初一专题复习一元一次方程

合集下载

2024-2025学年度七年级数学上册期末复习专题训练 一元一次方程[含答案]

2024-2025学年度七年级数学上册期末复习专题训练 一元一次方程[含答案]

2024-2025学年度七年级数学上册期末复习专题训练一元一次方程当堂反馈1. 已知a=b,下列各式中:a-3=b-3,a+5=b+5,a-8=b+8,2a=a+b,正确的有( )A.1个B.2个C.3个D.4个2.将方程2x−12−x−13=1去分母,得到3(2x-1)-2(x-1)=1,错在 ( )A.最简公分母找错B.去分母时漏乘C.去分母时分子部分没有加括号D.去分母时各项所乘的数不同3. 已知x=-3是方程k(x+4)-2k-x=5的解,则k的值是 ( )A. -2B.2C.3D.54.某种商品每件的进价为120元,按标价的八八折销售时,利润率为10%,这种商品每件的标价是( )A. 140元B.150元C. 160元D.170元5. 已知关于x的方程4x-3m=2的解是x=m,则m的值是 .6. 已知代数式8x-12与6-2x的值互为相反数,那么x的值等于 .7.当x= 时,单项式−34a x+2b12x−1的次数为13.8.数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3分,要得到34分,必须答对的题数是 .9.王会计在记账时发现现金少了153.9元,查账后得知是一笔支出款的小数点看错了一位,王会计查出这笔看错了的支出款实际是元.10. 在等式3×□-2×□=15的两个方格内分别填入一个数,使这两个数的和为10,且使等式成立,则第一个方格内的数是 .11.解下列方程.(1)4(x+1)=3(x+2)+2; (2)y−y−12=2−y+25.12.已知关于x的方程3a−x=x2+3的解为2,求代数式(−a)²−2a+1的值.13.歼-20 战机不仅代表了中国自主研发战机的一个里程碑,也意味着中国的战机在一代代人的努力研发下正追赶世界顶尖水平.在某次军事演习中,风速为30千米/时的条件下,一架歼-20 战机顺风从A机场到B目的地要用60分钟,它逆风飞行同样的航线要多用1分钟.(1)求无风时这架歼-20战机在这一航线的平均速度;(2)求A机场到 B 目的地的距离.14.已知数轴上点 A、B表示的数分别为-1,3,动点 P 表示的数为x.(1)若P到A、B的距离和为6,写出x的值.(2)是否存在点P,使得PA-PB=3?若存在,求x的值;若不存在,说明理由.(3)若点M、N分别从点A、B同时出发,沿数轴正向分别以3个单位长度/秒、2个单位长度/秒的速度运动,多长时间后M、N相距1个单位长度?能力拓展15.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等.经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少;(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?期末复习专题(三) 一元一次方程【当堂反馈】1. C2. B3. A4. B5. 26. 17. 88. 89. 171 10. 711. (1)x=4(2)y=11712. ∵x=2是方程3a−x=x2+3的解,∴3a-2=1+3,解得:a=2,∴原式:=a²−2a+1=2²−2×2+1=1.13.(1)设无风时这架歼-20 战机在这一航线的平均速度为x千米/时,依题意得:6060×(x+30)=60+160×(x-30),解得:x=3630.答:无风时这架歼-20战机在这一航线的平均速度为3630千米/时. (2)6060×(3630+30)=3660(千米).答:A 机场到 B 目的地的距离为 3660千米.14. (1)当点 P在点A的左侧时,PA=-1-x,PB=3-x,则-1-x+3-x=6,解得x=-2;当点 P在点 B的右侧时,PA=x+1,PB=x-3,则x+1+x-3=6,解得x=4.综上所述,P到A、B的距离和为6时,x=-2或4. (2)∵AB=3-(-1)=4,∴PA-PB=3 时,点 P 在线段 AB 上,∴PA=x+1 ,PB=3−x,,由题意得,(x+1)-(3-x)=3,解得,x=2.5. (3)设出发t秒后,M、N相距1个单位长度,由题意得,点M的坐标为3t-1,点N的坐标为2t+3.当点M在点N的左侧时,(2t+3)−(3t −1)=1,解得t=3;当点M在点N的右侧时,(3t−1)−(2t +3)=1,解得t=5..综上所述,出发3秒或5秒后,M、N相距1个单位长度.【能力拓展】15.(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得:2(x+50)=3x,解得x=100,x+50=150.答:每套队服 150 元,每个足球 100 元.(2)到甲商场购买所花的费用为:150×100+100(a−10010)= 100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100·a=80a+15000(元). (3)当在两家商场购买一样合算时,10 0a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算.。

初一数学一元一次方程知识点

初一数学一元一次方程知识点

初一数学一元一次方程知识点初一数学一元一次方程知识点 1一、目标与要求1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3、培养学生获取信息,分析问题,处理问题的能力。

二、重点从实际问题中寻找相等关系;建立列方程解决实际问题的思想方法,学会合并同类项,会解ax+bx=c类型的一元一次方程。

三、难点从实际问题中寻找相等关系;分析实际问题中的已经量和未知量,找出相等关系,列出方程,使学生逐步建立列方程解决实际问题的思想方法。

四、知识框架五、知识点、概念总结1、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

3、条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0。

4、等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

5、合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。

6、移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。

7、一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。

一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a。

清单03一元一次方程(五大考点梳理题型解读解决实际问题12种题型)(原卷版)

清单03一元一次方程(五大考点梳理题型解读解决实际问题12种题型)(原卷版)

清单03 一元一次方程(五大考点梳理+题型解读+解决实际问题12种题型)【知识导图】【知识清单】考点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.【例1】(2022秋•颍州区期末)下列各式中,是方程的个数为()①x=0;②3x﹣5=2x+1;③2x+6;④x﹣y=0;⑤=5y+3;⑥a2+a﹣6=0.A.2个B.3个C.5个D.4个2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.细节剖析:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.【例2】(2022秋•汉台区期末)已知(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则()A.m=2B.m=﹣3C.m=±3D.m=13.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.【例3】(2023春•蒸湘区校级期末)若x=﹣1是方程2x+m﹣6=0的解,则m的值是()A.﹣4B.4C.﹣8D.8【变式】(2022秋•宁阳县期末)若一元一次方程ax+b=0的解是x=1,则a,b的关系为()A.相等B.互为相反数C.互为倒数D.互为负倒数4.解方程:求方程的解的过程叫做解方程.考点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.【例4】(2022秋•雅安期末)下列等式变形错误的是()A.若,则x﹣1=2xB.若x﹣1=3,则x=4C.若x﹣3=y﹣3,则x﹣y=0D.若3x+4=2x,则3x﹣2x=﹣42.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.考点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bxa(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.【例5】(2022秋•东宝区期末)解方程:(1)4﹣2x=﹣3(2﹣x);(2).考点四、列方程解应用题的步骤:①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x)③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)【例6】(2022秋•汇川区期末)如图,已知数轴上有A,B两点,它们分别表示数a,b,且(a+6)2+|b﹣12|=0.(1)填空:a=,b=;(2)点C以2个单位长度/秒的速度从点A向点B运动,到达点B后停止运动.若点D为AC中点,点E为BC中点,在点C运动过程中,线段DE的长度是否发生改变?若不变,求线段DE的长度,若变化,请说明原因;(3)在(2)的条件下,点P以1个单位长度/秒的速度同时从原点O向点B运动,P点到达B点后停止运动,问点P运动多少秒后,点P与点C相距2个单位长度?【例7】(2022秋•秦淮区期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(元/千瓦时)不超过150千瓦时的部分a 超过150千瓦时,但不超过300千瓦时的部分b 超过300千瓦时的部分a +0.32015年5月份,该市居民甲用电100千瓦时,交费60元;居民乙用电200千瓦时,交费125元. (1)求上表中a 、b 的值;(2)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月交费285元?【例8】.(2022秋•常州期末)列方程解决问题:小华和妈妈一起玩成语竞猜游戏,商定如下规则:小华猜中1个成语得2分,妈妈猜中1个成语得1分,结果两人一共猜中了30个成语,得分恰好相等.请问小华猜中了几个成语?考点五、用一元一次方程解决实际问题的常见类型 1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+ 7.数字问题;8.分配问题; 9.比赛积分问题;10.水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度水流速度).题型1.配套问题1.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?2.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?题型2.销售问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。

