分式的乘除法练习题
分式的乘除运算专题练习

分式的乘除乘方专题 【2 】演习例1.下列分式a bc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ).A.1B.2C.3D.4例23234)1(x y y x •a a a a 2122)2(2+⋅-+x y xy 2263)3(÷41441)4(222--÷+--a a a a a 1.约分把一个分式的分子与分母的公因式约去,叫做约分.约分的根据是分式的根本性质. 若分式的分子.分母是多项式,必须先把分子.分母分化因式,然后才能约去公因式. 分子与分母没有公因式的分式,叫做最简分式,又叫做既约分式.分式的运算成果必定要化为最简分式.2.分式的乘法b a d c ac3.分式的除法b a d c b a c d bc ad例3.若432zy x ==,求222z y x zx yz xy ++++的值.例4.盘算(1)3322)(c b a -(2)43222)()()(x y x y y x -÷-⋅-(3)2332)3()2(c b a bc a -÷-(4)232222)()()(x y xy xy x y y x -⋅+÷- 分式的乘方求n 个雷同分式的积的运算就是分式的乘方,用式子表示就是(b a)n .分式的乘方,是把分子.分母各自乘方.b ann b a)56(3)1(122ab cd c b a -÷-、计算:(2)432643xy y x ÷-(3)(xy -x 2)÷x y xy -(4)2223b a a ab -+÷b a b a -+3(5)3224)3()12(y x y x -÷- (6)322223322322)2()2()34(c b ab a c b a b a ab c +-÷-⋅ 2.假如32=b a ,且a ≠2,求51-++-b a b a 的值盘算(1))22(2222a b abb a a b ab ab a -÷-÷+-- (2)(2334b a )2·(223a b -)3·(a b3-)2 (3)(22932x x x --+)3·(-x x --13)22.先化简,再求值:(b a ab 22+)3÷2223)b a ab (-·[)(21b a -]2,个中a=-21,b=323.(1)先化简后求值:2(5)(1)5a a a a -+-÷(a 2+a ),个中a=-13. (2)先化简,再求值:21x x x -+÷1xx +,个中x=1.4.已知m+1m =2,盘算4221m m m ++的值.7.(宁夏)盘算:(9a 2b -6ab 2)÷(3ab )=_______.8.(北京)已知x -3y=0,求2222x y x x y +-+·(x -y )的值.9.(杭州)给定下面一列分式:3x y ,-52x y ,73x y ,-94x y ,…(个中x ≠0).(1)把随意率性一个分式除以前面一个分式,你发明了什么纪律? (2)根据你发明的纪律,试写出给定的那列分式中的第7个分式. .11.(结论凋谢题)请你先化简,再拔取一个使原式有意义而你又爱好的数代入求值:322m m m m --÷211m m -+.12.(浏览懂得题)请浏览下列解题进程并答复问题:盘算:22644x x x --+÷(x+3)·263x x x +-+. 解:22644x x x --+÷(x+3)·263x x x +-+=22644x x x --+·(x 2+x -6)①=22(3)(2)x x --·(x+3)(x -2)② =22182x x --③上述解题进程是否准确?假如解题进程有误,请给出准确解答.13.已知a 2+10a+25=-│b -3│,求代数式42()b a b -·32232a ab a b b +-÷222b a ab b -+的值.(一).填空题1.把一个分式的分子与分母的约去,叫做分式的约分.2.在分式xy xy y x 222+中,分子与分母的公因式是.3.将下列分式约分:(1)258x x = (2)22357mn nm -= (3)22)()(a b b a --=4.盘算2223362c ab bc b a ÷=. 5.盘算42222a b a a ab ab a b a --÷+-=.6.盘算(-y x )2·(-32y x )3÷(-y x )4=.(二).解答题7.盘算下列各题316412446222+⋅-+-÷+--x x x x x x x y x yxy x -+-24422÷(4x 2-y 2)(3)4344516652222+-÷-++⋅-+-a a a a a a a a (4)22222x a bx x ax a ax -÷+- 8.某厂天天能临盆甲种零件a 个或乙种零件b 个,且a ∶b=2∶3.甲.乙两种零件各一个配成一套产品,30天内能临盆的产品的最多套数为若干?1.已知x 2+4y 2-4x+4y+5=0,求22442y xy x y x -+-·22y xy y x --÷(y y x 22+)2的值.2.已知a b c =1,求a a ba b b cb ca c c ++++++++111的值.3.盘算x x x x x x x x 22222662----÷+-+- 4.当x=-3时,求x x x xx x 43342323-++-的值 5.已知x+y 1=1,y+z 1=1,求证z+x 1=1.。
(完整版)分式的乘除练习题及答案

