环境微生物作业,硝化,反硝化细菌
MPN法测定氨化细菌、硝化细菌和反硝化细菌

MPN多管发酵法测定氨化细菌、硝化细菌和反硝化细菌1实验原理最大可能数(或最大或然数法,most probable number,MPN)计数又称稀释培养计数(具体参见《土壤与环境微生物研究法》,科学出版社,2009),适用于测定在一个混杂的微生物群落中但却具有特殊生理功能的微生物类群。
本方法是基于选择适当稀释倍数的悬液,接种在特定的液体培养基中培养,检查培养基中是否有该生理类群微生物的生长。
根据不同稀释度接种管的生长情况,用统计学方法求出该生理类群的微生物数量。
特点:利用待测微生物的特殊生理功能的选择性来摆脱其他微生物类群的干扰,并通过该生理功能的表现来判断该类群微生物的存在和丰度。
MPN法特别适合于测定土壤微生物中的特定生理群(如氨化、硝化、纤维素分解、固氮、硫化和反硫化细菌等的数量和检测污水、牛奶及其他食品中特殊微生物类群(如大肠菌群)的数量,缺点是只适于进行特殊生理类群的测定,结果较粗放,只有在因某种原因不能使用平板计数时才采用。
氨化作用是异养细菌将蛋白质水解为氨基酸,进而脱氨基产生氨的过程。
硝化作用是指氨经过微生物的作用氧化成亚硝酸和硝酸的过程。
第一阶段由亚硝酸菌氧化氨为亚硝酸;第二阶段由硝酸菌氧化亚硝酸为硝酸。
这两类细菌都是自养的好氧细菌,生长缓慢,培养时间长。
反硝化作用是一类异养细菌在无氧条件下,利用有机物为电子供体,以硝酸盐为呼吸作用的电子受体,将其还原为N2O、N2的过程。
2实验材料2.1样品(1)固体样品(土样或沉积物等):取一定质量的样品(1g或10g),装入盛有100ml无菌水的三角瓶中,置于摇床上振荡30min,制成均匀悬浊液。
然后用10倍梯度稀释法将悬浊液稀释成一系列梯度(10-1、10-2、10-3、10-4、10-5、10-6等,具体视样品而定,微生物丰富的样品稀释的梯度相应大一些)。
(2)液体样品:取一定体积的样品(10ml),装入盛有90ml无菌水的三角瓶中,充分混匀,制成10-1稀释样。
堆肥状态下经微生物硝化和反硝化分解产生氧化亚氮的过程。

堆肥状态下经微生物硝化和反硝化分解产生氧化亚氮的过程。
1.引言1.1 概述概述是文章引言的第一个部分,它主要对整篇文章的研究内容进行简要说明,让读者对文章的主题有一个初步的理解。
在本文中,我们将探讨堆肥状态下的微生物硝化和反硝化分解产生氧化亚氮的过程。
堆肥是一种将有机废弃物转化为肥料的过程,这个过程中涉及到了一系列微生物的参与。
其中,微生物硝化和反硝化是两个重要的过程,它们分别指的是将氨氮转化为硝酸盐和将硝酸盐还原为氮气的过程。
在这些过程中,氧化亚氮是一个关键的中间产物,它在氮循环中起着重要的作用。
本文将重点探讨堆肥过程中微生物硝化和反硝化过程产生氧化亚氮的机制和影响因素。
在微生物硝化的过程中,我们将讨论硝化作用的定义和原理,以及各种因素对微生物硝化活性的影响。
而在微生物反硝化的过程中,我们将探讨反硝化作用的定义和原理,以及各种因素对微生物反硝化活性的影响。
通过对这些过程的深入研究,我们将更好地理解堆肥过程中氧化亚氮的产生机制,并提出相应的控制策略。
这将对提高堆肥的质量和减少氧化亚氮对环境的负面影响具有重要意义。
在接下来的正文部分,我们将详细探讨堆肥状态下微生物硝化和反硝化的过程以及其对氧化亚氮产生的影响。
最后,我们将总结硝化和反硝化过程对氧化亚氮产生的影响,并提出一些堆肥状态下控制氧化亚氮生成的策略。
通过这些研究,我们可以更好地理解和应用微生物硝化和反硝化的知识,从而更有效地管理堆肥过程中的氧化亚氮产生。
1.2文章结构文章结构部分的内容如下:1.2 文章结构本文分为引言、正文和结论三个部分。
