然与矛盾,所以,若必有,以下讨论和两种情况,当,1111120i j i j x x x x -=-≥112111111111i i n i n i i n x x x x x x x x ++-+-=-+-++- A {1,2,3,4,5}A ⊆20k x ={}3,4,5A =20K ={}3,4,5A =345<<111||3412-=112||3515-=111||4520-=11120i j x x -≥{}3,4,5A =20K ={}121,,,,,,N i n n A x x x x x -+=⊆ 121i n n x x x x x -<<<<<< A i x j x i <j 1111120i j i j x x x x -=-≥11211111111111202020n ii n i i i n i n n i x x x x x x x x ++-+---=-+-++-≥++=111n n x x --N n +∈1114520-=1111563020-=<A 1234512345x x x x x =<=<=<=<={1,2,3,4,5}A ⊆6x 6111520x -≥661320203x x ≤⇒≥67x ≥120n x -≥1111111102020n n n n x x x x ---≥⇒≤-≤n x +∈N 20n x ≥120n x -<20n x =20n x >20n x =则,此时,即,由,故在区间中最多有一个元素属于集合,当时,,显然与矛盾,此时最大元素为,同理可证均有,所以,,有,其中,即最多有7个元素;当,若,则,得且,即,同时,得且,即,而,且,故有,此时,综上,,则,其中,即最多有8个元素;同理讨论,均可得,即最多有8个元素;综上,中元素个数的最大值为8.120n x -<111120n n x x -≥+11111010n n x x --≥⇒≤11317107020-=<[7,10]A 67x =67711111120720x x x -≥⇒≤-⇒71401113x ≥>110n x -≤A 7n x x =68,9,10x =7n x x =20n x =6{1,2,3,4,5,,20}A x =6{7,8,9,10}x ∈20n x >119n x -=1111920n x -≥11380n x ≤n x +∈N 380n x ≥21111920n x --≥2139380n x -≥2n x -+∈N 29n x -≤67x ≥1121796320-=<26n x x -=268n n -=⇒=8380x ≥{}681,2,3,4,5,,19,A x x =6{7,8,9}x ∈1{11,12,13,14,15,16,17,18}n x -∈{}6781,2,3,4,5,,,A x x x =A。
福建省厦门2024-2025学年高一上学期11月期中考试 数学含答案

福建省厦门2024-2025学年高一上学期11月期中考试数学试题(答案在最后)(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1},{2}M xx N x x =≥=<∣∣,则R ()M N ⋂=ð()A.[1,2)B.(,1)[2,)-∞+∞ C.[0,1]D.(,0)[2,)-∞⋃+∞2.命题“20,310x x x ∃>-->”的否定是()A.20,310x x x ∃>--≤B.20,310x x x ∃≤--≤C.20,310x x x ∀>--≤ D.20,310x x x ∀≤--≤3.函数()22()log 2f x x x =--的单调递减区间是()A.1,2⎛⎫-∞ ⎪⎝⎭B.(,1)∞-- C.1,2⎛⎫+∞⎪⎝⎭D.(2,)+∞4.已知函数()()()f x x a x b =--(其中a ,b 为常数,且b a <),若()f x 的图象如图所示,则函数()x g x a b =+的图象是()A.B.C.D.5.已知132a -=,21log 3b =,121log 3c =,则().A.a b c >> B.a c b>> C.c a b>> D.c b a>>6.“函数()2()lg 1f x ax ax =-+的定义域为R ”是“04a <<”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.若函数)3()ln1f x mx n x =++(m ,n 为常数)在区间[]1,3上有最大值7,则()f x 在区间[3,1]--上()A.有最大值6B.有最大值5C.有最小值5- D.有最小值7-8.已知函数()f x 对于任意x 、R y ∈,总有()()()2f x f y f x y +=++,且当0x >时,()2f x >,若已知()23f =,则不等式()()226f x f x +->的解集为()A.()2,∞+ B.()1,+∞ C.()3,+∞ D.4,+∞二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设正数m ,n 满足1m n +=,则()A.12m n+的最小值为3+B.+C.的最大值为14D.44m n +的最小值为410.声强级Li (单位:dB )与声强I (单位:2/m ω)之间的关系是:010lgILi I =⨯,其中0I 指的是人能听到的最低声强,对应的声强级称为闻阈.人能承受的最大声强为21/m ω,对应的声强级为120dB ,称为痛阈.某歌唱家唱歌时,声强级范围为[]70,80(单位:dB ).下列选项中正确的是()A.闻阈的声强为1210-2/m ωB.声强级增加10dB ,则声强变为原来的2倍C.此歌唱家唱歌时的声强范围5410,10--⎡⎤⎣⎦(单位:2/m ω)D.如果声强变为原来的10倍,对应声强级增加10dB11.已知函数()21,2,5,2,xx f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩,且()()()()f a f b f d f c ==<,则下列说法正确的是()A.1c ≥ B.0a c +<C.25a d < D.222ab d ++的取值范围为()18,34三、填空题:本题共3小题,每小题5分,共15分.12.已知幂函数()y f x =的图象过点(,则()16f =______.13.411log 2324lg lg245(64)49---+-=__________.14.已知()f x 是定义在上的偶函数,且对x ∀∈R ,都有(2)(2)f x f x -=+,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>至少有2个不同的实数根,至多有3个不同的实数根,则实数a 的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在①A B A = ,②A B A = ,③A B =∅ 这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合{}123A x a x a =-<<+,{}2280B x x x =--≤(1)当2a =时,求A B ;(2)若,求实数a 的取值范围.注:如果选择多个条件解答按第一个解答计分.16.已知函数()()log 1a f x x a =>,关于x 的不等式()1f x <的解集为(),m n ,且103m n +=.(1)求a 的值;(2)是否存在实数λ,使函数()()()2123,,93g x f x f x x λ⎡⎤⎡⎤=-+∈⎣⎦⎢⎥⎣⎦的最小值为34?若存在,求出λ的值;若不存在,说明理由.17.已知()()()1m g x f x g x -=+的定义在上的奇函数,其中()g x 为指数函数,且()g x 的图象过点()2,9.(1)求实数m 的值,并求()f x 的解析式;(2)判断()f x 的单调性,并用单调性的定义加以证明.(3)若对于任意的[]1,2t ∈,不等式()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭恒成立,求实数m 的取值范围.18.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)所满足的关系式:()60,030R 80,30120150x v k kx x <≤⎧⎪=∈⎨-<≤⎪-⎩.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).2.236≈)19.若函数()f x 与区间D 同时满足:①区间D 为()f x 的定义域的子集,②对任意x D ∈,存在常数0M ≥,使得()f x M ≤成立,则称()f x 是区间D 上的有界函数,其中M 称为()f x 的一个上界.(注:涉及复合函数单调性求最值可直接使用单调性,不需要证明)(1)试判断函数()1923xxf x =-⋅,()22223xf x x x =-+是否为R 上的有界函数?并说明理由.(2)已知函数()121log 1x g x x +=-是区间[]2,3上的有界函数,设()g x 在区间[]2,3上的上界为M ,求M 的取值范围;(3)若函数()2313xxm f x m +⋅=+⋅,问:()f x 在区间[]0,1上是否存在上界M ?