分式的乘除练习题及答案问题1 计算:(1); (2).22238(4xy z z y-A 2226934x x x x x +-+--A 名师指导(1)这道例题就是直接应用分式的乘法法则进行运算.值得注意的是运算结果应约分到不好约分为止,同时还应注意在计算时跟整式运算一样,先确定符号,再进行相关计算,求出结果.(2)这道例题中分式的分子、分母是多项式,应先把分子、分母中的多项式分解因式,再进行约分.解题示范解:(1);2222223824()644xy z xy z xy z y yz -=-=-A (2).22222692(3)(2)(3)3343(2)(2)(3)(2)(2)2x x x x x x x x x x x x x x x x x +-++-+--===---+--+--A A 归纳提炼类比分数的乘法运算不难理解,分式的乘法运算就是根据分式乘法法则,将各式分子、分母分别相乘后再进行约分运算,值得注意的地方有三点:一是要确定好运算结果的符号;二是计算结果中分子和分母能约分则要约分;三是有时计算结果的分母不一定是单一的多项式,而是多个多项式相乘,这时也不必把它们展开.问题2 计算:(1); (2).2236a b ax cd cd-÷2224369a a a a a --÷+++名师指导分式除法运算,根据分式除法法则,将分式除法变为分式乘法运算,注意点同分式乘法.解题示范解:(1);22226636326a b ax a b cd a bcd ab cd cd cd ax acdx x-÷=-=-=-A(2).2222242(3)(2)(3)33693(2)(2)(3)(2)(2)2a a a a a a a a a a a a a a a a a ---+-++÷===+++++-++-+A问题3 已知:,,求代数式的值.2a =-2b =+322222222a b a b a ab a ab b a b+-÷++-名师指导完成这类求值题时,如果把已知条件直接代入,计算将会较为繁杂,容易导致错误产生.解决这种问题,一般应先将代数式进行化简运算,然后再把已知条件代入化简后的式子中进行计算,这样的处理方式可以使运算量少很多.解题示范解:化简代数式得,322222222a b a b a ab a ab b a b+-÷++-22()()()()()a b a b a b a b a b a a b ++-=+-A 222()()()()a b a b a b a a b a b +-=+-.ab =把,,所以2a =-2b =+ab原式.22(222=+=-=归纳提炼许多化简求值题,有的在题目中会明确要求先化简,再求值,这时必须按要求的步骤进行解题.但有的在题目中未必会给出明确的要求或指示,与整式中的求代数式值的问题一样,分式中的求值题一般也是先化简,然后再代入已知条件,这样可以简化运算过程.【自主检测】1.计算:·=___ _____.2()xy x -xy x y-2.计算:____ ____.23233y xy x -÷3.计算:=____ ____.3(9a ab b-÷4.计算:=____ ____.233x y xy a a÷5.若m 等于它的倒数,则分式的值为( m m m m m 332422--÷--)A .-1B .3C .-1或3D .41-6.计算的结果是( 2()x yx xy x ++÷)A .B .C .D .2()x y +y x +22x x7.计算的结果是( 2(1)(2)3(1)(1)(2)a a a a a -++++A )A .3a 2-1B .3a 2-3C .3a 2+6a +3D .a 2+2a +18.已知x 等于它的倒数,则÷的值是(263x x x ---2356x x x --+)A .-3B .-2C .-1D .09.计算÷.22121a a a -++21a aa -+10.观察下列各式:2324325432(1)(1)1(1)(1)1(1)(1)1(1)(1)1x x x x x x x x x x x x x x x x x x -÷-=+-÷-=++-÷-=+++-÷-=++++(1)你能得到一般情况下的结果吗?(1)(1)n x x -÷- (2)根据这一结果计算:.2320062007122222++++++【自主评价】一、自主检测提示8.因为x 等于它的倒数,所以,1x =±2263356x x x x x x ---÷--+.(3)(2)(2)(3)33x x x x x x -+--=--A (2)(2)x x =+-224(1)43x =-=±-=-10.根据所给一组式子可以归纳出:.122(1)(1)1n n n x x x x x x ---÷-=+++++ 所以.232006200720082008122222(21)(21)21++++++=--=- 二、自我反思1.错因分析2.矫正错误3.检测体会4.拓展延伸参考答案1. 2. 3. 4. 5.C 6.C 7.B2x y -292x y -213b -9x 8.A 9. 10.(1),(2) 1a 121n n x x x --++++ 200821-。
分式的乘除法专项训练题(含答案)

分式乘除法一、选择题1. 下列等式正确的是( )A. (-1)0=-1B. (-1)-1=1 C. 2x -2=221xD. x -2y 2=22x y2. 下列变形错误的是( )A. 46323224y y x y x -=-B. 1)()(33-=--x y y xC. 9)(4)(27)(12323b a x b a b a x -=--D. y xa xy a y x 3)1(9)1(32222-=--3. cd axcd ab 4322-÷等于( ) A. -x b 322 B. 23 b 2x C. x b 322 D. -222283d c x b a 4. 若2a =3b ,则2232b a 等于( ) A. 1 B. 32C.23D.69 5. 使分式22222)(y x ayax y a x a y x ++⋅--的值等于5的a 的值是( )A. 5 B. -5 C. 51D. -516. 已知分式)3)(1()3)(1(-++-x x x x 有意义,则x 的取值为( )A. x ≠-1B. x ≠3C. x ≠-1且x ≠3D. x ≠-1或x ≠3 7. 