研究生泛函分析总结

合集下载

考研数学备考如何做好泛函分析的复习

考研数学备考如何做好泛函分析的复习

考研数学备考如何做好泛函分析的复习泛函分析是考研数学中的一门重要课程,对于数学相关专业的考研生来说,学好泛函分析是非常关键的。

然而,由于泛函分析的抽象性和难度较大,很多考生在备考过程中感到困惑。

下面将从如何理解泛函分析、合理安排复习时间以及选择合适的学习方法等方面给出几点建议,帮助考生更好地备考泛函分析。

一、理解泛函分析的基本概念和思想理解泛函分析的基本概念和思想是备考泛函分析的第一步。

首先,要熟悉泛函分析的基本概念,如拓扑空间、线性算子、连续性、紧算子等。

这些基本概念是学好泛函分析的基础。

其次,要掌握泛函分析的基本思想,了解泛函分析研究的对象、问题的关键,以及泛函分析在数学中的应用领域。

通过理清泛函分析的基本概念和思想,考生能够更好地把握学习重点,提高复习效果。

二、合理安排复习时间合理安排复习时间是备考泛函分析的关键。

首先,考生要有一个详细的复习计划,明确每天复习的内容和时间安排。

可以根据泛函分析的教材和考纲,将知识点分成若干部分,按照难易程度和重要程度进行排序,然后合理安排复习时间,每天专注复习一个或几个知识点。

其次,要注意分配好每天的复习时间和休息时间,保持良好的学习节奏和学习状态。

最后,要留出足够的时间进行综合复习和答题训练,巩固所学知识,并熟悉考试形式和要求。

三、选择合适的学习方法选择合适的学习方法是备考泛函分析的重要环节。

首先,要结合个人的学习习惯和特点,选择适合自己的学习方法。

有的学生喜欢通过阅读教材和笔记来学习,有的学生喜欢通过听课和上课笔记来学习,还有的学生喜欢通过讨论和解题来学习。

只有找到适合自己的学习方法,才能够事半功倍。

其次,可以参加相关的学习班或者辅导班,听取专业的老师的讲解和解题技巧,加深对于泛函分析的理解。

另外,可以加入相关的学习社群或者网络论坛,与他人进行交流和讨论,互相学习和帮助。

通过不同方式的学习,可以提高学习效果,更好地备考泛函分析。

四、重点强化解题能力泛函分析的考试往往以解答问题为主,因此解题能力的强弱直接影响考试成绩。

泛函分析及应用读后感

泛函分析及应用读后感

泛函分析及应用读后感泛函分析是对数学分析中关于映射与函数的进一步抽象与深化。

在学习的过程中,感觉很多概念很理解,并且很难举例子。

但是发现其解决复杂问题的优势是相当明显的,具体就体现在在解决常微分方程中存在于唯一性,在常微分课本中,要解决这个问题我们是分了若干引理来解决的。

而用泛函方法就很容易解决。

泛函分析的特点和内容:泛函分析对于研究现代物理学是一个有力的工具。

n维空间可以用来描述具有n个自由度的力学系统的运动,实际上需要有新的数学工具来描述具有无穷多自由度的力学系统。

比如梁的震动问题就是无穷多自由度力学系统的例子。

一般来说,从质点力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统。

现代物理学中的量子场理论就属于无穷自由度系统。

正如研究有穷自由度系统要求 n维空间的几何学和微积分学作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容。

因袭,泛函分析也可以通俗的叫做无穷维空间的几何学和微积分学。

古典分析中的基本方法,也就是用线性的对象去逼近非线性的对象,完全可以运用到泛函分析这门学科中。

泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。

他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。

半个多世纪来,泛函分析一方面以其他众多学科所提供的素材来提取自己研究的对象,和某些研究手段,并形成了自己的许多重要分支,例如算子谱理论、巴拿赫代数、拓扑线性空间理论、广义函数论等等;另一方面,它也强有力地推动着其他不少分析学科的发展。

它在微分方程、概率论、函数论、连续介质力学、量子物理、计算数学、控制论、最优化理论等学科中都有重要的应用,还是建立群上调和分析理论的基本工具,也是研究无限个自由度物理系统的重要而自然的工具之一。

