几种力做功的特点及求解方法
求解变力做功的六种常见方法剖析

ʏ李鹏飞公式W =F l c o s α只适用于恒力做功的计算,若遇到的是变力做功问题该怎样计算呢?下面我们就结合例题来剖析求解变力做功的六种常见方法,供同学们参考㊂方法一:等效替代法若通过转换研究对象能找到一个与待求变力做的功相同的恒力,则可以利用公式W =F l c o s α计算出该恒力做的功,间接求得变力做的功㊂这种将变力做功转换成恒力做功的求解方法叫等效替代法㊂例1 如图1所示,某人用跨过定滑轮的细绳以恒力F 拉着放在水平面上的滑块,使其沿着水平面由A 点前进距离l 后到达B 点㊂已知滑块在A ㊁B 两点时,细绳与水平方向间的夹角分别为α和β,滑轮到滑块的高度为h ,不计细绳与滑轮之间的摩擦和细绳的重力㊂求在这一过程中细绳的拉力对滑块所做的功㊂图1细绳对滑块的拉力大小始终等于F ,但方向在时刻改变,属于变力做功问题,不能直接利用W =F l c o s α进行计算㊂实际上,恒力F 对细绳末端所做的功等效于细绳的拉力对滑块所做的功㊂在细绳与水平面间的夹角由α变到β的过程中,恒力F 作用的细绳末端移动的位移Δl =h s i n α-h s i n β=h 1s i n α-1s i n β(),因此恒力F 对细绳末端所做的功W F =F ㊃Δl =F h 1s i n α-1s i n β(),即细绳的拉力对滑块所做的功W =W F =F h1s i n α-1s i n β()㊂方法二:平均力法若物体受到的力方向不变,而大小随着位移呈线性变化,则可以先求出力的平均值F =F 1+F 22(F 1和F 2分别为物体在研究过程初㊁末状态下所受的力),认为物体受到的是一个大小为 F 的恒力作用,再利用公式W = F l c o s α求解变力做的功㊂例2 如图2所示,轻弹簧的一端与竖直墙壁连接,另一端与一质量为m 的物块相连,物块位于光滑水平面上,已知弹簧的劲度系数为k ,开始时弹簧处于自然状态㊂用水平向右的拉力F 缓慢拉物块,使物块在弹性限度范围内前进距离x 0,求在这一过程中拉力F 对物块所做的功㊂图2在物块缓慢运动的过程中,拉力F 的方向不变,大小始终与弹簧的弹力等大反向,与位移x 满足关系式F =k x ,即从零开始随位移均匀增大,因此在物块前进距离x 0的过程中,拉力F 的平均值 F =0+k x 02=12k x 0,拉力F 对物块所做的功W = F x 0=12k x 20㊂方法三:F -x 图像法当力F 与位移x 同向时,计算功的公式可表示为W =F x ,因此在F -x 图像中,图像与x 轴所围成的 面积 就表示力F 在位移x 上所做的功㊂ 面积 位于x 轴上方,说明力F 做正功; 面积 位于x 轴下方,说明力F 做负功㊂53物理部分㊃经典题突破方法高一使用 2022年4月Copyright ©博看网. All Rights Reserved.例3 如图3所示,一个正方形木块漂浮在一个面积很大的水池中,水深为H ,木块边长为a ,质量为m ,密度为水的一半㊂开始时木块静止,有一半没入水中㊂现用力F 将木块压到池底,不计摩擦㊂求力F 在将木块从初始状态刚好压到池底的过程中,力F 对木块所做的功㊂图3将木块从初始状态缓慢地压到刚好完全没入水中的过程中,力F 与木块下降的位移x 成正比,木块下降位移x =a2时,力F 最大,且F m a x =m g ,之后力F 始终等于F m a x ㊂作出F -x 图像如图4所示,则图中阴影部分的面积在数值上等于力F 对木块所做的功,即W =m g (H -a )+H -a2()2=m gH -3m g a4㊂图4方法四:微元法若物体在运动过程中所受的变力始终与速度方向在同一条直线上或成某一固定角度,则可以将运动过程分成无数个小段,在每一个小段上都可以认为物体受到的力是恒力,物体在整个运动过程中的位移等于运动轨迹的长度,则力在各个小段上所做功的代数和即为变力在整个运动过程中所做的功㊂图5例4 以前的人们经常采用如图5所示的 驴拉磨 方式把粮食加工成粗面来食用㊂假设某次采用 驴拉磨 方式进行粮食加工的过程中,驴对磨的拉力大小始终为500N ,驴做圆周运动的半径为1.5m ,则在驴拉磨转动一周的过程中,拉力所做的功为( )㊂A .0 B .500JC .750JD .1500πJ在驴拉磨转动一周的过程中,拉力F 的大小不变,方向时刻改变,但总与速度的方向相同㊂将转动的一周分割成无数个小段,则每一个小段对应的位移Δs 1㊁Δs 2㊁Δs 3㊁ ㊁Δs n 都可认为与拉力F 同向,因此在驴拉磨转动一周的过程中,力F 所做的功等于恒力F 在各个小段上所做功的代数和,即W F =F ㊃Δs 1+F ㊃Δs 2+F ㊃Δs 3+ +F ㊃Δs n =F (Δs 1+Δs 2+Δs 3+ +Δs n )=F ㊃2πR =1500πJ ㊂答案:D方法五:动能定理法若物体的运动情况较为复杂,但是物体在初㊁末状态下的动能,以及除待求变力所做的功外其他力所做的功都可以比较容易地求出,则可以利用动能定理来求解这个变力所做的功㊂图6例5 如图6所示,一个半径为R 的半圆形轨道固定在竖直平面内,轨道两端等高;质量为m 的质点自轨道左端P 点由静止开始下滑,滑到最低点Q 时,对轨道的压力大小为2m g ,重力加速度为g ㊂在质点自P 点滑到Q 点的过程中,克服摩擦力所做的功为( )㊂A .14m g R B .13m g R C .12m g R D .π4m gR 在质点自P 点滑到Q 点的过程中,质点受到的滑动摩擦力的大小和方向都在变化,属于变力做功问题㊂设此过程中质点克服摩擦力所做的功为W f ,根据动能定理得m gR -W f =12m v 2Q -0;根据牛顿第三定律可知,质点在Q 点受到轨道63 物理部分㊃经典题突破方法 高一使用 2022年4月Copyright ©博看网. All Rights Reserved.的支持力大小N =2m g ;质点运动到Q 点时,根据牛顿第二定律得N -m g =m v 2QR㊂联立以上三式解得W f =12m g R ㊂答案:C方法六:机械能守恒定律法若物体只受重力和弹力作用或只有重力和弹力做功,且重力和弹力中有一个力是变力,则可以利用机械能守恒定律来求解这个变力所做的功㊂图7例6 如图7所示,一根金属链条的总长为l ,置于足够高的光滑水平桌面上,链条下垂部分的长度为a ㊂某时刻链条受到微小扰动由静止开始下滑,在链条由静止开始下滑到整根链条刚好离开桌面的过程中,重力所做的功为多少?链条在下滑的过程中,下垂部分不断增长,质量不断增大,即这部分链条的重力是变力,整根链条的运动是在该变力作用下的运动,属于变力做功问题㊂取桌面为零重力势能参考平面,设整根链条的质量为m ,初始状态下链条下垂部分的质量为m 0,则m 0=al m ㊂初始状态下,整根链条的机械能E 1=0-m 0g ㊃a 2=-m g a22l;整根链条刚好离开桌面时,整根链条的机械能E 2=W 重-m g ㊃l2㊂根据机械能守恒定律得E 1=E 2,解得W 重=m g (l 2-a 2)2l㊂ 图81.如图8所示,摆球质量为m ,悬绳的长度为L ,把悬绳拉到与悬点O 处于同一水平线上的A 点后放手㊂在摆球从A 点运动到最低点B 的过程中,设空气阻力F 阻的大小保持不变,则下列说法中正确的是( )㊂A .重力做功为m g L B .悬绳的拉力做功为12m g πL C .空气阻力F 阻做功为-m g L D .空气阻力F 阻做功为-12πF 阻L 2.用大锤将一木桩打入泥土里,木桩长为L ,大锤第一次击桩时使木桩从地面钻入泥土的深度为L5,如果木桩受到泥土的阻力远大于木桩的重力,且与木桩钻入泥土的深度成正比,那么大锤打击木桩多少次后木桩全部钻入泥土中图93.如图9所示,质量为m 的小球用长度为L 的轻质细线悬于O 点,与O 点处于同一水平线上的P 点处有一个光滑的细钉,已知O ㊁P 两点间的水平距离为L2㊂在A 点给小球一个水平向左的初速度v 0,发现小球恰能到达与P 点在同一竖直线上的最高点B ㊂(1)小球到达B 点时的速率为多大(2)若初速度v 0=3g L ,则在小球从A 点运动到B 点的过程中克服空气阻力做了多少功图104.如图10所示,质量m =2k g 的物体,从光滑斜面的顶端A 点以初速度v 0=5m /s 滑下,在D 点与弹簧接触并将弹簧压缩到B点时的速度为零㊂已知A ㊁B 两点间的竖直高度h =5m ,取重力加速度g =10m /s2,在物体从A 点运动到B 点的过程中,弹簧的弹力对物体所做的功为多少参考答案:1.A D 2.25次㊂3.(1)v B =g L 2;(2)W 克=114m g L ㊂4.W 弹=-125J㊂作者单位:山东省惠民县第一中学(责任编辑 张 巧)73物理部分㊃经典题突破方法高一使用 2022年4月Copyright ©博看网. All Rights Reserved.。