下列分式,对于任意的x 值总有意义的是( )A. 152--x xB. 112+-x xC. xx 812+D.232+x x8. 若分式m m m --21||的值为零,则m 取值为( )A. m =±1B. m =-1C. m =1D. m 的值不存在 9. 当x =2时,下列分式中,值为零的是( )A.2322+--x x x B. 942--x x C.21-x D.12++x x 10. 每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( )A.yx mynx ++元B.yx nymx ++元C.y x nm ++元 D. 21(ny m x +)元 11. 下列各式的约分正确的是( )A. 2()23()3a c a c -=+- B.2232abc c a b cab=C.2212a b ab a ba b=---- D.222142a c a c c a=+--+22211a a a a aM +++=+A. aB. 1a +C. a -D.21a - 13. 小马虎在下面的计算题中只做对了一道题,你认为他做对的题目是( )A.11326b a a ⨯=B.22()b a b a a b ÷=--C.111x y x y ÷=+-D.2211()()x y y x y x ⨯=---14. 下列式子:,,1,1,32,32πn m b a a ba x x --++ 中是分式的有( )个 A 、5 B 、4 C 、3D 、215. 下列等式从左到右的变形正确的是( )A 、11++=a b a bB 、22a b a b = C 、b a b ab =2D 、am bma b = 16. 下列分式中是最简分式的是( )A 、a 24B 、112+-m mC 、122+mD 、m m --1117. 下列计算正确的是( )A 、m n n m =•÷1 B 、111=÷•÷m m m m C 、1134=÷÷m m m D 、n n m n 1=•÷ 18. 计算32)32()23(m n nm •-的结果是( ) A 、m n3B 、m n3-C 、m n 32D 、m n 32-19. 计算y x yy x x ---的结果是( )A 、1B 、0C 、y x xy-D 、y x y x -+20. 化简n m m n m --+2的结果是( ) A 、n mB 、n m m --2 C 、n m n --2D 、m n -21. 下列计算正确的是( )A 、1)1(0-=-B 、1)1(1=-- C 、2233a a =- D 、235)()(a a a =-÷--22. 如果关于x 的方程8778=----x kx x 无解,那么k 的值应为( )A 、1B 、-1C 、1±D 、923. 甲、乙两人做某一工程,如果两人合作,6天可以完成,如果单独工作,甲比乙少用5天,两人单独工作各需多少天完成?设乙单独工作x 天完成,则根据题意列出的方程是( )A 、61511=++x xB 、61511=-+x xC 、61511=--x xD 、61511=+-x x二、填空题1. 计算:cb a a b 2242⋅=________. 2. 计算:abx 415÷(-18a x 3)=________.3. 若代数式4321++÷++x x x x 有意义,则x 的取值范围是________. 4. 化简分式22y x abyabx -+得________.5. 若ba =5,则ab b a 22+=________.6. 下列各式:π3,32,4,52,21222-++x x y x xy b a a 中,是分式的为________. 7. 当x ________时,分式812+-x x 有意义. 8. 当x =________时,分式121+-x x 的值为1. 9. 若分式yx yx --2=-1,则x 与y 的关系是________.10. 当a =8,b =11时,分式ba a 22++的值为________.11、分式aa-2,当a__ ___时,分式的值为0;当a___ ___时,分式无意义,当a__ ____时,分式有意义()22y x -x yx -=13、96,91,39222+----a a aa a a 的最简公分母是_ _ ___________.14、=-÷-b a ab a 11_____________. 15、=-+-a b b b a a _____________. 16、=--2)21(_____________.18、一轮船在顺水中航行100千米与在逆水中航行60千米所用的时间相等,已知水流速度为3千米/时,求该轮船在静水中的速度?设该轮船在静水中的速度为x 千米/时,则所列方程为___________________19. 将分式22x x x +化简得1x x +,则x 满足的条件是_____________。
(完整版)分式的乘除运算专题练习

