一元一次方程的应用题(含解析)

合集下载

一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题(含详细答案)

—元一次方程的实际应用题题型一:利率问题利率问题利息二本金X利率X期数本利和二本金十利息二本金X (1+利率X期数)利息税二利息X税率税后利息二利息一利息税二利息X (】-税率)税后本利和二本金+税后利息【总结】若利率是年利率,期数以“年”为单位计数,若是月利率,则期数以“月”为单位计数,解题时要注意.【例1】某人把若干元按三年期的定期储蓄存入银行,假设年利率为3. 69% ,到期支取时扣除所得税实得利息2 103.3元,求存入银行的本金.(利息税为5%)【答案】设存入银行的本金为x元,根据题意,得xx(3x3.69%)x(l-5%) = 2103.3xx0.105165 = 2103.3x = 20000,因此,存入银行的本金是20000元.【总结】利息二本金x利率x期数x利息税题型二:折扣问题利润额二成本价x利润率售价二成本价+利润额新售价二原售价x折扣【例2J小丽和小明相约去书城买书,请你根据他们的对话容(如图),求出小明上次所买书籍的原价.图6_4_1【分析】设小明上次购买书籍的原价是x元,由题意,得0.8.v+20 = x-12 , 解得x = 160.因此,小明上次所买书籍的原价是160元,【答案】160元.1:一件衣服按标价的八折出售,获得利润】8元,占标价的】0%,问该衣服的买入价?分析:本金:标价利率:-20%利息:成交价-标价=买入价+利润-标价解:设该衣服的买入价为x元x+18-18/10%= 18/10%x (80%- 1)当然,这道题这样解是一种方法,还可以按照我们常规的算术方法解来,倒也简单,因此, 列方程解应用题是针对过程清楚的问题比较简单方便。

2. 一家商店将某种服装按进价提高40%后标价,又以8折优恵卖出,结果每件仍获利15 元,这种服装每件的进价是多少?[分析]探究题目中隐含的条件是关键,可直接设出成本为X元等量关系:(利润二折扣后价格一进价)折扣后价格-进价二15解:设进价为X 元,80%X (1+40%) —X=15, X=125答:进价是125元。

初一上数学真题专题练习---一元一次方程的应用(一)

初一上数学真题专题练习---一元一次方程的应用(一)

一元一次方程的应用(一)【真题精选】1.《九章算术》是中国古代的数学专著,奠定了中国传统数学的基本框架.方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”译文:“假设有若干人共同出钱买羊,如果每人出5钱,那么还差45钱;如果每人出7钱,那么仍旧差3钱,求买羊的人数和羊的价钱.”设羊是x钱,可列方程为()A.=B.=C.=D.=2.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中记载:“以绳测井,若将绳三折测之,绳多4尺,若将绳四折测之,绳多1尺,绳长井深各几何?”译文:“用绳子测水井深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成四等份,井外余绳1尺.问绳长、井深各是多少尺?”设井深为x尺,根据题意列方程,正确的是()A.3(x+4)=4(x+1)B.3x+4=4x+1C.3(x﹣4)=4(x﹣1)D.3.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60B.12(x+10)=13x+60C.D.4.一辆客车和一辆卡车同时从A地出发沿同一公路同向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早2h到达B地.若设A、B两地间的路程是xkm,可列方程()A.B.C.70x﹣60x=2D.5.用长为24cm的绳子围成一个封闭的长方形(绳子不重合),长方形的长是宽的两倍.设长方形的宽为xcm,根据题意可列方程为()A.x•2x=24B.x+2x=24C.2(x+2)=24D.2(x+2x)=24 6.如图,表中给出的是某月的月历,任意选取“U”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A.70B.78C.161D.1057.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km的两地同时出发,相向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相遇后又相距20km?③甲乙两人从相距60km的两地相向而行,甲的速度是4km/h,乙的速度是6km/h,如果甲先走了20km后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km的两地同时出发,背向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相距60km?其中可以用方程4x+6x+20=60表述题目中对应数量关系的应用题序号是()A.①②③④B.①③④C.②③④D.①②8.小王、小李和小张,同时各做120个同样的机器零件,当小王做完时,小李做了100个,小张做了80个,照这样计算,小李做完时,小张还差个没做.9.一部书稿,甲打字员打完全书要20天,乙打字员用同样的时间只能完成书稿的,两人合打这部书稿要天完成.10.甲、乙两城相距750千米,一辆大客车从甲城开往乙城共用15小时,一辆小轿车从乙城开往甲城10小时可以到达.两车同时从两城出发相向而行,小时可以相遇.11.清代文言小说集《笑笑录》记载,清代诗人徐子云曾写过一首诗:巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧?设寺内有x名僧人,则列出一元一次方程为.12.小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行18km,小明每小时骑行12km,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为xkm,依题意,可列方程为.13.《九章算术》是我国古代数学名著,卷七“盈不足”中题目译文如下:“今有人合伙买羊,每人出5钱,还差45钱;每人出7钱,还差3钱.问合伙人数、羊价各是多少?”设合伙人数为x人,根据题意可列一元一次方程为.14.一件商品的标价是100元,进价是50元,打八折出售后这件商品的利润是元.15.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章.《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为.16.一项工程,甲单独做10天完成,乙单独做15天完成.两人合作,天可以完成.17.在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为40?如果能,求出这三个数;如果不能,请说明理由.18.列方程解应用题十一期间,张老师从北京出发走京津高速到天津.去时在京津高速上用了1.2小时,返回时在京津高速上比去时多用18分钟,返回时平均速度降低了22千米/小时.求张老师去时在京津高速上开车的平均速度.19.列方程解应用题:某学校组织初一年级学生参加公益劳动在甲处劳动的有16人,在乙处劳动的有12人,现在另调20人去甲乙两处支援,使得在甲处劳动的人数比在乙处劳动的人数的2倍少6人,问应调往甲、乙两处各多少人?20.一项工程,甲队单独施工需要15天完成,乙队单独施工需要9天完成.现在由甲队先工作3天,剩下的由甲、乙两队合作,还需要几天才能完成任务?21.今年,小楠和哥哥的年龄之和是21岁,小楠的年龄只有哥哥的一半,小楠和哥哥各多少岁?(用方程解)22.某商场从厂家购进100个整理箱,按进价的1.5倍进行标价.当按标价卖出80个整理箱后,恰逢元旦,剩余的部分以标价的九折出售完毕,所得利润共1880元,求每个整理箱的进价.23.2020年9月的日历如图所示.(1)用1×3的长方形框出3个数,如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为.(2)用一个2×2的正方形在此日历中框出4个数,被框住的4个数的和为84,则这四个数中最小的数为;(3)用一个3×3的正方形框在此日历中框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2,若|a1﹣a2|=15,请求出正方形框中位于最中心的数字m的值.24.甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?25.列方程解应用题:2019年年底某高铁即将开通.以前小红回老家只能坐绿皮车,车速才60km/h,但某高铁开通之后,车速可以达到240km/h.这样就能早到4.5小时.请问提速后小红回老家需要多长时间?26.某商场进了一批豆浆机,按进价的180%标价,春节期间,为了能吸引消费者,打7折销售,此时每台豆浆机仍可获利52元,请问每台豆浆机的进价是多少元?27.列一元一次方程解应用题6月15日,新机场线一期工程正式开始试运行,轨道交通新机场线一期全长约42.75千米,全线从草桥站出发,途经磁各庄站,终到新机场北航站楼站,新机场线车辆首次采用基于城际平台的市域车型,全线行驶需20分钟(不含起始站和终点站停靠时间),若列车的平均时速为135千米,则列车在磁各庄站停靠的时间是多少分钟?28.整理一批图书,由一个人做要40h完成.现计划由一部分人先做4h,再增加2人和他们一起做8h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?一元一次方程的应用(一)参考答案与试题解析一.试题(共28小题)1.《九章算术》是中国古代的数学专著,奠定了中国传统数学的基本框架.方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”译文:“假设有若干人共同出钱买羊,如果每人出5钱,那么还差45钱;如果每人出7钱,那么仍旧差3钱,求买羊的人数和羊的价钱.”设羊是x钱,可列方程为()A.=B.=C.=D.=【分析】设羊是x钱,根据买羊的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设羊是x钱,根据题意得:=.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.2.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中记载:“以绳测井,若将绳三折测之,绳多4尺,若将绳四折测之,绳多1尺,绳长井深各几何?”译文:“用绳子测水井深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成四等份,井外余绳1尺.问绳长、井深各是多少尺?”设井深为x尺,根据题意列方程,正确的是()A.3(x+4)=4(x+1)B.3x+4=4x+1C.3(x﹣4)=4(x﹣1)D.【分析】用代数式表示井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.【解答】解:根据将绳三折测之,绳多四尺,则绳长为:3(x+4),根据绳四折测之,绳多一尺,则绳长为:4(x+1),故3(x+4)=4(x+1).故选:A.【点评】此题主要考查了由实际问题抽象出一元一次方程,不变的是井深,用代数式表示井深是此题的关键.3.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60B.12(x+10)=13x+60C.D.【分析】首先理解题意,找出题中存在的等量关系:实际12小时生产的零件数=原计划13小时生产的零件数+60,根据此等式列方程即可.【解答】解:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选:B.【点评】列方程解应用题的关键是找出题目中的相等关系.4.一辆客车和一辆卡车同时从A地出发沿同一公路同向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早2h到达B地.若设A、B两地间的路程是xkm,可列方程()A.B.C.70x﹣60x=2D.【分析】首先根据题意,设A、B两地间的路程是xkm,然后根据:卡车行驶时间﹣客车行驶时间=2,列出方程即可.【解答】解:设A、B两地间的路程是xkm,可得:,故选:B.【点评】此题主要考查了由实际问题抽象出一元一次方程,解答此题的关键是:审题找出题中的未知量和所有的已知量,然后用含x的式子表示相关的量,找出之间的相等关系列方程.5.用长为24cm的绳子围成一个封闭的长方形(绳子不重合),长方形的长是宽的两倍.设长方形的宽为xcm,根据题意可列方程为()A.x•2x=24B.x+2x=24C.2(x+2)=24D.2(x+2x)=24【分析】根据题意用x的代数式表示出长方形的长,进而利用矩形周长公式求出即可.【解答】解:设这个长方形的宽为xcm,则长为2xcm,则可列方程:2(x+2x)=24,故选:D.【点评】此题主要考查了由实际问题抽象出一元一次方程,利用矩形周长公式得出方程是解题关键.6.如图,表中给出的是某月的月历,任意选取“U”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A.70B.78C.161D.105【分析】设“U”型框中的正中间的数为x,则其他6个数分别为x﹣15,x﹣8,x﹣1,x+1,x﹣6,x﹣13,表示出这7个数之和,然后分别列出方程解答即可.【解答】解:设“U”型框中的正中间的数为x,则其他6个数分别为x﹣15,x﹣8,x﹣1,x+1,x﹣6,x﹣13,这7个数之和为:x﹣15+x﹣8+x﹣1+x+1+x﹣6+x﹣13=7x﹣42.由题意得:A、7x﹣42=70,解得x=16,能求出这7个数,不符合题意;B、7x﹣42=78,解得x=,不能求出这7个数,符合题意;C、7x﹣42=161,解得x=29,能求出这7个数,不符合题意;D、7x﹣42=105,解得x=21,能求出这7个数,不符合题意;故选:B.【点评】此题考查一元一次方程的实际运用,掌握“U”型框中的7个数的数字的排列规律是解决问题的关键.7.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km的两地同时出发,相向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相遇后又相距20km?③甲乙两人从相距60km的两地相向而行,甲的速度是4km/h,乙的速度是6km/h,如果甲先走了20km后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km的两地同时出发,背向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相距60km?其中可以用方程4x+6x+20=60表述题目中对应数量关系的应用题序号是()A.①②③④B.①③④C.②③④D.①②【分析】①设两人开始工作x小时后还有20个零件没有加工,根据甲生产的零件数+乙生产的零件数+未加工的零件数=计划加工零件的总数,即可得出关于x的一元一次方程;②设经过x小时后两人相遇后又相距20km,根据甲的路程+乙的路程+相遇后又间隔的距离=两地间的距离,即可得出关于x的一元一次方程;③设乙出发后x小时两人相遇,根据甲的路程+乙的路程=两地间的距离,即可得出关于x的一元一次方程;④设经过x小时后两人相距60km,根据甲的路程+乙的路程+20=两人间的间距,即可得出关于x的一元一次方程.综上即可得出结论.【解答】解:①设两人开始工作x小时后还有20个零件没有加工,依题意,得:4x+6x+20=60,∴①可以用方程4x+6x+20=60来表述;②设经过x小时后两人相遇后又相距20km,依题意,得:4x+6x﹣20=60,∴②不可以用方程4x+6x+20=60来表述;③设乙出发后x小时两人相遇,依题意,得:4x+20+6x=80,∴③方程4x+6x+20=60来表述;④设经过x小时后两人相距60km,依题意,得:4x+6x+20=60,∴④可以用方程4x+6x+20=60来表述.故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.8.小王、小李和小张,同时各做120个同样的机器零件,当小王做完时,小李做了100个,小张做了80个,照这样计算,小李做完时,小张还差24个没做.【分析】设当小李做完时,小张还差x个没做,根据两人的工作效率不变且工作时间相同,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设当小李做完时,小张还差x个没做,依题意得:=,解得:x=24.故答案为:24.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.9.一部书稿,甲打字员打完全书要20天,乙打字员用同样的时间只能完成书稿的,两人合打这部书稿要12天完成.【分析】由两打字员打字效率之间的关系可求出乙打字员打完全书所需时间,设两人合打这部书稿要x天完成,根据两人合作一天的工作量×工作时间=总工作量,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:乙打字员打完全书所需时间为20÷=30(天).设两人合打这部书稿要x天完成,依题意得:(+)x=1,解得:x=12.故答案为:12.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.10.甲、乙两城相距750千米,一辆大客车从甲城开往乙城共用15小时,一辆小轿车从乙城开往甲城10小时可以到达.两车同时从两城出发相向而行,6小时可以相遇.【分析】根据题意相遇问题中“两车路和等于750千米”列方程求解即可.【解答】解:设两车x小时可以相遇,由题意得:x+x=750,解得:x=6.答:两车同时从两城出发相向而行,6小时可以相遇.故答密为:6.【点评】本题考查了一元一次方程的应用,解题的关键是找等量关系.11.清代文言小说集《笑笑录》记载,清代诗人徐子云曾写过一首诗:巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧?设寺内有x名僧人,则列出一元一次方程为+=364.【分析】设寺内有x名僧人,根据题意列出方程即可求出答案.【解答】解:设寺内有x名僧人,由题意得+=364,故答案为:+=364.【点评】本题考查一元一次方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.12.小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行18km,小明每小时骑行12km,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为xkm,依题意,可列方程为.【分析】根据“完成全部行程所用的时间,小明比小华多半小时”列出方程即可.【解答】解:设他们这次骑行线路长为xkm,依题意,可列方程为,故答案为:.【点评】本题考查了由实际问题抽象出一元一次方程,正确的理解题意是解题的关键.13.《九章算术》是我国古代数学名著,卷七“盈不足”中题目译文如下:“今有人合伙买羊,每人出5钱,还差45钱;每人出7钱,还差3钱.问合伙人数、羊价各是多少?”设合伙人数为x人,根据题意可列一元一次方程为5x+45=7x+3.【分析】设合伙人数为x人,根据买羊需要的钱数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设合伙人数为x人,依题意,得:5x+45=7x+3.故答案为:5x+45=7x+3.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.14.一件商品的标价是100元,进价是50元,打八折出售后这件商品的利润是30元.【分析】设打八折出售后这件商品的利润是x元,根据题意列出方程即可求出答案.【解答】解:设打八折出售后这件商品的利润是x元,x=0.8×100﹣50=30,故答案为:30【点评】本题考查一元一次方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.15.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章.《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为400x﹣3400=300x﹣100.【分析】设有x个人,根据金的价钱不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有x个人,依题意,得:400x﹣3400=300x﹣100.故答案为:400x﹣3400=300x﹣100.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.16.一项工程,甲单独做10天完成,乙单独做15天完成.两人合作,6天可以完成.【分析】甲、乙合作完成工程的时间=工作总量÷甲乙工效之和,没有工作总量,可设其为1.【解答】解:设工作量为1,甲乙的工作效率分别为、,故甲、乙合作完成工程的时间为1÷()=1÷=6天.故答案为:6.【点评】此题考查了一元一次方程的应用,解决问题的关键是找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.17.在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为40?如果能,求出这三个数;如果不能,请说明理由.【分析】联系已知条件,设中间的数为x,则其它两个为x﹣7与x+7,再根据等量关系:三个日期之和能否为40,即可列出方程.【解答】解:设中间的数为x,其它两个为x﹣7与x+7,根据题意得:x﹣7+x+x+7=40,解得:x=,则不存在.【点评】此题解题关键在于表示出三个数,列出等量关系,即可得到解答.18.列方程解应用题十一期间,张老师从北京出发走京津高速到天津.去时在京津高速上用了1.2小时,返回时在京津高速上比去时多用18分钟,返回时平均速度降低了22千米/小时.求张老师去时在京津高速上开车的平均速度.【分析】设张老师去时在京津高速上开车的平均速度是x千米/小时,则返回时在京津高速上开车的平均速度是(x﹣22)千米/小时,根据路程=速度×时间结合往返路程相同,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设张老师去时在京津高速上开车的平均速度是x千米/小时,则返回时在京津高速上开车的平均速度是(x﹣22)千米/小时,依题意,得:1.2x=(1.2+)(x﹣22),解得:x=110.答:张老师去时在京津高速上开车的平均速度是110千米/小时.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.19.列方程解应用题:某学校组织初一年级学生参加公益劳动在甲处劳动的有16人,在乙处劳动的有12人,现在另调20人去甲乙两处支援,使得在甲处劳动的人数比在乙处劳动的人数的2倍少6人,问应调往甲、乙两处各多少人?【分析】设应调往甲、乙两处的人数分别为x人和(20﹣x)人.根据甲处劳动的人数比在乙处劳动的人数的2倍少6人,构建方程即可解决问题.【解答】解:设应调往甲、乙两处的人数分别为x人和(20﹣x)人.由题意:16+x=2[12+(20﹣x)]﹣6,解得x=14,则20﹣x=6.答:调往甲、乙两处的人数分别为14人和6人.【点评】本题考查一元一次方程,解题的关键是理解题意,正确寻找等量关系构建方程解决问题,属于中考常考题型.20.一项工程,甲队单独施工需要15天完成,乙队单独施工需要9天完成.现在由甲队先工作3天,剩下的由甲、乙两队合作,还需要几天才能完成任务?【分析】设设还需x天才能完成任务,根据题意可得等量关系:甲的工作量+乙的工作量=总工作量,由等量关系可列出方程,解方程即可.【解答】解:设还需x天才能完成任务,根据题意得,解得x=4.5.答:甲、乙两队合作还需4.5天才能完成任务.【点评】此题主要考查了一元一次方程的应用,关键是表示出甲和乙的工作量,用到的公式是:工作量=工作效率×工作时间.21.今年,小楠和哥哥的年龄之和是21岁,小楠的年龄只有哥哥的一半,小楠和哥哥各多少岁?(用方程解)【分析】首先根据题意,设哥哥的年龄为x岁,则小楠的年龄为x岁,然后根据:哥哥的年龄+小楠的年龄=21,列出方程,求出x的值是多少,再用哥哥的年龄减去14,求出小楠的年龄即可.【解答】解:设哥哥的年龄为x岁,则小楠的年龄为x岁,则x+x=21,解得x=14.21﹣14=7(岁)答:今年小楠7岁,哥哥14岁.【点评】此题主要考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.22.某商场从厂家购进100个整理箱,按进价的1.5倍进行标价.当按标价卖出80个整理箱后,恰逢元旦,剩余的部分以标价的九折出售完毕,所得利润共1880元,求每个整理箱的进价.【分析】可设每个整理箱的进价为x元,则标价为1.5x元,根据该商店获得的利润一共是1880元这个等量关系列方程求解.【解答】解:设每个整理箱的进价为x元,则标价为1.5x元,标价的九折为(1.5x×0.9)元.根据题意列方程,得:80(1.5x﹣x)+20(1.5x×0.9﹣x)=1880.解方程得:x=40.答:每个整理箱的进价为40元.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.2020年9月的日历如图所示.(1)用1×3的长方形框出3个数,如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为3x+3;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为3y+21.(2)用一个2×2的正方形在此日历中框出4个数,被框住的4个数的和为84,则这四个数中最小的数为17;(3)用一个3×3的正方形框在此日历中框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2,若|a1﹣a2|=15,请求出正方形框中位于最。

