一元一次方程总复习

合集下载

一元一次方程的复习一汇总

一元一次方程的复习一汇总

合并同类项 系数化为1
二、典型例题
例1、下列方程的解法对不对?若不对,错在哪里? 怎样改正?
(1)3(2 x 1) (4 x 3) 2( x 5) 5( x 1) 解:去括号,得: 6 x 3 4 x 3 2 x 10 5x 5 - 3 2 x + 6x 3 4x 10 5x 5 移项,得: 6x 4x 2x 5x 10 5 3 3 6x 4x +3 + 2 x 5x 10 5 3 合并同类项,得: 5x 5 - x 21 系数化为1,得:
注:去括号或移项,要注意变号。
x 1 x -21
2 x 1 10 x 1 2 x 1 1 (2) 3 12 4 解: 去分母,得: 4(2 x 1) 10 x 1 3(2 x 1) 1
4(2 x 1) (10 x 1) 3(2 x 1) 12
0.01 0.02 x 1 0.3x 1 0.03 0.2
2、 为何值时,代数式
x
4 2 x 1 x 1 与 6
的差的值是1;
3 9x 5 3、已知方程 7(m x) mx 的解是2,求 4 2
m 1 m 1
的值。
方程与一元一次方程(概念);
解方程;
4、解一元一次方程的一般步骤有哪些?
一般步骤:去分母,去括号,移项,合并同类项, 系数化为1。来自解一元一次方程的一般步骤
变 形 名 称 去 去 移 分 括 母 号 项




防止漏乘(尤其整数项),注意添括号; 注意变号,防止漏乘; 移项要变号,防止漏项; 1、系数相加。2、字母及其指数不变。 不要分子、分母搞颠倒

第八讲 一元一次方程复习

第八讲  一元一次方程复习

所以他说此方程无解。你觉得他做得对 吗?为什么? 那“因为ac=bc,所以a=b‖推理对吗?
6.若
(m 2) x
m 1
5 是一元一次方程,则m
的值是多少?
7、解下列方程
(1)3( x 5) 2( x 2) 5( x 7) 3 2 x (3) [ ( 1) 2] x 2 2 3 4 2 x 1 2(2 x 1) 5(2 x 1) (5) 40 2 3 6 x 1 x2 (2) 2 2 5 x 3 2 x 0.1 (4) 1 0.3 0.2
去分母时,方程右边的-1没有乘3,因 而得方程的解为x=2,试求a 的值,并 正确的解方程.
3 3 已知5( x ) 3 2, 求代数式7 2007( x ) 2006 2006 的值.
解:
3 5( x 2006) 2 3 3 5( x )5 2006 3 x 1 2006
(
a0
)
知识点练习一 1.下列说法中正确的是 ( A ) A.方程是等式 B.等式是方程 C.含有字母的等式是方程 D.不含有字母的方程是等式 2.若关于x的方程2x2m-3+m=0是一元一次方程, 则m=_____,方程的解是__。 方程的解是指能使方程左右两 边相等的未知数的值。 1.什么是方程的解, 知识点复习二 什么是解方程? 解方程是指求出方程 的解的 过程。
2、已知 x = y,下列 变形中不一定正确的是 需注意的是“两边都乘, ( D) 不要漏乘”;“同除一 A.x-5=y-5 B.-3x=-3y 个非0的数” x y C.mx=my D. 2 2 c c
知识点复习四、 5.解一元一次方程的一般步骤有哪些? 它的根据是什么? 1、去分母:不要漏乘分母为1的项。 2、去括号:注意符号 3、移项:①将含有未知数的项移到等式的 一边; 将常数项 移到另一边;②注意“变号”

一元一次方程(复习)