分式的乘除乘方专题练习例1、下列分式abc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ). A.1 B.2 C.3 D.4例23234)1(x y y x • aa a a 2122)2(2+⋅-+ x y xy 2263)3(÷ 41441)4(222--÷+--a a a a a1.约分把一个分式的分子与分母的公因式约去,叫做约分.约分的依据是分式的基本性质. 若分式的分子、分母是多项式,必须先把分子、分母分解因式,然后才能约去公因式. 分子与分母没有公因式的分式,叫做最简分式,又叫做既约分式.分式的运算结果一定要化为最简分式.2.分式的乘法3.分式的除法 例3、 若432z y x ==,求222z y x zx yz xy ++++的值.例4、计算(1)3322)(cb a - (2)43222)()()(x y x y y x -÷-⋅-(3)2332)3()2(c b a bc a -÷- (4)232222)()()(x y xy xy x y y x -⋅+÷-分式的乘方求n 个相同分式的积的运算就是分式的乘方,用式子表示就是(ba )n .分式的乘方,是把分子、分母各自乘方.)56(3)1(122ab cd c b a -÷-、计算: (2)432643xy y x ÷-(3)(xy -x 2)÷x y xy -(4)2223ba a ab -+÷b a b a -+3 (5)3224)3()12(y x y x -÷-(6)322223322322)2()2()34(cb ab ac b a b a ab c +-÷-⋅2、如果32=b a ,且a ≠2,求51-++-b a b a 的值、 计算(1))22(2222a b ab b a a b ab ab a -÷-÷+-- (2)(2334b a )2·(223a b -)3·(a b 3-)2(3)(22932x x x --+)3·(-xx --13)22、先化简,再求值:(b a ab 22+)3÷2223)b a ab (-·[)(21b a -]2,其中a=-21,b=323、(1)先化简后求值:2(5)(1)5a a a a-+-÷(a 2+a ),其中a=-13.(2)先化简,再求值:21x x x -+÷1x x +,其中x=1.4.已知m+1m=2,计算4221m m m ++的值.7.(宁夏)计算:(9a 2b -6ab 2)÷(3ab )=_______.8.(北京)已知x -3y=0,求2222x y x x y +-+·(x -y )的值. 9.(杭州)给定下面一列分式:3x y ,-52x y ,73x y ,-94x y,…(其中x ≠0). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式..11.(结论开放题)请你先化简,再选取一个使原式有意义而你又喜爱的数代入求值:322m m m m --÷211m m -+.12.(阅读理解题)请阅读下列解题过程并回答问题:计算:22644x x x--+÷(x+3)·263x x x +-+. 解:22644x x x --+÷(x+3)·263x x x +-+ =22644x x x--+·(x 2+x -6)① =22(3)(2)x x --·(x+3)(x -2)② =22182x x -- ③ 上述解题过程是否正确?如果解题过程有误,请给出正确解答.13.已知a 2+10a+25=-│b -3│,求代数式42()b a b -·32232a ab a b b +-÷222b a ab b -+的值.(一)、填空题1.把一个分式的分子与分母的 约去,叫做分式的约分.2.在分式xyxy y x 222+中,分子与分母的公因式是 . 3.将下列分式约分: (1)258x x = (2)22357mn n m -= (3)22)()(a b b a --= 4.计算2223362c ab b c b a ÷= . 5.计算42222ab a a ab ab a b a --÷+-= . 6.计算(-y x )2·(-32yx )3÷(-y x )4= . (二)、解答题7.计算下列各题316412446222+⋅-+-÷+--x x x x x x x y x y xy x -+-24422 ÷(4x 2-y 2)(3) 4344516652222+-÷-++⋅-+-a a a a a a a a (4)22222xa bx x ax a ax -÷+-8、某厂每天能生产甲种零件a 个或乙种零件b 个,且a ∶b=2∶3.甲、乙两种零件各一个配成一套产品,30天内能生产的产品的最多套数为多少?1、已知x 2+4y 2-4x+4y+5=0,求22442y xy x y x -+-·22y xy y x --÷(y y x 22+)2的值.2、已知a b c =1,求a a ba b b cb c a c c ++++++++111的值。
初二分式乘除练习题50道

初二分式乘除练习题50道1. 计算下列分式的乘积:a) $\frac{2}{3} \times \frac{4}{5}$b) $\frac{3}{4} \times \frac{5}{6}$c) $\frac{1}{2} \times \frac{3}{4}$d) $\frac{5}{6} \times \frac{7}{8}$e) $\frac{2}{5} \times \frac{3}{7}$2. 计算下列分式的商:a) $\frac{2}{3} ÷ \frac{4}{5}$b) $\frac{3}{4} ÷ \frac{5}{6}$c) $\frac{1}{2} ÷ \frac{3}{4}$d) $\frac{5}{6} ÷ \frac{7}{8}$e) $\frac{2}{5} ÷ \frac{3}{7}$3. 计算下列分式的乘积或商:a) $\frac{2}{3} \times \frac{4}{5} ÷ \frac{1}{2}$b) $\frac{3}{4} ÷ \frac{5}{6} \times \frac{4}{5}$c) $\frac{1}{2} \times \frac{3}{4} \div \frac{2}{3}$d) $\frac{5}{6} \div \frac{7}{8} \times \frac{6}{7}$e) $\frac{2}{5} \times \frac{3}{7} \div \frac{4}{5}$4. 将下列分式化简,使分母为正数:a) $\frac{-2}{3}$b) $\frac{3}{-4}$c) $\frac{-5}{-6}$d) $\frac{4}{-7}$e) $\frac{-6}{8}$5. 