分式的乘除法典型例题
八年级数学下册10.4分式的乘除《分式的乘除》典型例题2素材苏科版

《分式的乘除》典型例题例1 选择题: 若将分式abb a +(a 、b 均为正数)中的字母a 、b 的值扩大为原来的2倍,则分式的值() A .扩大为原来的2倍 B .缩小为原来的21 C .不变 D .缩小为原来的41例2 若1)1)(3()3(-=---x x x a x a 成立,则a 应取何值,为什么? 例3 下列各式从左到右的变形是否正确?(1)nm m n m m --=--; (2)m n m n m m --=--)( (3)11111=⋅⋅=y yx x y x ; (4)11++=++b a x b x a例4 设a 、b 是实数,要使分式ba b a +-2的值等于零,a 、b 应满足怎样的条件? 例 5 有m 个人去完成某项工作,需要a 天可以完成,那么)(n m +个人去做这项工作,需要多少天才能完成?例6.化简:232211a a a a a +-+--例7.求值已知0199852=--x x ,求代数式21)1()2(23-+---x x x 的值。
例8.求值 已知zy x 432==求代数式2222232z xy x z yz x --+-的值.参考答案例1 分析 将原式中的a 、b 分别换成a 2,b 2,则原分式变为abb a ab b a b a b a +⋅=+=⋅+214)(22222, 故选B 。
说明 此题属于利用分式基本性质设计的选择题,主要考查对性质的灵活掌握程度,只要有整体代换的思想便容易解答。
代换过程中a 、b 分别换成a 2,b 2,其写法不能写为ba b a ab b a 2222⋅+=+,而应如分析中的写法,将a 、b 分别换为a 2,b 2时,原分式变为b a b a 2222⋅+. 例2 分析 )1)(3()3()3)(1()3()1(1x a x a a x a x x x x x ---=----=--=- 从上看出,由)1)(3()3(x a x a ---变为1-x x 是利用分式的基本性质,把分子、分母都乘以非零整式3-a 得到的,在这个恒等变形过程中,只需03≠-a ,所以3≠a 即可.解 a 为不等于3的数.因为当3=a 时,03=-a ,此等式无意义.例3 分析 (1)错.因为误把分母中项“m -”的符号当作分母整体的符号:(2)错。
(完整版)分式的乘除运算专题练习

分式的乘除乘方专题练习例1、下列分式abc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ). A.1 B.2 C.3 D.4例23234)1(x y y x • aa a a 2122)2(2+⋅-+ x y xy 2263)3(÷ 41441)4(222--÷+--a a a a a1.约分把一个分式的分子与分母的公因式约去,叫做约分.约分的依据是分式的基本性质. 若分式的分子、分母是多项式,必须先把分子、分母分解因式,然后才能约去公因式. 分子与分母没有公因式的分式,叫做最简分式,又叫做既约分式.分式的运算结果一定要化为最简分式.2.分式的乘法3.分式的除法 例3、 若432z y x ==,求222z y x zx yz xy ++++的值.例4、计算(1)3322)(cb a - (2)43222)()()(x y x y y x -÷-⋅-(3)2332)3()2(c b a bc a -÷- (4)232222)()()(x y xy xy x y y x -⋅+÷-分式的乘方求n 个相同分式的积的运算就是分式的乘方,用式子表示就是(ba )n .分式的乘方,是把分子、分母各自乘方.)56(3)1(122ab cd c b a -÷-、计算: (2)432643xy y x ÷-(3)(xy -x 2)÷x y xy -(4)2223ba a ab -+÷b a b a -+3 (5)3224)3()12(y x y x -÷-(6)322223322322)2()2()34(cb ab ac b a b a ab c +-÷-⋅2、如果32=b a ,且a ≠2,求51-++-b a b a 的值、 计算(1))22(2222a b ab b a a b ab ab a -÷-÷+-- (2)(2334b a )2·(223a b -)3·(a b 3-)2(3)(22932x x x --+)3·(-xx --13)22、先化简,再求值:(b a ab 22+)3÷2223)b a ab (-·[)(21b a -]2,其中a=-21,b=323、(1)先化简后求值:2(5)(1)5a a a a-+-÷(a 2+a ),其中a=-13.(2)先化简,再求值:21x x x -+÷1x x +,其中x=1.4.已知m+1m=2,计算4221m m m ++的值.7.(宁夏)计算:(9a 2b -6ab 2)÷(3ab )=_______.8.(北京)已知x -3y=0,求2222x y x x y +-+·(x -y )的值. 9.(杭州)给定下面一列分式:3x y ,-52x y ,73x y ,-94x y,…(其中x ≠0). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式..11.(结论开放题)请你先化简,再选取一个使原式有意义而你又喜爱的数代入求值:322m m m m --÷211m m -+.12.