若存在,求出M 的取值范围;若不存在,请说明理由.福建省厦门2024-2025学年高一上学期11月期中考试数学试题(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1},{2}M xx N x x =≥=<∣∣,则R ()M N ⋂=ð()A.[1,2)B.(,1)[2,)-∞+∞ C.[0,1]D.(,0)[2,)-∞⋃+∞【答案】B 【解析】【分析】根据集合运算的定义计算.【详解】由已知{|12}M N x x =≤< 所以R (){|1M N x x ⋂=<ð或2}x ≥,故选:B .2.命题“20,310x x x ∃>-->”的否定是()A .20,310x x x ∃>--≤ B.20,310x x x ∃≤--≤C.20,310x x x ∀>--≤ D.20,310x x x ∀≤--≤【答案】C 【解析】【分析】根据存在量词命题的否定形式,即可求解.【详解】命题“20,310x x x ∃>-->”的否定是“20,310x x x ∀>--≤”.故选:C3.函数()22()log 2f x x x =--的单调递减区间是()A.1,2⎛⎫-∞ ⎪⎝⎭B.(,1)∞-- C.1,2⎛⎫+∞⎪⎝⎭D.(2,)+∞【答案】B 【解析】【分析】由对数函数性质计算出定义域后,结合复合函数单调性的判定方法计算即可得.【详解】由题意可得()()22210x x x x --=-+>,解得2x >或1x <-,由2219224y x x x ⎛⎫=--=-- ⎪⎝⎭,则其在(),1∞--上单调递减,在()2,∞+上单调递增,又2log y x =为单调递增函数,故()22()log 2f x x x =--的单调递减区间(),1∞--.故选:B.4.已知函数()()()f x x a x b =--(其中a ,b 为常数,且b a <),若()f x 的图象如图所示,则函数()x g x a b =+的图象是()A. B. C. D.【答案】A 【解析】【分析】由图可得101b a <-<<<,计算出()0g 并结合指数函数性质即可得解.【详解】由图可得101b a <-<<<,则有()0010g a b b =+=+<,且该函数为单调递减函数,故B 、C 、D 错误,A 正确.故选:A.5.已知132a -=,21log 3b =,121log 3c =,则().A.a b c >> B.a c b>> C.c a b>> D.c b a>>【答案】C 【解析】【详解】试题分析:因为13212112(0,1),log 0,log 1,33a b c -=∈==所以.b a c <<选C .考点:比较大小6.“函数()2()lg 1f x ax ax =-+的定义域为R ”是“04a <<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【详解】若函数()2()lg 1f x ax ax =-+的定义域为,则当0a =,()lg10f x ==,符合要求;当0a ≠时,有2Δ40a a a >⎧⎨=-<⎩,解得04a <<;综上所述,04a ≤<,故“函数()2()lg 1f x ax ax =-+的定义域为”是“04a <<”的必要不充分条件.故选:B .7.若函数)3()ln1f x mx n x =++(m ,n 为常数)在区间[]1,3上有最大值7,则()f x 在区间[3,1]--上()A.有最大值6B.有最大值5C.有最小值5- D.有最小值7-【答案】C【解析】【分析】构造新函数()()1g x f x =-为奇函数,利用奇函数求解.【详解】设3()()1)g x f x mx n x =-=+,则333()))()g x mx n x mx n mx n x g x -=-+-=-+=--+=-,所以()g x 是奇函数,()f x 在[1,3]上有最大值7,则()g x 在[1,3]上有最大值6,所以()g x 在[3,1]--上有最小值6-,于是()f x 在区间[3,1]--上有最小值5-,故选:C .8.已知函数()f x 对于任意x 、R y ∈,总有()()()2f x f y f x y +=++,且当0x >时,()2f x >,若已知()23f =,则不等式()()226f x f x +->的解集为()A.()2,∞+ B.()1,+∞ C.()3,+∞ D.4,+∞【答案】A 【解析】【分析】设()()2g x f x =-,分析出函数()g x 为R 上的增函数,将所求不等式变形为()()324g x g ->,可得出324x ->,即可求得原不等式的解集.【详解】令()()2g x f x =-,则()()2f x g x =+,对任意的x 、R y ∈,总有()()()2f x f y f x y +=++,则()()()g x g y g x y +=+,令0y =,可得()()()0g x g g x +=,可得()00g =,令y x =-时,则由()()()00g x g x g +-==,即()()g x g x -=-,当0x >时,()2f x >,即()0g x >,任取1x 、2x R ∈且12x x >,则()()()12120g x g x g x x +-=->,即()()120g x g x ->,即()()12g x g x >,所以,函数()g x 在R 上为增函数,且有()()2221g f =-=,由()()226f x f x +->,可得()()2246g x g x +-+>,即()()()2222g x g x g +->,所以,()()()32224g x g g ->=,所以,324x ->,解得2x >.因此,不等式()()226f x f x +->的解集为()2,∞+.故选:A.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设正数m ,n 满足1m n +=,则()A.12m n+的最小值为3+ B.+C.的最大值为14D.44m n +的最小值为4【答案】ABD 【解析】【分析】借助基本不等式中“1”的活用可得A ;由1m n +=+出后利用基本不等式计算可得B ;直接运用基本不等式可得C ;结合基本不等式与同底数幂的乘法运算可得D.【详解】由m ,n 为正数,且满足1m n +=,则有:对A :()121221233n m m n m n m n m n ⎛⎫+=++=+++≥++ ⎪⎝⎭,当且仅当2n mm n=,即2n ==-时,等号成立,故A 正确;对B :21m n +=-,则22122⎛++-= ⎝⎭,当且仅当12m n ==时,等号成立,即22≤+≤,故B 正确;对C :1m n +=≥,当且仅当12m n ==时,等号成立,12≤,故C 错误;对D :444m n ≥==+,当且仅当12m n ==时,等号成立,故D 正确.故选:ABD.10.声强级Li (单位:dB )与声强I (单位:2/m ω)之间的关系是:010lgILi I =⨯,其中0I 指的是人能听到的最低声强,对应的声强级称为闻阈.人能承受的最大声强为21/m ω,对应的声强级为120dB ,称为痛阈.某歌唱家唱歌时,声强级范围为[]70,80(单位:dB ).下列选项中正确的是()A.闻阈的声强为1210-2/m ωB.声强级增加10dB ,则声强变为原来的2倍C.此歌唱家唱歌时的声强范围5410,10--⎡⎤⎣⎦(单位:2/m ω)D.如果声强变为原来的10倍,对应声强级增加10dB 【答案】ACD 【解析】【分析】依题意求出0I ,即可判断A ;将70Li =、80Li =代入求声强范围判断C ;设声强变为原来的k 倍,对应声强级增加10dB ,依题意得到方程,解得k ,即可判断B 、D.【详解】解:由题意0110lg120I =,即01lg 12I =,所以120110I =,所以12010I -=2ω/m ,故1210lg(10)12010lg Li I I ==+,故A 正确;若70Li =dB ,即10lg 50I =-,则510I -=2ω/m ;若80Li =dB ,即10lg 40I =-,则410I -=2ω/m ,故歌唱家唱歌时的声强范围5410,10--⎡⎤⎣⎦(单位:2ω/m ),C 正确;设声强变为原来的k 倍,对应声强级增加10dB ,则()()12010lg 12010lg 10kI I +-+=,解得10k =,即如果声强变为原来的10倍,对应声强级增加10dB ,故D 正确,B 错误;故选:ACD11.已知函数()21,2,5,2,xx f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩,且()()()()f a f b f d f c ==<,则下列说法正确的是()A.1c ≥ B.0a c +<C.25a d < D.222ab d ++的取值范围为()18,34【答案】CD 【解析】【分析】作出函数图像判断A ,举反例判断B ,转化为一元函数,利用二次函数的性质判断C ,指数函数的性质判断D 即可.