今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一。

应用泛函分析复习小结

应用泛函分析复习小结

第一章实分析概要本章将简要的介绍数学分析与实变函数的一些基础知识,特别是点集的勒贝格测度与勒贝格积分理论。

这些知识不仅是学习泛函分析的必要准备,而且在数学及其它学科中有直接的应用。

第一节集合及其运算第二节实数的完备性第三节可数集与不可数集第四节直线上的点集与连续函数第五节点集的勒贝格测度与可测函数1第六节勒贝格积分第一节集合及其运算1)A∪A=A,A∩A=A;2)A∪ Φ=A,A∩ Φ=Φ;3)若A⊂B,则A∪B=B,A∩B=A,A\B=Φ;4) 设X为基本集,则A ∪ A C= X , A ∩ A C=Φ, ( A C)C= A, A \B = A ∩ B C又若A⊂B,则A C⊃B C。

集合的运算法则:2交换律 A ∪ B = B ∪ A, A ∩ B = B ∩ A ;结合律( A∪B) ∪C=A∪ (B∪C) =A∪B∪C;( A∩B) ∩C=A∩ (B∩C) =A∩B∩C;分配律( A∪B) ∩C= ( A∩C) ∪ (B∩C) ;( A∩B) ∪C= ( A∪C) ∩ (B∪C) ;( A \ B) ∩C= ( A∩C) \ (B∩C) .定理 1.1 设X为基本集,Aα为任意集组,则1) ( U Aα )C=I ( Aα )C (1.6)α∈I α∈I2) ( I Aα )C=U ( Aα )C (1.7)α∈I α∈IA \ ( A \ B)= A I B3第二节实数的完备性2.1有理数的稠密性2.2实数的完备性定理定义 2.1(闭区间套)设{[a n,b n]}(n=1,2,L, )是一列闭区间,a n<b n,如果它满足两个条件:1)渐缩性,即[a1,b1]⊃[a2,b2]⊃L⊃[a n,b n]⊃L;2) 区间长度数列{b n−a n }趋于零,即lim(b n−a n)=0n→∞4定理 2.1 (区间套定理)设{[a n,b n]}为实数轴上的任一闭区间套,其中a n与b n都是实数,那么存在唯一的一个实数ξ属∞于一切闭区间[a n,b n](n=1,2,L),即ξ∈ ∩[a n,b n],并且n=1lim a n= lim b n=ξn→∞n→∞利用区间套定理,可以直接推出所谓的列紧性定理(定理 2.2),这个定理的名称的含义在第二章中解释。