计算下列表达式的值:a) $3 \times \left(\frac{2}{5} - \frac{1}{3}\right)$b) $\frac{2}{9} + \frac{3}{7} - \frac{5}{21}$c) $\frac{3}{4} \div \left(\frac{2}{5} + \frac{1}{3}\right)$d) $\left(\frac{4}{5} + \frac{1}{6}\right) \div \left(\frac{2}{3} -\frac{1}{4}\right)$e) $\frac{2}{3} \times \left(\frac{3}{4} - \frac{1}{6}\right) +\frac{1}{2}$6. 用分式表示下列问题,并计算:a) Tom做了$\frac{2}{5}$小时的作业,占他学习时间的$\frac{3}{4}$,他学习了多久?b) 如果$\frac{1}{8}$块蛋糕可以给一个人吃,那么12个人可以吃多少块蛋糕?c) 一个学生做数学作业花费$\frac{4}{9}$小时,然后又花费$\frac{5}{8}$小时做英语作业,一共花了多久?d) $\frac{3}{4}$米绳子被剪成了$\frac{2}{3}$米和剩下的部分,剩下的部分有多长?e) 如果一个邮箱的容量是$\frac{7}{10}$倍于另一个邮箱,容量较大的邮箱可以放几个较小邮箱的邮件?7. 将下列百分数转换为分数或小数:a) $50\%$b) $75\%$c) $25\%$d) $20\%$e) $80\%$8. 将下列分数转换为百分数或小数:a) $\frac{3}{5}$b) $\frac{2}{10}$c) $\frac{1}{4}$d) $\frac{3}{8}$e) $\frac{5}{6}$9. 在下列方程中解出未知数的值:b) $\frac{5}{2}y + \frac{1}{4} = \frac{11}{4}$c) $\frac{1}{3}z - \frac{4}{5} = -\frac{11}{15}$d) $\frac{3}{4}w + \frac{2}{3} = \frac{17}{12}$e) $4a - \frac{1}{5} = 5$10. 解下列方程组,给出未知数的值:a)$\begin{cases}2x - y = 5 \\x + 3y = 1\end{cases}$b)$\begin{cases}3x - 2y = 8 \\2x + y = 4\end{cases}$c)$\begin{cases}5x - 4y = 6 \\\end{cases}$d)$\begin{cases}\frac{x}{2} - \frac{y}{3} = 1 \\\frac{x}{4} + \frac{y}{5} = \frac{3}{10}\end{cases}$e)$\begin{cases}2x + 3y = 7 \\4x - 5y = 1\end{cases}$通过以上50道分式乘除练习题,相信你对初二阶段的分式乘除运算有了更深入的理解。
分式的乘除法练习题

分式乘除法一、选择题1. 下列等式正确的是( )A. (-1)0=-1 B. (-1)-1=1 C. 2x -2=221xD. x -2y 2=22x y2. 下列变形错误的是( )A. 46323224y y x y x -=- B. 1)()(33-=--x y y x C. 9)(4)(27)(12323b a x b a b a x -=--D. y xa xy a y x 3)1(9)1(32222-=--3. cd ax cdab 4322-÷等于( ) A. -x b 322B. 23 b 2xC. x b 322D. -222283dc x b a 4. 若2a =3b ,则2232b a 等于( )A. 1B.32C.23D.69 5. 使分式22222)(y x ayax y a x a y x ++⋅--的值等于5的a 的值是( )A. 5B. -5C.51 D. -516. 已知分式)3)(1()3)(1(-++-x x x x 有意义,则x 的取值为( )A. x ≠-1B. x ≠3C. x ≠-1且x ≠3D. x ≠-1或x ≠3 7. 下列分式,对于任意的x 值总有意义的是( )A. 152--x xB. 112+-x xC. xx 812+D.232+x x8. 若分式m m m --21||的值为零,则m 取值为( )A. m =±1B. m =-1C. m =1D. m 的值不存在9. 当x =2时,下列分式中,值为零的是( )A.2322+--x x x B. 942--x xC.21-x D.12++x x 10. 每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( )A.yx mynx ++元B.yx nymx ++元C.y x nm ++元 D. 21(ny m x +)元 11. 下列各式的约分正确的是( )A. 2()23()3a c a c -=+-B.2232abc c a b cab=C.2212a b ab a ba b=---- D.222142a c a c c a=+--+12. 在等式22211a a a a a M +++=+中,M 的值为 ( ) A. a B. 1a +C. a -D. 21a -13. 小马虎在下面的计算题中只做对了一道题,你认为他做对的题目是( )A.11326b a a ⨯= B.22()b a ba ab ÷=--C.111x y x y ÷=+-D.2211()()x y y x y x ⨯=---14. 下列式子:,,1,1,32,32πn m b a a b a x x --++ 中是分式的有( )个A 、5B 、4C 、3D 、215. 