【详解】结合函数()f x 的图象可知,()0,01,4,5a b d <<<∈,由c b >,得不出1c ≥,故A 错误,令1,2a c =-=,此时()()132f a f c =<=,但是0a c +>,故B 错误.因为215a d -=-,所以125a d -=-,所以24a d =-,则()24a d d d =-,又()4,5d ∈,所以()2244()a d d d d d f d =-=-=,由二次函数性质得()f d 在()4,5上单调递增,故()(5)5f d f <=,所以C 正确.因为2121a b-=-,所以222a b +=,故22222a b d d =+++,令2()2d g d +=,由指数函数性质得()g d 在()4,5上单调递增,所以222a b d ++的取值范围为(18,34),故D 正确.故选:CD【点睛】关键点点睛:本题考查求多变元表达式的范围,解题关键是合理利用函数图像找到变量关系,构造一元函数,然后利用指数函数的性质得到所要求的取值范围即可.三、填空题:本题共3小题,每小题5分,共15分.12.已知幂函数()y f x =的图象过点(,则()16f =______.【答案】4【解析】【分析】先由幂函数的定义用待定系数法设出其解析式,代入点的坐标,求出幂函数的解析式,再求(16)f 的值【详解】解:由题意令()a y f x x ==,由于图象过点,2a =,12a =12()y f x x∴==12(16)164f ∴==故答案为:4.【点睛】本题考查幂函数的单调性、奇偶性及其应用,解题的关键是熟练掌握幂函数的性质,能根据幂函数的性质求其解析式,求函数值,属于基础题.13.411log 2324lg lg245(64)49---+-=__________.【答案】3-【解析】【分析】根据条件,利用指对数的运算法则,即可求出结果.【详解】因为4411log 1log 232214lg lg245(64)44lg 2lg 49(lg 5lg 49)44(lg 2lg 5)43492---+-=⨯-+-+-=⨯-+-=-,故答案为:3-.14.已知()f x 是定义在上的偶函数,且对x ∀∈R ,都有(2)(2)f x f x -=+,且当[]2,0x ∈-时,()112x f x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>至少有2个不同的实数根,至多有3个不同的实数根,则实数a 的取值范围是______.2a ≤<【解析】【分析】先根据题意分析函数()f x 的对称性及周期性;再利用函数的对称性和周期性作出函数()f x 在[]2,6-上的图象;最后数形结合列出不等式组求解即可.【详解】由(2)(2)f x f x -=+,可得:()()4f x f x -=+,又因为()f x 是定义在R 上的偶函数,则−=,且函数()f x 图象关于y 轴对称,所以()()4f x f x +=,即()f x 的周期为4,作出函数1()12xf x ⎛⎫=- ⎪⎝⎭在[]2,0x ∈-上的图象,根据()f x 对称性及周期为4,可得出()f x 在[]2,6-上的图象:令()()()log 21a g x x a =+>,若在区间(2,6]-内关于x 的方程()log (2)0(1)a f x x a -+=>至少有2个不同的实数根,至多有3个不同的实数根,则函数()f x 与函数()log (2)(1)a g x x a =+>在(2,6]-上至少有2个不同的交点,至多有3个不同的交点,所以()()()()2266g f g f ⎧≤⎪⎨>⎪⎩,即()()log 223log 623a a ⎧+≤⎪⎨+>⎪⎩2a ≤<.2a ≤<.【点睛】关键点点睛:本题考查函数性质的综合应用,函数与方程的综合应用及数形结合思想.解题关键在于根据题意分析出分析函数()f x 的对称性及周期性,并作出()f x 和()g x 图象;将方程根的问题转化为函数图象交点问题,数形结合解答即可.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在①A B A = ,②A B A = ,③A B =∅ 这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合{}123A x a x a =-<<+,{}2280B x x x =--≤(1)当2a =时,求A B ;(2)若,求实数a 的取值范围.注:如果选择多个条件解答按第一个解答计分.【答案】(1){}27A B x x ⋃=-≤<(2)答案见解析【解析】【分析】(1)代入a 的值表示出A ,求解出一元二次不等式的解集表示出B ,根据并集运算求解出结果;(2)若选①:根据条件得到A B ⊆,然后分类讨论A 是否为空集,由此列出不等式组求解出结果;若选②:根据条件得到B A ⊆,然后列出不等式组求解出结果;若选③:根据交集结果分析,A B 集合的端点值的关系,列出不等式并求解出结果.【小问1详解】当2a =时,{}17A x x =<<,{}{}228024B x x x x x =--≤=-≤≤,因此,{}27A B x x ⋃=-≤<.【小问2详解】选①,因为A B A = ,可得A B ⊆.当123a a -≥+时,即当4a ≤-时,A B =∅⊆,合乎题意;当123a a -<+时,即当4a >-时,A ≠∅,由A B ⊆可得12234a a -≥-⎧⎨+≤⎩,解得112a -≤≤,此时112a -≤≤.综上所述,实数a 的取值范围是{4a a ≤-或112a ⎫-≤≤⎬⎭;选②,因为A B A = ,可得B A ⊆.可得12234123a a a a -≤-⎧⎪+≥⎨⎪-<+⎩,此时不等式组无解,所以实数a 的取值范围是∅;选③,当123a a -≥+时,即当4a ≤-时,A =∅,A B =∅ ,满足题意;当123a a -<+时,即当4a >-时,A ≠∅,因为A B =∅ ,则232a +≤-或14a -≥,解得52a ≤-或5a ≥,此时542a -<≤-或5a ≥,综上所述,实数a 的取值范围是52a a ⎧≤-⎨⎩或}5a ≥.16.已知函数()()log 1a f x x a =>,关于x 的不等式()1f x <的解集为(),m n ,且103m n +=.(1)求a 的值;(2)是否存在实数λ,使函数()()()2123,,93g x f x f x x λ⎡⎤⎡⎤=-+∈⎣⎦⎢⎥⎣⎦的最小值为34?若存在,求出λ的值;若不存在,说明理由.【答案】(1)3a =(2)138λ=-或32【解析】【分析】(1)先根据()1f x <,求出不等式的解,结合103n m +=可得a 的值;(2)利用换元法,把函数()g x 转化为二次函数,结合二次函数区间最值法求解.【小问1详解】由log 1a x <可得1log 1a x -<<,又1a >,所以1x a a <<,又因为()1f x <的解集为(),m n ,所以1,n a m a ==,因为103n m +=,所以1103a a +=,即()()231033130a a a a -+=--=,解得3a =或13a =,因为1a >,所以3a =;【小问2详解】由(1)可得()()2331log 2log 3,,93g x x x x λ⎡⎤=-+∈⎢⎥⎣⎦,令31log ,,93t x x ⎡⎤=∈⎢⎥⎣⎦,则[]1,2t ∈-,设()[]223,1,2h t t t t λ=-+∈-,①当1λ≤-时,()h t 在[]1,2-上单调递增,则()()min 31424h t h λ=-=+=,解得138λ=-,符合要求;②当12λ-<<时,()h t 在[]1,λ-上单调递减,在[],2λ上单调递增,()()22min 3234h t h λλλ==-+=,解得32λ=±,又12λ-<<,故32λ=;③当2λ≥时,()h t 在[]1,2-上单调递减,()()min 324434h t h λ==-+=,解得25216λ=<,不合题意;综上所述,存在实数138λ=-或32符合题意.17.已知()()()1m g x f x g x -=+的定义在上的奇函数,其中()g x 为指数函数,且()g x 的图象过点()2,9.(1)求实数m 的值,并求()f x 的解析式;(2)判断()f x 的单调性,并用单调性的定义加以证明.(3)若对于任意的[]1,2t ∈,不等式()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭恒成立,求实数m 的取值范围.【答案】(1)1m =,()1313xxf x -=+(2)()f x 在R 上单调递减,证明见解析(3)178m ≥【解析】【分析】(1)利用待定系数法可求出()g x 的表达式,结合奇函数性质计算即可得解;(2)设12x x <,从而计算()()12f x f x -的正负即可得证;(3)由奇函数性质结合函数单调性可得212134mt t t -≥+对[]1,2t ∈恒成立,构造二次函()()21284h t t m t =+-+,结合二次函数性质可得()()1020h h ⎧≤⎪⎨≤⎪⎩,解出即可得.