一元一次方程应用题100道(带答案)

一元一次方程应用题100道(带答案)

初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3 B.a= ,b=-3C.a≠,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t 分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-1 20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元 4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x(+ )=1,解得x=4] 二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=3 21.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得=0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.36,2837,28545454654544121dhgghsaqy数学题要细心,慢慢做,要做对。

专练 一元一次方程应用题(20题)-七年级上学期期末考点必杀200题(人教版,含答案)

专练 一元一次方程应用题(20题)-七年级上学期期末考点必杀200题(人教版,含答案)

七年级上册数学专练一元一次方程应用题(20题)1.(2020·台州市椒江区第二中学初一期中)某学校在12月份准备组织学生军训,现联系了甲、乙两家军训机构,两家军训机构报价均为200元/人,两家军训机构同时都对100 人以上的团体推出了优惠举措:甲军训机构对每位学生和20位带队老师七五折优惠:而乙军训机构是免去20位带队老师的费用,其余学生八折优惠.(1)如果设参加军训的学生共有x (x>100)人,则甲军训机构的总费用为元,乙军训机构的总费用为(用含x的代数式表示,并化简)(2)假如这个学校现组织包括20老师在内共800人,该学校选择哪一家军训机构比较优惠?请说明理由.(3)如果计划在12 月军训七天,设最中间一天的日期为x,则这七天的日期之和为(用含x的代数式表示,并化简)(4)假如这七天的日期之和为84的倍数,则他们可能于12月几号出发?(写出所有符合条件的可能性)2.(2020·辽宁大连·初一期中)某市自2020年1月起,对宾馆、饭店用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):(1)受疫情影响,某饭店7月份用水量为20立方米,则该饭店7月份需交的水费为______元;(2)某饭店8月份用水量为160立方米,则该饭店8月份应交的水费为多少元?(3)某饭店9月份交水费1120元,求该饭店9月份的用水量.3.(2020·辽宁大连·初一期中)用边长为0.5米的黑、白两种颜色的正方形瓷砖按如图所示的方式铺宽为1.5米的小路.(1)铺第5个图形用白色正方形瓷砖______块,黑色正方形瓷砖______块;(2)按照此方式铺下去,铺第n 个图形用白色正方形瓷砖______块,用黑色正方形瓷砖______块(用含n 的代数式表示);(3)若黑色正方形瓷砖每块价格25元,白色正方形瓷砖每块价格30元,若按照此方式恰好铺满12.5米长的小路,求铺满该段小路所需瓷砖的总费用.4.阅读理解:若、、A B C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离2倍,我们就称点C 是,A B ()的好点.例如,如图1,点C 是,A B ()的好点:点B 是,D C ()的好点.(1)如图2,M N 、为数轴上两点,点M 所表示的数为2-,点N 所表示的数为4.在数轴上,N M ()的好点所表示的数是__________.(2)如图3,A B 、为数轴上两点,点A 所表示的数为20-,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以2个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P A 、和B 中恰有一个点为其余两点的好点?5.如图,数轴上,点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,在点B和点C处各折一下,得到条“折线数轴”,我们称点A和点D在数上相距20个长度单位,动点P从点A出发,沿着“折线数轴”的正方向运动,同时,动点Q 从点D出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA和射线CD上的运动速度相同均为2个单位/秒,“上坡路段”从B到C速度变为“水平路线”速度的一半,“下坡路段”从C到B速度变为“水平路线”速度的2倍.设运动的时间为t秒,问:(1)动点P从点A运动至D点需要时间为________秒;(2)P、Q两点到原点O的距离相同时,求出动点P在数轴上所对应的数;(3)当Q点到达终点A后,立即调头加速去追P,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q追上点P时,直接写出它们在数轴上对应的数.6.(2020·安徽初一期中)李老师在课外活动中做了一个有趣的游戏小明背对小亮,让小亮按下列四个步骤操作:m≥第一步:分发左、中、右三堆牌,每堆牌都为m张,且10;第二步:从右边一堆拿出五张,放入中间一堆;第三步:从左边一堆拿出7张,放人中间一堆;第四步:右边一堆有几张牌,就从中间一堆拿几张牌放入右边一堆.(1)填写下表中的空格:(2)如若第四步完成后,右边一堆牌的张数恰好是左边一堆牌的张数的3倍,试求第一步后,每堆牌各有多少张?7.(2020·江苏初一期中)如图,数轴上有三个点A ,B ,C ,表示的数分别是-7,-1,1.(1)若要使A ,B 两点的距离与C ,B 两点距离相等,则可将点B 向左移动______个单位长度;(2)若动点P ,Q 分别从点A 、点B 出发,以每秒4个单位长度和每秒3个单位长度的速度向左匀速运动,动点R 从点C 出发,以每秒1个单位长度的速度向右匀速运动,点P ,Q ,R 同时出发,设运动时间为t 秒.①记点P 与点Q 之间的距离为1d ,点Q 与点R 之间的距离为2d ,请用含t 的代数式表示1d 和2d ,并判断是否存在一个常数m ,使12md d -的值不随t 的变化而改变,若存在,求出m 的值:若不存在,请说明理由;②若动点Q 到达点A 后,速度变为每秒7个单位长度,继续向左运动,当t 为何值时,点P 与点Q 距离3个单位长度?8.(2020·湖北初一期中)(问题背景)在数轴上,点A 表示数a 在原点O 的左边,点B 表示数b 在原点O 的右边,如图1所示,则有:①0a b <<;②线段AB 的长度b a =-(问题解决)点M 、点N ,点P 在数轴上的位置如图2所示,三点对应数分别为5,3,t t t +-①线段MN 的长度为②若点Q 为线段MN 的中点,则点Q 表示的数是 (用含t 的式子表示); ③化简535t t t t +++-+--(关联运用)①已知:点E 、点F 、点S 、点T 在数轴上的位置如图3所示,点T 对应数为m ,点S 对应数为3m -,若定长线段EF 沿数轴正方向以每秒x 个单位长度匀速运动,经过原点O 需要1秒,完全经过线段ST 需要2秒,求x 的值;②已知p q <,当式子33||x x p p x q x q -++-+-+--取最小值时,相应的x 的取值范围是 ,式子的最小值是 .(用含,p q 的式子表示)9.(2020·武钢实验学校初一月考)双十一临近,武汉掀起购物狂潮,现有甲,乙、丙三个商场开展的促销活动如下表所示:根据以上活动信息,解决以下问题:(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?完成下表后就可以做出选择(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款也一样,请问这条裤子的标价是多少元?(3)丙商场又推出“先打折”,“再满100元减50元”的活动,张先生买了一件标价为630元的上衣,张先生发现竟然比没打折多付了20元钱,问丙商场先打了多少折后再参加活动(结果精确到0.01)10.(2020·江西初一期末)某车间的工人,分两队参加义务植树活动,甲队人数是乙队人数的两倍,由于任务的需要,从甲队调16人到乙队,则甲队剩下的人数是乙队人数的一半少3人,求甲、乙两队原有的人数11.(2020·山西初一期中)《夺冠》影片讲述了中国女排的奋斗历程和顽强拼搏、为国争光的感人故事.上映初期,某校为了对学生进行爱国主义教育及励志教育,计划组织所有学生及教师观看.经了解,甲、乙两家电影院的电影票单价都是30元,这两家电影院有两种不同的优惠方式.甲电影院,购买票数量不超过100张时,每张30元,超过100张时,超过的部分打八折.乙电影院,不论买多少张,每张打九折.(1)设该学校有教师学生共x人观看电影(每人买一张电影票),请用含x的式子分别表示在甲、乙两家电影院购票所需的费用.(2)若该学校有教师学生共500人观看电影(每人买一张电影票)选择哪家电影院购票更省钱,说明理由.12.(2020·内蒙古初一期末)某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?13.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.14.(2020·南宁市第三十七中学初一期中)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示−10,点B表示10,点C表示15,我们称点A和点C在数轴上相距25个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.(1)动点P从点A运动至C点需要多少时间?(2),P Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,,P O两点在数轴上相距的长度与,Q B两点在数轴上相距的长度相等.15.(2020·四川初一期中)小明是个爱动脑筋的同学,在发现教材中的用方框在月历中移动的规律后,突发奇想,将连续的偶数2,4,6,8,…,排成如表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)设中间的数为x,用代数式表示十字框中的五个数的和;(2)若将十字框上下左右移动,可框住另外的五个数,其他五个数的和能等于2016吗?如能,写出这五个数,如不能,说明理由.16.某市规定:每户每月用水不超过20立方米时,水费按“基本价”收费;超过20立方米时,不超过20立方米部分仍按“基本价”收费,超过20立方米部分按“调节价”收费小明今年一二月份的用水量和水费如表所示.(1)请你算一算该市水分的“基本价格”和“调节价”分别是每立方米多少钱?(2)若小明家3月份用水量为30立方米,请你算一算,3月份的水费是多少元?17.(2020·重庆巴蜀中学初一期中)列一元一次方程解应用题(两问均需用方程求解):10月14日iPhone12在各大电商平台预约销售,预售不到24小时,天猫、京东等平台的iPhone12就被抢完,显示无货.为了加快生产进度,郑州一富士康工厂连夜帮苹果手机生产iPhone12中的某AB型电子配件,这种配件由A型装置和B型装置组成.已知该工厂共有1200名工人.(1)据了解,在日常工作中,该工厂生产A型装置的人数比生产B型装置的人数的3倍少400人,请问工厂里有多少名工人生产B型装置?(2)若急需的AB型电子配件每套由2个A型装置和1个B型装置配套组成,每人每天只能加工40个A型装置或30个B型装置.现将所有工人重新分成两组,每组分别加工一种装置,并要求每天加工的A、B型装置正好配套,请问该工厂每天应分别安排多少名工人生产A型装置和B型装置?18.某班级想购买若干个篮球和排球,某文具店篮球和排球的单价之和为35元,篮球的单价比排球的单价的2倍少10元.(1)求篮球和排球的单价各是多少元;(2)该文具店有两种让利活动,购买时只能选择其中一种方案.方案一:所有商品打7.5折销售;方案二:全场购物每满100元,返购物券30元(不足100元不返券),购物券全场通用,若该班级需要购买15个篮球和10个排球,则哪一种方案更省钱,并说明理由.19.(2020·辉县市文昌中学初一期中)从2016年12月1日起某市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如下表所示):例:若某用户7月份的用水量为35吨,按三级计算则应交水费为:()⨯+⨯+--⨯=(元).20 1.910 2.9352010 5.996.5(1)如果小红家12月份的用水量为12吨,则需缴交水费________元;(2)如果小丽家12月份的用水量为27吨,求小丽家该月需缴交水费多少元?a ),求小明家该月应缴交水费多少元?(3)如果小明家12月份的用水量为a吨(30(用含a的代数式表示,并化简)(4)如果某月缴交水费126元,则该月的用水量为______吨.20.(2020·合肥实验学校初一期中)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.(1)如果购买笔记本数量为60本,并且只在一家店购买的话,请通过计算说明,到哪家店购买更合算?(2)若都在同一家店购买签字笔和笔记本,试问购买笔记本数量是多少时,两家店的费用一样?答案及解析1.(2020·台州市椒江区第二中学初一期中)某学校在12月份准备组织学生军训,现联系了甲、乙两家军训机构,两家军训机构报价均为200元/人,两家军训机构同时都对100 人以上的团体推出了优惠举措:甲军训机构对每位学生和20位带队老师七五折优惠:而乙军训机构是免去20位带队老师的费用,其余学生八折优惠.(1)如果设参加军训的学生共有x (x>100)人,则甲军训机构的总费用为元,乙军训机构的总费用为(用含x的代数式表示,并化简)(2)假如这个学校现组织包括20老师在内共800人,该学校选择哪一家军训机构比较优惠?请说明理由.(3)如果计划在12 月军训七天,设最中间一天的日期为x,则这七天的日期之和为(用含x的代数式表示,并化简)(4)假如这七天的日期之和为84的倍数,则他们可能于12月几号出发?(写出所有符合条件的可能性)【答案】(1)150x+3000;160x;(2)甲优惠;理由见解析;(3)7x;(4)9号;21号.解:(1)甲军训机构的总费用为:200×75%×(x+20)=150x+3000;乙军训机构的总费用为:200×80%×x=160x;(2)甲优惠,利由如下:甲:150×780+3000=120000元乙:160×780=124800元∵甲<乙∴甲优惠;(3)设最中间一天的日期为x,则其余日期为x-3、x-2、x-1、x+1、x+2、x+3则这七天的日期和为:x-3+x-2+x-1+x+x+1+x+2+x+3=7x;(4)设这七天的日期之和为84a(a为正整数)令7x=84a,解得x=12a∵0<x<30∴x=12或x=24∴他们可能于12月9号或21号出发的.【点睛】本题主要考查了列代数式,弄清题意、列出相关代数式是解答本题的关键.2.