泛函分析总结范文高中

泛函分析总结范文高中

泛函分析是现代数学分析的一个重要分支,它主要研究的是函数构成的函数空间以及这些空间上的线性算子。

相较于高中数学中的实变函数和复变函数,泛函分析更多地关注函数之间的相互关系和映射性质,为解决实际问题提供了新的视角和方法。

一、泛函分析的基本概念1. 函数空间:泛函分析研究的对象是函数,这些函数构成一个集合,称为函数空间。

常见的函数空间有实值函数空间、复值函数空间、有界函数空间、连续函数空间等。

2. 线性算子:函数空间上的线性算子是一种映射,它将一个函数映射到另一个函数,同时满足线性性质。

线性算子是泛函分析的核心概念,如积分算子、微分算子、傅里叶变换等。

3. 范数:范数是度量函数空间中函数“大小”的一种方式。

一个函数空间的范数满足以下性质:非负性、齐次性、三角不等式和归一性。

4. 内积:内积是度量函数空间中函数“夹角”的一种方式。

一个函数空间的内积满足以下性质:非负性、齐次性、共轭对称性和三角不等式。

二、泛函分析的主要理论1. 线性算子的谱理论:研究线性算子的特征值和特征向量,以及这些特征值和特征向量的性质。

2. 线性算子的有界性:研究线性算子是否具有有界性,以及有界性的条件。

3. 线性算子的连续性:研究线性算子是否具有连续性,以及连续性的条件。

4. 线性算子的可逆性:研究线性算子是否具有可逆性,以及可逆性的条件。

5. 线性算子的对偶性:研究线性算子的对偶算子,以及对偶算子的性质。

三、泛函分析的应用1. 微分方程:泛函分析为微分方程的求解提供了新的方法,如泛函微分方程、积分方程等。

2. 积分方程:泛函分析为积分方程的求解提供了新的方法,如变分法、迭代法等。

3. 函数论:泛函分析为函数论的研究提供了新的工具,如傅里叶分析、Sobolev空间等。

4. 线性代数:泛函分析为线性代数的研究提供了新的视角,如无穷维线性空间、线性算子等。

总之,泛函分析是一门具有广泛应用前景的数学分支。

通过对函数空间、线性算子、范数、内积等基本概念的研究,泛函分析为解决实际问题提供了新的思路和方法。

应用泛函分析

应用泛函分析

中国地质大学研究生课程论文封面课程名称应用泛函分析教师姓名研究生姓名研究生学号研究生专业所在院系类别: 硕士日期: 2013年12月12日评语注:1、无评阅人签名成绩无效;2、必须用钢笔或圆珠笔批阅,用铅笔阅卷无效;3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。

应用泛函分析课程报告——泛函分析及其在地球物理中的应用1 前言1.1概述泛函分析是现代数学的一个分支,隶属于分析学,其主要研究对象是无穷维空间和这类空间之间各种映射的一般性质。

它是从分析数学、变分法、积分方程、微分方程、逼近论和理论物理等的研究中发展起来的,成为近代分析的基础之一。

它以集合论为基础,综合运用分析、代数和几何的观点方法,来研究分析学的课题。

可看作无限维分析学。

泛函分析是20世纪30年代形成的。

它的产生和发展主要受两各因素的影响。

一方面,由于数学本身的发展,需要探求其各分支里被孤立讨论过的结论和方法的一般性和统一性。

分析、代数、变分法、积分方程、集合的许多概念和方法常常存在相似的地方,它启发人们从类似的东西中探寻一般的真正属于本质的东西,加以总结和整理,建立一套理论,用统一的观点理解和处理已有的或将要出现的对象,促使了泛函分析抽象理论的形成与提升。

另一方面,正如Newton力学对微积分的发展所起的作用一样,量子物理学的需要对泛函分析的发展起到重要作用。

泛函分析具有高度抽象性和概括性,并具有广泛的应用性以及表述形式的简洁性,使得它的概念和方法已渗透到数学、理论物理和现代工程技术的许多分支。

半个多世纪以来,泛函分析一方面以其他众多学科所提供的素材来提取资自己研究的对象和某些研究手段,并形成了自己的许多重要分支,例如算子普理论、Banach代数、拓扑线性空间理论、广义函数论等等;另一方面,它也强有力的推动着其它不少学科的发展。

它在微分方程、概率论、函数论、计算数学、控制论、最优化理论等学科中都有重要应用;它也是研究无限个自由度物理系统的重要而自然的工具之一,其方法大量的使用于连续介质力学、电磁场理论、量子场论等学科;此外,它的观点和方法已经渗入到不少工程技术性的学科当中,其概念、术语和符号作为科学的语言已被频频应用于许多技术问题的表述之中,成为一种方便的数学语言和工具。

泛函分析复习与总结汇编

泛函分析复习与总结汇编

泛函分析复习与总结汇编泛函分析是数学中的一个重要分支,它研究的是无穷维空间中的函数和函数空间的性质。

泛函分析具有很强的抽象性和广泛的应用性,在数学和物理学中都有着重要的地位。

本文将对泛函分析的基本概念、定理与应用进行复习与总结。

一、基本概念1.线性空间与赋范线性空间:线性空间是指满足线性运算规则的集合,包括实数域上的向量空间和复数域上的向量空间。

赋范线性空间是在线性空间的基础上,引入了范数的概念,即给每个向量赋予一个非负实数,满足非负性、齐次性和三角不等式等性质。

2.内积空间与希尔伯特空间:内积空间是在赋范线性空间的基础上,引入了内积的概念,即给每一对向量赋予一个复数,满足线性性、共轭对称性和正定性等性质。

希尔伯特空间是一个完备的内积空间,即内积空间中的柯西序列收敛于该空间中的元素。

3.函数空间:函数空间是指由特定性质的函数组成的集合,常见的函数空间有连续函数空间、可微函数空间和L^p空间等。

二、定理与性质1.希尔伯特空间的性质:希尔伯特空间是一个完备的内积空间,任意一序列收敛于希尔伯特空间中的元素,该序列收敛于该元素的充分必要条件是该序列的柯西序列。