【小问1详解】设()()0,1x g x a a a =>≠,由()g x 的图象过点()2,9,可得29a =,∴3a =(负值舍去),即()3x g x =,故函数()()()3113xxm g x m f x g x --==++,由()f x 为奇函数,可得()()()01001011m g m f g --===++,∴1m =,即()1313xx f x -=+,满足()()13311313x x x x f x f x -----===-++,即()f x 为奇函数,故1m =;【小问2详解】()f x 在R 上单调递减,证明如下:()()2131321131313x x x x x f x -+-===-+++,设12x x <,则12033x x <<,则()()()()()211212122332213131313x x x x x x f x f x --=-=++++,结合12033x x <<,可得()212330x x ->,∴()()120f x f x ->,即()()12f x f x >,故()f x 在R 上单调递减;【小问3详解】由()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭且()f x 为奇函数,所以()212134f mt f t t ⎛⎫-≤+ ⎪⎝⎭,又()f x 在R 上单调递减,所以212134mt t t -≥+对[]1,2t ∈恒成立,所以()212840t m t +-+≤对[]1,2t ∈恒成立,令()()21284h t t m t =+-+,所以有()()1020h h ⎧≤⎪⎨≤⎪⎩,即1128404241640m m +-+≤⎧⎨+-+≤⎩,解得178m ≥.18.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)所满足的关系式:()60,030R 80,30120150x v k k x x <≤⎧⎪=∈⎨-<≤⎪-⎩.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).2.236≈)【答案】(1)车流密度x 的取值范围是(]0,90(2)隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.【解析】【分析】(1)根据题意得2400k =,再根据分段函数解不等式即可得答案;(2)由题意得60,030240080,30120150x x y x x x x <≤⎧⎪=⎨-<≤⎪-⎩,再根据基本不等式求解最值即可得答案.【小问1详解】解:由题意知当120x =(辆/千米)时,0v =(千米/小时),代入80150k v x=--,解得2400k =,所以60,030240080,30120150x v x x <≤⎧⎪=⎨-<≤⎪-⎩.当030x <≤时,6040v =≥,符合题意;当30120x <≤时,令24008040150x-≥-,解得90x ≤,所以3090x <≤.所以,若车流速度v 不小于40千米/小时,则车流密度x 的取值范围是(]0,90.【小问2详解】解:由题意得60,030240080,30120150x x y x x x x <≤⎧⎪=⎨-<≤⎪-⎩,当030x <≤时,60y x =为增函数,所以1800y ≤,当30x =时等号成立;当30120x <≤时,()()2150180150450024004500808080180150150150150x x x y x x x xx --+--⎡⎤⎛⎫=-==--+ ⎪⎢⎥---⎝⎭⎣⎦4800(33667≤-≈.当且仅当4500150150x x-=-,即30(583x =-≈时等号成立.所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.19.若函数()f x 与区间D 同时满足:①区间D 为()f x 的定义域的子集,②对任意x D ∈,存在常数0M ≥,使得()f x M ≤成立,则称()f x 是区间D 上的有界函数,其中M 称为()f x 的一个上界.(注:涉及复合函数单调性求最值可直接使用单调性,不需要证明)(1)试判断函数()1923x x f x =-⋅,()22223x f x x x =-+是否为R 上的有界函数?并说明理由.(2)已知函数()121log 1x g x x +=-是区间[]2,3上的有界函数,设()g x 在区间[]2,3上的上界为M ,求M 的取值范围;(3)若函数()2313xx m f x m +⋅=+⋅,问:()f x 在区间[]0,1上是否存在上界M ?若存在,求出M 的取值范围;若不存在,请说明理由.【答案】(1)()1f x 不是R 上的有界函数,()2f x 是R 上的有界函数(2)[)2log 3,+∞(3)答案见解析【解析】【分析】(1)根据有界函数的定义,分别计算出()1f x 及()2f x 的值域即可判断;(2)先求解函数()g x 的值域,进而求解()g x 的取值范围,再根据有界函数的定义确定上界M 的取值范围;(3)先求解函数()f x 及()f x ,再根据有界函数的定义,讨论m 取不同数值时,函数是否存在上界,并求解出对应的上界范围.【小问1详解】()()21923311x x x f x =-⋅=-- ,()1f x ∴的值域为[)1,-+∞()1f x ∴不是R 上的有界函数;()22223x f x x x =-+,则()200f =,当0x ≠时,()22223232x f x x x x x ==-++-,当0x >时,3x x +≥=x =则()2102f x <≤,当0x <时,33x x x x ⎛⎫+=--+≤-- ⎪-⎝⎭,当且仅当x =则()2102f x ->≥,综上可得,()211,22f x ⎡⎤+∈⎢⎥⎣⎦,即有()212f x +≤在R 上恒成立,()2f x ∴是R 上的有界函数;【小问2详解】()112212log log 111x g x x x +⎛⎫==+ ⎪--⎝⎭,易知()g x 在区间[]2,3上单调递增,∴()[][]2log 3,1,2,3g x x ∈--∈,∴()[]1221log 1,log 31x g x x +=∈-,所以上界M 构成的集合为[)2log 3,+∞;【小问3详解】()23113311x x x m f x m m +⋅==++⋅+⋅,当0m =时,()2f x =,()2f x =,此时M 的取值范围是[)2,+∞,当0m >时,()1311x f x m =++⋅在[]0,1上是单调递减函数,其值域为()232,131m m f x m m ++⎡⎤∈⎢⎥++⎣⎦,故()232,131m m f x m m ++⎡⎤∈⎢⎥++⎣⎦,此时M 的取值范围是2,1m m +⎡⎫+∞⎪⎢+⎣⎭,当0m <时,[]1331,1xm m m +⋅∈++,若()f x 在[]0,1上是有界函数,则区间[]0,1为()f x 定义域的子集,所以[]31,1m m ++不包含0,所以310m +>或10+<m ,解得:1m <-或103m -<<,0m <时,()1311x f x m =++⋅在[]0,1上是单调递增函数,此时()f x 的值域为232,131m m m m ++⎡⎤⎢⎥++⎣⎦,①232311m m m m ++≥++,即33m --≤或103m -<<时,()32323131m m f x m m ++≤=++,此时M 的取值范围是32,31m m +⎡⎫+∞⎪⎢+⎣⎭,②232311m m m m ++<++,即313m --<<-时,()2211m m f x m m ++≤=-++,此时M 的取值范围是2,1m m +⎡⎫-+∞⎪⎢+⎣⎭,综上:当0m ≥时,存在上界M ,2,1m M m +⎡⎫∈+∞⎪⎢+⎣⎭;当13m ≤--或103m -<<时,存在上界M ,32,31m M m +⎡⎫∈+∞⎪⎢+⎣⎭;当113m --<<-时,存在上界M ,2,1m M m +⎡⎫∈-+∞⎪⎢+⎣⎭,当113m -≤≤-时,此时不存在上界M .【点睛】关键点点睛,本题关键点在于求出所给函数在对应定义域范围内的值域,从而可结合定义,得到该函数是否为有界函数.。
江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。
3.考试结束后,请将答题卡交监考人员。
一、单项选择题:本大题共8小题,每小题5分,共40分。
在每题给出的四个选项中只有一项是最符合题意的。
1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。
广东实验中学2024年高一11月期中考试数学试题+答案
广东实验中学2024-2025学年(上)高一级期中考试数学命题:许作舟审定:夏嵩雪校对:吴建华孙洪云本试卷共4页,满分150分,考试用时120分钟。