(阅读理解题)请阅读下列解题过程并回答问题:计算:22644x x x--+÷(x+3)·263x x x +-+. 解:22644x x x --+÷(x+3)·263x x x +-+ =22644x x x--+·(x 2+x -6)① =22(3)(2)x x --·(x+3)(x -2)② =22182x x -- ③ 上述解题过程是否正确?如果解题过程有误,请给出正确解答.13.已知a 2+10a+25=-│b -3│,求代数式42()b a b -·32232a ab a b b +-÷222b a ab b -+的值.(一)、填空题1.把一个分式的分子与分母的 约去,叫做分式的约分.2.在分式xyxy y x 222+中,分子与分母的公因式是 . 3.将下列分式约分: (1)258x x = (2)22357mn n m -= (3)22)()(a b b a --= 4.计算2223362c ab b c b a ÷= . 5.计算42222ab a a ab ab a b a --÷+-= . 6.计算(-y x )2·(-32yx )3÷(-y x )4= . (二)、解答题7.计算下列各题316412446222+⋅-+-÷+--x x x x x x x y x y xy x -+-24422 ÷(4x 2-y 2)(3) 4344516652222+-÷-++⋅-+-a a a a a a a a (4)22222xa bx x ax a ax -÷+-8、某厂每天能生产甲种零件a 个或乙种零件b 个,且a ∶b=2∶3.甲、乙两种零件各一个配成一套产品,30天内能生产的产品的最多套数为多少?1、已知x 2+4y 2-4x+4y+5=0,求22442y xy x y x -+-·22y xy y x --÷(y y x 22+)2的值.2、已知a b c =1,求a a ba b b cb c a c c ++++++++111的值。
初二数学上册分式的乘除综合练习题

初二数学上册分式的乘除综合练习题分式是数学中的重要概念之一,它在实际生活和学习中有着广泛的应用。
掌握分式的乘除运算是理解和解决各类数学问题的关键。
本文将给出一些初二数学上册分式的乘除综合练习题,帮助同学们巩固和提升自己的分式乘除能力。
1. 计算下列分式的乘积,并化简结果: 2/3 × 4/5解析:首先,我们将两个分式相乘,实际上就是分别将分子相乘,分母相乘,得到新的分子和分母。
那么,2/3 × 4/5 = 8/15。
进一步化简,可以发现8和15没有公约数,所以不需要再化简。
2. 将下列分数相乘,并化简结果: 7/8 × 5/6解析:同样地,我们将分子相乘得到新的分子,分母相乘得到新的分母。
即:7/8 × 5/6 = 35/48。
进一步化简:35和48没有公约数,所以结果已经化简。
3. 计算下列分式的商,并化简结果: 2/3 ÷ 4/5解析:分式的除法,可以通过将被除数乘以倒数的方式进行。
即:2/3 ÷4/5 = 2/3 × 5/4 = 10/12。
进一步化简:分子和分母都可以被2整除,所以结果化简为5/6。
4. 将下列分数相除,并化简结果: 9/10 ÷ 3/4解析:同样地,我们将除数乘以倒数,即将9/10 ÷ 3/4转化为9/10 × 4/3= 36/30。
进一步化简:36可以被6整除,30可以被6整除,所以结果化简为6/5。
5. 化简下列分数: (2/3 × 4/5) ÷ (9/10)解析:我们先处理分式的乘法:2/3 × 4/5 = 8/15。
然后,将这个结果作为除数,除以9/10:8/15 ÷ 9/10。
由于除法转化为乘法,我们可以将除法转化为乘法的倒数形式,即8/15 × 10/9 = 80/135。
进一步化简:80和135都可以被5整除,所以结果化简为16/27。
八年级数学分式的乘除法36题(含答案)

分式的乘除法(三)一、填空题:1、若n 为正整数,则化简=⎪⎪⎭⎫⎝⎛-+1223n x ab __________; 2、化简222222105x y ab a b x y +⋅-的结果是__________; 3、计算2221x xx x x +÷++的结果是__________; 4、化简()()142x y x y -÷-=__________; 5、计算()2xyxy x x y-⋅-=__________; 6、计算22212a a b a b ab a b-⋅⋅=+-__________; 7、化简()222a b ab b a b--÷+的结果是__________; 8、若m 等于它的倒数,则分式22244242m m m mm m +++÷--的值是__________; 9、若分式1324x x x x ++÷++有意义,则x 的取值范围是__________; 10、计算()4524m n m mn n n ⎛⎫⎛⎫-⋅-÷-= ⎪ ⎪⎝⎭⎝⎭__________; 11、已知72=y x ,则222273223y xy x y xy x +-+-的值是__________; 12、如果b a x -=,b a y +=,计算:()xyx y 2--的值为__________; 13、已知0≠-b a ,且032=-b a ,那么代数式ba ba -+2的值是__________; 14、d d c cb b a 1112⨯÷⨯÷⨯÷=__________;15、若将分式22x x x +化简得1xx +,则x 应满足的条件是__________; 