引言部分概述了堆肥状态下经微生物硝化和反硝化分解产生氧化亚氮的过程,并介绍了文章的目的。
在正文部分,首先介绍了堆肥状态下的微生物硝化过程,包括硝化作用的定义和原理,以及微生物硝化的影响因素。
然后,还探讨了堆肥状态下的微生物反硝化过程,包括反硝化作用的定义和原理,以及微生物反硝化的影响因素。
最后,在结论部分,总结了硝化和反硝化过程对氧化亚氮的产生影响,并提出了堆肥状态下控制氧化亚氮生成的策略。
硝化与反硝化

污水深度处理的硝化与反硝化(2007-08-12 10:48:15)转载▼标签:环保、污水处理污水深度处理的硝化与反硝化一。
硝化(1) 微生物:自营养型亚硝酸菌(Nitrosmohas)自营养型硝酸菌(Nitrobacter)(2) 反应:城市污水中的氮化物主要是NH3,硝化菌的作用是将NH3—N氧化为NO3—NNH+4+1.5O2———NO2+H2O+H+-ΔE亚硝酸菌ΔE=278.42kJNO2+0.5O2———NO-3-ΔE硝酸菌ΔE=278.42kJNH+4+2.0O2——— NO-3+H2+2H+-ΔE硝酸菌ΔE=351kJ研究表明,硝化反应速率主要取决于氨氮转化为亚硝酸盐的反应速率。
硝酸菌的细胞组织表示为C5H7NO255NH+4+76O2+109HCO-3———C5H7NO2+54NO-2+57H2O+104H2Co3亚硝酸菌400 NO2+ NH+4+4 H2Co3+ HCO-3+195 O2——— C5H7NO2+3 H2O+400 NO-3硝酸菌NH+4+1.86 O2+1.98HCO-3——— 0.02C5H7NO2+1.04H2O+0.98 NO-3+1.88H2Co3硝酸菌(3) 保证硝化反应正常进行的必要条件:pH 8~9水温亚硝酸菌反应最佳温度 t=35 0C t>15 0CDO 2 ~ 3 mg / L > 1.0 mg / L硝化1克NH3—N:消耗4。
57克O2消耗7。
14克碱度(擦C a Co3计)生成0。
17克硝酸菌细胞(4) 亚硝酸菌的增殖速度 t=25O C活性污泥中µ(Nitrosmohas)=0.18e 0.116(T-15) day –1µ(Nitrosmohas)=0.322 day –1(20OC)纯种培养:µ(Nitrosmohas)=0.41e 0.018(T-15) day -1河水中µ(Nitrosmohas)=0.79e 0.069(T-15) day -1一般它营养型细菌的比增长速度µ =1。
反硝化作用与反硝化菌KONODO

反硝化作用与反硝化菌2020一、反硝化作用:反硝化作用一般指在缺氧条件下,反硝化菌将(硝化反应过程中产生的)硝酸盐和亚硝酸盐还原成氮气的过程。
在反硝化过程中,有机物作为电子供体,硝酸盐为电子受体,在电子传递过程中,有机物失去电子被氧化,硝酸盐得到电子被还原,实现在反硝化过程对硝态氮和COD的脱除。
理论上,1g硝态氮的全程反硝化需要硝化2.86g有机碳源(以BOD计)。
对生化处理中反硝化进水,可以考察其可生化性(BOD/COD)和含量(BOD/TN比例),以判断有机物碳源是否适宜并足够系统用于反硝化脱氮。
影响污水生物脱氮过程中反硝化作用的主要因素包括:溶解氧、pH值、温度、有机碳源的种类和浓度,以及水背景情况等。
一般认为,系统中溶解氧保持在0.15mg/L 以下时反硝化才能正常进行。
反硝化作用最适宜的pH为6.5-7.5,反硝化作用也是产碱过程,可以在一定程度上对冲硝化作用中消耗的一部分碱度。
理论上,全程硝化过程可产生3.57g碱度(以CaCO3计)。
在温度方面,实际中反硝化一般应控制在15-30 ℃。
二、参与反硝化作用的细菌反硝化菌主要参与硝态氮及亚硝态氮还原过程,是生化系统中硝酸盐氮去除的主要功能菌。