注意事项:1.开考前,考生务必用黑色字迹的钢笔或签字笔将自己的校名、姓名、班级、考号等相关信息填写在答题卡指定区域内。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题:p x ∀∈R ,0x x + 的否定为A .x R ∃∈,0x x +B .x R ∃∈,0x x +C .x R ∃∈,0x x +<D .x R ∀∈,0x x +<2.已知集合{}28x A x =<,{}23100B x x x =-- ,则()A B =R ðA .[)2,3-B .[]2,3-C .(]3,5D .[]3,53.已知()2f x +是偶函数,若方程()f x m =有且仅有两实根12,x x ,那么12x x +=A .0B .2C .4D .4-4.若幂函数()()23711m f x m m x -=-+在()0,+∞上单调递增,则m =A .2B .3C .4D .55.已知1x >,则2361x x x -+-的最小值是A .3B .4C .5D .66.“函数y =的定义域为R ”是“2a ”的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件7.函数()21xf x x =-的大致图象是A B C D8.已知函数()2,02,0x f kx x x x +=⎩<⎧⎨ ,若方程()()12f f x =有且仅有一根,则实数k 的取值范围是A .3,04⎛⎫- ⎪⎝⎭B .3,04⎡⎫-⎪⎢⎣⎭C .[)0,+∞D .3,4⎛⎫-+∞ ⎪⎝⎭二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分.9.如下四个结论中,正确的有A .∅⊆∅B .0∈∅C .{}0∅⊆D .{}0∅=10.下列判断正确的有A .11334π>B .4122π-⎛⎫< ⎪⎝⎭C .若a b >,c d >,则a d b c ->-D .若a c b c >,则a b>11.悬链线是指两端固定的一条均匀、柔软的链条,在重力的作用下所呈现的曲线形状,例如悬索桥、电线等都自然呈现这一形状.数学家和物理学家计算发现,悬链线是不同于抛物线的一类曲线,在特定的坐标系下,其函数解析式可以表示为()x x f x ae be -=+(其中a ,b 是非零常数,无理数 2.71828e =⋯).对于函数()f x ,以下结论正确的是A .0a b +=是()f x 为奇函数的充要条件B .a b =是()f x 为偶函数的必要不充分条件C .若0ab <,则()f x 为单调函数D .若0ab >,则()f x 存在最大值或最小值三、填空题:本小题共3小题,每小题5分,共15分.12.函数()120,11x y a a a --=⋅>≠的图象恒过定点.13.已知关于x 的不等式()224200x ax a a -+<>的解集为(),m n ,则am n mn++的最小值是.14.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠有()()21210f x f x x x -<-,则满足()()21f x f x - 的x 的取值范围是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合{}22A x a x a =-<<+,{}2540B x x x =-+ ,302x C x x ⎧+⎫=<⎨⎬-⎩⎭.(1)求B C ;(2)若()A B A =R ð,求实数a 的取值范围.16.(15分)已知函数()24xf x x =+,()2,2x ∈-.(1)若()13f a a=,求实数a 的值;(2)判断()f x 的奇偶性,并说明理由;(3)求证:函数()f x 在()2,2-上单调递增.17.(15分)已知函数()22f x ax bx =++,,a b ∈R .(1)若()0f x <的解集为{}12x x <<,求()f x 在[]1,3上的最大值和最小值;(2)若()13f =,求不等式()4f x x <-的解集.18.(17分)定义在R 上的函数()f x 满足()()()12f x y f x f y +=,且(){}()02,f x x >=+∞.(1)求()0f ;(2)证明:()0f x >;(3)若对任意的x ∈R ,()()4f x f x λ+- 恒成立,求实数λ的取值范围.19.(17分)已知函数()()2f x x a x a =+-,x ∈R .(1)讨论函数的单调性(无须证明);(2)若方程()31f x a =-有三个互异实根123,,x x x .(i )求实数a 的取值范围;(ii )求123x x x a++的取值范围.广东实验中学2024-2025学年(上)高一期中考试数学参考答案与评分标准【选择题、填空题答案与解析】8.【解析】若0k ,则()()112f f x f x =⇔=-,而当0x 时()2f x ,当0x <时()0f x >,所以()1f x =-无解;若0k <,则()()()112f f x f x =⇔=-或()32f x k=-,其中()1f x =-有一根为3k -,则由题意知()32f x k=-无解,而当0x 时()2f x ,当0x <时()1f x <,所以()f x 的值域为(],2-∞,从而322k ->,解得34k >-,所以304k -<<.综上,k 的取值范围是3,04⎛⎫- ⎪⎝⎭,故选A .【解答题参考答案及评分标准】15.【解答】(1)(][),14,B =-∞+∞ ,()3,2C =-,(3分)所以(]3,1B C =- .(5分)(2)若()A B A =R ð,则A B ⊆R ð,(7分)若0a ,则A =∅,符合题意;(9分)若0a >,则A ≠∅,故有()()2,21,4a a -+⊆,所以2124a a -⎧⎨+⎩,解得1a ,所以01a < .(12分)综上所述,实数a 的取值范围是(],1-∞.(13分)16.【解答】(1)2143a a a=+,整理得22a =,解得a =经检验,a =a的值为(4分)(2)()f x 为奇函数.(仅下结论未加证明给1分)证明如下:()f x 的定义域()2,2-关于原点对称,(6分)()2,2x ∀∈-,()()()2244xxf x f x x x --==-=-+-+,所以()f x 为奇函数.(9分)(3)任取()122,2,x x ∈-,12x x <,()()()()()()()()()()12121222212122112222212212444444444x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++.(13分)因为1222x x -<<<,所以210x x ->,124x x <,又()()2212440x x ++>,所以()()120f x f x -<,即()()12f x f x <,所以()f x 在()2,2-上单调递增.(15分)17.【解答】(1)由题意知01232122a ba a ⎧⎪>⎪⎪-=+=⎨⎪⎪=⋅=⎪⎩,解得13a b =⎧⎨=-⎩,所以()232f x x x =-+,(3分)由二次函数图象与性质知,在[]1,3上,min 3124f f ⎛⎫==- ⎪⎝⎭,()max 32f f ==.(6分)(求,a b 也可直接代入1和2解方程组;求最小值也可通过配方或说明单调性)(2)()123f a b =++=,所以1b a =-,()()212f x ax a x =+-+.(7分)不等式()4f x x <-等价于()2220ax a x +--<,即()()210ax x +-<.(9分)若0a =,则不等式等价于()210x -<,解得1x <;(10分)若0a >,则21a -<,解得21x a -<<;(11分)若2a - ,则21a -<,解得2x a <-或1x >;(13分)若20a -<<,则21a ->,解得1x <或2x a>-.(14分)综上所述,当2a - 时,不等式的解集为()2,1,a ⎛⎫-∞-+∞ ⎪⎝⎭ ;当20a -<<时,不等式的解集为()2,1,a ⎛⎫-∞-+∞ ⎪⎝⎭;当0a =时,不等式的解集为(),1-∞;当0a >时,不等式的解集为2,1a ⎛⎫- ⎪⎝⎭.(15分)18.【解答】(1)在条件式中令0y =,()()()102f x f x f =,(2分)因为()f x 不恒为0,所以()02f =.(4分)(2)【法一】由(1)知当0x =时,()2f x =;又由题意,当0x >时,()2f x >;(6分)而当0x <时,0x ->,()2f x ->,在条件式中令y x =-,可得()()4f x f x -=,所以()()40f x f x =>-.(8分)综上所述,x ∀∈R ,()0f x >.(9分)【法二】()211022222x x x f x f f f ⎡⎤⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,(6分)若存在0x ∈R 使()00f x =,则有()()()00102f x f x f x x =-=,这与题设矛盾,(8分)所以x ∀∈R ,()0f x >.(9分)(3)在条件式中令y x =-,可得()()4f x f x -=,又由(2)知x ∀∈R ,()0f x >,所以()()4f x f x -=.(12分)令()t f x =,则对任意0t >,44t tλ+,即()144t t λ- 恒成立.