(2020·辽宁大连·初一期中)某市自2020年1月起,对宾馆、饭店用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):(1)受疫情影响,某饭店7月份用水量为20立方米,则该饭店7月份需交的水费为______元;(2)某饭店8月份用水量为160立方米,则该饭店8月份应交的水费为多少元? (3)某饭店9月份交水费1120元,求该饭店9月份的用水量. 【答案】(1)92;(2)960元;(3)180立方米. (1)4.62092⨯=(元), 故答案为:92;(2)()()50 4.615050 6.51601508⨯+-⨯+-⨯,23065080=++,960=(元),答:该饭店8月份需交水费960元;(3)因为()50 4.615050 6.5880⨯+-⨯=(元),且1120880>, 所以9月份的用水量超过150立方米, 设该饭店9月份的用水量为x 立方米,由题意得:()()50 4.615050 6.581501120x ⨯+-⨯+-=, 解得180x =,答:该饭店9月份的用水量为180立方米. 【点睛】本题考查了有理数乘法与加减法的实际应用、一元一次方程的实际应用,依据题意,正确建立运算式子和方程是解题关键.3.(2020·辽宁大连·初一期中)用边长为0.5米的黑、白两种颜色的正方形瓷砖按如图所示的方式铺宽为1.5米的小路.(1)铺第5个图形用白色正方形瓷砖______块,黑色正方形瓷砖______块;(2)按照此方式铺下去,铺第n 个图形用白色正方形瓷砖______块,用黑色正方形瓷砖______块(用含n 的代数式表示);(3)若黑色正方形瓷砖每块价格25元,白色正方形瓷砖每块价格30元,若按照此方式恰好铺满12.5米长的小路,求铺满该段小路所需瓷砖的总费用.【答案】(1)12,21;(2)()22+n ,()41n +;(3)2005元. (1)第1个图形用白色正方形瓷砖的块数为()44211=+⨯-, 第2个图形用白色正方形瓷砖的块数为()64221=+⨯-, 第3个图形用白色正方形瓷砖的块数为()84231=+⨯-,归纳类推得:第n 个图形用白色正方形瓷砖的块数为()42122n n +-=+,其中n 为正整数;第1个图形用黑色正方形瓷砖的块数为()55411=+⨯-, 第2个图形用黑色正方形瓷砖的块数为()95421=+⨯-, 第3个图形用黑色正方形瓷砖的块数为()135431=+⨯-,归纳类推得:第n 个图形用黑色正方形瓷砖的块数为()54141n n +-=+,其中n 为正整数; 则铺第5个图形用白色正方形瓷砖的块数为25212⨯+=,黑色正方形瓷砖的块数为45121⨯+=,故答案为:12,21;(2)由(1)已知:铺第n 个图形用白色正方形瓷砖()22+n 块,用黑色正方形瓷砖()41n +块,故答案为:()22+n ,()41n +;(3)由题意得:()()410.50.5 1.512.522n n +⨯⨯=+⨯⎡⎤⎣⎦+, 解得12n =,铺满该段小路所需瓷砖的总费用为()()2541302216085n n n +++=+, 则当12n =时,1608516012852005n +=⨯+=(元), 答:铺满该段小路所需瓷砖的总费用为2005元. 【点睛】本题考查了列代数式表示图形的规律型问题、整式的化简求值、一元一次方程的应用等知识点,观察图形,正确归纳类推出一般规律是解题关键.4.阅读理解:若、、A B C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离2倍,我们就称点C 是,A B ()的好点.例如,如图1,点C 是,A B ()的好点:点B 是,D C ()的好点.(1)如图2,M N 、为数轴上两点,点M 所表示的数为2-,点N 所表示的数为4.在数轴上,N M ()的好点所表示的数是__________.(2)如图3,A B 、为数轴上两点,点A 所表示的数为20-,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以2个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P A 、和B 中恰有一个点为其余两点的好点?【答案】(1)0;(2)当t 的值为10或15或20时,P A 、和B 中恰有一个点为其余两点的好点.解:(1)设所求的数为x ,根据题意得:()422x x -=+,解得:0x =,∴所求的数为0; 故答案为0;(2)设点P 表示的数为y ,则有:①当点P 为,A B 【】的好点,由题意得:()20240y y +=-,解得:20y =,∴()4020210t =-÷=s ;②当P 为,B A 【】的好点,由题意得:()40220y y -=+,解得y=0,∴()400220t s =-÷=;③当B 为,A P 【】的好点,由题意得: ()()4020240y --=-,解得:10y =,∴()4010215t s =-÷=;④当A 为,B P 【】的好点,由题意得:()()4020220y --=+,解得:10y =,与③相同;综上所述:当t 的值为10或15或20时,P A 、和B 中恰有一个点为其余两点的好点. 【点睛】本题主要考查数轴上的动点问题及一元一次方程的应用,熟练掌握数轴上的动点问题及一元一次方程的应用是解题的关键.5.如图,数轴上,点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,在点B 和点C 处各折一下,得到条“折线数轴”,我们称点A 和点D 在数上相距20个长度单位,动点P 从点A 出发,沿着“折线数轴”的正方向运动,同时,动点Q 从点D 出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA 和射线CD 上的运动速度相同均为2个单位/秒,“上坡路段”从B 到C 速度变为“水平路线”速度的一半,“下坡路段”从C 到B 速度变为“水平路线”速度的2倍.设运动的时间为t 秒,问:(1)动点P 从点A 运动至D 点需要时间为________秒;(2)P 、Q 两点到原点O 的距离相同时,求出动点P 在数轴上所对应的数;(3)当Q 点到达终点A 后,立即调头加速去追P ,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q 追上点P 时,直接写出它们在数轴上对应的数. 【答案】(1)15;(2)15或13;(3)点P 表示的数为18,点Q 表示的数为18. (1)点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,6,10,4AB BC CD ∴===,∴动点P 从点A 运动到点D 所需时间为6104310215212++=++=(秒),故答案为:15;(2)由题意,分以下六种情况: ①当点P 在AB ,点Q 在CD 时,点P 表示的数为72t -+,点Q 表示的数为132t -, 点P 、Q 到原点的距离相同,()721320t t ∴-++-=,此方程无解;②当点P 在AB ,点Q 在CO 时,点P 表示的数为72t -+,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()721740t t ∴-++-=,解得5t =,此时点P 表示的数为3,不在AB 上,不符题设,舍去; ③当点P 在BO ,点Q 在CO 时,点P表示的数为6142t t⎛⎫-+-=-⎪⎝⎭,点Q表示的数为4941742t t⎛⎫--=-⎪⎝⎭,点P、Q到原点的距离相同,()41740t t∴-+-=,解得133t=,此时点P表示的数为13,不在BO上,不符题设,舍去;④当点P、Q相遇时,点P、Q均在BC上,点P表示的数为6142t t⎛⎫-+-=-⎪⎝⎭,点Q表示的数为4941742t t⎛⎫--=-⎪⎝⎭,点P、Q到原点的距离相同,4174t t∴-=-,解得215t=,此时点P表示的数为15,点Q表示的数为15,均符合题设;⑤当点P在OC,点Q在OB时,点P表示的数为6142t t⎛⎫-+-=-⎪⎝⎭,点Q表示的数为4941742t t⎛⎫--=-⎪⎝⎭,点P、Q到原点的距离相同,()41740t t∴-+-=,解得133t=,此时点P表示的数为13,点Q表示的数为13-,均符合题设;⑥当点P在OC,点Q在BA时,点P表示的数为6142t t⎛⎫-+-=-⎪⎝⎭,点Q表示的数为410128224t t⎛⎫----=-⎪⎝⎭,点P、Q到原点的距离相同,()4820t t∴-+-=,解得4t=,此时点Q表示的数为0,不在BA上,不符题设,舍去;综上,点P 表示的数为15或13; (3)点Q 到达点A 所需时间为41067.5242++=(秒),此时点P 到达的点是()7327.531 3.5-+⨯+-⨯=,点P 到达点C 所需时间为6101321+=(秒),此时点Q 到达的点是()7232137.526-+⨯+⨯--=,∴点Q 在CD 上追上点P ,此时点P 表示的数为()9213217t t +-=-,点Q 表示的数为()761037.525334.5t t -+++---=-,217334.5t t ∴-=-,解得17.5t =,此时点P 表示的数为18,点Q 表示的数为18. 【点睛】本题考查了数轴、一元一次方程的几何应用等知识点,结合数轴的定义,正确分情况讨论,并建立一元一次方程是解题关键.6.(2020·安徽初一期中)李老师在课外活动中做了一个有趣的游戏小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌都为m 张,且10;m ≥ 第二步:从右边一堆拿出五张,放入中间一堆; 第三步:从左边一堆拿出7张,放人中间一堆;第四步:右边一堆有几张牌,就从中间一堆拿几张牌放入右边一堆. (1)填写下表中的空格:(2)如若第四步完成后,右边一堆牌的张数恰好是左边一堆牌的张数的3倍,试求第一步后,每堆牌各有多少张?【答案】(1)5m +;12m +;17;210m -;见解析;(2)每堆牌分别是11张、16张、6张解:()1第二步后中间牌的张数为:5m + 第三步后中间牌的张数为: 5712m m ++=+ 第四步后中间的张数为:()()12 517m m +--= 右边的牌数为:()55)2(10m m m -+-=-,()2由题意可知:2103( 7)m m -=-解得:11m =,第二步后左边的牌数为: 11m =, 中间的牌数为:511516m +=+=, 右边的牌数为:51156m -=-=.答:第一步后,每堆牌分别是11张、16张、6张. 【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的加减是解题的关键. 7.(2020·江苏初一期中)如图,数轴上有三个点A ,B ,C ,表示的数分别是-7,-1,1.(1)若要使A ,B 两点的距离与C ,B 两点距离相等,则可将点B 向左移动______个单位长度;(2)若动点P ,Q 分别从点A 、点B 出发,以每秒4个单位长度和每秒3个单位长度的速度向左匀速运动,动点R 从点C 出发,以每秒1个单位长度的速度向右匀速运动,点P ,Q ,R 同时出发,设运动时间为t 秒.①记点P 与点Q 之间的距离为1d ,点Q 与点R 之间的距离为2d ,请用含t 的代数式表示1d 和2d ,并判断是否存在一个常数m ,使12md d -的值不随t 的变化而改变,若存在,求出m 的值:若不存在,请说明理由;②若动点Q 到达点A 后,速度变为每秒7个单位长度,继续向左运动,当t 为何值时,点P 与点Q 距离3个单位长度?【答案】(1)2;(2)①16d t =+,242d t =+,存在,4m =;②t 为113或173时,点P 与点Q 距离3个单位长度 解:(1)由题意得:AC=8. ∵AC=AB+BC , ∴当AB=BC 时,AB=4.设向左移动后的点B 表示的数为x , 则AB=x-(-7)=4,解得x=-3, ∵向左移动前点B 表示的数为-1, ∴点B 向左移动了2个单位长度. 故答案为:2.(2)①由题意得:经过时间t 秒点P 向左移动了4t 个单位长度,点Q 向左移动了3t 个单位长度,点R 向右移动了t 个单位长度,∴经过时间t 后点P 在数轴上表示的数为-7-4t ,点Q 在数轴上表示的数为-1-3t ,点R 在数轴上表示的数为1+t .∴113(74)6d t t t =-----=+21(13)42d t t t =+---=+.∴()()()12642462md d m t t m t m -=+-+=-+-.∴当40m -=,即4m =时,12md d -的值不随t 的变化而改变. (3)解:∵AB=6,∴点Q 到达A 点的时间为623t ==(秒). ∴当t>2时,点Q 向左移动了6+7(t-2)=7t-8个单位长度. ∴经过时间t 后点Q 在数轴上表示的数为-1-(7t-8)=-7t+7. 由(2)①可得:经过时间t 后点P 在数轴上表示的数为-7-4t . ∴ 777()1443P t t t Q -+--=-=- . 当PQ=3,即143t -=3时, 可得:14-3t=3或3t-14=3,解得113t =或173t =. 综上所述,t 为113或173时,点P 与点Q 距离3个单位长度.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把数和形结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想8.(2020·湖北初一期中)(问题背景)在数轴上,点A 表示数a 在原点O 的左边,点B 表示数b 在原点O 的右边,如图1所示,则有:①0a b <<;②线段AB 的长度b a =-(问题解决)点M 、点N ,点P 在数轴上的位置如图2所示,三点对应数分别为5,3,t t t +-①线段MN 的长度为②若点Q 为线段MN 的中点,则点Q 表示的数是 (用含t 的式子表示); ③化简535t t t t +++-+--(关联运用)①已知:点E 、点F 、点S 、点T 在数轴上的位置如图3所示,点T 对应数为m ,点S 对应数为3m -,若定长线段EF 沿数轴正方向以每秒x 个单位长度匀速运动,经过原点O 需要1秒,完全经过线段ST 需要2秒,求x 的值;②已知p q <,当式子33||x x p p x q x q -++-+-+--取最小值时,相应的x 的取值范围是 ,式子的最小值是 .(用含,p q 的式子表示)【答案】【问题解决】①8;②t+1;③13;【关联运用】①3;②,226p x q q p ≤≤-+ 解:【问题解决】①MN=(t+5)-(t -3)= t+5-t+3=8; 故答案为:8; ②点Q 表示的数是5312t t t ++-=+,故答案为:t+1;③由题意知:0t <,30t -<,50t +>, ∴30t ->,50t --<,∴原式()()()535t t t t =-+++-++535t t t t =-+++-++=13; 【关联运用】①点T 对应数为m 、点S 对应数为3m -,3ST ∴=,设EF n =个单位长度, 则有:312n n +=,解得3n =,31nx ∴==; ②当数x 在数p 与数q 之间时,=p x q x x p q x q p +-+-=---,当数x 在数p 的左边时,=22x p x q x q p q q x p p p x +-+-=-+-->--,。