参与反硝化作用的细菌主要有以下几类:1、反硝化细菌(Denitrifying bacteria)这是一类兼性厌氧微生物,当水环境中有分子态氧时,氧化分解有机物,利用分子态氧作为最终电子受体。
当溶解氧(DO)低于0.15mg/L,即缺氧状态,反硝化细菌可用硝酸盐、氮化物等作为末端电子受体,以有机碳源为氢供体,将硝酸盐还原为NO、N2O或N2。
反硝化作用既可脱除污水中的硝态氮(总氮也自然降低),又可一定程度维持水环境pH稳定性,还可以降低COD。
这类反硝化菌中,有的能还原硝酸盐和亚硝酸盐,有的只能将硝酸盐还原为亚硝酸盐。
2、好氧反硝化细菌有些细菌能营有氧呼吸,同时实现反硝化作用。
从污水中,最早分离的好氧反硝化细菌是副球菌属的Paracoccus pantotrophus,该菌能在好氧情况下将。
反硝化原理

反硝化原理
反硝化是指将硝酸盐还原为氮气或其他氮化合物的过程。
在自然界中,反硝化
是氮素循环的一个重要环节,也是维持生态系统氮平衡的重要途径。
而在人工处理废水和土壤中,反硝化也扮演着至关重要的角色。
反硝化的原理主要是通过一系列微生物的作用来实现的。
在缺氧条件下,一些
特定的细菌和古菌能够利用硝酸盐作为电子受体,将其还原为氮气或其他氮化合物。
这些微生物主要包括反硝化细菌、厌氧氨氧化细菌和厌氧氨氧化古菌等。
其中,反硝化细菌是最为重要的一类微生物,它们能够在缺氧环境下将硝酸盐还原为氮气,从而完成反硝化过程。
在自然环境中,反硝化通常发生在缺氧或微氧的条件下,比如湿地、淤泥、沉
积物等处。
在这些环境中,有机质的分解会消耗氧气,形成缺氧环境,从而为反硝化提供了条件。
此外,一些人工处理系统,如生物滤池、厌氧池等,也利用了反硝化原理来处理废水中的硝酸盐。
反硝化不仅能够将硝酸盐还原为氮气,减少水体中的氮污染,还能够释放出大
量的氮气,从而起到了氮气循环的作用。
此外,反硝化还能够减少温室气体的排放,因为氮气是一种稳定的气体,不会对大气层产生温室效应。
总的来说,反硝化是一种重要的生物地球化学过程,它在自然界和人工处理系
统中都发挥着重要作用。
通过了解反硝化的原理和机制,我们能够更好地利用这一过程来改善环境质量,减少氮污染,保护生态系统的健康。
同时,也能够为我们提供一种新的途径来减少温室气体排放,对抗气候变化。
因此,深入研究反硝化原理,发展高效的反硝化技术,对于环境保护和可持续发展具有重要意义。
反硝化细菌

自养反硝化细菌
自养反硝化细菌利用无机碳化合物(如 CO2, HCO3-)作为它们的碳源。因此,不需要 异养反硝化过程中必需的有机碳。
Thiobacillus denitrificans(脱氮硫杆菌)
7
2.1 影响因素
碳氮比
在不同碳氮比(C/N)条件下,其反硝化能力并 不相同。当C/N>5时,脱氮率能达到90%以上。 最适宜的碳氮比是5~6,在此区间能进行完全 的反硝化。当C/N在1~14之间变化时,硝酸盐 还原基本都发生在菌株生长的第4~10h,整 个反硝化过程中亚硝酸盐浓度一直保持在极低 的水平。
2
1 、概念及研究现状
1、1 概念
反硝化细菌是能引起反硝化作用的细菌。 多为异养、兼性厌氧细菌。如反硝化杆菌、斯 氏杆菌、萤气极毛杆菌等。它们在氙气条件下, 利用硝酸中的氧,氧化有机物质而获得自身生 命活动所需的能量。反硝化细菌广泛分布于土 壤、厩肥和污水中。可以将硝态氮转化为氮气 而不是铵态氮,与硝化细菌作用不完全相反。
③硝化反应和反硝化反应可在相同的条件和系统下 进行,可简化操作的难度,大大降低投资费用和运行 成本。
15
