结构隔震与耗能减振11
建筑结构设计隔震和消能减震措施

浅谈建筑结构设计隔震和消能减震措施【摘要】随着近些年自然灾害的频繁发生,工程建筑中建筑物的抗震功能引起了社会各界的广泛关注,笔者根据自己的多年工作经验,认为在建筑设计中做好抗震和减震的工作可以更有效的加强建筑物的抗震效果,所以,本文主要讨论建筑结构设计中如何进行隔震与减震工作。
【关键词】建筑结构;设计;隔震;消能减震引言因为建筑物的抗震功能直接关系着人们的人身财产安全,所以,可以说是建筑物建筑中的一个基本建筑指标,也是每一个建筑商和施工人员都应该认真思考的问题。
但是,从最近几年的两次大型地震灾害后的情况来看,我国的建筑物的抗震能力并不尽如人意,没有达到预期的保护人们的人身和财产安全的目的和效果。
造成这种现象的原因是多方面的,有建筑材料的问题,也有施工工艺上的问题,所以处理起来也是非常复杂的,但是要从建筑工程的根源上解决这种建筑物抗震能力方面的问题的话,必须从建筑物的设计环节抓起,只有这样,才能将各种因素统筹和控制好,才能保证建筑物的抗震结果和效果。
1、建筑结构的主要隔震措施建筑物的抗震措施是非常多的,如对地基进行特殊处理、设置抗震装置、对建筑的上部结构进行防震设计等等,每一种装置和方法都是工程人员在实践中不断摸索总结出来的,一般情况下为了达到更好的抗震防震效果,在工程中这几种措施通常是混合使用的。
虽然一项工程可能涉及到许多种防震装置的使用,但是工程中最常用的方法还是隔震层的设置,工程中我们根据建筑物的特点和建筑区域的地震特点选择不同的隔震层配合施工,下面我们根据隔震层的位置的不同,对其进行分类,并做简单介绍:1.1建筑物地基采用特殊材料隔震地基是建筑物与地震接触的最直接的地带,也是地震的最直接作用区,所以对于地基的隔震设置是达到效果的最直接快速的手段。
所谓建筑物地基隔震,主要是对建筑物的基础部分进行特殊处理,通过铺设的垫层来削弱地震时的地震波,从而减少地震对建筑物的损害,这种方法是一种历史最悠久的隔震方法,原理在于使地震的力量经过中介被消耗和削弱,达到保护建筑物的目的。
建筑结构隔震与减震设计问题及对策分析

建筑结构隔震与减震设计问题及对策分析地震是极为严重的一种地质灾害,具有极强的破坏力,会严重威胁人民的生命和财产安全。
近些年来随着经济水平的不断提高发展,建筑物的规模不断增大就导致建筑物在设计过程中越来越重视防震效果。
地震来临时,大地的震动会沿着楼层高度自上而下递增,会对建筑物的主体结构造成损害,进而对人民的生命财产安全造成损害,建筑物的减震和抗震设计对建筑物的主体结构具有重要意义。
本文就针对建筑物结构抗震和减震中的一些问题和解决对策进行一定的分析。
标签:建筑结构;隔震与减震设计问题;对策引言:随着目前建筑物高度的不断增加,对于高层建筑物的抗震技术的研究越来越重要。
在高层建筑物的设计过程中充分考虑所设计建筑本身的隔震与减震功能。
采取有效措施抵抗低强度地震也是目前建筑物设计过程中的重点问题,这对建筑物的安全性和稳定性具有重要影响。
目前建筑物的设计过程中仍然存在着很多问题,所以建筑物设计师在设计过程中要对现存问题进行解决,并且提出有效地解决对策。
基于此,笔者提出了以下见解。
1、建筑结构隔震与减震设计问题(1)目前所使用的隔震与减震设计稳定性差根据对我国建筑物目前所使用的抗震设计进行调查显示,我国国内目前所主要使用的为传统土木、混凝土机构的抗震设计。
这样抗震设计的原理就是利用建筑物结构之间的各个构件的承载力和变形能力抵御地震,吸收地震的能量。
这样的抗震结构在短期来看是没有问题的,但是这种抗震结构无法长期运行。
地震所带来的过大的加速度和空间范围的不断变形就容易使建筑物内部发生破坏,混凝土出现裂缝,使得建筑物原有减震抗震的效果受到影响,并且后期维修费用也很巨大。
并且对于这种建筑设计中的隔震效果也甚微,地震对建筑物带来的巨大冲击力使得建筑物上层建筑受到的水平力小于一般建筑,所以隔震层上部的建筑结构不会受到很大影响。
传统的隔震与减震设计的稳定性和安全性较差,难以适应现今发展的需要。
(2)建筑物后期维护工作不足任何事物在建造结束后都需要进行定期的维护工作才能保证各项功能的正常平稳运行。
2019年新《减震抗震设计规范》中的隔震与消能减震.doc