一元一次方程的应用高频考题训练(2)---比赛积分及行程问题(含解析)

一元一次方程的应用高频考题训练(2)---比赛积分及行程问题(含解析)

5.4《一元一次方程的应用》高频考题训练(2)---比赛积分及行程问题比赛积分问题1.在2012年伦敦奥运会足球赛的前11场比赛中,某队仅负1场,共积22分,按比赛规则,胜一场得3分,平一场得1分,负一场得0分,则该队共胜了()场.A.4B.5C.6D.72.某篮球俱乐部组织的比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,今年某队在38场比赛中得到70分,那么这个队今年胜的场次是()A.6场B.31场C.32场D.35场3.某次篮球积分赛,每队均比赛14场,胜一场记2分,平一场记1分,负一场记0分.某中学篮球队的胜场数是负场数的3倍,这个蓝球队在这次积分赛中积分可能为()A.12B.17C.20D.224.学校组织全国文明城市知识问答,共设有20道选择题,各题分值相同,每题必答.下表记录了A,B,D三名参赛学生的得分情况,则参赛学生E的得分可能是()参赛者答对题数答错题数得分A200100B19194D14664A.93B.87C.66D.405.足球比赛中,每场比赛都要分出胜负,每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,则该队胜的场数为.6.某市中学生足球联赛规定:每队胜一场得3分,平一场得1分,负一场得0分,希望之星队前14场保持不败,共得34分,该队共平了场.7.一张试卷只有20道选择题,做对一题的3分,做错一题倒扣1分,欢欢做了全部试题共得了48分,她做对了道题.8.足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队进行了14场比赛,其中负5场,共得19分,设:这个队胜了x场.那么根据题意,可列方程得.9.列方程解应用题:某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制.某班与其他7个队各赛1场后,以不败战绩积17分,那么该班共胜了几场比赛?10.为有效落实双减工作,切实做到减负提质,很多学校高度重视学生的体育锻炼,并不定期举行体育比赛.已知在一次足球比赛中,胜一场得3分,平一场得1分,负一场得0分,某队在已赛的11场比赛中保持连续不败,共得25分,求该队获胜的场数.11.北京时间1月5日凌晨,拥有梅西的巴塞罗那足球队在最后时刻被西班牙人队中的中国球员武磊攻破球门,遗憾收获一场平局,巴塞罗那队在最近10场比赛中,保持不败,一共得了22分.足球比赛中规定每队胜一场得3分,平一场得1分,负一场得0分.问巴塞罗那足球队近10场中共胜了多少场,平了多少场?12.学校篮球联赛共有十支队伍参赛,部分积分表如下:队名比赛场次胜场负场积分A1612428B1610626C168824D1601616(1)分别求出负一场的积分和胜一场的积分;(2)在这次比赛中,一个队的胜场总积分能否等于负场总积分?请说明理由.行程问题13.某学校七年级进行一次徒步活动,带队教师和学生们以4km/h的速度从学校出发,20min后,小王骑自行车前去追赶.如果小王以12km/h的速度行驶,那么小王要用多少小时才能追上队伍?设小王要用xh才能追上队伍,那么可列出的方程是()A.12x=4(x+20)B.12x=4(+x)C.12x=4×+x D.4x=12(x)14.一轮船从甲地顺水开往乙地,所用时间比从乙地逆水开往甲地少1.5h.已知船在静水中的速度为18km/h,水流速度为2km/h,甲、乙两地之间的距离为()A.90km B.120km C.150km D.160km15.甲乙两人骑自行车同时从相距48千米的两地相向而行,1.5小时相遇,若甲比乙每小时多骑2千米,则乙每小时行驶()A.12.5千米B.15 千米C.17千米D.20千米16.某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船6h,已知船在静水中的速度是16km/h,水流速度是4km/h,若A、C两地距离为4km,则A、B两地间的距离是km.17.如图所示,已知数轴上点A表示的数为8,点B表示的数为﹣6.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动;动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发,点P运动()秒追上点Q.A.5B.6C.7D.818.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发相向而行,甲速度为120千米/时,乙速度为80千米/时,t小时后两车相距50千米,t满足的方程是.19.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.甲车速度120千米/时,乙车速度为105千米/时,经过小时两车相遇.20.如图,A、B两地相距90千米,从A到B依次经过60千米平直公路(AC段)、10千米上坡公路(CD段)和20千米平直公路(DB段).甲从A地驾驶汽车前往B地,乙从B地骑摩托车前往A地,他们同时出发.已知在平直公路上汽车、摩托车的速度分别是120千米/时、60千米/时,汽车上坡速度为100千米/时,摩托车下坡速度为80千米/时,两人出发小时相遇.21.我县境内的某段铁路桥长2200m,现有一列高铁列车从桥上匀速通过,测得此列高铁从开始上桥到完全过桥共用30s,整列高铁在桥上的时间是25s,试求此列高铁的车速和车长.22.某人自驾车从A市前往B市,前五分之一路段为县道,中间的路段为高速公路,后十分之一路段也是县道.已知汽车在县道上行驶的速度为60km/h.在高速公路上行驶的速度为100km/h,汽车从A市前往B市一共行驶了1.8小时.求A、B两市之间的路程.23.古代名著《算学启蒙》中有一题:良马日行二百里.驽马日行一百二十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走200里,跑得慢的马每天走120里.慢马先走12天,快马几天可追上慢马?24.有甲、乙、丙三个小朋友,甲走的速度为每分钟80米,乙的速度为甲的速度的,丙的速度为乙的速度的.(1)求乙和丙行走的速度分别为每分钟多少米?(2)现在甲从A地,乙从B地同时出发,两人相遇后又以原来的速度继续前进,甲到达B地后立即返回,乙到达A地后也立即返回,两人再次相遇时,甲比乙多走了90米,求A、B两地之间的距离?(3)若甲从A地,乙和丙从B地同时出发,相向而行,当甲和乙相遇后,又过了5分钟,甲与丙相遇,那么A、B两地相距多少米?参考答案比赛积分问题1.【解答】解:设该队共胜了x场,则平了(11﹣1﹣x)场,由题意得:3x+(11﹣1﹣x)×1+1×0=22,解得:x=6,故选:C.2.【解答】解:设胜了x场,由题意得:2x+(38﹣x)=70,解得x=32.答:这个队今年胜的场次是32场.故选:C.3.【解答】解:设所负场数为x场,则胜3x场,平(14﹣4x)场,依题意得,积分=0×x+2×3x+14﹣4x=14+2x,当14+2x=12时,x=﹣2,不符合题意;当14+2x=17时,x=1.5,不符合题意;当14+2x=20时,x=3,符合题意;当14+2x=22时,x=4,3x=12,12+4>14,不符合题意;故选:C.4.【解答】解:根据表格数据,A学生答对20道得分100,由B、D同学得分情况可知答错一题扣6分,故设参赛学生E答错x道题(0≤x≤20,且x为整数),则其得分值为:100﹣6x选项A:令100﹣6x=93,解得x=,故A错误;选项B:令100﹣6x=87,解得x=,故B错误;选项C:令100﹣6x=66,解得x=,故C错误;选项D:令100﹣6x=40,解得x=10,故D正确.故选:D.5.【解答】解:设该队胜的场数为x,则负的场数为(8﹣x),依题意得:3x﹣(8﹣x)=12,解得:x=5.故答案为:5.6.【解答】解:设该队平了x场,则胜了(14﹣x)场,根据题意得:x+3(14﹣x)=34,解得:x=4.故答案为:4.7.【解答】解:设他做对了x道题,则做错了(20﹣x)道题,依题意得:3x﹣(20﹣x)=48,解得x=17.故答案是:17.8.【解答】解:设该队胜了x场,则该队平了14﹣x﹣5场,胜场得分是3x分,平场得分是(14﹣x﹣5)分.根据等量关系列方程得:3x+(14﹣5﹣x)=19.故答案为:3x+(14﹣5﹣x)=19.9.【解答】解:设胜利x场,平(7﹣x)场,依题意得:3x+(7﹣x)=17解之得:x=5答:该班共胜了5场比赛.10.【解答】解:设该队获胜x场,则平(11﹣x)场,依题意得:3x+(11﹣x)=25,解得:x=7,∴11﹣x=11﹣7=4.答:该队获胜7场.11.【解答】解:设巴塞罗那足球队近10场中共胜了x场,平了(10﹣x)场,则3x+(10﹣x)×1=22,∴2x+10=22,解得x=6,10﹣6=4(场).答:巴塞罗那足球队近10场中共胜了6场,平了4场.12.【解答】解:(1)由题意可得,负一场积分为:16÷16=1(分),胜一场的积分为:(28﹣4×1)÷12=2(分),故负一场的积分为1分,胜一场的积分为2分;(2)设胜x场,则负(16﹣x)场,由题意可得:2x=16﹣x,解得x=.∵场数必须是整数,∴x=不符合题意.故在这次比赛中,一个队的胜场总积分不能等于负场总积分.行程问题13.【解答】解:∵小王比队伍晚出发h(20min),且小王要用xh才能追上队伍,∴小王追上队伍时,队伍出发了(+x)h.依题意得:12x=4(+x).故选:B.14.【解答】解:设船逆水航行从乙地到甲地需x小时,根据题意,得(18+2)(x﹣1.5)=(18﹣2)x,解得:x=7.5,(18﹣2)×7.5=120(km).答:甲、乙两地之间的距离为120km.故选:B.15.【解答】解:设乙每小时骑x千米,甲每小时骑(x+2)千米,由题意列方程:(x+x+2)×1.5=48,解得:x=15.故选:B.16.【解答】解:①C地在A地上游时,设A、B两地间的距离是xkm,根据题意得=6,解得x=42.5,②C地在A地下游时,设A、B两地间的距离是xkm,根据题意得=6,解得x=47.5,故答案为:42.5或47.5.17.【解答】解:设点P运动x秒追上点Q.线段BA的距离=|﹣6﹣8|=14.由题意,得3x+14=5x.解得x=7.故选:C.18.【解答】解:①当甲、乙两车未相遇时,根据题意,得120t+80t=450﹣50;②当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50.故答案是:120t+80t=450﹣50或120t+80t=450+50.19.【解答】解:设经过x小时相遇,根据题意得,(120+105)x=450,解得x=2,故答案为:2.20.【解答】解:甲行驶到C地所需时间为60÷120=(小时),乙行驶到C地所需时间为20÷60+10÷80=(小时).∵>,∴甲、乙相遇在AC段.设两人出发x小时相遇,依题意得:120x+60(x﹣)=60,解得:x=.故答案为:.21.【解答】解:设此列高铁的车长为xm,依题意得:=,解得:x=200,∴==80.答:此列高铁的车速为80m/s,车长为200m.22.【解答】解:设A、B两市之间的路程为skm,根据题意可知,+=1.8,解得:s=150,答:A、B两地的距离为150千米.23.【解答】解:设快马x天可以追上慢马,依题意,得200x=120x+120×12.解得x=18.答:快马18天可以追上慢马.24.【解答】解:(1)80×=70(米),70×=60(米).答:乙行走的速度为每分钟70米,丙行走的速度为每分钟60米.(2)设A、B两地之间的距离为x米,依题意得:80×﹣70×=90,解得:x=450.答:A、B两地之间的距离为450米.(3)设A、B两地相距y米,依题意得:﹣=5,解得:y=10500.答:A、B两地相距10500米.。