二、选择题:16、下列运算正确的是 ( ) A 、632x x x = B 、0x y x y +=+ C 、1x y x y -+=-- D 、a x ab x b+=+17、下列计算错误的是 ( ) A 、33363422x y x y y -=- B 、()()()3233124279x x y x x y x y --=- C 、()()331x y y x -=-- D 、()()222231391x y a x yxy a -=-- 18、分式22444a a a -+-约分后的结果为 ( ) A 、22a a -+ B 、22a a --+ C 、22a a +- D 、22a a +-- 19、计算()1xb y a ⋅;()2x y y x ⋅;()362x x÷;()234a a b b ÷所得的结果中,是分式的有( )A 、1个B 、2个C 、3个D 、4个20、代数式211x xx x +÷--有意义,则x 的取值范围是 ( ) A 、1x ≠ B 、1x ≠且0x ≠C 、2x ≠-且1x ≠D 、1x ≠且2x ≠-且0x ≠21、计算22433842m m n m n n ⎛⎫⎛⎫⋅-÷- ⎪ ⎪⎝⎭⎝⎭的结果是 ( ) A 、3m - B 、3m C 、12m - D 、12m22、计算()2224424x x x x ++⋅--的结果是 ( ) A 、整式 B 、分式C 、可能是整式也可能是分式D 、既不是整式又不是分式23、下列分式运算结果正确的是 ( ) A 、4453m n m n m n ⋅= B 、a c adb d bc⋅=C 、222224a a a b a b ⎛⎫= ⎪--⎝⎭ D 、3333344x x y y ⎛⎫= ⎪⎝⎭24、化简()222x xy xyx y x xy y xy+-÷+÷--得结果是( ) A 、y x B 、1x - C 、1x D 、yx-三、计算下列各题:25、32242x y y y x x ⎡⎤⎛⎫-⎛⎫⎛⎫-⋅-÷-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 26、222241x y xy x x xy x y x x y --÷⋅+--27、()226344x x x x +÷+-+ 28、2222216913921x x x x x x x ⎛⎫--+⎛⎫÷⋅ ⎪ ⎪---+⎝⎭⎝⎭29、2322003420034200320032200348+⨯++⨯-⨯-四、先化简,在求值:30、2211442x x x x x +-÷+++,其中12x =。
初二分式乘除练习题50道

初二分式乘除练习题50道1. 计算下列分式的乘积:a) $\frac{2}{3} \times \frac{4}{5}$b) $\frac{3}{4} \times \frac{5}{6}$c) $\frac{1}{2} \times \frac{3}{4}$d) $\frac{5}{6} \times \frac{7}{8}$e) $\frac{2}{5} \times \frac{3}{7}$2. 计算下列分式的商:a) $\frac{2}{3} ÷ \frac{4}{5}$b) $\frac{3}{4} ÷ \frac{5}{6}$c) $\frac{1}{2} ÷ \frac{3}{4}$d) $\frac{5}{6} ÷ \frac{7}{8}$e) $\frac{2}{5} ÷ \frac{3}{7}$3. 计算下列分式的乘积或商:a) $\frac{2}{3} \times \frac{4}{5} ÷ \frac{1}{2}$b) $\frac{3}{4} ÷ \frac{5}{6} \times \frac{4}{5}$c) $\frac{1}{2} \times \frac{3}{4} \div \frac{2}{3}$d) $\frac{5}{6} \div \frac{7}{8} \times \frac{6}{7}$e) $\frac{2}{5} \times \frac{3}{7} \div \frac{4}{5}$4. 将下列分式化简,使分母为正数:a) $\frac{-2}{3}$b) $\frac{3}{-4}$c) $\frac{-5}{-6}$d) $\frac{4}{-7}$e) $\frac{-6}{8}$5. 计算下列表达式的值:a) $3 \times \left(\frac{2}{5} - \frac{1}{3}\right)$b) $\frac{2}{9} + \frac{3}{7} - \frac{5}{21}$c) $\frac{3}{4} \div \left(\frac{2}{5} + \frac{1}{3}\right)$d) $\left(\frac{4}{5} + \frac{1}{6}\right) \div \left(\frac{2}{3} -\frac{1}{4}\right)$e) $\frac{2}{3} \times \left(\frac{3}{4} - \frac{1}{6}\right) +\frac{1}{2}$6. 