3.中需要 外加碳源这个原因,自养反硝化作用越来越受 到人们的重视。自养反硝化细菌利用无机碳化 合物(如CO2, HCO3-)作为它们的碳源。因此, 不需要异养反硝化过程中必需的有机碳,它有 两个优势: ①不需要投放有机物作为碳源,节省开支; ②产生极少量的污泥,因此将污泥的处理量降 低到最小
10
溶解氧DO
一般认为,当DO浓度低于1mg/L时,反 硝化菌具有反硝化活性,但也有个别菌种 的DO耐受性较强,如Pseudomonas sp. 在DO浓度为2mg/L仍具活性,在DO低于 2mg/L时,其反硝化活性随之成反比 ;
污水处理中的硝化与反硝化过程
污水处理厂的硝化与反硝化应用
污水处理厂是硝化与反硝化过程的重要应用场所,通过硝化反应将有机 氮转化为硝酸盐,再通过反硝化反应将硝酸盐转化为氮气,从而达到去 除氮污染物的目的。
硝化反应通常在好氧条件下进行,由硝化细菌将氨氮氧化成硝酸盐;反 硝化反应则在缺氧条件下进行,由反硝化细菌将硝酸盐还原成氮气。
THANKS
THANK YOU FOR YOUR WATCHING
硝化反应的微生物学基础
硝化细菌是一类好氧性细菌,能够将氨氮氧化成硝酸盐。
硝化细菌主要包括亚硝化Байду номын сангаас菌和硝化细菌两类,分别负责亚硝化和硝化两个阶段 。
硝化反应的影响因素
溶解氧
硝化反应是好氧反应,充足的溶解氧是保证硝化 反应顺利进行的关键。
pH值
硝化细菌适宜的pH值范围为7.5-8.5。
ABCD
温度
硝化细菌对温度较为敏感,适宜的温度范围为 20-30℃。
应对气候变化
资源回收利用
探索污水处理过程中资源的回收利用,如能源、肥 料等,提高污水处理的经济效益和社会效益。
随着气候变化加剧,污水处理系统需应对极 端天气和自然灾害的挑战,保障硝化与反硝 化过程的稳定运行。
国际合作与交流
加强国际合作与交流,引进先进技术与管理 经验,推动硝化与反硝化技术的创新发展。
害。
城市污水处理中的硝化与反硝化应用
城市污水中的氮污染物主要来源于生活污水和部分工业废水,硝化与反硝化过程在 城市污水处理中具有重要作用。
城市污水处理厂通常采用生物反应器进行硝化与反硝化反应,通过合理控制反应条 件,提高脱氮效率。
城市污水处理中的硝化与反硝化应用可以有效降低水体中氮污染物含量,改善城市 水环境质量。
同步硝化反硝化和短程硝化反硝化
同步硝化反硝化和短程硝化反硝化随着人类对环境保护意识的提高,对水体生态系统的关注愈发增加。
其中,氮循环作为生态环境中的重要一环,也备受关注。
在氮循环中,“同步硝化反硝化”和“短程硝化反硝化”是两个重要的过程,对于水体的氮素转化和利用具有重要的作用。
以下将从深度和广度的角度进行全面评估,以便更好地了解这两个过程。
1. 同步硝化反硝化的概念同步硝化反硝化是指在同一微生物体内,氨氮直接转化为硝酸盐,然后直接再被还原为氮气的过程。
这一过程通常由单一微生物完成,也被称为全硝化或类全硝化反应。
在自然界中,同步硝化反硝化主要由厌氧异养细菌完成,这些细菌具有很强的氨氧化和硝化能力,能够将氨氮快速氧化为亚硝酸盐,然后在厌氧条件下迅速还原为氮气,从而将氨氮转化为无害的氮气释放到大气中。
2. 短程硝化反硝化的概念短程硝化反硝化指的是在很短的时间和空间内,氨氮被氧化为硝酸盐然后迅速还原为氮气的过程。
这一过程通常发生在水体底泥或水体微缝隙中,因此被称为短程硝化反硝化。
在水体中,短程硝化反硝化通常由微生物和底泥中的细菌完成,底泥中的微生物可以迅速氧化水体中的氨氮为硝酸盐,然后水体中的细菌则可以迅速还原硝酸盐为氮气,从而在水体中形成短程硝化反硝化过程。
3. 两者的联系和区别同步硝化反硝化和短程硝化反硝化虽然是两种不同的氮素转化过程,但它们之间也存在着联系和区别。
联系在于,两者都是对氨氮进行氧化和还原的过程,最终都将氨氮转化为无害的氮气释放到大气中。