一元一次方程应用题解析

一元一次方程应用题解析

一元一次方程应用题解析1.甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?【答案】37.5千米【解析】]追击问题,不能直接求出狗的总路程,但间接的问题转化成甲乙两人的追击问题。

狗跑的总路程=它的速度×时间,而它用的总时间就是甲追上乙的时间设甲用X小时追上乙,根据题意列方程5X=3X+5 解得X=2.5,狗的总路程:15×2.5=37.5答:狗的总路程是37.5千米。

2.列方程解应用题:小明和小东两人练习跑步,都从甲地出发跑到乙地,小明每分钟跑250米,小东每分钟跑200米,小明让小东先出发3分钟之后再出发,结果两人同时到达乙地,求甲、乙两地之间的路程是多少米?【答案】3000.【解析】试题分析:可以分两种方法求解,一是设小明经过x分钟追上小东,依据题意列方程求解,再计算甲、乙两地的路程;二是直接设甲乙两地的路程为y米,列方程求解即可.方法一:设小明经过x分钟追上小东,可列方程为:250x=3×200+200x,解得:x=12 ,路程:250×12=3000米;方法二:设甲乙两地的路程为y米,可列方程为:解得:y=3000,故甲、乙两地之间的路程是3000米.考点:一元一次方程的应用.3.一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?【答案】40 9【解析】甲独作10天完成,说明的他的工作效率是1/10,乙的工作效率是1/8等量关系是:甲乙合作的效率×合作的时间=1设合作X天完成(1/10+1/8)X=1 解得X=40 9答:两人合作409天完成4.某车间原计划每周装配36台机床,预计若干周完成任务,在装配了三分之一后,改进操作技术,功效提高了一倍,结果提前一周半...完成任务.求这次任务需装配的机床总台数.【答案】这次任务需装配的机床总数为162台.试题分析:解:设这次任务需装配的机床总数为x 台,则∴这次任务需装配的机床总数为162台.考点:一元一次方程点评:本题难度中等,主要考查学生对一元一次方程解决生产问题实际应用能力,为中考常考题型,要求学生牢固掌握。

七年级数学上册第三单元《一元一次方程》-解答题专项复习题(含解析)

一、解答题1.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人?解析:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【分析】首先根据题中表格数据得出有一个班的人数大于35人,接着设大于35人的班有学生x 人,根据等量关系列出方程,求解即可.【详解】⨯=解:∵67604020>40203650∴所以一定有一个班的人数大于35人.设大于35人的班有学生x人,则另一班有学生(67-x)人,依题意得+-=x x5060(67)3650-=x6730答:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.解析:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【解析】试题分析:首先设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,然后根据两本书的售价总和为80元列出一元一次方程,从而求出x的值,得出答案.试题设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元, 根据题意得:50%x+60%(150﹣x )=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.3.10.3x -﹣20.5x + =1.2. 解析:4【解析】 试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可; 试题12 1.20.30.5x x -+-=10103x --10205x +=6550x-50-30x-60=1820 x=128x=6.4 4.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?解析:10个家长,5个学生【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可.【详解】解:设小明他们一共去了x 个家长,(15﹣x )个学生,根据题意得:100x +100×0.8(15﹣x )=1400,解得:x =10,15﹣x =5,答:小明他们一共去了10个家长,5个学生.【点睛】本题考查了一元一次方程的应用.5.某同学在解方程21132y y a -+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y =2,试求a 的值及此方程的解.解析:y =-3.【分析】根据题意得到去分母结果,把y=2代入求出a 的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1,解得:a=13,方程为12131 32yy+-=-,去分母得:4y-2=3y+1-6,解得:y=-3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.解下列方程:(1)15(x+15)=1231-(x-7).(2)2110121364x x x-++-=-1.解析:(1)x=-516;(2)x=16.【分析】(1)直接根据解一元一次方程的步骤进行即可;(2)直接根据解一元一次方程的步骤进行即可.【详解】解:(1)15(x+15)=1231-(x-7).去分母,得6(x+15)=15-10(x-7).去括号,得6x+90=15-10x+70.移项及合并同类项,得16x=-5.系数化为1,得x=-5 16.(2)2110121 364x x x-++-=-1去分母,得4(2x-1)-2(10x+1)=3(2x+1)-12.去括号,得8x-4-20x-2=6x+3-12.移项,得8x-20x-6x=3-12+4+2.合并同类项,得-18x=-3.系数化为1,得x=16.【点睛】此题主要考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.7.运用等式的性质解下列方程:(1)3x=2x-6;(2)2+x=2x+1;(3)35x-8=-25x+1.解析:(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x,化简后方程的两边都加8,可得答案.【详解】(1)两边减2x,得3x-2x=2x-6-2x.所以x=-6.(2)两边减x,得2+x-x=2x+1-x.化简,得2=x+1.两边减1,得2-1=x+1-1所以x=1.(3)两边加25 x,得35x-8+25x=-25x+1+25x.化简,得x-8=1.两边加8,得x-8+8=1+8.所以x=9.【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.8.某同学在解方程21233x x a-+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x=1.求a的值,并正确地解方程.解析:a=2,x=-3【分析】由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a的值,然后将a的值代入方程求解即可.【详解】解:将x=1代入2x﹣1=x+a﹣2得:1=1+a﹣2.解得:a=2,将a=2代入21233x x a-+=-得:2x﹣1=x+2﹣6.解得:x =﹣3.【点睛】本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a )-2的解是解题的关键.9.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 解析:(1)5;(2)138; 【分析】①方程去括号,移项合并,把x 系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】①去括号得:3x−7x+7=3−2x−6,移项合并得:−2x=−10,解得:x=5;②去分母,去括号得:10−2x−6=6x−9,移项合并得:8x=13, 解得:x=138. 【点睛】 此题考查解一元一次方程,解题关键在于掌握方程的解法.10.关于x 的方程357644m x m x +=-的解比方程4(37)1935x x -=-的解大1,求m 的值. 解析:623m =-【分析】 分别求出两方程的解,根据题意列出关于m 的方程,然后求解即可.【详解】 解:357644m x m x +=-, 整理得:2(310)321m x m x +=- 313x m =- 解得:331m x =-, 4(37)1935x x -=-4747x =1x =由题意得:311 31m--=解得:623 m=-【点睛】本题考查了一元二次方程的解和解方程,关键是能先用含有m的式子表示x,然后根据题意列出方程.11.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.(1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;(3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时.【分析】(1)根据1h后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得;(2)根据2h后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得;(3)可分相遇前与相遇后两种情况讨论即可解答.【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h后甲、乙间的距离=60-25×1-15×1=20海里;(2)2h后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t小时则12=60-(25+15)t,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t1小时则12+60=(25+15)t1,求得t1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.12.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=,若居民乙用电200千瓦时,交电费元.(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?解析:(1)0.6;122.5.(2)0.9x﹣82.5.(3)250千瓦.【分析】(1)根据100<150结合应交电费60元即可得出关于a的一元一次方程,解之即可得出a 值;再由150<200<300,结合应交电费=150×0.6+0.65×超出150千瓦时的部分即可求出结论;(2)根据应交电费=150×0.6+(300-150)×0.65+0.9×超出300千瓦时的部分,即可得出结论;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,分x在第二档及第三档考虑,根据总电费=均价×数量即可得出关于x的一元一次方程,解之即可得出x值,结合实际即可得出结论.【详解】(1)∵100<150,∴100a=60,∴a=0.6,若居民乙用电200千瓦时,应交电费150×0.6+(200-150)×0.65=122.5(元),故答案为0.6;122.5;(2)当x>300时,应交的电费150×0.6+(300-150)×0.65+0.9(x﹣300)=0.9x﹣82.5;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,当该居民用电处于第二档时,90+0.65(x﹣150)=0.62x,解得:x=250;当该居民用电处于第三档时,0.9x﹣82.5=0.62x,解得:x≈294.6<300(舍去).综上所述该居民用电不超过250千瓦时,其当月的平均电价每千瓦时不超过0.62元.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系列出代数式;(3)根据总电费=均价×数量列出关于x的一元一次方程.13.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A 种记录本的数量比B 种记录本的2倍还多20本.(1)求购买A 和B 两种记录本的数量;(2)某商店搞促销活动,A 种记录本按8折销售,B 种记录本按9折销售,则学校此次可以节省多少钱?解析:(1)购买A 种记录本120本,B 种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B 种记录本x 本,则购买A 种记录表(2x +20)本,依题意,得:3(2x +20)+2x =460,解得:x =50,∴2x +20=120.答:购买A 种记录本120本,B 种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键14.解方程:(1)3x ﹣4=2x +5;(2)253164x x --+=. 解析:(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x ﹣2x =5+4,解得:x =9;(2)去分母得:2(2x ﹣5)+3(3﹣x )=12,去括号得:4x ﹣10+9﹣3x =12,移项得:4x ﹣3x =12+10﹣9,合并同类项得:x =13.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键. 15.已知关于x 的方程:2(x ﹣1)+1=x 与3(x +m )=m ﹣1有相同的解,求以y 为未知数的方程3332my m x --=的解.解析:214y=-.【分析】根据方程可直接求出x的值,代入另一个方程可求出m,把所求m和x代入方程3,可得到关于y的一元一次方程,解答即可.【详解】解:解方程2(x﹣1)+1=x得:x=1将x=1代入3(x+m)=m﹣1得:3(1+m)=m﹣1解得:m=﹣2将x=1,m=﹣2代入33 32my m x --=得:3(2)2332y----=,解得:214y=-.【点睛】本题考查了含分母的一次方程,属于简单题,正确求解方程是解题关键.16.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮他们算算,用哪种方式购票更省钱?解析:(1)他们一共去了8个成人,4个学生;(2)按团体票购票更省钱【分析】(1)本题有两个相等关系:学生人数+成人人数=12人,成人票价+学生票价=400元,据此设未知数列方程组求解即可;(2)计算出按照团体票购买需要的钱数,然后与400元作对比即得答案.【详解】解:(1)设去了x个成人,y个学生,依题意得,1240400.5400x y x y +=⎧⎨+⨯=⎩,解得84x y =⎧⎨=⎩, 答:他们一共去了8个成人,4个学生;(2)若按团体票购票,共需16×40×0.6=384(元),∵384<400,∴按团体票购票更省钱.【点睛】本题主要考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.17.由于施工,需要拆除学校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少?解析:6人【分析】设先安排整理的人员有x 人,根据工作效率×工作时间×工作人数=工作总量结合题意,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设先安排整理的人员有x 人, 根据题意得:()1126=13030x x +⨯+, 解得:x =6.答:先安排整理的人员有6人.【点睛】本题考查了一元一次方程的应用,找准等量关系正确列出一元一次方程是解题的关键. 18.一项工程,甲队独做10h 完成,乙队独做15h 完成,丙队独做20h 完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h ,问甲队实际工作了几小时?解析:3【分析】设三队合作时间为x ,总工程量为1,根据等量关系:三队合作部分工作量+乙、丙两队合作部分工作量=1,列式求解即可得到甲队实际工作时间.【详解】设三队合作时间为xh ,乙、丙两队合作为(6)x h -,总工程量为1, 由题意得:11111()()(6)11015201520x x ++++-=, 解得:3x =,答:甲队实际工作了3小时.【点睛】本题主要考查了一元一次方程实际问题中的工程问题,准确分析题目中的等量关系以及设出未知量是解决本题的关键.19.小明解方程26152x x a -++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得到方程的解为1x =-,试求a 的值,并正确地求出原方程的解. 解析:2a =-,8x =【分析】先根据错误的做法:“方程左边的1没有乘以10”而得到1x =-,代入错误方程,求出a 的值,再把a 的值代入原方程,求出正确的解.【详解】解:412155x x a -+=+∵1x =-为412155x x a -+=+的解∴16155a -+=-+∴2a =-;∴原方程为:262152x x --+= 去分母得:41210510x x -+=-∴45101012x x -=--+∴8x -=-∴8x =.【点睛】本题考查了解一元一次方程,本题易在去分母、去括号和移项中出现错误.由于看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.20.如果,a b 为定值,关于x 的方程2236kx a x bk +-=+无论k 为何值时,它的根总是1,求,a b 的值. 解析:a=132,b=﹣4 【分析】 先把方程化简,然后把x =1代入化简后的方程,因为无论k 为何值时,它的根总是1,就可求出a 、b 的值.【详解】解:方程两边同时乘以6得:4kx +2a =12+x−bk ,(4k−1)x +2a +bk−12=0①,∵无论为k 何值时,它的根总是1,∴把x =1代入①,4k−1+2a +bk−12=0,则当k =0,k =1时,可得方程组:12120412120a ab --⎧⎨--⎩+=++=, 解得:a=132,b=﹣4 当a=132,b=﹣4时,无论为k 何值时,它的根总是1. ∴a=132,b=﹣4 【点睛】本题主要考查了一元一次方程的解,理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.本题利用方程的解求未知数a 、b .21.依据下列解方程0.30.5210.23x x +-=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。