一元一次方程(复习)
第三章 一元一次方程
小结与复习
要点梳理
考点讲练
课堂小结
课后作业
目标导学1
1.解一元一次方程的一般步骤:
(1) 去分母:方程两边都乘各分母的最小公倍数, 别漏乘.
(2) 去括号:注意括号前的系数与符号. (3) 移项:把含有未知数的项移到方程的左边,常 . 数项移到方程右边,移项注意要改变符号 (4) 合并同类项:把方程化成 ax = b (a≠0)的形式.
(5) 系数化为1:方程两边同除以 x 的系数,得 x=m 的形式.
2. 列方程解决实际问题的一般步骤: 审:审清题意,分清题中的已知量、未知量. 设:设未知数,设其中某个未知量为x. 列:根据题意寻找等量关系列方程. 解:解方程. 验:检验方程的解是否符合题意. 答:写出答案 (包括单位).
审题是基础,找 等量关系是关键.
(2) 工程问题中基本量之间的关系:
① 工作量 = 工作效率×工作时间; ② 合作的工作效率 = 工作效率之和; ③ 工作总量 = 各部分工作量之和 = 合作的工作效
率×工作时间; ④ 在没有具体数值的情况下,通常把工作总量看
做1.
例2 一项工作,甲单独做8天完成,乙单独做12天完 成,丙单独做24天完成.现甲、乙合作3天后,甲 因有事离去,由乙、丙合作,则乙、丙还要几天才 能完成这项工作?
10
解:设最多可以打 x 折,根据题意得
5001 40% x 500112%.
10 解得 x = 8.
答:广告上可写出最多打 8 折.
针对训练
7. 一家商店将某种商品按进价提高40%后标价,节假 日期间又以标价打八折销售,结果这种商品每件 仍可获利24元,问这件商品的进价是多少元?
解:设这件商品的进价是 x 元,根据题意得

方程与不等式之一元一次方程知识点总复习有答案

方程与不等式之一元一次方程知识点总复习有答案

方程与不等式之一元一次方程知识点总复习有答案一、选择题1.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ). A .3229x x -=+B .3(2)29x x -=+C .2932x x +=-D .3(2)2(9)x x -=+【答案】B 【解析】 【分析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9. 故选B. 【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.2.A ,B 两地相距480 km ,一列慢车从A 地出发,每小时行驶60 km ,一列快车从B 地出发,每小时行驶90 km ,快车提前30 min 出发.两车相向而行,慢车行驶了多少小时后,两车相遇.若设慢车行驶了x h 后,两车相遇,则根据题意,下面所列方程正确的是( ) A .60(30)90480x x ++= B .6090(30)480x x ++= C .160()904802x x ++= D .16090()4802x x ++=【答案】D 【解析】 【分析】 【详解】解:慢车行驶了x 小时后,两车相遇,根据题意得出:16090()4802x x ++=. 故选D . 【点睛】本题考查由实际问题抽象出一元一次方程.3.一船由甲地开往乙地,顺水航行要4小时,逆水航行比顺水航行多用40分钟,已知船在静水中的速度为16千米/时,求水流速度. 解题时,若设水流速度为x 千米/时,那么下列方程中正确的是( ) A .()()24164163x x ⎛⎫+=+- ⎪⎝⎭B .()24164163x ⎛⎫⨯=+- ⎪⎝⎭C .()()()41640.416x x +=+-D .()24164163x ⎛⎫+=+⨯ ⎪⎝⎭【答案】A 【解析】 【分析】由已知条件得到顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时,根据时间关系列方程即可. 【详解】由题意得到:顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时, ∴()()24164163x x ⎛⎫+=+- ⎪⎝⎭, 故选:A. 【点睛】此题考查一元一次方程的实际应用,正确理解顺水航行和逆水航行的速度是解题的关键.4.关于x 的方程243x m +=和1x m -=有相同的解,则m 的值是( ) A .6 B .5C .52D .23-【答案】A 【解析】分析:根据同解方程,可得关于m 的方程,根据解方程,可得答案. 详解:由题意,得:x =m +1,2(m +1)+4=3m , 解得:m =6. 故选A .点睛:本题考查了同解方程,利用同解方程得出关于m 的方程是解题的关键.5.某书店推出一种优惠卡,每张卡售价为50元,凭卡购书可享受8折优惠,小明同学到该书店购书,他先买购书卡再凭卡付款,结果省了10元。