而区别在于,同步硝化反硝化主要发生在水体中的微生物体内,而短程硝化反硝化则主要发生在水体底泥和微缝隙中,两者的位置和速率都存在较大差异。
在我们对同步硝化反硝化和短程硝化反硝化进行全面评估之后,可以发现两者在氮素转化和利用过程中都起着非常重要的作用,对于维护水体生态系统的健康具有重要意义。
总结回顾:通过全面的评估和深入的探讨,我们对同步硝化反硝化和短程硝化反硝化有了更深入的理解。
也了解到两者在水体氮素转化中的重要性和作用。
硝化与反硝化去除氨氮的原理
硝化与反硝化去除氨氮的原理硝化与反硝化是水处理领域中常用的一种氨氮去除方法。
硝化是指将水中的氨氮转化为硝态氮化合物(主要是亚硝酸盐和硝酸盐),而反硝化是指将水中的硝态氮还原为氨氮,从而达到去除氨氮的目的。
下面将分别介绍硝化和反硝化去除氨氮的原理。
硝化是由一种特殊的微生物完成的,这种微生物被称为硝化细菌。
硝化细菌主要有两类,一类是氧化亚硝酸细菌(Nitrosomonas),负责将氨氮氧化成亚硝酸;另一类是氧化硝酸细菌(Nitrobacter),负责将亚硝酸氧化成硝酸。
硝化过程主要分为两个阶段:亚硝化和硝化。
亚硝化是亚硝酸盐菌将氨氮氧化为亚硝酸的过程,可表示为:NH4+→NO2-。
而硝化是硝酸盐菌将亚硝酸氧化为硝酸的过程,可表示为:NO2-→NO3-。
硝化微生物生长的最适pH范围一般为7.8-8.2,温度范围一般为20-35℃。
在水处理工程中,为了提高硝化细菌的活性,通常会提高水体中的DO(溶解氧)浓度,同时增加氨氮与亚硝酸之间的接触时间。
反硝化是由一种特殊的微生物完成的,这种微生物被称为反硝化细菌。
反硝化细菌的主要特点是能够利用氧化亚硝酸作为电子受体,将硝酸氮还原为氨氮,并释放出氧气或一氧化氮等气体。
反硝化细菌的代表是假单胞菌(Pseudomonas),它具有较强的还原硝酸能力。
反硝化过程一般可表示为:NO3- → NO2- → NO → N2O →N2反硝化细菌的生长最适pH范围一般为6.5-7.5,温度范围一般为25-30℃。
和硝化一样,为了提高反硝化细菌的活性,通常也需要提高水体中的DO浓度。
三、硝化与反硝化联合去除氨氮的工艺流程硝反工艺的流程一般为:先将水体中的氨氮通过硝化转化为硝酸,然后利用反硝化细菌将硝酸还原为氨氮。
硝反工艺通常包括硝化反硝化生物过滤法、硝化反硝化活性污泥法等。
其中,硝化反硝化生物过滤法是一种较常用的工艺,具有处理效果好、工艺简单、运行稳定等优点。
在硝反工艺中,硝化细菌与反硝化细菌共同生长,不仅可以去除氨氮,还可以去除有机物等其他污染物,从而对水体进行全面的处理。
硝化与反硝化
硝化与反硝化利用好氧颗粒污泥实现同步硝化反硝化1 生物脱氮与同步硝化反硝化在生物脱氮过程中,废水中的氨氮首先被硝化菌在好氧条件下氧化为NO-X,然后NO-X 在缺氧条件下被反硝化菌还原为N2(反硝化)。
硝化和反硝化既可在活性污泥反应器中进行,又可在生物膜反应器中进行,目前应用最多的还是活性污泥法。
硝化菌和反硝化菌处在同一活性污泥中,由于硝化菌的好氧和自养特性与反硝化菌的缺氧和异养特性明显不同,脱氮过程通常需在两个反应器中独立进行(如Bardenpho、UCT、双沟式氧化沟工艺等)或在一个反应器中顺次进行(如SBR)。
当混合污泥进入缺氧池(或处于缺氧状态)时,反硝化菌工作,硝化菌处于抑制状态;当混合污泥进入好氧池(或处于好氧状态)时情况则相反。
显然,如果能在同一反应器中使同一污泥中的两类不同性质的菌群(硝化菌和反硝化菌)同时工作,形成同步硝化反硝化(Simultaneous Nitrification Denitrification简称SND),则活性污泥法的脱氮工艺将更加简化而效能却大为提高。