重力势能、弹性势能、动能及动能定理

.课重力势能、弹性势能、动能和动能定理题教学目的重难点1、掌握重力势能、弹性势能和动能的概念2、熟练应用动能定理动能定理的应用教学内容【根底知识总结与稳固】一、重力做功和重力势能(1〕重力做功特点:重力对物体所做的功只跟物体的初末位置的高度有关,跟物体运动的路径无关。
物体沿闭合的路径运动一周,重力做功为零,其实恒力〔大小方向不变〕做功都具有这一特点。
如物体由 A 位置运动到 B 位置,如图 1 所示, A、 B 两位置的高度分别为h1、 h2,物体的质量为m,无论从A 到 B 路径如何,重力做的功均为:W G=mgs×cosa=mg〔h1-h2〕=mgh l -mgh2可见重力做功与路径无关。
(2〕重力势能定义:物体的重力势能等于它所受重力与所处高度的乘积。
公式: Ep=mgh。
单位:焦〔 J〕(3〕重力势能的相对性与重力势能变化的绝对性重力势能是一个相对量。
它的数值与参考平面的选择相关。
在参考平面内,物体的重力势能为零;在参考平面上方的物体,重力势能为正值;在参考平面下方的物体,重力势能为负值。
重力势能变化的不变性〔绝对性〕尽管重力势能的大小与参考平面的选择有关,但重力势能的变化量都与参考平面的选择无关,这表达了它的不变性〔绝对性〕。
某种势能的减小量,等于其相应力所做的功。
重力势能的减小量,等于重力所做的功;弹簧弹性势能的减小量,等于弹簧弹力所做的功。
重力势能的计算公式E p=mgh,只适用于地球外表及其附近处g 值不变时的范围。
假设g 值变化时。
不能用其计算。
二、弹力做功和弹性势能探究弹力做功与弹性势能(1〕功能关系是定义某种形式的能量的具体依据,从计算某种力的功入手是探究能的表达式的根本方法和思路。
(2〕科学探究中必须善于类比已有知识和方法并进行迁移运用。
(3〕科学的构思和猜想是创造性的表达。
可使探究工作具有针对性。
(4〕分割——转化——累加,是求变力功的一般方法,这是微积分思想的具体应用。
常见的变力做功情况及求解方法

常见的变力做功情况及求解方法作者:郭磊来源:《中小学实验与装备》 2015年第6期山东省淄博市周村区实验中学(255300) 郭磊在高中物理教材中,应用恒力对物体做功的物理模型推导出功的计算式为:W =FScosα.如果力的大小是变化的,那么公式中的F 就无法取值;如果力的方向是变化的,公式中的角α 就无法取值,因而此公式只适用于恒力做功问题.而对于变力做功情况在高中物理中又经常出现,学生在解决这一方面问题时往往无从下手.那么如何使这一复杂问题简单化,变成应用高中物理知识就可以解决的问题呢? 下面通过实例分析介绍总结几种解决变力做功的常用方法.1微元法思想当物体在变力作用下做曲线运动时,可用微元法将曲线分成无限个微小段,每一小段可认为恒力做功,总功即为各个小段做功的代数和.如图1所示,有一台小型石磨,某人用大小恒为F ,方向始终与磨杆垂直的力推磨.假设施力点到固定转轴的距离为L ,在使磨转动一周的过程中,推力做了多少功?解析:由于力F 方向不断变化,因此是一个变力做功问题,如果将运动轨迹分成无限个微小段ΔS1,ΔS2,ΔS3???? ,每一小段曲线近似看为直线,力F 的方向也近似与这一小段的轨迹重合,则每一小段均可看作恒力做功过程.3动能定理法动能定理求变力做功是非常方便的,但是必须知道初、末两个状态的物体的速度,以及在中间过程中分别有哪些力对物体做功,各做了多少功.如图3所示,把一个质量为m 的小球系在轻绳的一端,轻绳的另一端穿过光滑木板的小孔,且受到竖直向下的拉力作用.当拉力大小为F1时,小球在光滑木板平面上做半径为R1的匀速圆周运动;今将拉力逐渐增大为F2时,小球仍在光滑木板平面上做匀速圆周运动,但运动半径变为R2.求在此过程中拉力对小球做了多少功?6结语物理思维方法是物理知识的精髓,是知识转化为能力的桥梁.以上所举的4个例题,都是求变力做功比较常见的题型.在什么情况下用什么方法来处理,都需要探究和总结.在教学中,我们应注重物理思维和物理方法的教育,使学生学会学习、学会应用,学会创新,这样才能“活化”和“深化”物理知识,才能开拓思维空间,进一步提高思维能力和解题能力.收稿日期:2015-10-14。