2. Riesz表示定理:Riesz表示定理是希尔伯特空间的一个重要定理,它指出了希尔伯特空间中的任意线性连续泛函都可以由内积表示。

具体地说,对于希尔伯特空间中的任意线性连续泛函f,存在唯一的y∈H,使得对于所有的x∈H,有f(x)=(x,y)。

3.泛函分析的基本算子理论:算子是泛函分析中的一个重要概念,它用来描述线性变换的性质。

常见的算子包括线性算子、连续算子和紧算子等。

4.开放映射定理:开放映射定理是泛函分析中的一个重要定理,它指出了一个连续算子的开集的像还是开集。

具体地说,如果X和Y是两个赋范线性空间,并且T:X→Y是一个连续线性算子,如果T是开映射,则其像T(X)也是Y中的开集。

三、应用泛函分析在数学和物理学的各个领域都有重要的应用,包括偏微分方程、最优控制理论和量子力学等。

泛函分析中的泛函与变分

泛函分析中的泛函与变分泛函分析是数学中的一个分支领域,研究的是函数的函数。

在泛函分析中,我们经常会遇到泛函和变分的概念。

本文将介绍泛函与变分在泛函分析中的基本概念和应用。

一、泛函的概念与性质在泛函分析中,泛函是一个将定义域内的函数映射到实数域的映射。

具体地说,设X是一个函数空间,那么泛函F是从X到实数域的映射,即F:X->R。

泛函的性质包括线性性、有界性和连续性。

首先,泛函F是线性的,即对于任意的函数f和g以及任意的实数α和β,有F(αf + βg) = αF(f) + βF(g)。

其次,泛函F是有界的,即存在一个常数M,使得对于任意的函数f,有|F(f)| ≤ M。

最后,泛函F是连续的,即当函数序列{f_n}收敛于f时,有F(f_n)收敛于F(f)。

二、变分的概念与欧拉-拉格朗日方程在泛函分析中,变分是研究泛函的变化情况以及极值问题的工具。

给定一个泛函F和一组函数g,我们想要找到一个函数f,使得泛函F在f处取得极值。

这就涉及到变分的概念和变分计算的方法。

对于一个函数f,我们可以通过对f进行微小变化来研究泛函F的变化情况。

这个微小变化称为变分,用δf表示。

变分需要满足边界条件,即在给定边界上,函数f的变分为零。

通过对泛函F在f + εδf处展开到一阶项,我们可以得到泛函F的一阶变分δF。

欧拉-拉格朗日方程是变分问题中的一种重要的形式化表达方法。

对于泛函F,如果函数f是泛函F的一个极值点,那么f必须满足欧拉-拉格朗日方程。

欧拉-拉格朗日方程的形式化表达为δF(f) = 0其中δF(f)表示泛函F在f处的一阶变分。

通过求解欧拉-拉格朗日方程,我们可以找到泛函F的极值点。

三、泛函与变分的应用泛函与变分在数学和物理学中有广泛的应用。

在数学中,泛函分析是函数空间的研究,它为实际问题提供了数学分析的工具和方法。

例如,泛函分析在偏微分方程、优化理论和控制论等领域中有重要应用。

在物理学中,泛函与变分方法常常用于经典力学和量子力学中的问题。

数学中的泛函分析

数学中的泛函分析泛函分析是数学领域中的一个重要分支,它研究的是函数的空间,以及这些函数之间的性质和关系。

在数学和物理学等领域中,泛函分析被广泛应用于函数的极限、连续性、收敛性以及变分法等问题的研究中。

本文将从泛函分析的基本概念和定理开始,逐步深入探讨其应用领域及重要性。

一、泛函分析的基本概念泛函分析主要研究函数的空间,它将函数看作是向量,通过构建合适的范数和内积,使这些函数构成一个完备的向量空间,称之为函数空间。

泛函分析中的基本概念包括:范数、内积、赋范空间、内积空间以及希尔伯特空间等。

1.1 范数在泛函分析中,范数是衡量向量长度的一种方式,它具有非负性、同一性以及三角不等式等性质。

泛函分析中经常用到的范数有:欧几里得范数、p-范数、无穷范数等。

1.2 内积内积是用于定义向量之间夹角和长度的一种数学工具,它具有对称性、线性性、正定性等性质。

泛函分析中的内积可以用于定义向量的正交性、投影性质以及构造正交基等。

1.3 赋范空间赋范空间是指在向量空间中引入一个范数后所得到的空间。

赋范空间具有向量空间的性质,并且可以通过范数来度量向量之间的距离。

1.4 内积空间内积空间是指在向量空间中引入一个内积后所得到的空间。