此外从工程的角度看,硝化和反硝化在两个反应器中独立进行或在同一个反应器中顺次进行时,硝化过程的产碱会导致OH-积累而引起pH值升高,将影响上述两阶段反应过程的反应速度,这在高氨氮废水脱氮时表现得更为明显。
但对SND工艺而言,反硝化产生的OH-可就地中和硝化产生的H+,减少了pH值的波动,从而使两个生物反应过程同时受益,提高了反应效率。
2 实现同步硝化反硝化的途径由于硝化菌的好氧特性,有可能在曝气池中实现SND。
实际上,很早以前人们就发现了曝气池中氮的非同化损失(其损失量随控制条件的不同约在10%~20%左右),对SND的研究也主要围绕着氮的损失途径来进行,希望在不影响硝化效果的情况下提高曝气池的脱氮效率。
①利用某些微生物种群在好氧条件下具有反硝化的特性来实现SND。
研究结果表明,Thiosphaera、Pseadonmonas nautica、Comamonossp.等微生物在好氧条件下可利用NOX-N 进行反硝化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反硝化细菌和反硝化聚磷菌在污水处理中的运用摘要:微生物法在污水处理过程中起到十分重要的作用。
其中反硝化细菌与反硝化聚磷菌在污水处理中运用更为广泛,本文就对这两种细菌的研究情况作一些简单概述。
关键词:反硝化细菌;反硝化聚磷菌;自养反硝化;好氧反硝化随着人类生活水平的不断提高和工业生产的快速发展,带来越来越严重的水质污染问题。
寻求新的高效污水处理办法也是现在的一大研究方向,微生物处理法在污水处理中有着广泛的运用。
本文着重介绍两种细菌:反硝化细菌和反硝化聚磷菌在污水处理中的一些运用。
一.反硝化细菌反硝化细菌(Denitrifying bacteria) 是一类兼性厌氧微生物,当处于缺氧环境时,反硝化细菌可用硝酸盐、氮化物等作为末端电子受体。
有些反硝化细菌能还原硝酸盐和亚硝酸盐,有些反硝化细菌只能将硝酸盐还原为亚硝酸盐。
反硝化细菌与污水除氮原理:污水中的含氮有机物经过异养菌的氨化作用转变为氨氮,再经过硝化细菌的硝化作用将氨氮转变为亚硝酸盐和硝酸盐态氮,最后经过反硝化细菌的反硝化作用将亚硝酸盐和硝酸盐还原为NO、N2O ,并最终变为N2,从而将含氮物质从污水处理系统中排出。
当环境中有分子态氧存在时,反硝化细菌氧化分解有机物,利用分子态氧作为最终电子受体。
在无分子态氧存在下,反硝化细菌利用硝酸盐和亚硝酸盐作为电子受体,有机物则作为碳源及电子供体提供能量。
在污水处理中,当溶解氧(DO) 小于或等于0.15mgPL 情况下,反硝化细菌利用污水中的有机碳源(污水中的BOD) 作为氢供体,以硝酸态盐作为电子受体,将硝酸盐还原为NO、N2O 或N2,这既可消除污水中的氮,又可恢复环境的pH稳定性,对污水处理系统的正常运行起重要作用。
在污水处理中反硝化细菌种类很多。
影响污水脱氮过程中反硝化反应的因素:1.有机碳源:一般认为,当污水中的BOD5PT2N 值> 3~5 时,即可认为碳源是充足的,此时不需要补充外加碳源。
甲醇作为碳源时反硝化速率高,被分解后的产物为CO2和 H2O ,但处理费用较高。
污水处理系统中碳源的种类不同可导致反硝化细菌的类群及反硝化活性不同。
2.ph 值:反硝化过程最适宜的pH 范围为6.15~7.15 ,不适宜的pH 值会影响反硝化细菌的生长速率和反硝化酶的活性。
当pH 值低于6.10 或高于8.10 时,反应受到强烈抑制。
反硝化反应对NO-或NO-2 的消耗有助于pH 值保持在所需范围内并可补充在硝化过程中消耗的一部分碱度。
3.温度:反硝化细菌适宜的生长温度在25 ℃~35 ℃之间,低于15 ℃时增殖速率和代谢速率降低,导致反硝化速率降低。