一元一次方程解应用题之打折问题与方案选择问题(含答案)

一元一次方程解应用题之打折问题与方案选择问题(含答案)一.解答题(共30小题)1.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.2.小陈妈妈做儿童服装生意,在“六一”这一天上午的销售中,某规格童装每件以60元的价格卖出,盈利20%,求这种规格童装每件的进价.3.根据以下对话,分别求小红所买的笔和笔记本的价格.4.某商场销售的一款空调机每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价?(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?5.某商店销售一种电器,他们先将成本价提高30%后标价,后来又按照标价的八折优惠卖出,结果每销售一件该电器仍获得80元的利润,那么这种电器的成本价是多少元?6.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的八折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价的九折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.7.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.8.某玩具工厂出售一种玩具,其成本价每件28元,如果直接由厂家门市部销售,每件产品售价为35元,同时每月还要支出其他费用2100元;如果委托商场销售,那么出厂价为32元.(1)求在两种销售方式下,每个月销售多少件时,所得利润相等?(2)若每个月销售量达到1000件时,采用哪种销售方式获得利润较多?9.某商店买入100个整理箱,进价为每个40元,卖出时每个整理箱的标价为60元.当按标价卖出一部分整理箱后,剩余的部分以标价的九折出售.所有整理箱卖完时,该商店获得的利润一共是1880元,求以九折出售的整理箱有多少个?10.为了防控冬季呼吸道疾病,我校积极进行校园环境消毒工作,购买了甲、乙两种消毒液共100瓶,其中甲种每瓶6元,乙种每瓶9元,如果购买这两种消毒液共花去780元,求甲、乙两种消毒液各购买了多少瓶?11.列方程解应用题:销售服装的“欣欣”淘宝店今冬重点推出某新款大衣,标价为1000元,平常一律打九折出售.商家抓住商机,提前在淘宝网首页上打出广告“双11当天该款大衣打六五折后再让利30元”.因此双11当天该款大衣销售了30件,最后“双11”当天的利润相当于平时卖10件大衣的利润,求衣服的进价.12.某商场对某型号彩电优惠促销,如果按标价的八折每出售一台彩电,就少赚800元,那么顾客买一台这种型号的彩电需付多少元?13.某公司生产一种产品,每件成本价是400元,销售价为510元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预测下一季度这种商品每件销售价会降低4%,销售量将提高10%,要使销售利润(销售利润=销售价﹣成本价)保持不变,该商品每件的成本应降低多少元?14.一家商店将某型号彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投诉后,执法部门按已得非法收入的10倍处以每台2700元的罚款.求每台彩电的原价格.15.某服装店以每件600元的价格购进了某品牌羽绒服500件,并以每件800元的价格销售了400件,服装店计划对剩余的羽绒服降价促销.请你帮助该服装店计算一下,每件羽绒服降价多少元时,销售完这批羽绒服正好能达到盈利30%的预期目标?16.某电脑公司销售A、B两种品牌电脑,前年共卖出2200台.去年A种电脑卖出的数量比前年减少5%,B种电脑卖出的数量比前年增加6%,两种电脑的总销售量增加了110台.前年A、B两种电脑各卖了多少台?17.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:甲乙原料成本12 8销售单价18 12生产提成 1 0.8(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)18.列方程解应用题今年某网上购物商城在“双11岁物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?19.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.若商场同时购进其中两种不同型号的电视机共50台,恰好用去9万元.(1)请你设计进货方案.(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元,在同时购进两种不同型号电视机的方案中,为使销售获利最多,则该选择哪种进货方案.20.延庆区某中学七年级(1)(2)两个班共104人,要去延庆地质博物馆进行社会大课堂活动,老师指派小明到网上查阅票价信息,小明查得票价如图:其中(1)班不足50人,经估算,如果两个班都以班为单位购票,一共应付1240元.(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可以省多少钱?(3)如果七年级(1)班单独组织去博物馆参观,你认为如何购票最省钱?21.某旅行社安排8名旅客分别乘坐两辆小汽车一起赶往飞机场,其中一辆小汽车在距机场15km的地方出了故障,次时,距规定到达机场的时间仅剩42分钟,但唯一可以使用的交通工具只有一辆小汽车,连司机在内限坐5人,已知这辆汽车分两批送这8人去机场的平均速度是60km/h,现拟如下方案:方案一、小汽车送走第一批人后,第二批人在原地等待汽车返回接送;方案二、小汽车送走第一批人的同时,第二批人以5km/h的平均速度往机场方向步行,等途中遇返回的汽车时上车前行;请问这两种方案是否都能使这8名旅客在规定的时间内赶到机场?22.一家游泳馆每年6〜8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元.请根据你学过的知识解决下列问题,并写出解题过程:(1)什么情况下,购会员证与不购证付一样的钱?(2)什么情况下,购会员证比不购证更合算?(2)什么情况下,不购会员证比购证更合算?23.某商场销售一种夹克和T恤,夹克每件定价100元,T恤每件定价50元,商场在开展促销活动期间,向顾客提供两种优惠方案.方案一:买一件夹克送一件T恤方案二:夹克和T恤均按定价的80%付款现有顾客要到该商场购买夹克30件,T恤x件,(x>30)(1)若用方案一购买夹克需付款元,T恤需付款(用含x的式子表示)元.若用方案二购买夹克需付款元,T恤需付款(用含x的式子表示)元(2)按方案一购买夹克和T恤共需付款元,按方案二购买夹克和T恤共需付款元,通过计算说明,购买多少件时,两种方案付款一样多.(3)当x=40时,你能给出一种更省钱的方案吗?写出你的答案.24.松雷中学刚完成一批校舍的修建,有一些相同的办公室需要粉刷墙面.一天3名一级技工去粉刷7个办公室,结果其中有90m2墙面未来得及粉刷;同样时间内4名二级技工粉刷了7个办公室之外,还多粉刷了另外的70m2墙面.每名一级技工比二级技工一天多粉刷40m2墙面.(1)求每个办公室需要粉刷的墙面面积.(2)已知每名一级技工每天需要支付费用100元,每名二级技工每天需要支付费用90元.松雷中学有40个办公室的墙面和720m2的展览墙需要粉刷,现有3名一级技工的甲工程队,4名二级技工的乙工程队,要来粉刷墙面.松雷中学有两个选择方案,方案一:全部由甲工程队粉刷;方案二:全部由乙工程队粉刷;若使得总费用最少,松雷中学应如何选择方案,请通过计算说明.25.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球x盒(不小于5盒).(1)请用含x的代数式表示两家商店的付款.(2)试比较哪家商店更合算.(3)现需球拍5副,乒乓球40盒,请设计出最佳省钱方案.26.葡萄加工厂现收购10吨葡萄,该葡萄的出原汁率80%(原汁含皮带籽).若在市场上直接销售原汁,每吨可获利润500元;制成葡萄汁(葡萄汁不含皮不带籽)销售,每加工1吨原汁可获利润1200元;制成葡萄饮料销售,每加工1吨原汁可获利润2000元.该厂的生产能力是:若制葡萄汁,每天可加工3吨原汁;若制葡萄饮料,每天可加工1吨原汁;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批葡萄必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案:(将葡萄榨成原汁时间忽略不计)方案一:尽可能多的制成葡萄饮料,其余直接销售原汁;方案二:将一部分制成葡萄饮料,其余制成葡萄汁销售,并恰好4天完成.(1)方案一获利情况?(2)方案二如何安排原汁的使用?(3)请你帮葡萄加工厂选一种方案,使这10吨葡萄既能在4天内全部销售或加工完毕,又能获得你认为最多的利润.27.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?28.李先生准备在永川某小区内购买一套小户型商品房,他去某楼盘了解情况得知,该户型商品房的单价是8000元/m2,面积如图所示(单位:m,卫生间的宽未定,设宽为xm),售房部为李先生提供了以下两种优惠方案:方案一:整套房的单价是8000元/m2,其中厨房可免费赠送的面积;方案二:整套房按原销售总金额的9折出售.(1 )用y1表示方案一中购买一套该户型商品房的总金额,用y2表示方案二中购买一套该户型商品房的总金额,分别求出y1、y2与x的关系式;(2)求x取何值时,两种优惠方案的总金额一样多?(3)李先生因现金不够,于2015年1月在建行借了9万元住房贷款,贷款期限为6年,从开始贷款的下一个月起逐月偿还,贷款月利率是0.5%,每月还款数额=平均每月应还的贷款本金数额+月利息,月利息=上月所剩贷款本金数额×月利率.①李先生借款后第一个月应还款数额是多少元?②假设贷款月利率不变,若李先生在借款后第n(1≤n≤72,n是正整数)个月的还款数额为P,请写出P与n之间的关系式.29.A、B两城相距600千米,一辆客车从A城开往B城,车速为每小时80千米,同时一辆出租车从B城开往A城,车速为毎小时100千米,设客车出时间为t.探究若客车、出租车距B城的距离分别为y1、y2,写出y1、y2关于t的函数关系式,并计算当y1=200千米时y2的値.发现设点C是A城与B城的中点,(1)哪个车会先到达C?该车到达C后再经过多少小时,另一个车会到达C?(2)若两车扣相距100千米时,求时间t.决策己知客车和出租车正好在A,B之间的服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案:方案一:继续乘坐出租车,到达A城后立刻返回B城(设出租车调头时间忽略不计);方案二:乘坐客车返回城.试通过计算,分析小王选择哪种方式能更快到达B城?30.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?一元一次方程解应用题之打折问题与方案选择问题(含答案)参考答案与试题解析一.解答题(共30小题)1.(2016•海南)世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.【考点】一元一次方程的应用.【分析】设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元.根据“购书价格=《汉语成语大词典》的标价×折率+《中华上下五千年》的标价×折率”可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,依题意得:50%x+60%(150﹣x)=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【点评】本题考查了一元一次方程的应用,解题的关键是列出50%x+60%(150﹣x)=80.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.2.(2016•柳州)小陈妈妈做儿童服装生意,在“六一”这一天上午的销售中,某规格童装每件以60元的价格卖出,盈利20%,求这种规格童装每件的进价.【考点】一元一次方程的应用.【分析】等量关系:售价为60元,盈利20%,即售价是进价的120%.【解答】解:设这种规格童装每件的进价为x元,根据题意得,(1+20%)x=60,解方程得,x=50,答:这种规格童装每件的进价为50元.【点评】此题是一元一次方程的应用,列方程解应用题的关键是找出题目中的相等关系.3.(2016•株洲模拟)根据以下对话,分别求小红所买的笔和笔记本的价格.【考点】一元一次方程的应用.【专题】应用题.【分析】根据图中小红的回答,若设笔的价格为x元/支,则笔记本的价格为3x元/本.根据10支笔和5本笔记本花了30元钱,列出一元一次方程组10x+5×3x=30,解得x值,那么小红所买的笔和笔记本的价格即可确定.【解答】解:设笔的价格为x元/支,则笔记本的价格为3x元/本(1分)由题意,10x+5×3x=30(5分)解之得x=1.2,3x=3.6﹣﹣(7分)答:笔的价格为1.2元/支,则笔记本3.6元/本(8分)【点评】本题考查一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.4.(2016•潮南区模拟)某商场销售的一款空调机每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价?(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【考点】一元一次方程的应用.【分析】(1)利用利润率==这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.【解答】解:(1)设这款空调每台的进价为x元,根据题意得:3270×0.8﹣x=9%x,解得:x=2400,答:这款空调每台的进价为2400元;(2)商场销售这款空调机100台的盈利为:100×2400×9%=21600(元),答:商场销售了这款空调机100台,盈利21600元.【点评】本题考查了一元一次方程的应用,解题的关键是了解利润率的求法.5.(2016春•普陀区期末)某商店销售一种电器,他们先将成本价提高30%后标价,后来又按照标价的八折优惠卖出,结果每销售一件该电器仍获得80元的利润,那么这种电器的成本价是多少元?【考点】一元一次方程的应用.【分析】把这种服装的成本价看作单位“1”,按成本价提高30%后标价相当于原价的1+30%,又以8折优惠卖出,此时相当于原价的(1+30%)×80%,比原价还多(1+30%)×80%﹣1,即获利部分,正好是80元,因此列出方程解决问题.【解答】解:设那么每辆电动自行车的成本价为x元.根据题意,得0.8×(1+30%)x﹣x=80.解这个方程,得x=2000.答:这种电器的成本价是2000元.【点评】此题考查一元一次方程的应用,解答的关键,是把这种服装的成本价看作单位”1“,找出获利部分,即80元所占进价的分率,解决问题.6.(2016春•泾阳县期中)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的八折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价的九折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.【考点】一元一次方程的应用.【分析】(1)根据总费用等于两次费用之和就可以分别表示出在两家超市购物所付的费用;(2)根据(1)的结论分别讨论,三种情况就可以求出结论.【解答】解:(1)∵在甲超市累计购买商品超出300元之后,超出部分按原价的八折优惠,∴在甲超市购物所付的费用为:300+0.8(x﹣300)=0.8x+60,∵在乙超市累计购买商品超出200元之后,超出部分按原价的九折优惠,∴设顾客预计累计购物x元(x>300),在乙超市购物所付的费用为:200+0.9(x﹣200)=0.9x+20;(2)当0.8x+60=0.9x+20时,解得:x=400,∴当x=400元时,两家超市一样;当0.8x+60<0.9x+20时,解得:x>400,当x>400元时,甲超市更合算;当0.8x+60>0.9x+20时,解得:x<400,当x<400元时,乙超市更合算.【点评】本题考查了销售问题的数量关系的运用,一元一次方程的运用,方案设计的运用,解答时求出一次函数的解析式是关键,分类讨论是难点.7.(2016春•晋江市期中)学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.【考点】一元一次方程的应用.【专题】计算题;经济问题.【分析】每套利润×套数=总利润,在本题中有两种方案,虽然单价不同,但是总利润相等,可依此列方程解应用题.【解答】解:设每套课桌椅的成本x元.则:60×(100﹣x)=72×(100﹣3﹣x).解之得:x=82.答:每套课桌椅成本82元.【点评】列方程解应用题,重点在于准确地找出相等关系,这是列方程的依据.此题主要考查了一元一次方程的解法.8.(2016春•德惠市校级月考)某玩具工厂出售一种玩具,其成本价每件28元,如果直接由厂家门市部销售,每件产品售价为35元,同时每月还要支出其他费用2100元;如果委托商场销售,那么出厂价为32元.(1)求在两种销售方式下,每个月销售多少件时,所得利润相等?(2)若每个月销售量达到1000件时,采用哪种销售方式获得利润较多?【考点】一元一次方程的应用.【分析】(1)利用每件利润×销量=总利润,进而得出等式求解即可;(2)利用每月销售达1000件,分别得出利润,然后进行比较即可得出答案.【解答】解:(1)设每月销售x件时,所得利润相同,根据题意可得:(33﹣28)x﹣2100=(32﹣28)x,解得:x=700.答:每月销售700件时,所得利润相同;(2)当每月销售达1000件时,直接由厂家门市部出售的利润为:(33﹣28)×1000﹣2100=4900(元),委托商店销售的利润为:(30﹣28)×1000=4000(元),∵4900>4000∴采用直接由厂家门市部出售的利润较多.【点评】此题主要考查了一元一次方程的应用,根据每件利润×销量=总利润得出等式是解题关键.9.(2015秋•阜阳期末)某商店买入100个整理箱,进价为每个40元,卖出时每个整理箱的标价为60元.当按标价卖出一部分整理箱后,剩余的部分以标价的九折出售.所有整理箱卖完时,该商店获得的利润一共是1880元,求以九折出售的整理箱有多少个?【考点】一元一次方程的应用.【分析】可设以九折出售的整理箱有x个,根据该商店获得的利润一共是1880元这个等量关系列方程求解.【解答】解:设以九折出售的整理箱有x个.则按标价出售的整理箱有(100﹣x)个.依题意得60(100﹣x)+60×0.9x=100×40+1880.去括号,得6000﹣60x+54x=5880.移项,合并,得﹣6x=﹣120.系数化为1,得x=20.答:以九折出售的整理箱有20个.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.(2015秋•寻乌县期末)为了防控冬季呼吸道疾病,我校积极进行校园环境消毒工作,购买了甲、乙两种消毒液共100瓶,其中甲种每瓶6元,乙种每瓶9元,如果购买这两种消毒液共花去780元,求甲、乙两种消毒液各购买了多少瓶?【考点】一元一次方程的应用.【分析】设买甲种消毒液购买了x瓶,乙两种消毒液购买了(100﹣x)瓶,根据购买这两种消毒液共花去780元列出方程求解即可.【解答】解:设买甲种消毒液购买了x瓶,乙两种消毒液购买了(100﹣x)瓶,根据题意得:6x+9(100﹣x)=780,解得x=40,100﹣40=60(瓶),答:甲种消毒液购买了40瓶,乙两种消毒液购买了60瓶.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.11.(2015秋•重庆校级期末)列方程解应用题:销售服装的“欣欣”淘宝店今冬重点推出某新款大衣,标价为1000元,平常一律打九折出售.商家抓住商机,提前在淘宝网首页上打出广告“双11当天该款大衣打六五折后再让利30元”.因此双11当天该款大衣销售了30件,最后“双11”当天的利润相当于平时卖10件大衣的利润,求衣服的进价.【考点】一元一次方程的应用.。