内积空间具有赋范空间的性质,并且可以通过内积来度量向量之间的夹角。

1.5 希尔伯特空间希尔伯特空间是一种特殊的内积空间,它是完备的。

在希尔伯特空间中,可以定义距离、收敛性以及正交性等概念。

二、泛函分析的定理及应用泛函分析通过引入范数和内积等工具,对函数空间中的函数进行研究,为解决各种数学问题提供了有效的方法和定理。

以下将介绍几个泛函分析中的重要定理及其应用。

2.1 巴拿赫空间及其应用巴拿赫空间是泛函分析中普遍使用的一种函数空间。

在巴拿赫空间中,可以定义极限、连续性以及收敛性等概念,并且具有良好的完备性和紧性等性质。

巴拿赫空间的重要应用之一是在函数逼近问题中,通过在巴拿赫空间中构造逼近序列,可以获得函数逼近的最优结果。

数学专业的泛函分析

数学专业的泛函分析泛函分析是数学专业中的一门重要课程,它研究的是无穷维空间中的函数和算子。

本文将从概念、理论以及应用等方面对泛函分析进行介绍。

一、泛函分析的概念与基础理论1.1 范数空间与内积空间范数空间是指一个具有范数的线性空间,范数定义了空间中向量的长度或大小。

内积空间是指一个具有内积的线性空间,内积赋予了空间中向量之间的夹角和长度。

1.2 泛函的定义与性质泛函是将向量映射到实数或复数的函数,它是对线性空间上的向量进行研究的一种方法。

泛函有线性性、有界性等基本性质。

1.3 线性算子与连续性线性算子是将一个线性空间映射到另一个线性空间的线性映射。

连续性是线性算子的重要性质,涉及到收敛性和有界性的概念。

二、泛函分析的重要理论与方法2.1 凸分析与变分法凸分析是研究凸函数、凸集以及凸优化问题的分析方法。

变分法是泛函分析的重要应用领域,涉及到极值问题的研究。

2.2 傅立叶变换与解析函数傅立叶变换是一种将函数分解成正弦和余弦函数(或复指数函数)的方法,它在泛函分析中有广泛的应用。

解析函数是具有全纯性质的函数,具有重要的解析性质。

2.3 紧算子与算子的谱紧算子是泛函分析中的一种重要算子,它在有限维空间和无穷维空间中的性质存在差异。

算子的谱是研究线性算子特征值与特征向量的集合。

三、泛函分析的应用领域3.1 偏微分方程与泛函分析泛函分析在偏微分方程的理论研究以及数值计算中有重要应用,例如变分法可以用于求解偏微分方程的边值问题。

3.2 优化与控制理论泛函分析在优化与控制理论中有广泛应用,例如凸优化问题中的约束条件可以通过泛函的理论进行研究。

3.3 统计学与概率论泛函分析在统计学和概率论中的应用主要体现在随机变量空间的研究,例如概率分布的傅立叶变换等。

四、泛函分析的发展与挑战泛函分析作为数学专业中的重要学科,其发展也面临一些挑战。

例如,非线性泛函分析和无穷维空间的研究等问题,需要进一步深入和探索。

总结:泛函分析是数学专业中的重要课程,它研究的是无穷维空间中的函数和算子。

泛函分析知识点范文

泛函分析知识点范文泛函分析是数学中的一门学科,研究向量空间上的函数和函数空间的性质,涉及到实数或复数域上的向量空间。

泛函分析包括线性代数、实变函数分析和拓扑学等多个学科的内容,因此具有广泛的应用领域,如物理、工程、经济等。

泛函分析的核心内容包括线性空间、拓扑空间和连续映射等概念、线性算子和泛函的基本性质以及泛函分析中的基本定理等。

1.线性空间:泛函分析的基础是线性空间,也就是向量空间。

线性空间满足线性组合和分配律等性质,例如实数域或复数域上的向量空间。

线性空间中的向量可以是函数、矩阵等不同的对象。

2.拓扑空间:泛函分析中的向量空间往往是赋予了拓扑结构的空间,即拓扑向量空间。

拓扑空间是一种具有连续性质的空间,它引入了开集、闭集和收敛性等概念。

拓扑空间的拓扑结构可以通过开集、闭集、邻域、基等方式来定义。

3.连续映射:泛函分析中的重要概念是映射的连续性。

连续映射是保持拓扑结构的映射,即对于拓扑空间中的开集,其原像仍然是开集。

连续映射可以用来描述泛函和线性算子的性质。

4.线性算子和泛函:线性算子是线性空间之间的映射,它可以是有界算子或无界算子。

线性算子的基本性质包括线性性、有界性、闭图像性等。

泛函是线性空间到数域的映射,它可以看作是线性算子的特殊情况。