实际中反硝化一般控制在15 ℃~30 ℃。
4.溶解氧 : 当同时存在分子态氧和硝酸盐时,反硝化细菌优先进行有氧呼吸。
微生物从有氧呼吸转变为无氧呼吸的关键是合成无氧呼吸的酶,而分子态氧的存在会抑制这类酶的合成及活性。
为了保证反硝化过程的顺利进行,必须保持严格的缺氧状态。
一般认为,系统中溶解氧保持在0.15mgPL 以下时反硝化才能正常进行。
另外,一些其它因素如污水中有毒有害物质、盐度等都会影响反消化过程的进行,如随着污水中盐度的增加,反硝化活性逐渐降低。
下面简单介绍几种反硝化细菌:有氧反硝化细菌 许多微生物能有氧呼吸,同时反硝化。
从污水中分离的副球菌属的细菌( Paracoccus pantotrophus)是首先被描述的有氧反硝化细菌,硝酸盐或亚硝酸盐还原为 N 2 可在大气氧存在情况下发生。
施氏假单胞菌( Pseudomonas stutzer) 是另一个报道的有氧反硝化细菌, 对氧的耐受力要超过Paracoccuspantotrophus 。
有氧反硝化细菌的许多问题还需深入研究。
Paracoccus pantotrophus 在有氧条件下不表达亚硝酸盐还原酶,所以有氧条件下还原亚硝酸盐的机制还不清楚。
大多数反硝化细菌在有氧条件下产生N 2O 而不是N 2。
Naoki Takaya 等研究检测到两株细菌使硝酸盐还原需要氧,也属于有氧反硝化细菌。
由于有氧反硝化细菌在环境中的特殊意义,对其进行研究受到广泛关注。
自养反硝化细菌 自养反硝化细菌近年来发现一些自养细菌能够利用一些无机物(CO 2 ,HCO 3- ) 在氧化过程中释放出来的能量将硝酸盐还原,进行反硝化作用,这类细菌称为自养反硝化细菌。
由于不需要投放有机物作为碳源可节省开支,同时由于只产生极少量的污泥,可使污泥的处理量降低到最低。
因此,自养反硝化细菌在污水脱氮中具有重要意义。
倍受关注的自养反硝化细菌有脱氮硫杆菌( Thiobacillus denitrificans) 和反硝化硫微螺菌( Thiomicrospiradenitrificans) 。
反硝化除磷细菌污水生物除磷是非常经济有效的方法,聚磷菌需要交替的好氧和厌氧条件,在厌氧区释放磷,而在好氧区则在细胞中合成并积累多聚磷酸盐。
最近发现一些聚磷菌在好氧或缺氧条件下以硝酸盐作为电子受体而积累磷。
这类菌被称为反硝化除磷细菌( Denitrifying Phosphorus2removingBacteria) 。
反硝化除磷细菌能在聚磷的同时进行硝酸盐的去除,而不需要厌氧和好氧的相互交替。
反硝化除磷细菌的发现可在理论上探讨反硝化细菌和除磷细菌之间的关系,在实际中可探讨污水脱氮除磷的新机制和新工艺。
二.反硝化聚磷菌(DPB)1 DPB脱氮除磷的基本原理:DPB被证实具有和好氧聚磷菌极为相似的代谢特征。
国外学者从动力学性质上对这两类聚磷菌进行了比较,认为以硝酸盐作为电子受体的DPB有着和好氧聚磷菌同样高的强化生物除磷性能。
因DPB是兼性厌氧菌,它利用生物体内合成的高分子聚合磷酸盐在厌氧/缺氧交替变化中进行生物除磷。
(1)在厌氧条件下,将细胞内的聚磷酸盐以溶解性的磷酸盐形式释放到溶液中;同时,利用此过程中产生的能量将酵解产物低级脂肪酸(如乙酸盐或丙酸盐等),合成有机储备物质聚β一羟基丁酸酯(PHB)颗粒作为下一阶段的电子供体,此时表现为磷的释放,即磷酸盐由微生物体向环境转移。
(2)当微生物进入缺氧环境后,它们的活力将得到恢复,并在充分利用基质的同时(如PHB及内源碳),大量吸收溶解态的正磷酸盐,在细胞内合成含能高的多聚磷酸盐并加以积累,这种积磷作用大大超过微生物正常生长所需的磷量,可达到细胞干重的6%左右,甚至有报道可达8%,此阶段表现为磷的吸收。