一元一次方程应用难题精选含答案解析

一元一次方程应用难题精选(含答案解析)一元一次方程是数学中最基础的方程类型之一,广泛应用于各个领域。

下面是一些难度较高的一元一次方程应用难题,带有详细的答案解析。

1. 一辆汽车从A地到B地,全程200公里。

如果车速是每小时60公里,那么从A地到B地需要多长时间?解析:设从A地到B地所需时间为t小时,根据题意可以得到方程60t = 200。

解这个方程可以得到t = 200/60,约等于3.33小时。

2. 甲乙两人同时从A地出发,甲的速度是每小时5公里,乙的速度是每小时7公里。

如果乙比甲早1小时到达B地,那么A地到B地的距离是多少公里?解析:设A地到B地的距离为d公里,根据题意可以得到方程d/5 = (d/7) + 1。

解这个方程可以得到d = 35公里。

3. 一个水桶装满水需要5分钟,如果打开水龙头,水龙头每分钟可以排水3升,那么水桶中的水会在多长时间内排空?解析:设水桶中的水会在t分钟内排空,根据题意可以得到方程5 - 3t/60 = 0。

解这个方程可以得到t = 100分钟。

4. 甲乙两人同时从A地出发,甲的速度是每小时8公里,乙的速度是每小时10公里。

如果乙比甲晚2小时到达B地,那么A地到B地的距离是多少公里?解析:设A地到B地的距离为d公里,根据题意可以得到方程d/8 = (d/10) - 2。

解这个方程可以得到d = 80公里。

5. 一个长方形花坛的周长是20米,宽度是2米。

如果长方形的长度是x米,那么它的面积是多少平方米?解析:根据题意可以得到方程2x + 2(2) = 20,即2x + 4 = 20。

解这个方程可以得到x = 8,所以长方形的面积是8 * 2 = 16平方米。

这些难题涉及到了一元一次方程在不同领域的应用,需要根据题目的条件建立方程,并解方程得出结果。

通过解这些难题,可以锻炼学生的问题分析、方程建立和解方程的能力,加深对一元一次方程的理解和应用。

人教版七年级上册-一元一次方程实际应用题-打折销售问题(含答案)