(14分)记()()()21142144g t t t t =-=--+,0t >,取()02t f ==时,()g t 有最大值1,所以λ的取值范围为[)1,+∞.(17分)(第(3)问若通过讨论λ的符号来研究函数4y t tλ=+的单调性和最小值,也可酌情给分)19.【解答】(1)()22222,22,2x ax a x af x x ax a x a ⎧-++<⎪=⎨--⎪⎩ .(1分)若0a =,则()22,0,0x x f x x x ⎧-<⎪=⎨⎪⎩,()f x 在R 上单调递增;(2分)若0a >,则22a a >,()f x 在,2a ⎛⎫-∞ ⎪⎝⎭上单调递增,在,22a a ⎛⎫⎪⎝⎭上单调递减,在()2,a +∞上单调递增;(4分)若0a <,则22aa <,()f x 在(),2a -∞上单调递增,在2,2a a ⎛⎫ ⎪⎝⎭上单调递减,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递增.(6分)(2)(i )若0a =,()31f x a =-最多一根,不合题意;(7分)若0a >,()31f x a =-有三个互异实根⇔()312231a fa f a a ⎧⎛⎫>-⎪ ⎪⎝⎭⎨⎪<-⎩,整理得2091240310a a a a >⎧⎪-+>⎨⎪->⎩,解得13a >且23a ≠,(9分)若0a <,()31f x a =-有三个互异实根⇔()231312f a a a f a >-⎧⎪⎨⎛⎫<- ⎪⎪⎝⎭⎩,整理得231091240a a a a ⎧<⎪-<⎨⎪+->⎩,解得23a +<-,(11分)综上所述,实数a 的取值范围是222122,,,3333⎛+⎛⎫⎛⎫-∞-+∞ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,(12分)(ii )不妨设123x x x <<.由(i )知0a =不合题意.若0a >,则12x x a +=,32a x +=,所以1233322x x x a ++=++因为13a >且23a ≠,所以1330,,322a ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,所以12333,2x x x a ⎛+++∈ ⎝⎭;(14分)若0a <,则121x a =-,23x x a +=,所以12313x x x a a++=-,因为23a +<-,所以13,02a ⎛⎫-∈ ⎪ ⎪⎝⎭,所以12333,2x x x a ⎛+++∈ ⎝⎭.(16分)综上所述,123x x x a ++的取值范围是3323,2⎛+ ⎝⎭.(17分)。
湖北省荆州2024-2025学年高一上学期期中考试数学试卷含答案
荆州2024-2025学年高一上学期期中考试数学试题(答案在最后)(全卷满分150分考试用时120分钟)一、单项选择题1.设集合{}20,212x x M x N y y x ⎧⎫-=≥==-⎨⎬+⎩⎭∣则M N ⋂=()A.[)2,∞+ B.[]1,2- C.(]1,2- D.()1,∞-+2.下列说法不正确的是()A.命题2:,0p x x ∃∈≤R ,则命题p 的否定:2,0x x ∀∈>R B.若集合{}210A xax x =++=∣中只有一个元素,则14a =C.若13,21x y <<-<<-,则328x y <-<D.已知集合{}0,1,2M =,且N M ⊆,满足条件的集合N 的个数为83.下列比较大小的式子中,正确的有()个①3112351393-⎛⎫<< ⎪⎝⎭;②0.80.60.60.8<<A.0 B.1C.2D.34.幂函数()()22231m m f x m m x +-=--在区间()0,∞+上单调递增,且0a b +>,则()()f a f b +的值()A.恒大于0B.恒小于0C.等于0D.无法判断5.在下图中,二次函数2y ax bx c =++与指数函数xb y a ⎛⎫= ⎪⎝⎭的图像只可能是()A. B.C. D.6.为响应国家退耕还林的号召,某地的耕地面积在最近50年内减少了20%,如果按照此规律,设2024年的耕地面积为m ,则2029年的耕地面积为()A.()25010.2m- B.11010.8m ⎛⎫- ⎪⎝⎭C.2500.8mD.1100.8m7.已知函数()f x 为R 上的奇函数,当0x <时,()128xf x =-,则()0f x <的解集为()A.()()3,00,3-⋃B.()3,3-C.()(),33,∞∞--⋃+ D.()(),30,3∞--⋃8.已知函数()()12,1312,32x x f x f x x ⎧--≤≤⎪=⎨->⎪⎩,则下列说法错误的是()A.()164f =B.关于x 的方程()641f x =有13个不同的解C.()f x 在[]2024,2025上单调递增D.当[)1,x ∞∈+时,()2xf x ≤恒成立二、多项选择题9.下列说法正确的是()A.若()f x 的定义域为[]2,2-,则()21f x -的定义域为13,22⎡⎤-⎢⎥⎣⎦B.函数()12(0x f x aa -=->且1)a ≠的图象恒过定点()1,2-C.函数()f x =6D.“0m <”是“关于x 的方程220x x m -+=有一正根和一负根”的充要条件10.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x=称为高斯函数.例如:][3.24,2.32⎡⎤-=-=⎣⎦.已知函数()21122x xf x =-+,则关于函数()()g x f x ⎡⎤=⎣⎦的叙述中正确的是()A.()f x 是奇函数B.()g x 是偶函数C.()f x 的值域是11,22⎛⎫-⎪⎝⎭D.()g x 的值域是{}1,0-11.已知函数()(),f x g x 的定义域均为R ,且()()()()21,11g x f x f x g x +-+=-+=,若()y f x =的图象关于直线1x =对称,则以下说法正确的是()A.()g x 为奇函数B.()(),4x f x f x ∀∈=+R C.()()202420232f x f x ++--= D.302g ⎛⎫-= ⎪⎝⎭三、填空题12.已知11221a a--=,计算:2233223a a a a--++=-__________.13.已知定义在[)0,∞+上的函数()f x 满足对[)1212,0,,x x x x ∞∀∈+≠,都有()()21212f x f x x x ->-,若()12024f =,则不等式()()202421013f x x ->-的解集为__________.14.已知函数()f x 定义域为()0,∞+,且满足()()()1212f x f x f x x +=,当1x >时,()0f x <,若不等式()fff a ≤+恒成立,则实数a 的取值范围是__________.四、解答题15.已知函数()f x =的定义域为R (1)求实数a 的取值集合A ;(2)设集合{31}B xm x m =<<+∣,若x A ∈是x B ∈的必要不充分条件,求实数m 的取值范围.16.已知函数()222,y x a x a a =-++∈R(1)解关于x 的不等式0y <;(2)若方程()2221x a x a x -++=+有两个正实数根12,x x ,求2112x x x x +的最小值.17.荆州中学坐落于历史文化名城荆州,发轫于东汉马融绛帐讲学,历经明清龙山书院、贡院,弦歌不辍,薪火相传,文脉不绝.其近代教育始于1903年清政府创办的荆州府中学堂,临近121周年校庆,学校计划对校史馆进行修缮.现要在校史馆阁楼屋顶上开一窗户,设其一边长(单位:m )为x.(1)已知阁楼屋顶为高2m ,底边长5m 的锐角三角形,若开一个内接矩形窗户(阴影部分)(如图所示).(i )要使窗户面积不小于2平方米,求x 的取值范围;(ii )规定:公共室内场所的窗户面积必须小于地板面积,但窗户面积与地板面积的比应不小于10%,若阁楼的窗户面积与地板面积的总和为16.5平方米,则当边长x 为多少米时窗户面积最小?最小值是多少平方米?(2)一般认为,在公共室内场所的窗户面积必须小于地板面积的规定下,窗户面积与地板面积的比值越大,采光效果越好,若同时增加相同的窗户面积和地板面积,采光效果是变好了还是变坏了?试从数学角度说明理由.18.已知函数()()4121xxf x m =-+⋅-.(1)若0m =,求()f x 在区间[]1,2-上的值域;(2)若方程()20f x +=有实根,求实数m 的取值范围;(3)设函数()224112x x g x -+-⎛⎫= ⎪⎝⎭,若对任意的[]11,2x ∈-,总存在[]20,3x ∈,使得()()12f x g x ≥,求实数m 的取值范围.19.若存在常数,k b 使得函数()F x 与()G x 在给定区间上的任意实数x 都有()()F x kx b G x ≥+≥,则称y kx b =+是()y F x =与()y G x =的隔离直线函数.已知函数()()2111,12f x x x g x x x ⎛⎫=-+=-+ ⎪⎝⎭.(1)证明:函数()y g x =在区间()0,∞+上单调递增.