用分式表示下列问题,并计算:a) Tom做了$\frac{2}{5}$小时的作业,占他学习时间的$\frac{3}{4}$,他学习了多久?b) 如果$\frac{1}{8}$块蛋糕可以给一个人吃,那么12个人可以吃多少块蛋糕?c) 一个学生做数学作业花费$\frac{4}{9}$小时,然后又花费$\frac{5}{8}$小时做英语作业,一共花了多久?d) $\frac{3}{4}$米绳子被剪成了$\frac{2}{3}$米和剩下的部分,剩下的部分有多长?e) 如果一个邮箱的容量是$\frac{7}{10}$倍于另一个邮箱,容量较大的邮箱可以放几个较小邮箱的邮件?7. 将下列百分数转换为分数或小数:a) $50\%$b) $75\%$c) $25\%$d) $20\%$e) $80\%$8. 将下列分数转换为百分数或小数:a) $\frac{3}{5}$b) $\frac{2}{10}$c) $\frac{1}{4}$d) $\frac{3}{8}$e) $\frac{5}{6}$9. 在下列方程中解出未知数的值:b) $\frac{5}{2}y + \frac{1}{4} = \frac{11}{4}$c) $\frac{1}{3}z - \frac{4}{5} = -\frac{11}{15}$d) $\frac{3}{4}w + \frac{2}{3} = \frac{17}{12}$e) $4a - \frac{1}{5} = 5$10. 解下列方程组,给出未知数的值:a)$\begin{cases}2x - y = 5 \\x + 3y = 1\end{cases}$b)$\begin{cases}3x - 2y = 8 \\2x + y = 4\end{cases}$c)$\begin{cases}5x - 4y = 6 \\\end{cases}$d)$\begin{cases}\frac{x}{2} - \frac{y}{3} = 1 \\\frac{x}{4} + \frac{y}{5} = \frac{3}{10}\end{cases}$e)$\begin{cases}2x + 3y = 7 \\4x - 5y = 1\end{cases}$通过以上50道分式乘除练习题,相信你对初二阶段的分式乘除运算有了更深入的理解。
北师大版八下数学《分式的乘除法》典型例题1(含答案)

《分式的乘除法》典型例题例1 下列分式中是最简分式的是( )A .264ab B .b a a b --2)(2 C .y x y x ++22 D .yx y x --22 例2 约分(1)36)(12)(3a b a b a ab -- (2)44422-+-x x x (3)b b 2213432-+ 例3 计算(分式的乘除)(1)22563ab cd c b a -⋅- (2)422643mn n m ÷- (3)233344222++-⋅+--a a a a a a (4)22222222b ab a b ab b ab b ab a +-+÷-++ 例4 计算(1))()()(4322xy xy y x -÷-⋅- (2)xx x x x x x --+⨯+÷+--36)3(446222 例5 化简求值22232232b ab b a b b a ab a b a b +-÷-+⋅-,其中32=a ,3-=b . 例6 约分(1)3286b ab ; (2)222322xy y x y x x --例7 判断下列分式,哪些是最简分式?不是最简分式的,化成最简分式或整式.(1)44422-+-x x x ; (2)36)(4)(3a b b a a --; (3)222yy x -; (4)882122++++x x x x 例8 通分:(1)223c a b, ab c 2-,cb a 5 (2)a 392-,a a a 2312---,652+-a a a参考答案例1 分析:(用排除法)4和6有公因式2,排除A .2)(a b -与)(b a -有公因式)(b a -,排除B ,22y x -分解因式为))((y x y x -+与)(y x -有公因式)(y x -,排除D.故选择C.解 C例2 分析(1)中分子、分母都是单项式可直接约分.(2)中分子、分母是多项式,应该先分解因式,再约分.(3)中应该先把分子、分母的各项系数都化为整数,把分子、分母中的最高次项系数化为正整数,再约分.解:(1)36)(12)(3a b a b a ab --)4()(3)()(3333-⋅--⋅-=b a a b b a b a a 3)(41b a b --= (2)44422-+-x x x )2)(2()2(2-+-=x x x 22+-=x x (3)原式2123486)221(6)3432(bb b b -+=⋅-⋅+=312482-+-=b b b b b b 634)12)(12(3)12(4-=-++-= 例3 分析(1)可以根据分式乘法法则直接相乘,但要注意符号.(2)中的除式是整式,可以把它看成164mn .然后再颠倒相乘,(3)(4)两题都需要先分解因式,再计算.解:(1)22563ab cd c b a -⋅-2253)6(ab c cd b a ⋅--=bad 52= (2)422643mn n m ÷-743286143n m mn n m -=⋅-= (3)原式)2)(1)(3)(1()3)(2)(2(++----+=a a a a a a a 122--=a a (4)原式)()()()(2b a b a b b a b b a -+÷-+=2222))((b b a b b a b a -=-+= 说明:(1)运算的结果一定要化成最简分式;(2)乘除法混合运算,可将除法化成乘法,而根据分式乘法法则,是先把分子、分母相乘,化成一个分式后再进行约分.