初一(上):一元一次方程专题复习

初一(上):一元一次方程专题复习

一元一次方程专题复习知识点一、一元一次方程的基本概念 等式的基本性质:一元一次方程:典型例题类型一、等式的基本性质例1.下列变形中不正确的是( )A 若x=y ,则x+a=y+aB 若x ya a =,则x=yC 若-3x=-3y ,则x=yD 若x=y ,则x ya a= 练习:判断下列说法是否正确:(1)若a=b ,则1-a=1-b.( ) (2)若a=b ,则-2a=-2b.( ) (3)若a=c ,则ab=bc.( ) (4)若ab=ac ,则a=c.( )(5)若a=b,则22a bm m =.( )(6)若a=b,则22a =-11bm m ---.( ) 类型二、一元一次方程定义求参数例2、已知(k -1)2x +(k-1)x+3是关于x 的一元一次方程,则k= 。

1、若3223=+-k kx k 是关于x 的一元一次方程,则k =_____________. 2、已知方程()||1240a a x --+=是一元一次方程,则a= 。

3、已知253-1)(-m 有最大值,则方程2345+=-x m 的解是 。

4、已知08)1(122=++--x m x m )(是关于x 的一元一次方程,那么179)2(199++-+m m x x m )(的值为 。

知识点二、一元一次方程的解法 解一元一次方程的步骤:例1、解方程(1)2(0.34)5(0.27)9x x +--= (2)23)5(312=--+x x ;(3)103.02.017.07.0=--xx (4)16231-+=--x x x类型一、巧乘因数: 例1.解下列方程21220.250.5x x +--=0.10.2130.020.5x x -+-= 1.720.5210.20.30.6x x x-+-=-类型二、巧去括号:例2.解下列方程1111{[(1)6]4}12345x --+=34172[(1)8]43433x x -+=+ 32112[(1)2]223423xx ++-=类型三、巧用公式例3、若22|1|(2)0a ab -+-=,则求方程2002(1)(1)(2)(2)(2001)(2001)x x x xab a b a b a b ++++=++++++的解。

七年级一元一次方程知识要点及典型例题

七年级一元一次方程知识要点及典型例题

七年级一元一次方程知识要点及典型例题研究好资料,欢迎下载!一元一次方程知识要点梳理及典型例题1.一元一次方程及解的概念方程是含有未知数的等式。

而一元一次方程是一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0.下列方程是一元一次方程的是:A。

x+y=1 B。

x+5x= C。

3x+7=16 D。

2-1/2=3/2x2.等式的基本性质等式的基本性质有以下两个:1)若x=y,则x+5=y+5.2)若xy=,则x=y。

若2x+1=8,则4x+2=14.3.分数的基本性质例如方程x-3x+4/(0.5-0.2x)=1.6,将其化为的形式为4x+2.1/1.5-0.2x=+0.6/0.03.4.判定是不是一元一次方程1、如果单项式-1/n+12ab与3a2n-1bm是同类项,则n=2,m=1.2、如果代数式3x-5与1-2x的值互为相反数,那么x=2/5.3、若方程3x-5=4x+1与3m-5=4(m+x)-2m的解相同,则m=2.4.关于x的方程mx+2m-3=x+1的解是x=2,那么m=1/2.5.关于x的方程(m+2)/(m-3)+m-3=1是一个一元一次方程,则m=2.6.关于x的方程3x=9与x+4=k的解相同,则代数式2x-k-3的值为0.7.当x=-1/2时,代数式(1-x)/(1+x)与1/3的值相等。

8.当2x-kx-3k-1=0的解是x=-1时,k的值是-2.9.若关于x的一元一次方程(3x+2)/(x-1)=(2x+1)/(x+3)的解为x=4,则x=4是该方程的唯一解。

10.已知方程2x-3=4x+1的解与方程4-3x=2(x+1)的解相同,则x=-2.11.已知方程2x-3=3(x+m)的解满足x-1=m/3,则m=-6.12.已知当a=1,b=-2时,代数式ab+bc+ca=10,则c的值为4.13.已知y+my=2,当m=4时,y的值为1/3.15.已知方程2x-3mx+2m=8中x=-2是方程的解,求m的值。