(2)当0x >时,()y f x =与()y g x =是否存在隔离直线函数?若存在,请求出隔离直线函数解析式;若不存在,请说明理由.参考答案题号1234567891011答案CBCABDDCADACDBCD三、填空题12.5213.()2025,∞+14.(四、解答题15.(1)由题意得不等式2102ax ax -+≥的解集为R :当0a =时,102≥恒成立,满足题意;当0a ≠时,则由解集为R 可得2Δ20a a a >⎧⎨=-≤⎩,解得:02a <≤,综上可得:[]0,2A =;(2)由x A ∈是x B ∈的必要不充分条件可得:B 是A 的真子集,当B =∅时,满足题意,此时有31m m ≥+,解得:12m ≥;当B ≠∅时,则311230m m m m <+⎧⎪+≤⎨⎪≥⎩,解得102m ≤<,综上可得m 的取值范围是{}0mm ≥∣.16.(1)不等式0y <即为()()()2220210x a x a x a x -++<∴--<,当2a <,即12a<时,不等式的解集为12a x x ⎧⎫<<⎨⎬⎩⎭,当2a =,即12a=时,不等式的解集为∅,当2a >,即12a>时,不等式的解集为12a x x ⎧⎫<<⎨⎩⎭,综上可知:当2a <时,不等式的解集为12a x x ⎧⎫<<⎨⎬⎩⎭,当2a =时,不等式的解集为,∅当2a >时,不等式的解集为12a x x ⎧⎫<<⎨⎩⎭.(2)方程()222x 1x a x a -++=+有两个正实数根12,x x ,即()22310x a x a -++-=有两个正实数根12,x x故()21212Δ(3)810302102a a a x x a x x ⎧⎪=+--≥⎪+⎪+=>⎨⎪-⎪=>⎪⎩,解得1a >,所以()2221212************ x x x x x x x x x x x x x +-++==()221321a a a ++=-令1t a =-,则0t >,故211282262x x t x x t +=++≥+=当且仅当82t t=即4,5t a ==时取得等号,故2112x x x x +的最小值为6.17.(1)(i )设矩形的另一边长为y ,由三角形相似得252x y-=且05,02x y <<<<,所以2510x y +=,又矩形窗户面积22255225522S xy x x x ⎛⎫⎛⎫==-=--+≥ ⎪ ⎪⎝⎭⎝⎭,解得5522x -≤≤,故的取值范围为52x ⎧+⎪≤≤⎨⎪⎪⎩⎭.(ii )设地板面积为1S ,解不等式组11116.50.1S S S S S +=⎧⎨>≥⎩,所以111S S S +≤,即1116.5S ≥,解得32S ≥,故窗户面积最小为32,令23252x x ⎛⎫-= ⎪⎝⎭,可得2420150x x -+=,解得52x +=或52x =.故当x为52+米或52米时,窗户面积最小,为32平方米.(2)设,a b 分别表示原来窗户面积和地板面积,m 表示窗户和地板所增加的面积(面积单位都相同),由题意得:0,0a b m <<>,则()()()m b a a m a ab mb ab ma b m b b b m b b m -++---==+++.因为()0,0b a b b m ->+>,所以()()0m b a b b m ->+,即a m ab m b+>+,所以窗户和地板同时增加相等的面积,采光条件变好了.18.(1)当0m =时,()()2421221x x xx f x =--=--,令2xt =,因为[]1,2x ∈-,所以1,42t ⎡⎤∈⎢⎥⎣⎦,所以可得一个二次函数()2215124p t t t t ⎛⎫=--=-- ⎪⎝⎭,所以当1,42t ⎡⎤∈⎢⎥⎣⎦,函数()p t 单调递增,当12t =时,()p t 有最小值1524p ⎛⎫=- ⎪⎝⎭,当4t =时,()p t 有最大值()411p =,所以()5,114p t ⎡⎤∈-⎢⎥⎣⎦.所以0m =时,()f x 在区间[]1,2-上的值域为5,114⎡⎤-⎢⎥⎣⎦.(2)由(1)知当令()()22,0,11xt t p t t m t =>=-+-,则()20p t +=,即()2110t m t -++=有实数根,此时实数根大于零,所以可得2102Δ(1)40m m +⎧>⎪⎨⎪=+-≥⎩,解得:1m ≥.所以方程()20f x +=有实根,实数m 的取值范围为[)1,∞+.(3)由题意得()2222412412(1)11222x x xx x g x -+--+--⎛⎫===⎪⎝⎭,若对任意的[]11,2x ∈-,总存在[]20,3x ∈,使得()()12f x g x ≥,可得()()12min min f x g x ≥,由函数22(1)1y x =--可得当[)20,1x ∈时单调递减,当[]21,3x ∈时单调递增,函数2x y =为增函数,所以由复合函数定义可得函数()22(1)12x g x --=在[)20,1x ∈时单调递减,[]21,3x ∈时单调递增,所以当21x =时,()2g x 有最小值()()2min 112g x g ==,由(2)知当令[]112,1,2,,42xt x t ⎡⎤=∈-∈⎢⎥⎣⎦,所以()21112t m t -+-≥在1,42t ⎡⎤∈⎢⎥⎣⎦上恒成立,即312t m t -≥+在1,42t ⎡⎤∈⎢⎥⎣⎦上恒成立,因为函数3,2y t y t ==-在1,42t ⎡⎤∈⎢⎥⎣⎦时均单调递增,所以函数32y t t =-在1,42t ⎡⎤∈⎢⎥⎣⎦时单调递增,所以min 3522t t ⎛⎫-=- ⎪⎝⎭,所以571,22m m -≥+≤-.19.(1)任取()12,0,x x ∞∈+,不妨设12x x <,则()()121212111122g x g x x x x x ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭()()12121212211212111111222x x x x x x x x x x x x x x ⎡⎤⎛⎫⎡⎤⎛⎫--=-+-=-+=+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎣⎦,由()1212,0,,x x x x ∞∈+<,则12120,0x x x x -<>,故12121102x x x x ⎛⎫-+< ⎪⎝⎭,即()()()()12120,g x g x g x g x -<∴<,故函数()y g x =在区间()0,∞+上单调递增.(2)当0x >时,()y f x =与()y g x =存在隔离直线函数;令()()f x g x =,即211112x x x x ⎛⎫-+=-+ ⎪⎝⎭,即211022x x x x --+=,即3223102x x x-+=,即()2(1)210x x -+=,解得1x =或12x =-,由于0x >,故舍去12x =-;当1x =时,()()1f x g x ==,即()(),y f x y g x ==有公共点()1,1,设()y f x =与()y g x =存在隔离直线函数y kx b =+,则点()1,1在隔离直线函数y kx b =+上,则1k b +=,即1b k =-,则1y kx k =+-;若当0x >时有()f x kx b ≥+,即()211x x kx k -+≥+-,则()210x k x k -++≥在()0,∞+上恒成立,即()()10x x k --≥,由于()10,∞∈+,故此时只有1k =时上式才成立,则10b k =-=,下面证明()(),0g x x x ≤>,令()11111022y g x x x x ⎛⎫=-=-++≤-⨯= ⎪⎝⎭,即()0y g x x =-≤,故()g x x ≤,当且仅当1x x=,即1x =时,等号成立,所以1y kx k =+-,即y x =为()y f x =与()y g x =的隔离直线函数.。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,不是一次函数的是()A. y = 2x + 1B. y = 3x^2 + 5C. y = 1/xD. y = -4x2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∪B等于()A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}3. 若sinα=0.6,则cosα的值是()A. 0.8B. -0.8C. -0.4D. 0.44. 函数f(x) = |x - 2| + |x + 3|的最小值是()A. 5B. 2C. 1D. 45. 不等式x^2 - 4x + 3 ≤ 0的解集是()A. (1, 3)B. (-∞, 3]C. [1, 3]D. (-∞, 1] ∪ [3, +∞)6. 已知数列1, 3, 5, 7, ...,其第n项an等于()A. 2n - 1B. 2n + 1C. 2nD. n + 17. 若a + b + c = 0,则a^2 + b^2 + c^2 =()A. 0B. 2abC. 2bcD. 2ac8. 函数y = x^3 - 6x^2 + 12x - 4的极大值点是()A. x = 1B. x = 2C. x = 3D. x = 49. 已知tanθ = 2,求sin^2θ + cos^2θ的值是()A. 1B. 5C. 3D. 410. 下列哪个选项是二元一次方程()A. x^2 + y = 7B. 3x + 2y = 10C. x^2 - y = 0D. 2x/3 + y/4 = 1二、填空题(每题4分,共20分)11. 等差数列的首项是5,公差是3,则其第10项是_________。