同时还存在将硝酸盐当作电子受体,进行还原产气的过程,表现为环境中氮的去除。
DPB在不同环境下的生理活动见图1。
2 DPB在污水处理中的应用2.1 DPB脱氮除磷特性反硝化除磷技术的发现是生物除磷的最新研究成果,是一种高效、可行的污水除磷脱氮技术。
它的最大优点是节省大量的曝气量,而且减少剩余污泥量,反硝化消耗量,相应减少50%的剩余污泥量。
反硝化除磷与传统生除磷能节省30%的O2物除磷技术相比,能使生物除磷与反硝化脱氮为同一种反硝化聚磷菌在一个生理过程中完成,将两者有机地合二为一。
这是该技术可节省能源和资源的原因,也正是这个原因,上述一系列工艺被誉为适合可持续发展的绿色除磷脱氮工艺。
李相昆等对接触氧化、SBR、A/O、A2/O和双污泥系统的活性污泥做了好氧吸磷和缺氧吸磷的静态烧杯试验。
结果表明,SBR、A2/O、双污泥系统的污泥在好氧和缺氧条件下均有很好的吸磷效果,其中双污泥系统污泥的缺氧吸磷速率和反硝化速率最大。
而且在缺氧条件下,当N03 充足时,其浓度对吸磷效果影响不大,吸磷速率为7.52 mgPO4 3- P/(gMLVSS·h),反硝化速率为9.74 mgN0x一N/(gMLVSS·h)。
在厌氧条件下,以蔗糖为碳源的释磷量最小,释磷速率亦最低,而以CHsC(X)Na为碳源的释磷量和释磷速率均最大,释磷速率为4.2 nag.PO4 3- 一P/(gMLVSS·h)。
李勇智等也采用厌氧/缺氧SBR反应器对以硝酸盐作为电子受体的反硝化除磷过程进行了研究。
结果表明,反硝化聚磷菌完全可以在厌氧/缺氧交替运行条件下得到富集。
稳定运行的厌氧/缺氧SBR反应器的反硝化除磷效率>90%,出水磷浓度<lmg/L。
进水COD对反硝化除磷的效率影响很大,在COD<180mg/L时,进水COD越高,除磷效率也就越高,最大效率可达94%。
2.2 DPB的影响因素对于反硝化除磷工艺效果的影响因素较多,主要集中在电子受体、氧含量、pH、碳源和菌种竞争等方面。
2.3 应用随着微生物学和生物化学的发展以及人们对生物技术的掌握,脱氮除磷技术由以单纯工艺改革向着以生物学特性研究、促进工艺改革的方向发展,以达到高效低耗的目的。
目前,满足DPB所需环境和基质的工艺有单、双两级。
在单级工艺中,DPB细菌、硝化细菌及非聚磷异养菌同时存在于悬浮增长的混合液中,顺序经历厌氧/缺氧/好氧三种环境。
最具代表性的是BCFS工艺。
在双级工艺中,硝化细菌独立于DPB而单独存在于某反应器中。
双级工艺主要有Dephanox和A2NSBR 等。
3 结语(1)以上是两种微生物在污水处理中的一些原理和运用,从中我们可以看到这些新技术的广泛运用前景和拓展空间。
利用微生物法处理污水不仅节约了经济资源。
(2)反硝化聚磷菌DPB具有在缺氧环境吸磷,能使吸磷和反硝化(脱氮)这两个生物化学过程借助同一种细菌在同一种环境下一并完成的特点,故在工艺环境中有不仅可以节省对碳源的需要,而且吸磷过程在缺氧段内完成可节省曝气所需要的能源,产生的剩余污泥量也大为降低等诸多优点。
3)反硝化聚磷过程在废水的强化生物除磷过程占有重要的地位,具有良好的应用前景。
随着学科和技术的发展,基础研究向工艺改革的转化,反硝化除磷技术必将得到更多的应用和更大的重视。
参考文献[1] 水处理微生物学,张胜华主编[2] 刘玲花,王占生,王志石.硫/石灰石滤柱去除地下水中硝酸盐的研究.环境工程,1995,13(3):[3] 关于好氧反硝化细菌的研究,2007[4] 氨氮废水处理过程中的好氧反硝化研究,给水排水,2000.[5] 郑士民、颤望明、钱新民,自养微生物北京:科学出版杜[6] 徐亚同.污染控制微生物工程.北京:化学工业出版社,2001。