下列等式从左到右的变形正确的是( )A 、11++=a b a bB 、22a b a b = C 、b a b ab =2D 、am bma b =16. 下列分式中是最简分式的是( )A 、a 24B 、112+-m mC 、122+mD 、m m --1117. 下列计算正确的是( )A 、m n n m =∙÷1 B 、111=÷∙÷m m m m C 、1134=÷÷m m m D 、n n m n 1=∙÷18. 计算32)32()23(m n nm ∙-的结果是( ) A 、m n3B 、m n3-C 、m n 32D 、m n 32-19. 计算y x yy x x ---的结果是( )A 、1B 、0C 、y x xy-D 、y x y x -+20. 化简n m m n m --+2的结果是( ) A 、n mB 、n m m --2 C 、n m n --2D 、m n -21. 下列计算正确的是( )A 、1)1(0-=-B 、1)1(1=-- C 、2233a a =- D 、235)()(a a a =-÷--22. 如果关于x 的方程8778=----x kx x 无解,那么k 的值应为( )A 、1B 、-1C 、1±D 、923. 甲、乙两人做某一工程,如果两人合作,6天可以完成,如果单独工作,甲比乙少用5天,两人单独工作各需多少天完成?设乙单独工作x 天完成,则根据题意列出的方程是( )A 、61511=++x xB 、61511=-+x xC 、61511=--x xD 、61511=+-x x二、填空题1. 计算:cb a a b 2242⋅=________. 2. 计算:abx 415÷(-18a x 3)=________.3. 若代数式4321++÷++x x x x 有意义,则x 的取值范围是________.4. 化简分式22yx abyabx -+得________. 5. 若ba =5,则ab b a 22+=________.6. 下列各式:π3,32,4,52,21222-++x x y x xy b a a 中,是分式的为________. 7. 当x ________时,分式812+-x x 有意义. 8. 当x =________时,分式121+-x x 的值为1. 9. 若分式yx yx --2=-1,则x 与y 的关系是________.10. 当a =8,b =11时,分式ba a 22++的值为________.11、分式aa-2,当a__ ___时,分式的值为0;当a___ ___时,分式无意义,当a__ ____时,分式有意义12、()22y x -x yx -=.13、96,91,39222+----a a aa a a 的最简公分母是_ _ ___________.14、=-÷-b a ab a 11_____________. 15、=-+-a b b b a a _____________. 16、=--2)21(_____________.18、一轮船在顺水中航行100千米与在逆水中航行60千米所用的时间相等,已知水流速度为3千米/时,求该轮船在静水中的速度?设该轮船在静水中的速度为x 千米/时,则所列方程为___________________19. 将分式22x x x +化简得1x x +,则x 满足的条件是_____________。
分式乘除法计算练习题及答案

分式乘除法计算练习题及答案x?2x2?6x?93xy28z2问题1 计算:.; 2x?3x?44zy名师指导这道例题就是直接应用分式的乘法法则进行运算.值得注意的是运算结果应约分到不好约分为止,同时还应注意在计算时跟整式运算一样,先确定符号,再进行相关计算,求出结果.这道例题中分式的分子、分母是多项式,应先把分子、分母中的多项式分解因式,再进行约分.解题示范3xy28z224xy2z2解:6xy;z2y4yz2x?2x2?6x?9x?222x?3. 2x?3x?4x?3x?2归纳提炼类比分数的乘法运算不难理解,分式的乘法运算就是根据分式乘法法则,将各式分子、分母分别相乘后再进行约分运算,值得注意的地方有三点:一是要确定好运算结果的符号;二是计算结果中分子和分母能约分则要约分;三是有时计算结果的分母不一定是单一的多项式,而是多个多项式相乘,这时也不必把它们展开. a2b?2axa?2a2?4??问题计算:;. a?3a2?6a?93cd6cd名师指导分式除法运算,根据分式除法法则,将分式除法变为分式乘法运算,注意点同分式乘法.解题示范a2b?2axa2b6cd6a2bcdab;解:3cd6cd3cd2ax6acdxxa?2a2?4a?222a?3. ?2a?3a?6a?9a?3a?2a3b?a2b2a2?ab?2问题已知:a?2b?2?2的值.2a?2ab?ba?b名师指导完成这类求值题时,如果把已知条件直接代入,计算将会较为繁杂,容易导致错误产生.解决这种问题,一般应先将代数式进行化简运算,然后再把已知条件代入化简后的式子中进行计算,这样的处理方式可以使运算量少很多.解题示范解:化简代数式得,a3b?a2b2a2?ab?222a?2ab?ba?ba2b ?2aa2b2 ?2aab.把a?2b?2ab,所以原式?·2xy. x?y2y22.计算:?3xy?.x33.计算:?9ab____. b3x2yxy?..计算:a3am2?4m?3?25.若m等于它的倒数,则分式的值为m?2m?3mA.-1B.3C.-1或D.?6.计算?21 x?y的结果是 xA.2B.x2?yC.x2D.x7.计算32的结果是A.3a2-1 B.3a2-C.3a2+6a+ D.a2+2a+1 8.已知x等于它的倒数,则x2?x?6x?3x?3x2?5x?6的值是A.- B.-C.-1 D.09.计算a2?1a2?aa2?2a?1÷a?1.10.