12. 若函数f(x) = x^2 - 2x在区间[1, 4]上是增函数,则f(1) = ________。
13. 已知三角形ABC中,∠A = 90°,a = 3,b = 4,则c=_________。
甘肃省武威市武威第一中学2023-2024学年高一上学期期中考试数学试卷(含答案)
武威一中2023年秋季学期期中考试高一年级 数学试卷第Ⅰ卷(选择题)一、单选题(共8小题,每小题5分)1.已知A 是由0,,三个元素组成的集合,且,则实数为( )A.2B.3C.0或3D.0,2,3均可2.已知全集,集合,,那么( )A. B. C. D.3.若集,合,则( )A. B. C. D.4.设,则( )A.B.C.1D.-25.若命题“,使得成立”是假命题,则实数的取值范围是( )A. B. C. D.6.已知函数是一次函数,且,则( )A.11B.9C.7D.57.已知函数是定义在上的偶函数,又,则,,的大小关系为( )A. B.C. D.8.若定义在R 的奇函数,若时,则满足的的取值范围是( )A. B.C. D.m 232m m -+2A ∈m U =R {}24A x x =-≤≤∣501x B x x ⎧⎫-=<⎨⎬+⎩⎭A B = ()1,4-(]1,4-()2,5-[)2,5-{}24x A x =<∣{N 13}B x x =∈-<<∣A B = {12}xx -<<∣{}0,1{}1{13}xx -<<∣()212,11,11x x f x x x ⎧--≤⎪=⎨>⎪+⎩()()1f f =15120R x ∃∈201k x >+k 1k >01k <<1k ≤0k ≤()f x ()23f f x x ⎡⎤-=⎣⎦()5f =()22f x ax a =+[],2a a +()()2g x f x =+()2g -()3g -()2g ()()()232g g g ->->()()()322g g g ->>-()()()223g g g ->>-()()()232g g g >->-()f x 0x <()2f x x =--()0xf x ≥x ()[],20,2-∞- ()(),22,-∞-+∞ ][(,20,2⎤-∞-⎦[]2,2-二、多选题(共4小题,每小题选对得5分,错选或多选得0分,少选或漏选得2分)9.下列结论中,不正确的是( )A. B. C. D.10.下列命题中,真命题的是( )A.,都有 B.任意非零实数,都有C.,使得D.函数211.下列命题正确的是( )A.命题“,,”的否定是“,,”B.与是同一个函数C.函数的值域为D.若函数的定义域为,则函数的定义域为12.函数的定义域为R ,已知是奇函数,,当时,,则下列各选项正确的是( )A. B.在单调递C. D.第Ⅱ卷(非选择题)三、填空题13.已知,集合,则图中阴影部分所表示的集合是________.14.函数的单调递减区间为________.15.已知集合,,若“”是“”的必要非充分条件,则实数的取值范围是________.0.20.20.20.3>113323--<0.10.20.81.25->0.33.11.70.9>x ∀∈R 21x x x -≥-,a b 2b a a b+≥()1,x ∃∈+∞461x x +=-y =x ∀y ∈R 220x y +≥x ∃y ∈R 220x y +<()1f x x =-()211x g x x -=+y x =[)0,+∞()1f x +[]1,4()f x []2,5()f x ()1f x +()()22f x f x +=-[]1,2x ∈()22f x ax =+()()4f x f x +=()f x []0,1()10f =13533f ⎛⎫=⎪⎝⎭U R ={11}A x x =->{B xy ==∣y =204x A xx ⎧⎫+=<⎨⎬-⎩⎭{}22210B x x ax a =-+-<∣x A ∈x B ∈a16已,,,知为四个互不相等的实数.若,,,中最大,则实数的取值范围为________.四、解答题17.(本小题10分)计算下列各式(式中字母都是正数):(1);(2);(3.18.(本小题12分)已知函数.(1)证明:函数在上是减函数;并求出函数在的值域;(2)记函数,判断函数的的奇偶性,并加以证明.19.(本小题12分)设关于的函数,其中,都是实数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一学年第一学期期中考试
数学试卷
注意事项:
1、答题前,考生先将自己的姓名、准考证号码填写清楚。
2、请将准考证条码粘贴在右侧的[条码粘贴处]的方框内
3、选择题必须使用2B 铅笔填涂;非选择题必须用0.5毫米黑色字迹的签字笔填写,字体工整
4、请按题号顺序在各题的答题区内作答,超出范围的答案无效,在草纸、试卷上作答无效。
一,选择题(每题5分)
1、已知等比数列{a n }中,a n =2×3n ﹣1,则由此数列的偶数项所组成的新数列的前n 项和S n 的值为( )
A . 3n ﹣1
B . 3(3n ﹣1)
C .
D .
2、y=cos α+sin α的最大值为( )
A .
B .
C . 1
D . 2 3.在R 上定义运算⊗:)1(y x y x -=⊗,若不等式0)()(>-⊗-b x a x 的解集是)3,2(,则b a +的值为 ( )
A .1
B .2
C .4
D .8
4.己知
,则m 等于 ( ) A . B C . D .
5.如果偶函数f (x )在[),0+∞上是增函数且最小值是2,那么f (x )在)0,(-∞上是 ( )
A .减函数且最小值是2
B .减函数且最大值是2
C .增函数且最小值是2
D .增函数且最大值是2
6.已知函数y=f (x+1)定义域是[﹣2,3],则y=f (2x ﹣1)的定义域( )
A . [﹣3,7]
B . [﹣1,4]
C . [﹣5,5]
D .
7.已知f (x )是定义在R 上的奇函数,当x≥0时,f (x )=x 2+2x ,若
f (2﹣a 2)>f (a ),则实数a 的取值范围是 ( )
A .(﹣∞,﹣1)∪(2,+∞)
B .(﹣2,1)
C .(﹣1,2)
D .(﹣∞,﹣2)∪(1,+∞)
8.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()
A.(﹣1,0)∪(1,+∞) B.(﹣∞,﹣1)∪(0,1)
C.(﹣1,0)∪(0,1) D.(﹣∞,﹣1)∪(1,+∞)
二,填空题(每题5分)
9.集合A={x|(a﹣1)x2+3x﹣2=0}有且仅有两个子集,则a的取值为.
10.已知f(x)=ax5+bx3+cx+1(a,b,c都不为零),若f(3)=11,则
f(﹣3)= .
11.若函数f(x)=(k﹣2)x2+(k﹣1)x+3是偶函数,则f(x)的递减区间是.
12.已知定义在R上的奇函数f(x),当x>0时,f(x)=x2+|x|﹣1,那么
x<0时,f(x)= .
三.解答题
13.(10分)已知集合A={x|x2+ax﹣12=0},B={x|x2+bx+c=0},且A≠B,A∩B={﹣3},A∪B={﹣3,1,4},求实数a,b,c的值.
14.(15分)已知函数f(x)=|x﹣1|+|x+1|(x∈R)
(1)证明:函数f(x)是偶函数;
(2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图象,并写出函数的值域;
(3)在同一坐标系中画出直线y=x+2,观察图象写出不等式f(x)>x+2的解集.
R上的函数f(x)同时满足下列三个条件:
15. (15分)已知定义在
+
R都有f(xy)=f(x)+f(y);③x>1时,f(x)<0.
①f(3)=﹣1;②对任意x、y∈
+
(1)求f(9)、的值;
R上为减函数;(2)证明:函数f(x)在
(3)解关于x的不等式f(6x)<f(x﹣1)﹣2.
答案
1---8
DCCAADBC
9. a=1或﹣
﹣9
10.
11. [0,+∞)
12. ﹣x2+x+1
13.a=-1 b=2 c=-3
14.解答:(1)f(﹣x)=|﹣x﹣1|+|﹣x+1|=|x+1|+|x﹣1|=f(x)
∴f(x)是偶函数
(2)原函数式可化为:
;其图象如图所示,
由函数图象知,函数的值域为[2,+∞)
(3)由函数图象知,
当x=0或2时,f(x)=x+2.
结合图象可得,不等式的解集为{x|x<0或x>2}…
15.解答:(1)解:令x=y=3得f(9)=f(3×3)=f(3)+f(3)=﹣2 令x=y=得
(2)证明:设0<x1<x2,x1,x2∈R+
∴f(x1)>f(x2)
∴f(x)在R+上为减函数.
(3)不等式等价于,解得1<x<3.。