人教版七年级上册 一元一次方程实际应用题-打折销售问题(含答案)一、单选题1.一款新型的太阳能热水器进价2000元,标价3000元,若商场要求以利润率不低于5%的售价打折出售,则设销售员出售此商品最低可打x 折,由题意列方程,得( )A.()3000x 200015%=-B.3000x 20005%2000-= C.()x 3000200015%10⋅=⋅- D.()x 3000200015%10⋅=⋅+ 2.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )A .180元B .200元C .225元D .元3.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱 4.一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,那么老板在销售这件商品的过程中的盈亏情况为( )A.盈利16元B.亏损24元C.亏损8元D.不盈不亏5.某商店购进甲、乙两种商品共160件,甲每件进价为15元,售价20元;乙每件进价为35元,售价45元;售完这批商品利润为l100元,设甲为x 件,则购进甲商品的件数满足方程( ) +15(160-x)=1100(160-x)+10x=1100 +25(160-x)=1100 +10(160-x)=l1006.中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.王波两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,则应付款( )A.288元 B.332元 C.288元或316元 D.332元或363元$二、填空题7.某商场将一件玩具按进价提高60%后标价,销售时按标价打折销售,结果相对于进价仍获利20%,则这件玩具销售时打的折扣是_____.8.某个“清涼小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮科的数量(单位:瓶)是B饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元.三、解答题9.华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个$10.某水果批发市场苹果的价格如表(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次购买苹果_____千克,第二次购买_____千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克(列方程解应用题)`11.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标12.某超市计划购进甲、乙两种商品共1200件,这两种商品的进价、售价如下表:^⑴超市如何进货,进货款恰好为46000元.⑵为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折13.13.马刚家附近有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场折,乙超市购物①不超过200元,不给予优惠;②超过200元而不超过500元,打9折;③超过500元,其中的500元仍打9折,超过500元的部分打8折.(假设两家超市相同商品的标价都一样)(1)当一次性购物标价总额是300元时,甲乙两个超市实付款分别是多少(2)当标价总额是多少元时,甲乙超市实付款一样#14.某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%;方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1)问投资者选择哪种购铺方案,5年后所获得的投资收益率更高为什么(注:投资收益率=投资收益实际投资额×100%)>(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差万元.问甲乙两人各投资了多少万元15.平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件$16.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.17.列方程解应用题:“双十一”期间,某电商决定对网上销售的商品一律打8折销售,黄芳购买一台某种型号的手机时发现,每台手机比打折前少支付400元,求每台该种型号的手机打折前的售价.)18.列方程解应用题某文具店一支铅笔的售价为元,一支圆珠笔的售价为2元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60支,卖得87元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支19.列方程...解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的一半多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中购进甲种商品的件数不变,购进的乙种商品的件数是第一次购进乙种商品件数的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售20.某蔬菜经营户,用1200元从菜农手里批发了长豆角和番茄共450千克,长豆角和番茄当天的批发价和零售价如表:(1)这天该经营户批发了长豆角和番茄各多少千克《(2)当天卖完这些番茄和长豆角能盈利多少元21.某文教店购进一批钢笔,按进价提高40%后标价,为了增加销量,文教店决定按标价打八折出售,这时每支钢笔的售价为28元.(1)求每支钢笔的进价为多少元;(2)该文教店卖出这批钢笔的一半后,决定将剩下的钢笔以每3支80元的价格出售,很快销售完毕,销售这批钢笔文教店共获利2800元,求该文教店共购进这批钢笔多少支(22.某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元,“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉2台,电磁炉x台(x>2).(1)若该客户按方案一购买,需付款___元.(用含x的代数式表示)若该客户按方案二购买,需付款___元.(用含x的代数式表示)(2)若x=5时,通过计算说明此时按哪种方案购买较为合算!(3)当x=5时,你能给出一种更为省钱的购买方案吗试写出你的购买方法.23.“丰收1号”油菜籽的平均每公顷产量为2400kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程的应用题(一)考试要求:内容基本要求略高要求较高要求一元一了解一元一次方会根据具体问题列出一元一次方能运用整式的加减运算次方程程的有关概念程对多项式进行变形,进一步解决有关问题一元一理解一元一次方能熟练掌握一元一次方程的解会运用一元一次方程解次方程程解法中的各个法;会求含有字母系数(无需讨论)决简单的实际问题的解法步骤的一元一次方程的解例题精讲:应用题是中学数学中的一类重要问题,一般通过对问题中量的关系进行分析,适当的设未知数,找出等量关系列出方程加以解决.很多同学见到应用题就发怵,觉得题目长,文字多,关系复杂,难以把握.其实应用题关键在于读题,弄懂题意.一些常见的问题,比如行程问题、工程问题、利率问题、浓度问题等等,其中的基本关系一定要深刻理解.设未知数的方法一般来讲,有以下几种:直接设未知数解应用题:直接设未知数指题目问什么就设什么,它多适用于要求的未知数只有一个的情况;间接设未知数解应用题:设间接未知数,是指所设的不是所求的,而解得的间接未知数对确定所求的量起中介作用;引入辅助未知数解应用题:设辅助未知数,就是为了使题目中的数量关系更加明确,可以引进辅助未知数帮助建立方程.辅助未知数往往不需要求出,可以在解题时消去.解应用题的方法多种多样,除此之外,还有运用逆推法解应用题、运用整体思想解应用题、运用图形图表法解应用题等等,单纯的背这些方法是没有意义的,关键还在于提高理解能力,大量练习,从而学会快速读懂题意,综合运用各种方法去求解问题.列方程解应用题的步骤:①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为 x)③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)模块一和差倍分问题【例1】玻璃缸里养了三个品种的金鱼,分别是“水泡”“朝天龙”“珍珠”.“水泡”的条数是“珍珠”的 3 倍;“朝天龙”的条数是“珍珠”的 2 倍,且“朝天龙”比“水泡”少 1 条,这三种金鱼各有几条呢?【解析】设“珍珠”的条数为x条,则“水泡”“朝天龙”的条数分别为3x条、2x条.依题意得:3x2x1,x1,从而3x3,2x2.【答案】3,2,1x【巩固】甲队有 32 人,乙队有 28 人,现从乙队抽人到甲队,使甲队是乙队人数的 2 倍,依题意,列出方程为【解析】略【答案】32 2(28 ).x x 【巩固】汽车若干辆装运货物一批,若每辆汽车装3.5吨货物,这批货物就有 2 吨运不走;若每辆汽车装 4 吨货物,那么装完这批货物后,还可以装其他货物 1 吨,问汽车有 多少辆?这批货物有多少吨?【解析】设有汽车 辆.依题意得:3.5 2 4 1,解之得: 6 ,41 23,故汽车 x x x x x 有 6 辆,货物有 23 吨.【答案】6 ; 23【例2】 ⑴ 甲仓库有粮120吨.乙仓库有粮90 吨.从甲仓库调运剂后甲仓库存粮是乙仓库的一半.吨到乙仓库,调 ⑵ 甲乙两个圆柱体容器,底面积比为5∶3,甲容器水深20c m ,乙容器水深10c m , 再往两个容器注入同样多的水,使两个容器的水深相等,这时水深多少厘米?1【解析】⑴ 从甲仓库调运 吨到乙仓库,依题意得120 (90) ,解得 x 50 . x x x 2⑵ 设这时水深 cm ,依题意得 5( 20) 3( 10),解得 35 .若学生不好理x x x x 解,不妨多设一个底面积比为5 ∶3 .方程为5 (20) 3 ( 10) 即可. a a a x a x 【答案】50 ;352【巩固】某公司有甲乙两个工程队,甲队人数比乙队人数的 多 28 人.现因任务需要,从3乙队调走 20 人到甲队,这时甲队人数是乙队人数的 2 倍,则甲乙两队原来的人数 分别是多少人?2【解析】设乙队原来有 x 人,则甲队有 28 人.依题意可列:x 32 2 x 20 x 28 20 ,解得: 66x 3【答案】72,66【巩固】甲、乙、丙三条铁路共长1191千米,甲铁路长比乙铁路的2 倍少189千米,乙铁路长比丙铁路少8 千米,求甲铁路的长. 【解析】设丙铁路长为 千米,则乙铁路长x 8 千米,甲铁路长2 x 8 189 千x 米.依题意可列: x x 8 2 x 8189 1191【答案】499,344,352【巩固】如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长1 1度是它的 ,另一根露出水面的长度是它的 .两根铁棒长度之和为55 ,此时cm 3 木桶中水的深度是5. cm1【解析】设此时木桶中水的深度为 c m ,依题意得,两根铁棒的长度为 [ (1 )]cm 和x x 31 1 1[x (1 )]cm ,故[x (1 )] [x (1 )] 55,解得 20.x 5 3 5【答案】20【例3】 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有 100 只吧!”牧羊人答道:“如果这群 羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只 羊也算进去,才刚好凑满 100 只.”问牧羊人的这群羊共有多少只?1 2 14【解析】设这群羊共有 只,依题意,有2 1100 ,解之得 36 .x x x x x 【答案】36模块二 行程问题追击问题解决追击问题的一个最基本的公式:追击时间 速度差 追击的路程.于此相关 的问题都可以应用这一公式进行解答.【例4】 敌我两军相距 32 千米,敌军以每小时 6 千米的速度逃窜,我军同时以每小时 16 千米的速度追击在相距 2 千米的地方发生战斗,问战斗是从 开始追击后几小时发生的?【解析】根据追击问题的基本公式:追击时间 速度差 追击的路程.设战斗是从开始追击后 小时发生的.则依题意可列:166 x 32 2 , x 解得: 3. x 【答案】3【巩固】环城自行车赛,最快的人在开始 48 分钟后遇到最慢的人,已知最快的人的速度是3最慢的人速度的 倍,环城一周是 20 千米,求两个人的速度。

232 43 【解析】设最慢的人的速度为 ,则最快的人的速度为 x ,依题意可列: x x 20 . x 5 2解得: 50x【答案】慢人的速度为50 ,快人的速度为65.【巩固】一个通迅员骑摩托车追赶前面部队乘坐的汽车,汽车的速度是每小时 28 千米,摩托车的速度是每小时 42 千米,通讯员出发 4 小时后追上汽车,求部队比通讯员早 出发几小时?42 28 4 【解析】设部队比通讯员早出发x x 28 ,解得: 2 . x【答案】2【例5】 某人从家里骑摩托车到火车站,如果每小时行30 千米,那么比火车开车时间早到15 分钟,若每小时行 18 千米,则比火车开车时间迟到 15 分钟,现在此人打算在 火车开车前 10 分钟到达火车站,则此人此时骑摩托车的速度应为多少?15 15【解析】设此人从家里出发到火车开车的时间为 小时,则30( ) 18( ) ,解得 1,x x x x 60 60此人打算在火车开车前 10 分钟到达,1530 (1 )60 骑摩托车的速度应为27 (千米/时) 10 160【答案】27【巩固】甲乙两列火车,甲车长 160 ,乙车长 120 ,甲车速度为 20m / s ,乙车速度为40m m m / s ;若乙车从后面追赶甲车,问从乙车追上甲车到乙车超过甲车的时间是多少?【解析】本题解题的关键是要注意“乙车追上甲车到乙车超过甲车”所以,追击路程为两车的 车长之和.设 从 乙 车 追 上 甲 车 到 乙 车 超 过 甲 车 的 时 间 为 , 则 依 题 意 可 列 :x 160 120 40 20 x解得: x 14 【答案】14相遇问题解决相遇问题的基本公式为:速度和 相遇时间 路程.【例6】 乙两站的路程为 360 千米,一列快车从乙站开出,每小时行驶72 千米;一列慢车从甲站开出,每小时行驶 48 千米.两列火车同时开出,相向而行,经过多少小时 相遇?【解析】设经过 小时相遇,则依题意可列: 72 48 x 360 ,解得: x 3.x【答案】3【巩固】甲、乙两人从相距75 的 、 两地相向而行,甲每小时行7.5 km A B,乙每小时行5km ,问:(1)两人同时出发,多少小时相遇?(2)甲先走 2 小时后乙出发,问乙 km出发几小时后两人相遇【解析】(1)设 小时相遇.依题意可列: 7.55 x 75 ,解得:6 x x (2)设乙出发 小时后两人相遇.则依题意可列:75 7.5 2 7.5 5 x ,解得:4 . x x 【答案】6 ; 4【巩固】甲、乙两人从相距 73 的 、 两地相向而行,甲每小时行 7 ,乙每小时行 2 ,km A B km km 问:两人同时出发,多少小时相距 1 ?km 【解析】设 小时后相距1 .依题意可列:73 1 7 2 x,解得: 8. kmx x 【答案】8变速问题【例7】 一辆汽车从甲地开往乙地,每分钟行 525 米,预计 40 分钟到达,但行到一半路程时,机器发生故障,用 5 分钟修理完毕,如果仍在预计的时间内到达,行驶余下的 路程,每分钟比原来速度快多少米?【解析】设比原来的速度快 x 20 5 ,解得: 175.x 525 x【答案】175【巩固】某人以每小时 8 千米的速度上山,以每小时 12 千米的速度下山,共用 5 小时。

问上山需要用多少时间?【解析】设上山需要用 小时,下山需要5 x 小时.则依题可列:8x 12 5x ,解得:x 3. x 【答案】3【巩固】Cenrrie 带着宠物狗“旺财”去玩接“飞盘”的游戏,Cenrrie 站一个小山坡的脚下,当Cenrrie 扔出“飞盘”,“旺财”从 Cenrrie 身边同时跑出去速度为 6 m / s ,接到“飞盘” 后以 9 m / s 的速度跑回 Cenrrie 身边,问整个过程中“旺财”的平均速度是多少? 整个路程【解析】设“旺财”从身边跑出去接到飞盘所用的时间为 ,平均速度=,则 x 全程所用的时间2 6x整个过程中的平均速度为: 7.269x x【点评】这题切记利用两个速度和的一半来求平均速度,这样做是错误的.【例8】 某人有急事,预定搭乘一辆小货车从 A 地赶往 B 地.实际上,他乘小货车行了三分之一路程后改乘一辆小轿车,车速提高了一倍,结果提前一个半小时到达.已知 小货车的车速是 36 千米/小时,求两地间路程.【解析】列方程解应用题的基本思想是通过对实际问题中数量关系的分析,列出相关的代数式,进而建立方程,转化为纯数学问题来解决.这一过程的关键是要透过纷繁多变 问题的表象,住数量关系的实质;不能机械的记忆、套用某些题型而忽略了问题的 本质.常有貌似相像,实质不同的问题;也有面目迥异而实质相同的问题.本题与2 1 13上题具有相同的数量关系:后 程中时间节约了1 小时.所以设行驶了全程的3 2 x x 1还余 千米.根据题意,同样可列出方程, 1 ,解得 108.这时两地x x 36 72 22间路程是108 162 (千米).3 【答案】162【巩固】一只小船从甲港到乙港逆流航行需 2 小时,水流速度增加一倍后,再从甲港到乙港航行需 3 小时,水流速度增加后,从乙港返回甲港需航行多少小时?【解析】设小船在静水中的速度为 ,原来的水速为 ,则2( ) 3( 2 ) ,解 得 4 ,a b a b a b a b 2(a b)(a 2b)故所求时间为 【答案】11(小时).流水问题流水问题的常用公式:逆水时的速度=船速-静水速度顺水时的速度=船速+静水速度1船速= 逆水时的速度+顺水时的速度 21静水速度= 顺水时的速度-逆水时的速度 2【例8】 一小船由 A 港到 B 港顺流需行 6 小时,由B 港到 A 港逆流需行 8 小时,一天,小船从早晨 6 点由 A 港出发顺流行至 B 港时,发现一救生圈在途中掉落在水中,立 即返回,1 小时后找到救生圈.问:⑴若小船按水流速度由 A 港漂流到 B 港需多少小时? ⑵救生圈是何时掉入水中的?【解析】⑴设小船在静水中的速度为 ,水流速度为b ,则6(a b) 8(a b) ,解得 a 7b ,a 6(a b)故小船按水流速度由 A 港漂流到 B 港所需时间为 48(小时);b⑵设小船行驶 x 小时后,救生圈掉入水中,则(6 x 1)b (a b) 1 (6 x)(a b) , 将 a 7b 代入上式,得到 x 5 ,故救生圈是上午 11 点掉入水中的.【巩固】甲、乙两港相距 360 千米,一轮船往返两港需 35 小时,逆流航行比顺流航行多花了 5 小时,现有一机帆船,静水中速度是每小时 12 千米,问这机帆船往返两港要 多少小时? 【解析】解答本题需要两大步骤:首先求出水流的速度,其次,利用已求的水流速度求出帆船往返所需要的时间.设轮船顺流航行需要 小时,依题意可列: 5 35,解得: 15. x x x x 1360 360可求得水速为:3 (千米∕时) 215 20 360 360则帆船往返两港所需要的时间为:64 (小时) 12 3 12 3【答案】64模块三 工程问题【例9】 某车间原计划每周装配42 台机床,预计若干周完成任务.在装配了三分之一以后,改进操作技术,工效提高了一倍,结果提前一周半完成任务.求这次任务需装配机 床总台数.13x x 1 【解析】设装配了机床总量的 还余 台.根据题意可列方程 x1 ,解得 42 42 2 2 2x 126.这时总任务是 【答案】189126 189 (台).3【巩固】某工程,甲工程队单独做40天完成,乙工程队单独做需要60天完成,若乙工程队单独做30 天后,甲、乙两工程队再合作 天完成.列方程为. x 1 1 1【解析】 30 ( ) 1.x 60 【答案】130 60【例10】一水池,装有甲、乙两个进水管和一个出水管丙,如果单独开发甲管4 小时注满水池;单独开放乙管3 小时可注满水池;单独开放丙管8 小时可以把满池水放完。

相关文档
最新文档