观察下列各式:x?1x2?x?1x3?x2?x?1x4?x3?x2?x?1你能得到一般情况下?的结果吗?根据这一结果计算:1?2?22?23??22006?22007.) xn?1?n?2?x?1,22008ax??17.B.A分数乘除法计算题专项练习1一、直接写出得数57?34=79?97=5?43=7?152=?354=1= 191591120?38= 10?32==7×1= 1+17= 1953×0=?778=3?9= 134?5 =4÷34=10÷10%= 12÷23=1.8×15926=?10?5= 1715×60=二、看谁算得又对又快58?167?141135248?6?351926?3855?511 12?35?32533545×4÷×48?3+8?458÷71521÷ 10 ÷×姓名:6÷310-310÷ 13353×4÷[523713133-]÷314÷ 16718×14+34×7114×57÷14×5 736× ×9+2312×3.2+5.6×0.5+1.2×50%211?3?2?5955711[2-]×12三、解方程78x=218239x?4=15x+215x=23 56x=308x-113=6x+5×4.4=40÷x =5122x+215x=20四、求下面各比的比值1052:8467:46.7106345:0.610:140 19:12五、化简下面各比65:1 123: 1.1:114.9:0.152:15:0.12六、列式计算1.4个131的和除以8,商是多少?.112减去2乘23的积,差是多少?3.一个数的比它的34多,求这个数。
分式乘除法专项练习60题含答案

分式乘除法专项练习60题含答案1.将第一题的“.”改为“=”。
2.删除第二题。
3.将第三题的“=•=”改为“=”,并在最后加上“故答案为”。
4.将第四题的“==”改为“=”。
5.将第五题的“==”改为“=”。
6.将第六题的“=÷=”改为“=”,并在最后注明“(答案不唯一)”。
7.将第七题的“==”改为“=”,并在后面给出一个可能的答案。
8.将第八题的“=”改为“=÷=”。
9.将第九题的“=•=”改为“=”,并在后面给出一个可能的答案。
10.将第十题的“==”改为“=”。
11.将第十一题的“=”改为“=•=”。
12.将第十二题的“=”改为“=”,并在后面给出一个可能的答案。
13.将第十三题的“=•=”改为“=”,并在后面给出一个可能的答案。
14.将第十四题的“==”改为“=”。
15.将第十五题的“=••=”改为“=”,并在后面给出一个可能的答案。
16.将第十六题的“=”改为“=a÷a•=”,并在后面给出一个可能的答案。
17.删除第十七题。
18.删除第十八题。
19.将第十九题的“=•=”改为“=”,并在后面给出一个可能的答案。
20.将第二十题的“÷=”改为“=÷=”。
21.将第二十一题的“=••=”改为“=”,并在后面给出两个答案。
22.将第二十二题的“=”改为“=”,并在后面给出一个答案。
23.将第二十三题的“==”改为“=”。
24.将第二十四题的“÷”改为“÷,”,并在后面给出两个答案。
25.将第二十五题的“÷(﹣xy4)”改为“÷(﹣)÷y4)”。
26.将第二十六题的“=;”改为“=”,并在后面给出两个答案。
27.将第二十七题的“×÷=”改为“=×÷”。
28.将第二十八题的“=•=”改为“=”,并在后面给出两个答案。
29.将第二十九题的“÷÷”改为“=••”,并在后面给出一个答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式乘除法练习题一、选择题1. 下列等式正确的是( )A. (-1)0=-1B. (-1)-1=1C. 2x -2=221x D. x -2y 2=22xy2. 下列变形错误的是( )A. 46323224y y x y x -=-B. 1)()(33-=--x y y x C. 9)(4)(27)(12323b a x b a b a x -=-- D.y xa xy a y x 3)1(9)1(32222-=-- 3. cd axcd ab 4322-÷等于( )A. -x b 322B. 23 b 2xC. xb 322D. -222283dc x b a4. 若2a =3b ,则2232b a 等于( )A. 1B.32C.23D.69 5. 使分式22222)(y x ayax y a x a y x ++⋅--的值等于5的a 的值是( )A. 5B. -5C.51D. -516. 已知分式)3)(1()3)(1(-++-x x x x 有意义,则x 的取值为( )A. x ≠-1B. x ≠3C. x ≠-1且x ≠3D. x ≠-1或x ≠3 7. 下列分式,对于任意的x 值总有意义的是( )A. 152--x xB. 112+-x xC. x x 812+ D. 232+x x8. 若分式m m m --21||的值为零,则m 取值为( )A. m =±1B. m =-1C. m =1D. m 的值不存在 9. 当x =2时,下列分式中,值为零的是( )A.2322+--x x x B. 942--x x C.21-x D.12++x x 10. 每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( )A.y x mynx ++元 B. yx ny mx ++元 C.y x nm ++元 D. 21(ny m x +)元 11. 下列各式的约分正确的是( )A. 2()23()3a c a c -=+-B. 2232abc c a b cab =C. 2212a bab a ba b =----D. 222142a c a c c a =+--+12. 