期末复习重要考点03 《一元一次方程》十大考点题型(热点题型+限时测评)(解析版)-七年级数学上册

期末复习重要考点03 《一元一次方程》十大考点题型(热点题型+限时测评)(解析版)-七年级数学上册

(人教版)七年级上册数学期末复习重要考点03《一元一次方程》十大重要考点题型【题型1方程的有关概念】1.(2022秋•新城区校级期末)下列各式中:①x=0;②2x>3;③x2+x﹣2=0;④1+2=0;⑤3x﹣2;⑥x﹣y=0;是方程的有()A.3个B.4个C.5个D.6个【分析】含有未知数的等式叫方程,根据方程的定义逐项判断即可得出答案.【解答】解:根据方程的定义可得:①③④⑥是方程,②2x>3是不等式,⑤3x﹣2,不是等式,不是方程,故方程有4个,故选:B.【点评】本题考查了方程的定义,熟练掌握方程的定义是解此题的关键.2.(2023秋•贵州期末)下列各式中是一元一次方程的是()A.x+y=6B.x2+2x=5C.+1=0D.2+3=0【分析】由一元一次方程的概念可知:①含有一个未知数,②未知数的次数为1,③整式方程,据此进行判断即可.【解答】解:A.x+y=6,含有两个未知数,不是一元一次方,不符合题意;B.x2+2x=5,未知数的次数为2,不是一元一次方,不符合题意;C.+1=0,分母含有未知数,是分式方程,不是一元一次方,不符合题意;D.2+3=0,含有一个未知数,且未知数的次数为1,为整式方程,符合题意.故选:D.【点评】本题考查了一元一次方程的判断,熟练掌握一元一次方程的定义是解题的关键.3.(2022秋•古冶区期末)方程:①2x﹣1=x﹣7,②12=13−1,③2(x+5)=x﹣4,④23=+2,其中解为x=﹣6的方程的个数为()A.1B.2C.3D.4【分析】分别计算各一元一次方程的解,然后判断作答即可.【解答】解:①2x﹣1=x﹣7,移项合并得,x=﹣6,符合要求;②12=13−1,去分母得,3x=2x﹣6,移项合并得,x=﹣6,符合要求;③2(x+5)=x﹣4,去括号得,2x+10=x﹣4,移项合并得,x=﹣14,不符合要求;④23=+2,去分母得,2x=3x+6,移项合并得,﹣x=6,系数化为1得,x=﹣6,符合要求;综上分析可知,解为x=﹣6的方程有3个,故选:C.【点评】本题考查了解一元一次方程.解题的关键在于正确的解方程.4.(2022秋•琼海期末)已知方程(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则m的值是()A.2B.3C.±3D.﹣3【分析】根据一元一次方程的定义,只含有一个未知数,并且未知数的最高次数是1的整式方程,进行计算即可解答.【解答】解:由题意得:|m|﹣2=1且m﹣3≠0,∴m=﹣3,故选:D.【点评】本题考查了绝对值,一元一次方程的定义,熟练掌握一元一次方程的定义是解题的关键.5.(2022秋•花山区期末)当m=时,方程(m﹣3)x|m﹣2|+m﹣3=0是一元一次方程.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,据此可得结论.【解答】解:∵方程(m﹣3)x|m﹣2|+m﹣3=0是一元一次方程,∴|m﹣2|=1,且m﹣3≠0,解得m=1,故答案为:1.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.6.(2023秋•曾都区期中)若方程(m2﹣1)x2﹣(m﹣1)x+2=0是关于x的一元一次方程,则代数式|m ﹣1|的值为.【分析】利用一元一次方程的定义,可列出关于m的一元二次方程及一元一次不等式,解之可得出m的值,再将其代入|m﹣1|中,即可求出结论.【解答】解:∵方程(m2﹣1)x2﹣(m﹣1)x+2=0是关于x的一元一次方程,∴2−1=0−(−1)≠0,解得:m=﹣1,∴|m﹣1|=|﹣1﹣1|=2.故答案为:2.【点评】本题考查了一元一次方程的定义以及绝对值,牢记“只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程”是解题的关键.7.(2023春•黄浦区期中)已知:(a +2b )y 2−13K 13=3是关于y 的一元一次方程.(1)求a 、b 的值;(2)若x =a 是方程r26−K12+3=x −K 3的解,求|a ﹣b ﹣2|﹣|b ﹣m |的值.【分析】(1)先根据一元一次方程的定义列出关于a ,b 的方程组,求出a ,b 的值即可;(2)把x =a 代入方程求出m 的值,再代入代数式求解即可.【解答】解:(1)∵(a +2b )y 2−13K 13=3是关于y 的一元一次方程,2=0−13=1,解得=4=−2;(2)∵a =4,x =a 是方程r26−K12+3=x −K 3的解,∴1−32+3=4−4−3,解得m =−12,∴|a ﹣b ﹣2|﹣|b ﹣m |=|4+2﹣2|﹣|﹣2+12|=52.【点评】本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.【题型2等式的基本性质】1.(2023秋•洮北区期末)将等式m =n 变形错误的是()A .m +5=n +5B .−7=−7C .m −12=n −12D .﹣2m =2n【分析】根据等式的性质可得答案.【解答】解:A 、若m =n ,则m +5=n +5,原变形正确,故此选项不符合题意;B 、若m =n ,则−7=−7,原变形正确,故此选项不符合题意;C 、若m =n ,则m −12=n −12,原变形正确,故此选项不符合题意;D 、若m =n ,则﹣2m =﹣2n ,原变形错误,故此选项符合题意.故选:D .【点评】本题考查了等式的性质,解题的关键是掌握等式的性质:等式的两边都乘以(或除以)同一个不为零的整式,结果不变,等式的两边都加(或减)同一个数(或整式),结果不变.2.(2022秋•琼海期末)下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若x=y,则=D.若=(c≠0),则a=b【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个数(除数不为零),等式仍成立.【解答】解:A、若x=y,则x+5=y+5,此选项正确;B、若a=b,则ac=bc,此选项正确;C、若x=y,当a≠0时=,此选项错误;D、若=(c≠0),则a=b,此选项正确;故选:C.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个数(除数不为零),等式仍成立.3.(2023秋•新民市校级月考)下列等式变形不正确的是()A.由x=y,得到x+3=y+3B.由3a=b,得到2a=b﹣aC.由m=n,得到4m=4n D.由bm=bn,得到m=n【分析】根据等式的性质进行判断即可.【解答】解:A.将等式x=y的两边都加上3得到的仍是等式,即x+3=y+3,因此选项A不符合题意;B.将3a=b的两边都减去a得到的仍是等式,即3a﹣a=b﹣a,也就是2a=b﹣a,因此选项B不符合题意;C.将m=n的两边都乘以4仍是等式,即4m=4n,因此选项C不符合题意;D.将bm=bn的两边都除以b,当b=0时就不能得到m=n,因此选项D符合题意.故选:D.【点评】本题考查等式的性质,理解等式的基本性质是正确判断的关键.4.(2022秋•五华县期末)下列等式变形中,结果正确的是()A.如果a=b,那么a﹣m=b+mB.由﹣3x=2得x=−32D.如果=,那么a=b【分析】根据等式性质1对A选项进行判断;根据等式性质2对B、D选项进行判断;根据绝对值的意义对C选项进行判断.【解答】解:A.如果a=b,那么a﹣m=b﹣m,所以A选项不符合题意;B.由﹣3x=2,则x=−23,所以B选项不符合题意;C.如果|a|=|b|,那么a=b或a=﹣b,所以C选项不符合题意;D.如果=,则a=b,所以D选项符合题意.故选:D.【点评】本题考查了等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.也考查了绝对值.5.(2022秋•保亭县期末)下列式子变形中,正确的是()A.由6+x=10得x=10+6B.由3x+5=4x得3x﹣4x=﹣5C.由5x=5得x=5D.由2(x﹣1)=3得2x﹣1=3【分析】根据等式的性质,逐项分析判断即可求解.【解答】解:A.由6+x=10得x=10﹣6,故该选项不正确,不符合题意;B.