在实际运算时,可以先约分,再相乘,这样简便易行,可减少出错.例4 分析:(1)对于含有分式乘方,乘除的混合运算,运算顺序是先乘方后乘除,一般首先确定结果的符号,再做其他运算,(2)进行分式的乘除混合运算时,要注意,当分子、分母是多项式时,一般应分解因式,并在运算运程中约分,使运算简化,因式,除式(或被除式)是整式时,可以看作分母是“1”的式子,然后按照分式的乘除法法则计算,这样可以减少错误.解:(1)原式2436221)1()(x xy x y y x =-⋅-⋅= (2)原式x x x x x x --+⨯+⨯--=3)2)(3(31)2()3(22 x-=22 例5 分析 本题要求先化简再求值,实际上就是先将分子、分母分别分解因式,然后约分,把分式化为最简分式以后再代入求值.解 原式=)())((23223b a b b a b a b b a ab a b a b +-+÷-+⋅- ))(()()(32b a b a b a b b b a a b a b -++⨯-⨯-= ba -= 当3,32-==b a 时, 原式92332-=-= 例6 解 (1).4328268623232ba b b b ab b ab =÷÷= (2)222322xy y x y x x --)2()2(2y x xy y x x --=(分子、分母分解因式) yx =(约去公因式)说明 1.当分子、分母是单项式时,其公因式是系数的最大公约数与相同字母的最低次幂的积.2.当分子、分母是多项式时,先分解因式,再约去公因式.例7 分析 (1)∵44422-+-x x x )2)(2()2(2-+-=x x x ,分子、分母有公因式)2(-x ,所以它不是最简分式;(2)显然也不是最简分式;(3)中))((22y x y x y x -+=-与2y 没有公因式;(4)中22)1(12+=++x x x ,222)2(2)44(2882+=++=++x x x x x ,分子、分母中没有公因式.解 222y y x -和8821222++++x x x x 是最简分式; 44422-+-x x x 和63)(4)(3a b b a a --不是最简分式; 化简(1)44422-+-x x x .22)2)(2()2(2+-=-+-=x x x x x (2)63)(4)(3a b b a a --336)(43)(4)(3a b a a b a b a -=--= 例8 分析 (1)中各分母的系数的绝对值的最小公倍数为30,各字母a 、b 、c 因式的最高次幂分别是2a 、2b 、2c ,所以最简公分母是22230c b a .(2)中分母为多项式,因而先把各分母分解因式,)3(339a a -=-;)3)(1(232-+=--a a a a ;)3)(2(652--=+-a a a a ,因而最简公分母是).3)(2)(1(3--+a a a解 (1)最简公分母为23230c b a .223ca b 23243223301010310c b a b b c a b b =⋅⋅=, abc 2-232322222301515215c b a c ab c ab ab c ab c -=⋅⋅-=cba 52323232306656cb ac a c a cb c a a -=⋅⋅= (2)最简公分母是)3)(2)(1(3--+a a aa 392-)2)(1()3(3)2)(1(2)3(33-+⋅--+⋅-=-=a a a a a a )3)(2)(1(3)2)(1(2--+-+-=a a a a a aa a 2312---)2(3)3)(1()2(3)1()3)(1(1-⋅-+-⋅-=-+-=a a a a a a a a )3)(2)(1(3)2)(1(3--+--=a a a a a 652+-a a a )1(3)3)(2()1(3)3)(2(+⋅--+⋅=--=a a a a a a a a )3)(2)(1(3)1(3--++=a a a a a 说明 1.通分过程中必须使得化成的分式与其原来的分式相等.2.通分的根据是分式的基本性质,分母需要乘以“什么”,分子也必须随之乘以“什么”,且不漏乘.3.确定最简公分母是通分的关键,当公分母不是“最简”时,虽然也能达到通分的目的,但会使运算变得繁琐,因而应先择最简公分母.。
分式乘除法计算练习题及答案

分式乘除法计算练习题及答案x?2x2?6x?93xy28z2问题1 计算:.; 2x?3x?44zy名师指导这道例题就是直接应用分式的乘法法则进行运算.值得注意的是运算结果应约分到不好约分为止,同时还应注意在计算时跟整式运算一样,先确定符号,再进行相关计算,求出结果.这道例题中分式的分子、分母是多项式,应先把分子、分母中的多项式分解因式,再进行约分.解题示范3xy28z224xy2z2解:6xy;z2y4yz2x?2x2?6x?9x?222x?3. 2x?3x?4x?3x?2归纳提炼类比分数的乘法运算不难理解,分式的乘法运算就是根据分式乘法法则,将各式分子、分母分别相乘后再进行约分运算,值得注意的地方有三点:一是要确定好运算结果的符号;二是计算结果中分子和分母能约分则要约分;三是有时计算结果的分母不一定是单一的多项式,而是多个多项式相乘,这时也不必把它们展开. a2b?2axa?2a2?4??问题计算:;. a?3a2?6a?93cd6cd名师指导分式除法运算,根据分式除法法则,将分式除法变为分式乘法运算,注意点同分式乘法.