求解变力做功的十种方法

求解变力做功的十种方法功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式直接求解,但变力做功就不能直接求解了,需要通过一些特殊的方法,本文结合具体的例题,介绍十种解决变力做功的方法。
一. 动能定理法例1. 一质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 点很缓慢地移到Q 点,如图1所示,此时悬线与竖直方向夹角为θ,则拉力F 所做的功为:( )A :θcos mgLB :)cos 1(θ-mgLC.:θsi n FL D :θcos FL分析:在这一过程中,小球受到重力、拉力F 、和绳的弹力作用,只有重力和拉力做功,由于从平衡位置P 点很缓慢地移到Q 点.,小球的动能的增量为零。
那么就可以用重力做的功替代拉力做的功。
解:由动能定理可知:0=-G F W W )cos 1(θ-==mgL W W G F 故B 答案正确。
小结:如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,利用动能定理可以求变力做功是行之有效的。
二. 微元求和法例2. 如图2所示,某人用力F 转动半径为R 的转盘,力F 的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功。
解:在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),即F 在每瞬时与转盘转过的极小位移∆∆∆s s s 123、、……∆s n 都与当时的F 方向同向,因而在转动一周过程中,力F 做的功应等于在各极小位移段所做功的代数和,即:W F s F s F s F s F s s s s F Rn n =++++=++++=()()∆∆∆∆∆∆∆∆1231232……·π小结:变力始终与速度在同一直线上或成某一固定角度时,可化曲为直,把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W Fs =cos θ计算功,而且变力所做功应等于变力在各小段所做功之和.三. 等值法等值法是若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。
变力做功的六种常见计算方法

变力做功的六种常见计算方法s,但是学生在应用在高中阶段,力做功的计算公式是W=FScoα时,只会计算恒力的功,对于变力的功,高中学生是不会用的。
下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。
方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。
例题1:如图所示。
质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0.25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小。
解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/2R。
此题中,当半径由R2/R;当拉力为0.25F时,0.25F=mv2变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定2=0.25RF。
理,求2—0.5mv2得外力对物体所做的功的大小W=0.5mv1方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。
例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2.25km,速度达到最大值v=54km/h。