由3x+5=4x得3x﹣4x=﹣5,故该选项正确,符合题意;C.由5x=5得x=1,故该选项不正确,不符合题意;D.由2(x﹣1)=3得−1=32,故该选项不正确,不符合题意;故选:B.【点评】本题考查了等式的性质,熟练等式的性质是解题的关键.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等.6.(2022秋•广平县期末)等式就像平衡的天平,能与如图的事实具有相同性质的是()B.如果a=b,那么=(c≠0)C.如果a=b,那么a+c=b+cD.如果a=b,那么a2=b2【分析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:观察图形,是等式a=b的两边都加c,得到a+c=b+c,利用等式性质1,所以成立.故选:C.【点评】本题考查了等式的基本性质,解题的关键是掌握等式的基本性质:等式性质:1、等式两边加同一个数(或式子)结果仍得等式;2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.7.(2022秋•颍州区期末)若a=b,则下列等式:①﹣a=﹣b;②2﹣a=2﹣b;③=;④a2=b2;⑤=1.其中正确的有.(填序号)【分析】根据等式的基本性质,解答即可.【解答】解:若a=b,则下列等式:①﹣a=﹣b;②2﹣a=2﹣b;③=,当m=0时,分式不成立;④a2=b2;⑤=1,当b=0时,分式不成立其中正确的有①②④.故答案为:①②④.【点评】本题考查了等式的基本性质,掌握等式的基本性质是解题的关键,【题型3一元一次方程的解法】1.(2023春•蒸湘区校级期末)解方程3=1−K15时,去分母正确的是()A.5x=1﹣3(x﹣1)B.x=1﹣(3x﹣1)C.5x=15﹣3(x﹣1)D.5x=3﹣3(x﹣1)【分析】按照解一元一次方程的步骤进行计算即可解答.【解答】解:3=1−K15,去分母,方程两边同乘15得:5x=15﹣3(x﹣1),故选:C.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.2.(2022秋•唐县期末)下列解方程的步骤中正确的是()A.由x﹣5=7,可得x=7﹣5B.由8﹣2(3x+1)=x,可得8﹣6x﹣2=xC.由16x=﹣1,可得x=−16D.由K12=4−3,可得2(x﹣1)=x﹣3【分析】各项方程变形得到结果,即可作出判断.【解答】解:A、由x﹣5=7,可得x=7+5,不符合题意;B、由8﹣2(3x+1)=x,可得8﹣6x﹣2=x,符合题意;C、由16x=﹣1,可得x=﹣6,不符合题意;D、由K12=4−3,可得2(x﹣1)=x﹣12,不符合题意,故选:B.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.3.(2022秋•广州期末)将方程0.3=1+1.2−0.30.2中分母化为整数,正确的是()A.103=10+12−32B.3=10+1.2−0.30.2C.103=1+12−32D.3=1+1.2−0.32【分析】方程各项分子分母扩大相应的倍数,使其小数化为整数得到结果,即可作出判断.【解答】解:方程整理得:103=1+12−32.故选:C.【点评】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.4.(2022秋•丹阳市期末)关于x的一元一次方程2021−2022=2023的解为x=2,那么关于y的一元一次方程K20212021+2023(2021−p=2022的解为.【分析】将关于y的一元一次方程变形,然后根据一元一次方程解的定义得到y﹣2021=2,进而可得y 的值.【解答】解:将关于y的一元一次方程K20212021+2023(2021−p=2022变形为K20212021−2022=2023(−2021),∵关于x的一元一次方程2021−2022=2023的解为x=2,∴y﹣2021=2,∴y=2023,故答案为:2023.【点评】本题考查了解一元一次方程,一元一次方程的解,熟练掌握整体思想的应用是解题的关键.5.(2022秋•张湾区期末)解方程:(1)1−2K16=2r13;(2)3x﹣7(x﹣1)=3﹣2(x﹣1).【分析】(1)方程去分母,去括号,移项合并,将x系数化为1,即可求出解;(2)方程去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)去分母得:6﹣(2x﹣1)=2(2x+1),去括号得:6﹣2x+1=4x+2,移项合并得:﹣6x=﹣5,解得:=56;(2)去括号得:3x﹣7x+7=3﹣2x+2,移项合并得:﹣2x=﹣2,解得:x=1.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.6.(2023秋•鼓楼区校级月考)解方程:(1)4x+1=﹣5x+10;(2)K12=r76+1.【分析】(1)直接移项、合并同类项,进而解方程得出答案;(2)直接去分母,再移项、合并同类项,进而解方程得出答案.【解答】解:(1)4x+1=﹣5x+104x+5x=10﹣1,合并同类项得:9x=9,解得:x=1;(2)K12=r76+1去分母得:6(x﹣1)=2(x+7)+12,去括号得:6x﹣6=2x+14+12,移项、合并同类项得:4x=32,解得:x=8.【点评】此题主要考查了解一元一次方程,正确掌握解方程的方法是解题关键.7.(2023秋•姑苏区校级月考)解方程:(1)2(x+3)=5x;(2)K30.5−r40.2=1.6.【分析】(1)按去括号,移项,合并同类项,系数化为1的步骤求解即可;(2)按去分母,去括号,移项,合并同类项,系数化为1的步骤求解即可.【解答】解:(1)2(x+3)=5x,去括号得:2x+6=5x,移项合并同类项得:﹣3x=﹣6,系数化为1得:x=2;(2)K30.5−r40.2=1.6,化简得:10K305−10r402=1.6,2x﹣6﹣5x﹣20=1.6,移项合并同类项得:﹣3x=27.6,系数化为1得:x=﹣9.2.【点评】本题考查解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.8.(2022秋•中宁县期末)解方程:2K15−r12=1解:去分母,得2(2x﹣1)﹣5(x+1)=10……①去括号,得4x﹣2﹣5x+5=10……②移项,合并同类项,得﹣x=13……③系数化为1,得x=﹣13……④(1)步骤①去分母的依据是;(2)上面计算步骤出错的是第步,错误的原因是;(3)请你写出这个方程正确的解法.【分析】(1)利用等式的基本性质判断即可;(2)找出出错的步骤,分析其原因即可;(3)写出正确的解答过程即可.【解答】解:(1)步骤①去分母的依据是等式的基本性质;故答案为:等式的基本性质;(2)上面计算步骤出错的是第二步,错误的原因是去第二个括号时,括号中第二项没有变号;故答案为:二,去第二个括号时,括号中第二项没有变号;(3)去分母得:2(2x﹣1)﹣5(x+1)=10,去括号得:4x﹣2﹣5x﹣5=10,移项得:4x﹣5x=10+2+5,合并同类项得:﹣x=17,解得:x=﹣17.【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.【题型4方程解中的遮挡问题】1.有一方程=﹣1,其中一个数字被污渍盖住了.已知该方程的解为x=﹣1,那么处的数字应是()A.5B.﹣5C.12D.−12【分析】根据方程的解的定义(使得方程成立的未知数的值)解决此题.【解答】解:设处的数字是a.∴2−3=−1.∴a=5.故选:A.【点评】本题主要考查方程的解,熟练掌握方程的解的定义是解决本题的关键.2.(2023秋•洮北区期末)方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.4【分析】把x=5代入已知方程,可以列出关于★的方程,通过解该方程可以求得★处的数字.【解答】解:将x=5代入方程,得:﹣3(★﹣9)=25﹣1,解得:★=1,即★处的数字是1,故选:A.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.3.(2022秋•太原期末)方程2x+▲=3x,▲处是被墨水盖住的常数,已知方程的解是x=2,那么▲处的常数是.