在等式22211a a a a a M +++=+中,M 的值为 ( ) A. a B. 1a + C. a -D. 21a -13. 小马虎在下面的计算题中只做对了一道题,你认为他做对的题目是( )A.11326b a a ⨯= B.22()b a ba ab ÷=--C.111x y x y ÷=+-D.2211()()x y y x y x ⨯=---14. 下列式子:,,1,1,32,32πn m b a a ba x x --++ 中是分式的有( )个 A 、5 B 、4 C 、3D 、215. 下列等式从左到右的变形正确的是( )A 、11++=a b a bB 、22a b a b =C 、b a bab =2D 、am bma b =16. 下列分式中是最简分式的是( )A 、a 24B 、112+-m mC 、122+m D 、m m --1117. 下列计算正确的是( )A 、m n n m =∙÷1 B 、111=÷∙÷m m m m C 、1134=÷÷m m m D 、n n m n 1=∙÷ 18. 计算32)32()23(m n nm ∙-的结果是( )A 、m n 3 B 、m n 3- C 、m n 32 D 、m n 32-19. 计算y x y y x x ---的结果是( )A 、1B 、0C 、y x xy-D 、y x y x -+20. 化简n m m n m --+2的结果是( )A 、n mB 、n m m --2C 、n m n --2D 、m n -21. 下列计算正确的是( )A 、1)1(0-=- B 、1)1(1=--C 、2233a a =- D 、235)()(a a a =-÷--22. 如果关于x 的方程8778=----x kx x 无解,那么k 的值应为( )A 、1 B 、-1C 、1±D 、923. 甲、乙两人做某一工程,如果两人合作,6天可以完成,如果单独工作,甲比乙少用5天,两人单独工作各需多少天完成?设乙单独工作x 天完成,则根据题意列出的方程是( )A 、61511=++x xB 、61511=-+x xC 、61511=--x xD 、61511=+-x x 二、填空题1. 计算:c b a a b 2242⋅=________.2. 计算:abx 415÷(-18ax 3)=________.3. 若代数式4321++÷++x x x x 有意义,则x 的取值范围是________.4. 化简分式22y x abyabx -+得________.5. 若b a =5,则ab b a 22+=________.6. 下列各式:π3,32,4,52,21222-++x x y x xy b a a 中,是分式的为________.7. 当x ________时,分式812+-x x 有意义.8. 当x =________时,分式121+-x x 的值为1. 9. 若分式yx yx --2=-1,则x 与y 的关系是________.10. 当a =8,b =11时,分式ba a 22++的值为________. 11、分式aa-2,当a__ ___时,分式的值为0;当a___ ___时,分式无意义,当a__ ____时,分式有意义12、()22y x -x yx -=. 13、96,91,39222+----a a aa a a 的最简公分母是_ ____________.14、=-÷-b a ab a 11_____________. 15、=-+-a b bb a a _____________.16、=--2)21(_____________.18、一轮船在顺水中航行100千米与在逆水中航行60千米所用的时间相等,已知水流速度为3千米/时,求该轮船在静水中的速度?设该轮船在静水中的速度为x 千米/时,则所列方程为___________________19. 将分式22x x x +化简得1x x +,则x 满足的条件是_____________。
三、解答题1. x 取何值时,下列分式有意义:(1)322-+x x (2)12||)3(6-+x x (3)162++x x2. (1)已知分式2822--x x ,x 取什么值时,分式的值为零?(2)x 为何值时,分式9322-+x x 的值为正数3. x 为何值时,分式121-x 与232+x 的值相等?并求出此时分式的值. 4. 求下列分式的值:(1)811+a a 其中a =3 (2)2y x yx +- 其中x =2,y =-1.5. 计算:(1)423223423b a d c cd ab ⋅ (2)m m m m m --⋅-+-3249622 6. 计算:(1)(xy -x 2)÷xyy x -(2)24244422223-+-÷+-+-x x x x x x x x (3)22329ab x x a b -⋅(4)2233b ab a -÷ (4)22122a a a a +⋅-+ (5)22222x y x xy x y x y -+÷++(6)2224414111m m m m m -+-÷+-(7)222244(4)2x xy y x y x y -+-÷-(8)222()x x y y ÷- (9)2544()()()m n mn n m -⋅-÷-(10)21)2(11+-∙+÷-x x x x (11)32232)()2(b a c ab ---÷ (12)0142)3()101()2()21(-++-----π(13)(3103124π--⎛⎫⎛⎫-⋅-÷ ⎪ ⎪⎝⎭⎝⎭ (14)2211y x xy y x y x -÷⎪⎪⎭⎫ ⎝⎛++-7. 先化简,再求值(1)x x x x x x x 39396922322-+⋅++-,其中x =-31.(2)22441yx y x y x +÷-+,其中x =8,y =11. (3) )1121(1222+---÷--x x x x x x ,其中31-=x。