假设机车受到的阻力为恒力。
求机车在运动中受到的阻力大小。
解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。
所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。
在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。
由动能定理,Pt—fs=0.5mv2—0,把P=Fv=fv代入得,阻力f=25000N。
方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可。
例题3:如图所示。
轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。
功 课件-高一物理人教版(2019)必修第二册

F1
F1 F cos
WF1=F1·
l
WF2=F2·
0
W2 = 0
W F l cos
二、用分解位移的方法求功
除了分解力以外还可以分解位移:
l1=lcosα
l1
F
α
l2
l
l2=lsinα
W= Flcosα
W1= Fl 1= Flcos α
W2= 0
在力方向发生的位移
三、功
1.公式:W = Flcosα
F1
A
B
负功的物理意义:
F2
表示该力是阻力。
2.某力做多少负功,也可说成“物体
克服该力做多少功”(取绝对值)。
v
f=5N
A
l=2m
B
如:-8J > 5J
不做功的情况
1.有力无距离
2.有距离无力
3.力与运动方向垂直
03
几个力对物体做的总功
我们学习了一个力对物体所做
的功的求解方法,而物体所受的力
往往不止一个,那么如何求解这几
02
正功和负功
力与位移夹角为锐角(0≤α<π/2)
0≤α<π/2,cosα>0,W=Flcosα>0
即力对物体做正功
力与位移夹角为钝角(π/2<α≤π)
π/2 <α≤π,-1≤cosα<0,W=Flcosα<0
即力对物体做负功 或“物体克服某力做功(取绝对值)”
阅读课文
完成下表
W = F l cosα
故计算功时一定要指明是哪个力在哪个过程对物体做的功。
(2)公式W = Fl cosα只适用于计算恒力的功,l是物体的位移,
变力做功的求解方法

变力做功的求解方法变力做功是物理学中一个重要的概念,它描述了当一个力作用于一个物体时,这个力对物体所做的功是如何随时间变化的。
在实际应用中,我们经常需要求解变力做功,例如研究机械的运动特性、计算机械工作所需的能量等。
求解变力做功的方法有多种,下面将介绍三种常用的方法:通过力的分解法、积分法和图像法。
第一种方法是力的分解法。
当一个力是一个常量力的合力时,我们可以将这个力分解成多个方向上的分力,然后对每个方向的分力进行求解,最后将各个方向上的分力的功相加即可得到合力所做的功。
在实际应用中,当一个力是不常量力时,我们可以将这个力进行一定的分段处理,将不同的部分的力分别进行分解,然后分别求解,最后将各个部分的功相加即可得到总的功。
第二种方法是积分法。
当一个力是一个函数关系时,我们可以通过对这个函数进行积分得到力的功函数,然后计算积分上下限之间的功值。
具体而言,假设一个力F随时间t的变化,那么力在时间t1和t2之间做的功可以表示为:W = ∫(F(t))dt其中,W表示力所做的功,∫表示积分符号,F(t)表示力随时间的变化。
在实际计算中,我们可以根据给定的力函数F(t)进行积分运算,然后计算上下限之间的功值。
第三种方法是图像法。
当一个力是已知的、离散的数据时,我们可以通过绘制力与时间之间的图像来求解力所做的功。
具体而言,我们可以将给定的力数据以时间为横坐标、力值为纵坐标绘制成折线图,然后计算每个时间段内力与时间之间的面积,最后将各个时间段内的面积相加即可得到力所做的功。
综上所述,求解变力做功的方法有很多种,其中常用的方法有力的分解法、积分法和图像法。
不同的方法适用于不同的情况,具体选择哪种方法进行求解,需要根据具体的问题来决定。
无论使用哪种方法,都需要对力与时间的关系进行分析,然后进行适当的求解,最终得到力所做的功的结果。