【分析】把x=2代入已知方程,可以列出关于▲的方程,通过解该方程可以求得▲处的数字.【解答】解:把x=2代入方程,得4+▲=6,解得▲=2.故答案为:2.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.4.(2022秋•馆陶县期末)方程5y﹣7=2y﹣中被阴影盖住的是一个常数,此方程的解是y=﹣1.这个常数应是()A.10B.4C.﹣4D.﹣10【分析】将y=﹣1代入方程计算可求解这个常数.【解答】解:将y=﹣1代入方程5y﹣7=2y﹣中,5×(﹣1)﹣7=2×(﹣1)﹣,解得=10,故选:A.【点评】本题主要考查一元一次方程的解,理解一元一次方程解的概念是解题的关键.5.(2022秋•隆化县期末)小马虎在做作业,不小心将方程2(x﹣3)﹣■=x+1中的一个常数污染了.怎么办?他翻开书后的答案,发现方程的解是x=9.请问这个被污染的常数是()A.1B.2C.3D.4【分析】设被污染的数字为y,将x=9代入,得到关于y的方程,从而可求得y的值.【解答】解:设被污染的数字为y.将x=9代入得:2×6﹣y=10.解得:y=2.故选:B.【点评】本题主要考查的是一元一次方程的解得定义以及一元一次方程的解法,掌握方程的解得定义是解题的关键.6.(2022秋•临猗县期末)小明在解方程时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是2y−12=12y﹣■,怎么办呢?小明想了一想,便翻了书后的答案,此方程的解为y=3,他很快便补好了这个常数,你能补出这个常数吗?它应是()A.﹣2B.3C.﹣4D.5【分析】设这个常数为x,已知此方程的解是y=3,将之代入二元一次方程2y−12=12y﹣x,即可得这个常数的值.【解答】解:能,设被污染的常数为a,则2y−12=12y﹣a,∵此方程的解是y=3,∴将此解代入方程,方程成立,∴2×3−12=12×3﹣a,解得a=﹣4,故选:C.【点评】本题主要考查了一元一次方程的应用以及它的解的意义.知道一元一次方程的解,求方程中的常数项,可把方程的解代入方程求得常数项的值.(把■作为一个未知数来看即可).7.(2022秋•威县期末)嘉淇在解关于x的一元二次方程2K13+■=r34时,发现常数■被污染了;(1)嘉淇猜■是﹣1,请解一元一次方程2K13−1=r34.(2)老师告诉嘉淇这个方程的解为x=﹣7,求被污染的常数.【分析】(1)利用去分母,移项,合并同类项,系数化1,可得答案;(2)设被污染的正整数为m,则有2×(−7)−13+=−7+34,求解可得答案.【解答】解:(1)2K13−1=r34,去分母得:4(2x﹣1)﹣12=3(x+3),去括号得:8x﹣4﹣12=3x+9,移项合并得:5x=25,系数化为1得:x=5;(2)设“■”的常数为m,由于x=﹣7是方程的解,则2×(−7)−13+=−7+34,解之得,m=4,所以被污染的常数是4.【点评】此题考查的是一元一次方程的解,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.8.(2022春•西峡县期中)同学们在做解方程的练习时,卷子上有一个方程“2x−12=18x+□”中“□”没印清晰,小梅问老师,老师只说:“□是一个常数;该方程的解与当y=3时代数式5(y﹣1)﹣2(y﹣2)﹣4的值相同”.聪明的小梅很快补上了这个常数.求小梅补上的这个常数是多少?【分析】把y=3代入代数式5(y﹣1)﹣2(y﹣2)﹣4中进行计算,然后设小梅补上的这个常数是a,再把x=4代入2x−12=18x+a中得:2×4−12=18×4+a,最后进行计算即可解答.【解答】解:当y=3时,5(y﹣1)﹣2(y﹣2)﹣4=5×(3﹣1)﹣2×(3﹣2)﹣4=5×2﹣2×1﹣4=10﹣2﹣4=4,设小梅补上的这个常数是a,由题意得:把x=4代入2x−12=18x+a中得:2×4−12=18×4+a,8−12=12+a,a=8−12−12=7,∴小梅补上的这个常数是7.【点评】本题考查了一元一次方程的解,熟练掌握一元一次方程的解的意义是解题的关键.【题型5求一元一次方程含参问题】1.(2022秋•洪山区校级期末)已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为()A.a=3B.a=1C.a=2D.a=﹣1【分析】将x=2代入原方程即可求出答案.【解答】解:将x=2代入2x+a﹣5=0,∴2×2+a﹣5=0,∴a=1,故选:B.【点评】本题考查一元一次方程的解,解题的关键是将x=2代入原方程,本题属于基础题型.2.(2022秋•庆阳期末)小磊在解关于x的方程r43−r4=2时,求得的解为x=﹣1,则k的值为()A.﹣1B.﹣3C.1D.5【分析】把x=﹣1代入方程r43−r4=2,解关于k的方程即可.【解答】解:把x=﹣1代入方程r43−r4=2得,−1+43−−1+4=2,方程两边都乘以12得,4(﹣1+4)﹣3(﹣1+k)=24,解得:k=﹣3,故选:B.【点评】此题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3.(2022春•镇平县期中)若关于x的方程3(x+4)=2a+5的解大于关于x的方程(4r1)4=o3K4)3的解,试确定a的取值范围.【分析】先求出两个方程的解,即可得出不等式,求出不等式的解集即可.【解答】解:∵3(x+4)=2a+5,∴x=2K73,∵(4r1)4=o3K4)3,∴x=−163a,∴2K73>−163a,解得a>718.【点评】本题考查了解一元一次方程和解一元一次不等式,能得出关于a的不等式是解此题的关键.4.(2023秋•椒江区校级期中)若不论k取什么实数,关于x的方程2B+3=2+KB6(m,n是常数)的解总是x=1,求m+n的值.【分析】把x=1代入方程计算,求出m与n的值,即可求出m+n的值.【解答】解:把x=1代入方程得:2r3=2+1−B6,去分母得:2(2k+m)=12+1﹣nk,整理得:(4+n)k=13﹣2m,∵不论k取什么实数,关于x的方程2B+3=2+KB6(m,n是常数)的解总是x=1,∴4+n=0,13﹣2m=0,解得:n=﹣4,m=6.5,则m+n=2.5.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.(2022秋•秦都区校级期末)若方程2(3x+1)=1+2x的解与关于x的方程6−23=2(x+3)的解互为倒数,求k的值.【分析】解方程2(3x+1)=1+2x得出x的值,根据方程的解互为倒数知另一方程的解,代入可得关于k的方程,解之可得.【解答】解:2(3x+1)=1+2x,去括号,得6x+2=1+2x,移项、合并同类项,得4x=﹣1,化系数为1,得=−14.∵−14的倒数是﹣4,∴将x=﹣4代入方程6−23=2(+3),则6−23=−2,∴6﹣2k=﹣6.解得k=6.【点评】本题考查了方程的解的定义,就是能够使方程左右两边相等的未知数的值.解题的关键是正确解一元一次方程.6.(2022秋•游仙区校级月考)如果关于x的方程2(x﹣4)﹣48=﹣3(x+2)的解与方程4x﹣(3a+1)=6x+2a﹣1的解互为相反数,求2a2﹣a的值.【分析】求出第一个方程的解,根据两方程解互为相反数得出关于a的一元一次方程,求出a的值,然后代入2a2﹣a计算即可.【解答】解:解方程2(x﹣4)﹣48=﹣3(x+2),得x=10,∵关于x的方程2(x﹣4)﹣48=﹣3(x+2)的解与方程4x﹣(3a+1)=6x+2a﹣1的解互为相反数,∴方程4x﹣(3a+1)=6x+2a﹣1的解为x=﹣10,把x=﹣10代入得,﹣40﹣(3a+1)=﹣60+2a﹣1,解得,a=4,∴2a2﹣a=2×42﹣4=2×16﹣4=32﹣4=28.【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.7.(2022秋•如东县期中)已知关于x的方程12(1﹣x)=1﹣k的解与3r4−5K18=1的解相同,求k的值.【分析】根据同解方程的定义可得出关于x与k的方程组,再求解即可.【解答】解:∵关于x的方程12(1﹣x)=1﹣k的解与3r4−5K18=1的解相同,∴x=2k﹣1,把x=2k﹣1代入3r4−5K18=1,得2k﹣1+2k=7,解得k=2,∴k的值为2.【点评】本题考查了同解方程的定义,掌握同解方程的定义,得出k的值是解题的关键.8.