泛函的基本性质包括线性性、有界性、连续性等。

5. Hahn-Banach定理:Hahn-Banach定理是泛函分析中的基本定理,它是关于泛函延拓的定理。

该定理说明了任意线性子空间上的有界泛函可以延拓到整个空间上,并且保持原有泛函的范数不变。

6.可分性:可分性是拓扑空间的一个重要性质,它指的是拓扑空间中存在可数稠密子集。

可分性保证了拓扑空间中存在足够多的元素,使得在拓扑空间上可以进行良定义的运算。

7.反射空间:反射空间是泛函分析中的一类特殊线性空间,它是线性空间和拓扑空间的交叉概念。

反射空间具有良好的性质,例如有界闭集外包性、扩张定理等。

8.紧算子和迹类算子:紧算子是对有界算子的一种推广,它在泛函分析中具有重要的地位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用泛函分析总结
1.距离空间的定义:设X 是非空集合,若存在一个映射d :X ×X →R ,使得
∀x,y,z ∈X,下列距离公理成立:
(1)非负性:d(x,y)≥0,d(x,y)=0⇔x=y; (2)对称性:d(x,y)=d(y,x);
(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);
则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X ,d ). P37 例题2.1.2
2.距离空间中的开集与闭集【两个定理的证明会考一个】
设A ⊂X ,若0A A =,则称A 为X 中的开集;若A =A ,则称A 为X 中的闭集。

定理2.2.1(开集与闭集的对偶性)开集的余集是闭集,闭集的余集是开集。

证:设A 为开集,则有A ∂⊂C A ;再由'0A A A A A =∂=,有
C C C C C C C A A A A A A A A =∂=∂=∂= )()()(0 故C A 为闭集,若A 为闭集,则由A A A A A ∂=∂=\\0,有
()
()
C C
C C C C C C C C C A A A A A A A A A A A ==∂=∂=∂=∂=)())(())(()(\0
故C A 为开集。

定理2.2.2任意个开集的并集是开集,有限个开集的交集是开集。

证:设αG (α∈I)为开集,令ααG G U I
∈=,则∀x ∈G ,I ∈∃β,使得βG x ∈。

由β
G 为开集,知∃r >0,使得 G G x B ⊂⊂β)(r 从而x 为G 的内点,故G 为开集;又设k k G G n
1==,其中k G (k=1,2,…,n )为开集,则∀x ∈G,有x ∈k G (k=1,2,…,
n ).由k G 开,知∃k r >0,使得k r G x B k ⊂)(,故取 }{r min 1k n
k r ≤≤=,则有
G G x B k n
k r =⊂= 1
)(,从而有x 为G 的内点,故G 亦为开集。

3.稠密性(掌握概念)
设A,B 是距离空间X 的两个子集,则 (1)A 称为X 中的稠集,若A =X
(2)A 称为B 的稠子集,若A ⊂B ⊂A (3)A 称为在B 中稠密,若B ⊂A .
4.Cauchy 列(基本列)(掌握概念)
距离空间(X,d )中的点列{n x }称为Cauchy 列(或基本列),若∀0>ε,∃N ∈N,使当m,n >N 时,有d (n m x ,x )<ε (注意:0),(→⇔n m x x d (∞→n m ,) ) 定义2.5.2 距离空间(X,d )成为完备的,若X 中的任一Cauchy 列都收敛到X 中的一点。

5.完备
距离空间(X,d )称为完备的,若中的任一Cauchy 列都收敛到X 中的一点。

6.列紧集与紧集
设A 是距离空间X 的子集,若A 中的任一点列都有收敛子列,则称A 为列紧集;若A 中的任一点列都有收敛于A 的子列,则称A 为紧集。

7.压缩映射(重点 例题)
设(X,d )为距离空间,T :X →X 是X 到自身的一个自映射,若存在常数θ(0<θ<1),使对∀x,y ∈X ,有d (Tx,Ty )≤θd(x,y),则称T 为X 上的压缩映射。