一元一次方程复习

一元一次方程复习

合并同类项,得 6x= 2.5
5 两边同除以6, 得x= 12
解方程
x 0.4 x 3 2 0.2 0.5
解:变形,得
5( x 0.4) 2x 3 2
去括号,得 5x+2-2x+6=2 移项,得 5x-2x=2-2-6 合并同类项,得 3x=-6 系数化为1,得 X=-2
x 3x 7 练1、 1与 若 互为相反数,则x的值为 ( C ) 2 2
(A)4.5
(B) 2.5
(C)1.25
(D)-2.5
练2、已知:实数x, y满足关系式 | x 2 | (2 y 1) 0, 求xy的值。 xy=1
2
点拨:根据非负数构造方程解题
非负问题 转化 方程问题 求解 已学的两类非负数:绝对值“| a |" , 平方“a 2 "
- 2X+5 C、3(3X+1)=___________
例:方程3X+20=4X-25+5
移动的项要变号 (3)移项:
• 移项正确的是:A、3X--4X=-5-25-20 • B、 3X-4X=-25+5-20
× √
火眼金睛
下面方程的解法对吗?若不对,请改正 。 解方程
3x 1 4x 1 1 3 6
移项,得
4x 9x 6 2 30
合并同类项,得
13 x 34
系数化为1,得
34 x 13
课堂练习:解方程: 1.5 x 1.5x 0.6 2

0.5
解:原方程可化为:
5x 2

1.5 x 2
0.5
去分母, 得5x –(1.5 - x)= 1 去括号,得 5x – 1.5 + x = 1 移项, 得 5x + x = 1 + 1.5

(总复习)一元一次方程难题

(总复习)一元一次方程难题

《七下总复习》1.一元一次方程对于方程a x=b 的解的情况如下:若≠a 0,则方程有唯一解bax =;若a =0,且b=0,则方程有无穷多个解,若a =0,且b 0≠,则方程无解。

1 如果a ,b 是定值时,无论K 为何值时,关于x 的方程2632+-=+bkx a kx 总有一个解是1,求a ,b 的值。

2如果方程3)3(--=+-bx a b x a 有无穷多个解,求a ,b 的值。

3若关于x 的方程56)34(=+-x m 有且只有一个解,试求m 的值。

4若关于x 的方程65)23(=++-n x m 无解,试求m ,n 的值。

5 当m 取什么整数时,关于x 的方程)34(213521-=-x mx 的解是正整数?6.已知方程313164=---kx x 是关于x 的一元一次方程.(1)当方程有解时,求k 的取值范围; (2)当k 取什么整数值时,方程的解是正整数.2,二元一次方程组 类型总结(提高题) 类型一:二元一次方程的概念及求解 ,(1).已知(a -2)x -by|a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____. (2).二元一次方程3x +2y =15的正整数解为_______________.类型二:二元一次方程组的求解(3).若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.(4).2x -3y =4x -y =5的解为_______________. 类型三:已知方程组的解,而求待定系数。

(5).已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解则m 2-n 2的值为_________.(6).若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.(7)若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为 。

人教版一元一次方程复习题

人教版一元一次方程复习题

2.解方程: 278(x-4)-463(8-2x)-888(7x-28)=0。 解:原方程可化为 278(x-4)+463×2(x-4)-888×7(x-4)=0, (x-4)(278+463×2-888×7)=0, x-4=0,x=4.
大家有疑问的,可以询问和交流
可 以 互 相 讨 论下, 但要小 声点
根据题意,得:(x-10)+(x+10)+(x÷2)+(x×2)=270,解 得 x=60.
故甲实际做的零件个数为 x-10=50 个,乙实际做的零件 个数为 x+10=70 个,丙实际做的零件个数为 x÷2=30 个,丁 实际做的零件个数为 x×2=120 个.
答:略.
谢谢
8
专题二 数形结合思想的应用
例2:A、B两站间的距离为448km,一列慢车从A站出发, 每小时行驶60km,一列快车从B站出发,每小时行驶80km。
问:(1)两车同时出发,相向而行,出发后多少小时相遇? (2)两车相向而行,慢车先开28min,快车开出多少小时后 两车相遇?
(3)如果两车都从A站开向B站,要使两车同时到达,慢车 应先出发多少小时?
【规律总结】在分析应用题时,借助画示意图,或列表格 的方法能清晰地分析出题中各量之间的关系,及题中所隐含的 等量关系式。
拓展训练
3.A、B 两地间的距离为 360 km,甲车从 A 地出发开往 B 地,每小时行驶 72 km,乙车比甲车晚出发152小时,每小时行驶 48 km,两车相向而行,相遇后,各自仍按原速度、原方向继续 行驶,那么相遇以后两车相距 100 km 时,甲车从出发开始行驶 了多少小时?
解:设第一个矩形的长为 5x cm,它的宽为 4x cm,则第二 个矩形的长为 3x cm,宽为 2x cm,所以