解题示范a2b?2axa2b6cd6a2bcdab;解:3cd6cd3cd2ax6acdxxa?2a2?4a?222a?3. ?2a?3a?6a?9a?3a?2a3b?a2b2a2?ab?2问题已知:a?2b?2?2的值.2a?2ab?ba?b名师指导完成这类求值题时,如果把已知条件直接代入,计算将会较为繁杂,容易导致错误产生.解决这种问题,一般应先将代数式进行化简运算,然后再把已知条件代入化简后的式子中进行计算,这样的处理方式可以使运算量少很多.解题示范解:化简代数式得,a3b?a2b2a2?ab?222a?2ab?ba?ba2b ?2aa2b2 ?2aab.把a?2b?2ab,所以原式?·2xy. x?y2y22.计算:?3xy?.x33.计算:?9ab____. b3x2yxy?..计算:a3am2?4m?3?25.若m等于它的倒数,则分式的值为m?2m?3mA.-1B.3C.-1或D.?6.计算?21 x?y的结果是 xA.2B.x2?yC.x2D.x7.计算32的结果是A.3a2-1 B.3a2-C.3a2+6a+ D.a2+2a+1 8.已知x等于它的倒数,则x2?x?6x?3x?3x2?5x?6的值是A.- B.-C.-1 D.09.计算a2?1a2?aa2?2a?1÷a?1.10.观察下列各式:x?1x2?x?1x3?x2?x?1x4?x3?x2?x?1你能得到一般情况下?的结果吗?根据这一结果计算:1?2?22?23??22006?22007.) xn?1?n?2?x?1,22008ax??17.B.A分数乘除法计算题专项练习1一、直接写出得数57?34=79?97=5?43=7?152=?354=1= 191591120?38= 10?32==7×1= 1+17= 1953×0=?778=3?9= 134?5 =4÷34=10÷10%= 12÷23=1.8×15926=?10?5= 1715×60=二、看谁算得又对又快58?167?141135248?6?351926?3855?511 12?35?32533545×4÷×48?3+8?458÷71521÷ 10 ÷×姓名:6÷310-310÷ 13353×4÷[523713133-]÷314÷ 16718×14+34×7114×57÷14×5 736× ×9+2312×3.2+5.6×0.5+1.2×50%211?3?2?5955711[2-]×12三、解方程78x=218239x?4=15x+215x=23 56x=308x-113=6x+5×4.4=40÷x =5122x+215x=20四、求下面各比的比值1052:8467:46.7106345:0.610:140 19:12五、化简下面各比65:1 123: 1.1:114.9:0.152:15:0.12六、列式计算1.4个131的和除以8,商是多少?.112减去2乘23的积,差是多少?3.一个数的比它的34多,求这个数。
分式的乘除练习题及答案

分式的乘除练习题及答案问题1计算:(1)22238()4xy zz y-;(2)2226934x x xx x+-+--.名师指导(1)这道例题就是直接应用分式的乘法法则进行运算.值得注意的是运算结果应约分到不好约分为止,同时还应注意在计算时跟整式运算一样,先确定符号,再进行相关计算,求出结果.(2)这道例题中分式的分子、分母是多项式,应先把分子、分母中的多项式分解因式,再进行约分.解题示范解:(1)2222223824()644xy z xy zxyz y yz-=-=-;(2)22222692(3)(2)(3)3 343(2)(2)(3)(2)(2)2x x x x x x x xx x x x x x x x x+-++-+--===---+--+--.归纳提炼类比分数的乘法运算不难理解,分式的乘法运算就是根据分式乘法法则,将各式分子、分母分别相乘后再进行约分运算,值得注意的地方有三点:一是要确定好运算结果的符号;二是计算结果中分子和分母能约分则要约分;三是有时计算结果的分母不一定是单一的多项式,而是多个多项式相乘,这时也不必把它们展开.问题2计算:(1)2236a b axcd cd-÷;(2)2224369a aa a a--÷+++.名师指导分式除法运算,根据分式除法法则,将分式除法变为分式乘法运算,注意点同分式乘法.解题示范解:(1)22226636326a b ax a b cd a bcd ab cd cd cd ax acdx x -÷=-=-=-;(2)2222242(3)(2)(3)33693(2)(2)(3)(2)(2)2a a a a a a a a a a a a a a a a a ---+-++÷===+++++-++-+.问题3 已知:2a =,2b =322222222a b a b a ab a ab b a b+-÷++-的值. 名师指导完成这类求值题时,如果把已知条件直接代入,计算将会较为繁杂,容易导致错误产生.解决这种问题,一般应先将代数式进行化简运算,然后再把已知条件代入化简后的式子中进行计算,这样的处理方式可以使运算量少很多.解题示范解:化简代数式得,322222222a b a b a ab a ab b a b +-÷++- 22()()()()()a b a b a b a b a b a a b ++-=+- 222()()()()a b a b a b a a b a b +-=+- ab =.把2a =2b =ab ,所以原式22(222=+=-=.