8.不动点
对X 上的自映射T ,若∃*x ∈X ,使得T *x =*x ,则称*x 为T 的一个不动点
9.给出映射须证出为压缩映射
例3.6.1 设X=(0,1/4]是R 中的左开右闭区间,其上的距离按数的距离:F:X →X,定义为2)(F x x =,X x ∈∀,那么
),(2
1
)()()()(),(F 22y x y x y x y x y F x F y F x ρρ≤
-+≤-=-=)( ,X y x ∈∀, 则F 是X 上的一个收缩映射
课后例题1 设X=[1,∞+)是R 得子空间,X X →:T 定义为x
x x 1
2T +=,证明:T 是压缩映射并求出T 的不动点。

证明:设在X=[1,∞+)上有
2
1
121T 2'
≤-=x x )(,故T 是压缩映射 ;令x x =T 得x
x x 1
2+=
,计算的2±=x ,故T 在[1,∞+)上有唯一的不动点2*=x
10.赋值空间
设X 是数域K 上的线性空间,若∀x ∈X ,都有一个实数||x||与之对应,使得∀x,y ∈X ,α∈K ,下列范数公理成立: (1)正定性:||x||≥0,||x||=0⇔x=0 (2)绝对齐次性:||αx||=|α| ||x|| (3)三角不等式:||x+y||≤||x||+||y||
则称||x||为x 的范数,X 为K 上的赋范空间,记作(X ,||·||) 例3.2.1∀x ∈R,定义||x||=|x|,则(R ,||·||)是赋范空间。

证明:o 1:有题知,显然有0≥=x x ,且00=⇔==x x x ,满足正定性 o 2:x x x x αααα===,满足绝对齐次性
o 3:设R ,∈y x ,∴y x y x y x +≤+=+,满足三角不等式, 所以(R ,||·||)是赋范空间。

例3.2.2∀x=(n x ,⋯,x 1)∈n
R ,定义p
p
n
k k p
x 1
1
||X
)(∑==,1≤p <∞,
||max ||x ||1k n
k x ≤≤∞=,
则(p R ||.||,n )(1≤p ≤∞)均为赋范空间。

证明:1:有题意得:显然0||X
1
1
≥=∑=p
p
n
k k p
x )(,且
),..,2,1(00||X
1
1
n k x x k p
p
n
k k p
==⇔==∑=)( 满足正定性。

2:又因p
p
p
n
k
k p
p n
k
k
p
p
p
n
k k p
X
x x
x ααα
αα====∑∑∑=111
1
)(||X )()(满足绝对
齐次性。

3:设n n n R y y y y x x x x ∈==),...,,(),,...,,(2121,所以
p
p
p
n
k
p
k
p
n
k
p
k
p
p
k n
k
p
k
p
n
k p k k p
y
x
y x y x y x +=+≤+≤+=+∑∑∑∑=1111
1
)()()]([||y
x )(
满足三角不等式,综上所述,(p R ||.||,n )(1≤p ≤∞)均为赋范空间
例3.2.3 P75
10.Banach 空间的概念
完备的赋范空间称为Banach 空间。

11.范数的等价性
定义3.4.1 设1||.||和2||.||是线性空间X 上的两个范数,若∀{n x }⊂X ,
0||||0||||21lim lim =⇔=∞
→∞
→n n n
n x x

则称1||.||与2||.||是等价的。

定理3.4.1(等价范数定理) 线性空间X 上的两个范数1||.||与2||.||等价的充分必要条件是:∃1C ,2C >0,使得∀x ∈X,有 12211||x ||||||||||C x x C ≤≤
证 必要性:设1||.||与2||.||等价,若不存在2C >0,使得∀x ∈X ,均有122||||||x ||x C ≤, 则∀n ∈N,∃n x ∈X,使得2||||n x >n 1||x ||n ,记n n n x x 2
||||1
y =
,则当n ∞→时,01
||||||||1||y ||121→=
n
x x n n n < ,
12.内积空间的定义
13.Bessel不等式
14.正交分解定理
(注:本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

相关文档
最新文档