中考数学总复习《一元一次方程》专项测试题-附参考答案

中考数学总复习《一元一次方程》专项测试题-附参考答案

中考数学总复习《一元一次方程》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.过去时全班同学每人互发一条祝福短信,共发了380条,设全班有x名同学,列方程为( )A.12x(x−1)=380B.x(x−1)=380C.2x(x−1)=380D.x(x+1)=3802.若关于x的方程2x+a−4=0的解是x=−2,则a的值等于( )A.−8B.0C.2D.83.如果x=2是方程12x+a=−1的解,那么a的值是( )A.−2B.2C.0D.−64.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场5.解方程x−16=3−2x−14,去分母时,方程两边乘各分母的最小公倍数( )A.10B.12C.24D.66.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为( )A.96里B.48里C.24里D.12里7.如图,用火柴棍分别拼成一排三角形组成的图形和一排正方形组成的图形,如果搭建三角形和正方形一共用了2020根火柴,且三角形的个数比正方形的个数多4个,则搭建三角形的个数是( )A.402B.406C.410D.4208.一元一次方程x−2=0的解是( )A.x=2B.x=−2C.x=0D.x=1二、填空题(共5题,共15分)9.一件商品如果按标价的八折销售,仍可获得25%的利润.已知该商品的成本价是40元,则该商品标价为元.10.小明在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:2y−12y=12−■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为y=−53,于是,他很快知道了这个常数,他补出的这个常数是.11.若x=−2是方程m(x+3)−3m−x=6的解,则m的值为.12.关于x的一元一次方程x2022−1=2022x+m的解为x=−2019,则关于y的方程3−y2022−1=2022(3−y)+m的解为.13.−113的倒数的相反数是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程总复习
教学目标
1.准确地理解方程、方程的解、解方程和一元一次方程等概念;
2.熟练地掌握一元一次方程的解法;
3.通过列方程解应用题,提高学生综合分析问题的能力;
4.使学生进一步理解在解方程时所体现出的化归思想方法;
5.使学生对本章所学知识有一个总体认识.
教学重点和难点
进一步复习巩固解一元一次方程的基本思想和解法步骤,以及列方程解应用题.
教学手段
引导--活动--讨论
教学方法
启发式教学
教学过程
一、主要概念
1、方程:含有未知数的等式叫做方程。
2、一元一次方程:只含有一个未知数,未知数的指数是1的方程叫做一元一次方程。
3、方程的解:使方程左右两边相等的未知数的值叫做方程的解。
4、解方程:求方程的解的过程叫做解方程。

二、等式的性质
等式的性质1:等式两边都加(或减)同一个数(或式子),结果仍相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

三、解一元一次方程的一般步骤及根据
1、去分母-------------------等式的性质2
2、去括号-------------------分配律
3、移项----------------------等式的性质1
4、合并----------------------分配律
5、系数化为1--------------等式的性质2
6、验根----------------------把根分别代入方程的左右边看求得的值是否相等
四、解一元一次方程的注意事项
1、分母是小数时,根据分数的基本性质,把分母转化为整数;
2、去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数
线相当于括号,去分母后分子各项应加括号;
3、去括号时,不要漏乘括号内的项,不要弄错符号;
4、移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;
5、系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;
6、不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法。