(2022秋•石景山区校级期末)已知关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,求a的值.【分析】分别解出关于x的方程12x﹣a=0的解和方程a+8x=2+4x的解,然后根据已知条件“关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1”列出关于a的一元一次方程,解方程即可.【解答】解:由方程12x﹣a=0,得x=12,由方程a+8x=2+4x,得x=2−4,又∵关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,∴12−2−4=1,去分母,得a﹣3(2﹣a)=12,去括号,得a﹣6+3a=12,移项,得a+3a=6+12,合并同类项,得4a=18,化系数为1,得a=4.5.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.【题型6利用一元一次方程解决错解问题】1.(2023春•叙州区期末)小红在解关于x的方程:﹣3x+1=3a﹣2时,误将方程中的“﹣3”看成了“3”,求得方程的解为x=1,则原方程的解为.【分析】把x=1代入3x+1=3a﹣2,求出a的值,再把a的值代入原方程求解即可.【解答】解:把x=1代入3x+1=3a﹣2,得3+1=3a﹣2,解得a=2,故原方程为﹣3x+1=6﹣2,﹣3x=3,解得x=﹣1.故答案为:x=﹣1.【点评】本题考查了一元一次方程的解的定义.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.2.(2022秋•献县期末)小马虎在解关于x的方程2a﹣5x=21时,误将“﹣5x”看成了“+5x”,得方程的解为x=3,则原方程的解为.【分析】把x=3代入2a+5x=21得出方程2a+15=21,求出a=3,得出原方程为6﹣5x=21,求出方程的解即可.【解答】解:∵小马虎在解关于x的方程2﹣5x=21时,误将“﹣5x”看成了“+5x”,得方程的解为x =3,∴把x=3代入2a+5x=21得出方程2a+15=21,解得:a=3,即原方程为6﹣5x=21,解得x=﹣3.故答案为:x=﹣3.【点评】本题考查了一元一次方程的解的定义.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3.(2022秋•陇县期末)小明在解方程2K13=r3−1去分母时,方程右边的﹣1没有乘3,因而求得的解为x=2,则原方程的解为()A.x=0B.x=﹣1C.x=2D.x=﹣2【分析】已知小明在解方程去分母时,方程右边的﹣1这个项没有乘3,则所得的式子是:2x﹣1=x+a ﹣1,把x=2代入方程即可得到一个关于a的方程,求得a的值,然后把a的值代入原方程,解这个方程即可求得方程的解.【解答】解:根据题意,得:2x﹣1=x+a﹣1,把x=2代入这个方程,得:3=2+a﹣1,解得:a=2,代入原方程,得:2K13=r23−1,去分母,得:2x﹣1=x+2﹣3,移项、合并同类项,得:x=0,故选:A.【点评】此题考查了一元一次方程的解法以及方程的解的定义.熟练掌握解一元一次方程的方法和步骤是解题的关键.4.(2023秋•道里区校级期中)某同学在解方程2K13=r2−1去分母时,方程右边的﹣1没有乘以6,因而求得方程的解为x=2,求a的值和方程正确的解.【分析】把x=2代入看错的方程求出a的值,确定出所求方程,求出解即可.【解答】解:把x=2代入4x﹣2=3x+3a﹣1得:a=13,∴原方程为2K13=r132−1,去分母得2(2x﹣1)=3(x+13)﹣6,去括号得4x﹣2=3x+1﹣6,移项得4x﹣3x=1+2﹣6,合并同类项得x=﹣3.【点评】此题考查了一元一次方程的解,熟练掌握运算法则是解本题的关键.5.(2022秋•丰顺县校级月考)(1)已知关于x的方程2(x﹣1)=﹣3a﹣6的解与方程2x+3=﹣1的解互为倒数,求a2020的值.(2)小马虎在解关于x的方程2x=ax﹣21时,出现了一个失误:“在将ax移到方程的左边时,忘记了变号.”结果他得到方程的解为x=﹣3,求a的值和原方程的解.【分析】(1)根据方程的解互为倒数,可得关于a的方程,根据解方程,可得a的值,再根据乘方的性质,可得答案;(2)根据解方程,可得答案.【解答】解:(1)∵2x+3=﹣1,∴x=﹣2,∵方程2(x﹣1)=﹣3a﹣6的解与方程2x+3=﹣1的解互为倒数,∴2(x﹣1)=﹣3a﹣6的解为−12,∴2(−12−1)=−3−6,解得,a=﹣1,∴a2020=(﹣1)2020=1.(2)由题意得2x+ax=﹣21,x=﹣3为此方程的解,∴﹣6﹣3a=﹣21,∴a=5,∴原方程为2x=5x﹣21,∴x=7,原方程的解是7.【点评】本题考查了一元一次方程的解,利用方程的解满足方程得出关于a的方程是解题关键.6.小王在解关于x的方程3a﹣2x=15时,误将﹣2x看作2x,得方程的解x=3,(1)求a的值;(2)求此方程正确的解;(3)若当y=a时,代数式my3+ny+1的值为5,求当y=﹣a时,代数式my3+ny+1的值.【分析】(1)把x=3代入方程即可得到关于a的方程,求得a的值;(2)把a的值代入方程,然后解方程求解;(3)把y=a代入my3+ny+1得到m和n的式子,然后把y=﹣a代入my3+ny+1,利用前边的式子即可代入求解.【解答】解:(1)把x=3代入3a+2x=15得3a+6=15,解得:a=3;(2)把a=3代入方程得:9﹣2x=15,解得:x=﹣3;(3)把y=a代入my3+ny+1得27m+3n+1=5,则27m+3n=4,当y=﹣a时,my3+ny+1=﹣27m﹣3n+1=﹣(27m+3n)+1=﹣4+1=﹣3.【点评】本题考查了方程的解的定义,以及代数式的求值,正确理解方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,是关键.【题型7一元一次方程的整数解问题】1.(2023秋•西城区校级期中)若关于x的一元一次方程kx=x+3的解为正整数,则整数k的值为()A.2B.4C.0或2D.2或4【分析】先求出方程的解,再根据关于x的一元一次方程kx=x+3的解为正整数和k为整数得出k﹣1=1或k﹣1=3,再求出k即可.【解答】解:解方程kx=x+3得:x=3K1,∵关于x的一元一次方程kx=x+3的解为正整数,k为整数,∴k﹣1=1或k﹣1=3,∴k=2或4.故选:D.【点评】本题考查了一元一次方程的解,能根据题意得出关于k的方程是解此题的关键.2.(2022秋•南充期末)已知a为自然数,关于x的一元一次方程6x=ax+6的解也是自然数,则满足条件的自然数a共有()A.3个B.4个C.5个D.6个【分析】解此题可先将一元一次方程进行移项、合并同类项等转换,得出x的解,再根据题意判断a的值.【解答】解:6x=ax+6,6x﹣ax=6,(6﹣a)x=6,x=66−,因为x和a均为自然数,所以6﹣a可以被6整除,且6﹣a不等于0,分解质因数得6=1×2×3,所以6﹣a只可能等于1、2、3、6,即a可能等于5、4、3、0,故只有选项B符合题意,故选:B.【点评】此题考查了自然数的定义,以及一元一次方程的解法,熟练掌握即可解答.3.(2022秋•九龙坡区校级期末)若关于x的方程−2−B6=r13的解是整数解,m是整数,则所有m的值加起来为()A.﹣5B.﹣16C.﹣24D.18【分析】根据解一元一次方程的一般步骤表示出x的代数式,分析解答即可.【解答】解:解方程−2−B6=r13,得:=44+,根据题意可知=44+为整数,m是整数,当m的值为0,﹣2,﹣3,﹣5,﹣6,﹣8时,44+为整数,∴0+(﹣2)+(﹣3)+(﹣5)+(﹣6)+(﹣8)=﹣24,故选:C.【点评】本题考查了根据一元一次方程解的情况求参数,熟练掌握解一元一次方程的一半步骤是解本题的关键.4.(2022秋•九龙坡区校级期末)已知关于x的方程a(x+1)=a﹣2(x﹣2)的解都是正整数,则整数a 的所有可能的取值的积为()A.﹣12B.1C.8D.0【分析】根据一元一次方程的解法求出x的表达式,然后根据题该方程的解都是正整数即可求出a的值.【解答】解:a(x+1)=a﹣2(x﹣2),ax+a=a﹣2x+4,ax=﹣2x+4,(a+2)x=4,由于x是正整数,故a+2=1或2或4,。