归纳提炼许多化简求值题,有的在题目中会明确要求先化简,再求值,这时必须按要求的步骤进行解题.但有的在题目中未必会给出明确的要求或指示,与整式中的求代数式值的问题一样,分式中的求值题一般也是先化简,然后再代入已知条件,这样可以简化运算过程.【自主检测】1.计算:2()xy x -·xy x y-=___ _____. 2.计算:23233y xy x -÷____ ____.3.计算:3()9a ab b-÷=____ ____. 4.计算:233x y xy a a÷=____ ____. 5.若m 等于它的倒数,则分式mm m m m 332422--÷--的值为 ( ) A .-1 B .3 C .-1或3 D .41-6.计算2()x yx xy x ++÷的结果是( ) A .2()x y + B .y x +2 C .2x D .x7.计算2(1)(2)3(1)(1)(2)a a a a a -++++的结果是( ) A .3a 2-1 B .3a 2-3 C .3a 2+6a +3 D .a 2+2a +18.已知x 等于它的倒数,则263x x x ---÷2356x x x --+的值是( ) A .-3 B .-2 C .-1 D .09.计算22121a a a -++÷21a aa -+.10.观察下列各式:2324325432(1)(1)1(1)(1)1(1)(1)1(1)(1)1x x x x x x x x x x x x x x x x x x -÷-=+-÷-=++-÷-=+++-÷-=++++(1)你能得到一般情况下(1)(1)n x x -÷-的结果吗?(2)根据这一结果计算:2320062007122222++++++.【自主评价】一、自主检测提示8.因为x 等于它的倒数,所以1x =±,2263356x x x x x x ---÷--+(3)(2)(2)(3)33x x x x x x -+--=--(2)(2)x x =+-224(1)43x =-=±-=-.10.根据所给一组式子可以归纳出:122(1)(1)1n n n x x x x x x ---÷-=+++++.所以232006200720082008122222(21)(21)21++++++=--=-.二、自我反思1.错因分析2.矫正错误3.检测体会4.拓展延伸参考答案1.2x y - 2. 292x y- 3. 213b - 4.9x 5.C 6.C 7.B8.A 9.1a 10.(1)121n n x x x --++++,(2)200821-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分式的乘除法》典型例题
例1 下列分式中是最简分式的是()
A .264a
b B .b a a b --2)(2 C .y x y x ++22 D .y
x y x --2
2 例2 约分
(1)36)(12)(3a b a b a ab -- (2)44422
-+-x x x (3)b b 2213432-+ 例3 计算(分式的乘除)
(1)22563ab cd c b a -⋅- (2)422
643mn n
m ÷- (3)2
33344222++-⋅+--a a a a a a (4)222
22222b
ab a b ab b ab b ab a +-+÷-++ 例4 计算
(1))()()(432
2xy x
y y x -÷-⋅- (2)x
x x x x x x --+⨯+÷+--36)3(446222 例5 化简求值
22232232b ab b a b b a ab a b a b +-÷-+⋅-,其中3
2=a ,3-=b . 例6 约分
(1)32
86b
ab ; (2)222322xy y x y x x --
例7 判断下列分式,哪些是最简分式?不是最简分式的,化成最简分式或整式.
(1)4
4422-+-x x x ; (2)36)(4)(3a b b a a --; (3)22
2y y x -;
(4)882122++++x x x x 例8 通分:
(1)223c a b
, ab c 2-,cb a 5 (2)a 392
-, a a a 2312---,652+-a a a
参考答案
例1 分析:(用排除法)4和6有公因式2,排除A .2)(a b -与)(b a -有公因式)(b a -,排除B ,22y x -分解因式为))((y x y x -+与)(y x -有公因式)(y x -,排除D.
故选择C.
解 C
例2 分析(1)中分子、分母都是单项式可直接约分.(2)中分子、分母是多项式,应该先分解因式,再约分.(3)中应该先把分子、分母的各项系数都化为整数,把分子、分母中的最高次项系数化为正整数,再约分.
解:(1)36)(12)(3a b a b a ab --)4()(3)()(3333-⋅--⋅-=b a a b b a b a a 3)(4
1b a b --= (2)4
4422-+-x x x )2)(2()2(2-+-=x x x 22+-=x x (3)原式2123486)22
1(6)3432(b b b b -+=⋅-⋅+=312482-+-=b b b b b b 634)12)(12(3)12(4-=-++-= 例3 分析(1)可以根据分式乘法法则直接相乘,但要注意符号.(2)中的除式是整式,可以把它看成1
64
mn .然后再颠倒相乘,(3)(4)两题都需要先分解因式,再计算.