五、列方程解应用题的一般步骤
1、审题
2、设未数
3、找相等关系
4、列方程
5、解方程
6、检验
7、写出答案

六、例题
例1、某班有50名学生,准备集体去看电影,买到的电影票中,有1元5角的,有2元的。
已知买电影票总共花88元,问票价是1元5角和2元的电影票各几张?
解:设票价是2元的电影票为X张,则票价为1元5角的应有(50-X)张。
列方程:2X + 1.5(50 - X)= 88
去括号:得 2X + 75 - 1.5X = 88
移项、合并:得 0.5X = 13
系数化为1:得 X = 26
把X = 26代入50 - X,得50 - 26 = 24
检验:2 ×26 + 1.5 × 24 = 88(元)
∴求的解是符合题设条件的或者符合题意的。
答:......
例2、一架飞机飞行在两城市之间,风速为24千米/时,顺风飞行需2小时50分,逆
风飞行需3小时,求两个城市间的飞行路程。
分析:设两城市的飞行路为X千米,则顺风、逆风飞行的路程都是X千米,顺风飞行
的速度为千米/时,逆风飞速为千米/时,所以,应该在速度这个量上找相等关系:∵顺风机
速 ― 风速 = 无风机速; 逆风机速 + 风速 = 无风机速
∴顺风机速 ― 风速 = 逆风机速 + 风速
(解法一):设两城间的飞机飞行路程为X千米,根据上述相等关系,
得, ― 24 = + 24
化简,得 X ― = 48
去分母,得 18X ―17X = 2448
合并,得 X = 2448
检验:解的合理性 答:......
(解法二):由你们自己课下完成(设无风飞速为X千米/时)

例3、某校组织师生春游,如果单独租用45座车若干辆,刚好坐满;如果单独租用60
座客车,可少租1辆,且余30个空座位。求该校参加春游的人数?

七、课堂练习与作业(一)
1、某工厂计划每月生产800吨产品,二月份生产了750吨,那么它超额完成计划的吨数是
_____________
2、A点的海拔高度是60m,B点的海拔高度是-60m,C点的海拔高度是50m,_____点的
海拔最高,_______点的海拔高度最低,最高点比最低点高____________。
3、10筐桔子,以每筐15kg为标准,超过的千克数记作正数,不足的千克数记作负数,标

重的记录情况如下:+1,-0.5,-0.5,-1,+0.5,-0.5,+0.5,+0.5,+0.5,-0.5,这10筐桔子各重
_____________________________,平均每筐重_________千克。
4、某足球协会举办了一次足球联赛,其记分规则及奖励办法如下:
胜一场记3分,每人得奖金1500元;平一场记1分,每人得奖金700元;负一场记0分,
每人得奖金0元。
(1)当比赛进行到第12轮结束时,每队均比赛12场,A队共积19分,则A队胜_____
场,平_______场,负_________场。
(2)若每赛一场,每名参赛队员均得出场费500元,设A队其中一名参赛队员所得奖金与
出场费的和为W元,则W的最大值是____________元。
5、下表是六名同学的身高情况(单位cm),

姓名 A B C D E F 身高 165 164 172 与平均的差值 -1 +2 -3 +4 (1) 平均身高是
________
(2) ___的身高最高,____的身高最矮。
(3) 最高身高与最低身高相差_____

6、一块长方形铁板,长为1200cm,宽为800cm,则它的面积为( )
A、9.6×104cm2 B、9.6×105cm2 C、9.6×106cm2 D、9.6×107cm2
7、要把面值10元的一张人民币换成零钱,现有足够的面值为5元,2元,1元的人民币,
共有( )种不同的换法
A、12 B、10 C、8 D、6
8、某股票的开盘价为19.5元,上午12点跌1.5元,下午收盘时又涨0.6元,则该股票这
天的收盘价为( )
A、0.6元 B、17.4元 C、18.6元 D、19.5元
9、物体位于地面上空3米处,下降2米后又下降5米,最后物体在地面之下___米。
10、某地白天最高气温是200C,夜间最低气温是零下7.50C,夜间比白天最多低___0C。
11、某商品价格为a元,降价10﹪,又降价10﹪,销售量猛增,商店决定再提价20﹪,
提价后这种商店的价格为( )
A、a元 B、1.08a C、0.972a元 D、0.96a元
12、已知光的速度为300000000m/s,太阳光到达地球的时间大约是500s,则太阳与地球
的距离大约是_______km。(用科学记数法)
13、某人用200元购买了8套儿童服装,准备以一定的价格出售,如果每套以30元的价格

为准,超出记为正,不足记为负,记录如下:
+2,-3,+2,-1,1,-2,0,2,
当她卖完这8套服装后是盈利还是亏损?盈利(或亏损)多少元?

相关文档
最新文档