(完整word版)北师大版七年级一元一次方程专题复习

(完整word版)北师大版七年级一元一次方程专题复习

北师大版七年级数学一元一次方程复习一、知识梳理1、方程及一元一次方程定义方程必须满足两个条件 (1)_________(2)___________ ,一元一次方程也有两个条件(1)___________(2)___________ ,式子( 1)2 3 5 (2)x1( 3)9 x 8 12 2( 4)x 3y 4 ( 5)x0 3x 6 x 1 b 1( 8)y 3 0( 9)z 1,此中方程有 _________ ( 6)( 7)_ ____ ,一元一次方程有 ______ _ _____.2、解一元一次方程步骤 ( 变形名称 ) 变形依照注意事项1、去分母1、不要漏乘不含分母的项2、去分母后,原分子要加括号2、去 ( ) 1、乘法分派律1、括号前的数不要漏乘括号里面的项2、去括号法例2、不要弄错符号 ( 变则都变,不变则都不变 )1、凡移项要变号3、移项 ( 从等号一边挪动2、含未知数的项一般在方程左侧,常数移到方程右到另一边 )边1、项数许多时,能够标志4、归并 ( ) 归并同类项法例2、系数相加时,注意符号3、字母及其指数要照写1、系数是整数时,两边同除以这个数5、化系数为 ( ) 2、系数是分数时,两边同乘以分数的倒数3、符号要分清3、运用方程解决实质问题的一般过程实质问题抽象剖析已知量、未知量、数学识题等量关系[ 根源 :Z&xx&] 不合理列出合理考证方程的解求出解说解的合理性方程方法指导:( 1)能够借助表格剖析复杂问题中的数目关系;( 2)可借助“线段图”剖析复杂问题中的数目关系;二.典型例题例 1:若 (a - 1)x |a|+ 3=- 6 是对于 x 的一元一次方程,则a=__; x=___。

例 2:已知 3 是对于x的方程 2 x-a =1 的解,则a的值是()A、﹣5B、 5C、 7D、 2练:已知 y=3是6+1( m- y)=2y 的解,那么对于x 的方程2m( x-1)=( m+1)(3 x-4)的解是多少? 4例 3:若代数式x 1 x 2x 的值. x 与代数式 2 的值相等,求2 5例 4:依照以下解方程0.3x 0.5 = 2 x 1的过程, 请在前方的括号内填写变形步骤, 在后边的括号内填写变形依照.3解:原方程可变形为 3x 5 = 2 x 1 ()23去分母,得 3( 3 x +5) =2( 2 x ﹣1).( )去括号,得 9 x +15=4 x ﹣ 2.()(),得 9 x ﹣ 4 x =﹣ 15﹣2.()归并,得 5 x =﹣ 17.( 归并同类项法例 )(),得 x = 17 .()5练习:x7 5 x 8 18(3x - 1) - 9(5x -11) - 2(2x - 7)=304 32 x 1 10 x 12 x 1 2(x+1)=5(x+1) -3 6 13146例 5:铜仁市对城区骨干道进行绿化,计划把某一段公路的一侧所有栽上桂花树,要求路的两头各栽一棵,而且每 两棵树的间隔相等.假如每隔5 米栽 1 棵,则树苗缺 21 棵;假如每隔6 米栽 1 棵,则树苗正好用完.设原有树苗 x棵,则依据题意列出方程正确的选项是( )A. 5(x 21 1) 6( x 1)B.5( x 21) 6(x1)C. 5( x 21 1) 6x D. 5(x 21)6x例 6:小孩节时期,文具商铺搞促销活动,同时购置一个书包和一个文具盒能够打 8 折优惠,能比标价省13.2 元 . 已知书包标价比文具盒标价的3 倍少 6 元,那么书包和文具盒的标价各是多少元?例某公司为严重缺水的甲、 乙两所学校捐献矿泉水共 2000 件 . 已知捐给甲校的矿泉水件数比捐给乙校件数的2 倍少400 件 . 求该公司分别捐给甲、乙两所学校的矿泉水各多少件?小结:此题考察理解题意的能力,重点是设乙所学校的矿泉水x 件,利用相等关系列方程;列方程解应用题是中考必考察的内容。

七年级(上)一元一次方程专题复习材料(归纳汇总)

七年级(上)一元一次方程专题复习材料(归纳汇总)

一元一次方程专题复习专题1、用一元一次方程的定义解相关问题例题1、若(1)50mm x -+=是关于x 的一元一次方程.(1)求m 的值;(2)请写出这个方程;(3)判断x=1,x=2.5,x=3是否是方程的解。

例题2:关于y 的方程22(1)(1)350m y m y m -+++-=是一元一次方程,试求m 的值,并求此一元一次方程的解。

练习:1、下列方程①12x x +=;②22x x -=;③0x =;④20x y +=;⑤1124236x x +--= 其中,是一元一次方程的有( )A 1个B 2个C 3个D 4个 2、已知01212=+--m x是关于x 的一元一次方程,则m=_______.3、若关于x 的方程2(1)30a a x -+=是关于x 的一元一次方程,求a 的值。

专题2、用一元一次方程的解来解相关问题 例题:1、已知12x =是方程6(2)32x m m +=+的解,求关于y 的方程2(12)my m y +=-的解.2、已知方程4x +2m =3x +1和方程3x +2m =6x +1的解相同,求这个相同的解练习:1、若2-=x 是方程02=+a x 的解,则a =_______.2、方程)1(422-=+x ax 的解为3=x ,则a 的值为( )A 、2B 、22C 、10D 、—2 3、如果方程2x +1=3的解也是方程2-3a x-=0的解,那么a 的值是( ) A.7 B.5 C.3 D.以上都不对 4、方程∣2x--6∣=4的解是__ _; 5、若关于的方程的解是整数,则非负整数m 的值为 .6、已知关于x 的一元一次方程2009x -1=0与4018x -327a -=0有相同的解,求a 的值. 7、关于x 的方程kx +2=4x +5 ()4≠k 有正整数解,求满足条件的k 的正整数值.专题3、等式的基本性质的应用例题1、选择: 运用等式性质进行的变形,正确的是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题二 一元一次方程一、知识系统总结(一)等式与方程的有关概念1、等式及其性质 等式:用符号“=”来表示 关系的式子叫等式. 等式的性质: ① 等式两边都加上(或减去)同个数(或式子),结果仍相等用式子形式表示为:如果a=b ,那么a±c=b±c② 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等用式子形式表示为:如果a=b ,那么ac=bc; 如果a=b(c≠0),那么a c = b c2、方程、一元一次方程的概念(1)方程:含有未知数的 叫做方程.(2)一元一次方程:在整式方程中,只含有 个未知数,并且未知数的指数是 ,系数不等于0的方程叫做一元一次方程. 它的一般形式为 .(3)方程的解:使方程中等号左右两边 的未知数的值,叫做方程的解.注:方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.3、解一元一次方程的一般步骤(1)去分母(方程两边都乘各分母的最小公倍数)(2)去括号(先去小括号,再去中括号,最后去大括号)(3)移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)(4)合并(把方程化成ax = b (a≠0)形式)(5)系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x= b a). 4、列一元一次方程解应用题的一般步骤(1)审:审题,弄清题意;(2)设:设出未知数.;(3)列:根据这个相等关系列出所需要的代数式,列出方程;(4)解:解所列的方程,求出未知数的值;(5)验:检验所求的解是否符合题意;(6)答:写出答案.知识点一:等式的性质1. 下列运用等式的性质对等式进行的变形中,正确的是 ( )2. 把方程762+=-y y 变形为672+=-y y ,这种变形叫 ,根据是 。