变力做功的六种常见计算方法

变力做功的六种常见计算方法在高中阶段,力做功的计算公式是W=FScosα,但是学生在应用时,只会计算恒力的功,对于变力的功,高中学生是不会用的。
下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。
方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。
例题1:如图所示。
质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0。
25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小.解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/R;当拉力为0。
25F时,0.25F=mv22/2R。
此题中,当半径由R 变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定理,求得外力对物体所做的功的大小W=0。
5mv12—0。
5mv22=0。
25RF.方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。
例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2。
25km,速度达到最大值v=54km/h。
假设机车受到的阻力为恒力。
求机车在运动中受到的阻力大小。
解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。
所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。
在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。
由动能定理,Pt—fs=0。
5mv2—0,把P=Fv=fv代入得,阻力f=25000N.方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可.例题3:如图所示。
轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种力做功的特点及求解方法
作者:徐君生
来源:《新高考·高一物理》2012年第04期
功是物理学中一个非常重要的物理量,它是解决物理问题三大途径之一——动能定理方程中的关键物理量,同时也是解答物理习题重要方法之一——功能原理中至关重要的物理量. 因此能正确把握物体受到的各个力做功的特点及大小的求解方法就显得至关重要. 本文试就结合具体事例给同学们总结一下已学过的几种力做功的特点,为机械能守恒定律这一章内容的学习打下坚实的基础.
■ 1. 恒力做功
如果F是恒力,则求解恒力做功的基本方法是应用功的公式计算. 对功的计算式
W=Fxcosα的使用,除知道F必须是恒力外,还应知道x的含义,公式中的x为力的作用点对地的位移. 对x的理解着重在三点:一是x是位移,位移的大小只与始末位置有关,所以恒力做功的特点是与移动的路径无关,只与始末位置有关,其典型代表就是重力;二是x为对地位移,一定是以地面为参考系而非相对位移;三是x是力的作用点对地位移而不是物体对地位移,这两个位移在绝大多数情况下没有区别,但如果力通过动滑轮施加到物体上,则这两个位移就完全不一样了,请看例1.
■ 例1 一恒力F通过一动滑轮拉物体,沿光滑水平面前进了距离s. 在运动过程中,F与水平方向保持θ角不变,求该过程中拉力所做的功.
■ 解析此题最容易得出的答案是WF=Fxcosθ,错误的原因就是没有正确理解公式中x的含义,正确答案应该是:设在绳上打一个结,见图2中的A点,力的作用点位移应该是图中AB长,设为L,则WF=FLcosα,只不过图中的L及α均不知,而求解L及α比较麻烦,所以本题采用等效替代法求解,拉力F作用在物体上的等效力为F+Fcosθ,所以等效力做功为
(F+Fcosθ)x.
■ 2. 变力做功
变力做功不能直接用W=Fxcosθ公式计算,求解变力做功常用如下几种方法.