解:(1)22563ab cd c b a -⋅-2253)6(ab c cd b a ⋅--=b
ad 52= (2)422643mn n m ÷-743286143n
m mn n m -=⋅-= (3)原式)2)(1)(3)(1()3)(2)(2(++----+=a a a a a a a 1
22--=a a
(4)原式)()()()(2b a b a b b a b b a -+÷-+=2
2
22))((b b a b b a b a -=-+= 说明:(1)运算的结果一定要化成最简分式;(2)乘除法混合运算,可将除法化成乘法,而根据分式乘法法则,是先把分子、分母相乘,化成一个分式后再进行约分.在实际运算时,可以先约分,再相乘,这样简便易行,可减少出错.
例4 分析:(1)对于含有分式乘方,乘除的混合运算,运算顺序是先乘方后乘除,一般首先确定结果的符号,再做其他运算,(2)进行分式的乘除混合运算时,要注意,当分子、分母是多项式时,一般应分解因式,并在运算运程中约分,使运算简化,因式,除式(或被除式)是整式时,可以看作分母是“1”的式子,然后按照分式的乘除法法则计算,这样可以减少错误.
解:(1)原式2
436221)1()(x xy x y y x =-⋅-⋅= (2)原式x x x x x x --+⨯+⨯--=
3)2)(3(31)2()3(22 x
-=22 例5 分析 本题要求先化简再求值,实际上就是先将分子、分母分别分解因式,然后约分,把分式化为最简分式以后再代入求值.
解 原式=)
())((23223b a b b a b a b b a ab a b a b +-+÷-+⋅- )
)(()()(32b a b a b a b b b a a b a b -++⨯-⨯-= b
a -= 当3,3
2-==b a 时, 原式9
2332
-=-=
例6 解 (1).4328268623232b
a b b b ab b ab =÷÷= (2)222322xy y x y x x --)
2()2(2y x xy y x x --=(分子、分母分解因式) y
x =(约去公因式) 说明 1.当分子、分母是单项式时,其公因式是系数的最大公约数与相同字母的最低次幂的积.
2.当分子、分母是多项式时,先分解因式,再约去公因式.
例7 分析 (1)∵4
4422-+-x x x )2)(2()2(2-+-=x x x ,分子、分母有公因式)2(-x ,所以它不是最简分式;(2)显然也不是最简分式;(3)中))((22y x y x y x -+=-与2y 没有公因式;(4)中22)1(12+=++x x x ,222)2(2)44(2882+=++=++x x x x x ,分子、分母中没有公因式.
解 22
2y
y x -和8821222++++x x x x 是最简分式; 4
4422-+-x x x 和63
)(4)(3a b b a a --不是最简分式; 化简
(1)4
4422-+-x x x .22)2)(2()2(2+-=-+-=x x x x x (2)63)(4)(3a b b a a --336)(4
3)(4)(3a b a a b a b a -=--= 例8 分析 (1)中各分母的系数的绝对值的最小公倍数为30,各字母a 、b 、c 因式的最高次幂分别是2a 、2b 、2c ,所以最简公分母是22230c b a .
(2)中分母为多项式,因而先把各分母分解因式,)3(339a a -=-;
)3)(1(232-+=--a a a a ;)3)(2(652--=+-a a a a ,因而最简公分母是).3)(2)(1(3--+a a a
解 (1)最简公分母为23230c b a .
223c
a b 23243223301010310c b a b b c a b b =⋅⋅=, ab
c 2-232322222301515215c b a c ab c ab ab c ab c -=⋅⋅-= cb a 52323232306656c b a c a c
a c
b
c a a -=⋅⋅= (2)最简公分母是)3)(2)(1(3--+a a a
a 392-)2)(1()3(3)2)(1(2)
3(33-+⋅--+⋅-=-=a a a a a a )3)(2)(1(3)2)(1(2--+-+-=a a a a a a a a 2312---)2(3)3)(1()2(3)1()3)(1(1-⋅-+-⋅-=-+-=a a a a a a a a )
3)(2)(1(3)2)(1(3--+--=a a a a a 652+-a a a )1(3)3)(2()1(3)3)(2(+⋅--+⋅=--=a a a a a a a a )
3)(2)(1(3)1(3--++=a a a a a 说明 1.通分过程中必须使得化成的分式与其原来的分式相等.
2.通分的根据是分式的基本性质,分母需要乘以“什么”,分子也
必须随之乘以“什么”,且不漏乘.
3.确定最简公分母是通分的关键,当公分母不是“最简”时,虽
然也能达到通分的目的,但会使运算变得繁琐,因而应先择最简公分母.。