知识点二:一元一次方程概念1. 下列方程中,属于一元一次方程的是( )。

A .0127=+yB.082=+y x C .03=z D.0232=-+x x2. 如果4x 2-2m = 7是关于x 的一元一次方程,那么m 的值是 。

3. 关于x 的方程(2k -1)x 2 -(2k + 1)x + 3 = 0是一元一次方程, 则k 值为 知识点三:方程的解1. 方程12x - 3 = 2 + 3x 的解是 。

2. 若x = -3是方程3(x - a) = 7的解,则a = ________.3.知识点四:解方程应用1. 若代数式213k --的值是1,则k = _________. 2. 当x = ________时,代数式12x -与113x +-的值相等. 3. 若4a-9与3a-5互为相反数, 则a 2 - 2a + 1的值为_________.4. 当x= 时,式子21-x 与32-x 互为相反数。

5. 解方程:323221+-=--x x x 解:去分母,得424136+-=+-x x x ……①即 8213+-=+-x x ……②移项,得 1823-=+-x x ……③合并同类项,得 7=-x ……④∴ 7-=x ……⑤上述解方程的过程中,是否有错误?答:__________;如果有错误,则错在__________步。

如果上述解方程有错误,请你给出正确的解题过程:6. 小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是-=-y y 21212 ,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是35-=y .很快补好了这个常数,这个常数应是( ) A .1 B .2 C .3 D .47. 当x =4时,代数式 A =ax 2-4x -6a 的值是-1,那么当x =-5 时,A 的值是多少?知识点五:列方程解应用题1. 5与x 的差的13比x 的2倍大1的方程是__________.2. 某数的32比它的相反数少4,设某数为x ,用等式表示为 。

3. 和差倍分问题: (1)某人买了甲、乙两种练习薄共30本,付了25元,找回5.5元,已知甲练习薄每本7角,乙种练习薄每本6角,那么他买了甲种练习薄__________本(2)甲比乙大15岁。

5年前,甲的年龄是乙的年龄第二2倍,则乙现在的年龄是 ( )A、10岁B、15岁C、20岁D、30岁(3)汶川大地震发生后,各地人民纷纷捐款捐物支援灾区.我校向灾区人民捐款12400元,其中八年级捐款数比七年级捐款数多400元,九年级捐款数是七年级捐款数的2倍少800元。

问:三个年级各捐款多少元?4.调配问题:(1)甲水池有水31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,x小时后, 乙池有水________吨 ,甲池有水_______吨 , ________小时后,甲池的水与乙池的水一样多.(2)甲组有37人,乙组有23人,现在需要从甲、乙两组调出相同数量的人去做其他工作,若使甲组剩下的人数为乙组剩下的人数的2倍,则需要从甲、乙两组各调出多少人?5.配套问题:(1)某车间有技工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?6.行程问题:(1)王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4 米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/ 秒的速度跑了多少米?(2)(相遇问题)A、B两地相距1.8㎞,甲、乙两人从A、B两地同时出发相向而行,甲骑自行车的速度为12㎞/h ,乙步行,经过6分钟两人相遇,求乙的速度。

(3)(追击问题)甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是()A.7x=6.5x+5B.7x+5=6.5xC.(7-6.5)x=5D.6.5x=7x-5(4)(追击问题)甲、乙两人练习跑步,从同一地点出发,甲每分钟跑250米,乙每分钟跑200米,甲比乙晚出发3分钟,结果两人同时到达终点,求两人所跑的路程。

7. 工程问题:(1)一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后甲乙两人合作x 完成这项工程,则可以列的方程是( ) A.15040404=++x B.15040404=⨯+x C.150404=+x D.15040404=++x x (2)一次工程,甲独做m 天完成,乙独做比甲晚3天才能完成,甲、乙合作需要_______天完成.(3)某中外合资企业,按外商要求承做一批机器,原计划13天完成,科技人员采用一种高新技术后,每天多生产10台,结果用12天,不但完成任务,而且超额了60台,问原计划承做多少台机器?8. 数字问题:(1)三个连续偶数的和是60,那么这三个数分别是(2)三个连续偶数的和为18,求这三个数?(3)某月有五个星期日,已知五个日期的和为75,则这个月的最后一个星期日是( )A. 27号B. 28号C. 29号D. 30号(4)一个两位数,个位数字为a ,十位数字为b ,则这个两位数字为 。

(5)一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求原来的两位数是?(6)(探究题)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和为84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加上月份数也是84,你能猜出我是几月几号回家的吗?”试列出方程,解答小赵与小王的问题.9. 等积变形问题:(1)在一只底面直径为30厘米,高为8厘米的圆锥形容器中倒满水,然后将水倒入一只底面直径为10厘米的圆柱形空容器里,圆柱形容器中的水有多高?10. 经济问题:(1)海信牌电视机原价a 元,今年降价x%,则今年的价格是( )元A :ax% B:a -x% C: 100)1(x a D:a (1-x%) (2)某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( )A.0.92aB.1.12aC.1.12aD.0.81a (3)文化商场同时卖出两台电子琴,每台均卖960元,以成本计算。

其中一台盈利20%,另一台亏本20%,则这次出售中商场( )A :不赔不赚B :赚160元C :赚80元D :赔80元(4)开学期间,商家为了促销,进行打折销售,某种书包先打了七折,又打了5折,现在售价70元,这种书包原价为 元(5)东方商场把进价为1980元的商品按标价的八折出售,仍可获利10%,则该商品的标价为______.(6)为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折出售,此时的利润为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?11. 积分问题:(1)美国篮球巨星乔丹在一场比赛中24投14中,拿下28分,其中三分球三投全中,那么乔丹两分球投中多少球?罚球投中多少球?(罚球投中一个一分)(2)某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。

某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?(3)爷爷与孙子下12盘棋,(未出现和棋)后,得分相同,爷爷赢一盘记1分,孙子赢一盘记3分,两人各赢了多少盘?12. 方案问题:(1)根据下面的两种移动电话计费方式表,考虑下列问题。

①一个月本地通话时间150分和300分,计算按两种移动电话计费方式各需要交费多少元?②会出现两种移动电话计费方式收费一样吗?请你说明在怎样选择下会省钱?(2)某学校要刻录一批电脑光盘,若到电脑公司刻录,每张需要8元;若学校自己刻,除租用刻录机需要120元外,每张还需要成本4元。

(1)刻录多少张光盘时,到电脑公司刻录与学校自己刻录所需费用一样?(2)刻录多少张光盘时,到电脑公司刻录较合算?(3)刻录多少张光盘时,学校自己刻录较合算?(3)景山中学组织七年级师生春游,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租1辆,并且剩余15个座位.①求参加春游的人数?②已知45座客车的日租金为每辆250元,60座客车的日租金为每辆300元,租用哪种车更合算?13.有几名同学在砖厂义务劳动,如果每人搬2块砖,那么还有6块剩余;如果每人搬4块,正好搬完,你知道有多少名同学吗?14.某文艺团体组织了一场义演为“希望工程”募捐,共售出1000张门票,已知成人票每张8元,学生票每张5元,共得票款6950元,成人票和学生票各几张?。

相关文档
最新文档