(1)求解变力做功的方法
方法一:平均值法. 当F是变力时,如果能求出F的平均值,则W=■xcosθ,只是中学范围内会计算平均值的情况就是力F随位移x线性变化,则平均值■=(F1+F2)/2.
方法二:图象法. 若F随位移变化,且能画出F—x图象,则W可用F—x图象与x轴所包围的面积表示,这种F—x图象称之为示功图. x轴上方的面积表示力对物体做正功的多少,x 轴下方的面积表示力对物体做负功的多少.
方法三:分段法(微元法). 微元法是物理学中非常重要的方法,其基本思想就是化“变”为“恒”,把物体运动的位移分割为若干小段,每一个小段F为定值或近似当做定值,则每一小段可用公式?驻W=F?驻xcosθ,然后把每一小段做功累加求和得到总功.
方法四:等效替代法. 若某一变力做的和某一恒力做的功相等,则可以用求得的恒力的功来作为变力的功.
方法五:动能定理法. 动能定理是中学范围内求解变力做功的最基本方法,有关动能定理的应用限于篇幅这里不再赘述.
(2)几种特殊变力做功的结论
结论一:以弹簧或橡皮绳为代表的弹力,其F与x成正比,应用图象法可得到弹簧被拉升或压缩x时弹力做的功为W=-kx2/2;
结论二: f 大小不变,方向始终与速度v方向相反,应用微元法可得W f =- f s总,式中s 总是物体走过的总路程.
结论三:力的方向始终与速度v的方向垂直,应用微元法知这个力不做功(W=0).
■ 3. 作用力与反作用力做功
(1)一般作用力与反作用力
作用力与反作用力尽管大小相等,但由于作用在两个不同的物体上,这两个物体对地位移不一定相等,所以如果没有具体指明是什么力就笼而统之称作作用力与反作用力做功,则它们之间没有必然关系,没有作用力做正功反作用力一定做负功的说法. 例如放在光滑水平面上的两个磁体从静止开始在相互吸引力作用下的运动,作用力与反作用力均做正功;再如放在水平桌面上的物体在外加拉力作用下运动,则桌面对物体的摩擦力做负功,而物体对桌面的摩擦力不做功等.
(2)几种特殊的作用力反作用力做功的特点总结
结论一:一对静摩擦力做功之和一定为零;
结论二:一对滑动摩擦力做功之和一定为负;
结论三:一对弹力做功之和一定为零.
■ 4. 合力做功
(1)合力做功的求解方法
由合力与分力的等效替代关系知,合力与分力做功也可以等效替代,由此计算合力功的方法有两种:一是先求物体所受到的合力,再根据公式W=Fxcosθ求合力做的功. 二是根据
W=Fxcosθ,求每个分力做的功W1、W2、W3……再根据W合=W1+W2+W3+……求合力做的功. 两种求解合力做功的方法要依据题目特点灵活运用,如物体处于平衡状态或某一方向受力平衡时,先求合力再求功的方法简单有效;如已知物体受力中有的不做功,有的做功,且方便求得该力的功(如重力的功),选择第二种方式简单方便.
(2)重要结论及应用
同一根绳或同一轻杆对与之相连的两物体做功之和一定为零. 由于绳或轻杆的弹力一般不知,所以求解绳或轻杆的弹力做功比较困难. 如果把这两个物体当做一个整体,因为绳或杆的弹力做功之和为零,从而可以避开弹力做功的问题.
■ 例2 如图3在光滑水平面上质量为M物体通过细绳和定滑轮与质量为m的物体相连,整体从静止开始运动,已知m与地面之间的距离为h,求当m着地时两者的速度.
■ 解析绳对m做功,做功的多少与绳拉力大小有关,但绳拉力不知,尽管可以求出,毕竟转了一个弯,所以以M和m为整体作为研究对象,则整体只有重力做功,根据重力做功的特点可知:
mgh=■(M+m)v2
从而求出m着地时的速度v=■。