3、隔震和消能减震设计的主要优点隔震体系能够减小结构的水平地震作用,已被理论和国外强震记录所证实。
国内外的大量试验和工程经验表明:“隔震”一般可使结构的水平地震作用降低60%左右,从而消除或有效地减轻结构和非结构的地震损坏,提高建筑物及其内部设施、人员在地震时的安全性,增加震后建筑物继续使用的能力。
采用消能方案可以减少结构在风作用下的位移已是公认的事实,对减少结构水平和竖向地震反应也是有效的。
4、隔震和消能减震设计的适用范围1)、隔震设计的适用范围规范12.1.3条对隔震结构提出了一些使用要求。
根据研究:隔震结构主要用于体型基本规则的低层和多层建筑结构。
日本和美国的经验表明,不隔震时基本周期小于1.0秒的建筑结构减震效果与经济性均最好,对于高层建筑效果较差。
国外对隔震建筑工程的较多考察资料表明:硬土场地较适合于隔震建筑;软弱场地滤掉了地震波的中高频分量,延长结构的周期有可能增大而不是减小其地震反应。
墨西哥地震就是一个典型的例子。
日本“隔震结构设计技术标准”(草案)规定,隔震建筑适用于一、二类场地。
我国Ⅰ、Ⅱ、Ⅲ类场地的反应谱周期均较小,故都可建造隔震建筑。
隔震设计中对风荷载和其他非地震作用的水平荷载给予一些限制(规范12.1.3条3款)是为了保证隔震结构具有可靠的抗倾覆能力。
就使用功能而论,隔震结构可用于:医院、银行、保险、通讯、警察、消防、电力等重要建筑;首脑机关、指挥中心以及放置贵重设备、物品的房屋;图书馆和纪念性建筑;一般工业与民用建筑;建筑物的抗震加固。
2)、消能设计的适用范围消能部件的置入,不改变主体承载结构的体系,又可减少结构的水平和竖向地震作用,不受结构类型和高度的限制,在新建和建筑抗震加固中均可采用。
二、隔震与消能减震设计要求1、设计方案建筑结构的隔震和消能减震设计,应根据建筑抗震设防类别、抗震设防烈度、场地条件、建筑结构方案和建筑使用要求,与建筑抗震设计的设计方案进行技术、经济可行性的对比分析后,确定其设计方案。
结构隔震消能减震设计

结构隔震消能减震设计结构隔震和消能减震设计是地震工程领域中的重要技术,其目的是通过特殊的结构和材料设计,减少地震对建筑物及其内部设备的破坏。
一、结构隔震设计结构隔震是一种将结构物与土壤或地基隔开的设计方法,通过降低结构物受地震力的传递,减少地震对结构物的影响。
结构隔震设计一般包括以下几个方面:1.隔震系统选择:结构隔震系统通常包括隔震支座、隔震层和支撑系统。
常见的隔震支座有橡胶隔震支座、钢球隔震支座等。
不同类型的隔震支座具有不同的性能和适用范围,需要根据实际情况选择。
2.隔震层布置:隔震层一般位于地面以上,可以用于减震和减少地震波对建筑物的传递。
隔震层的布置要考虑结构的刚度、强度、稳定性等因素,以及地震的频率和能量。
3.支撑系统设计:支撑系统是隔震层与结构之间的连接,要具有良好的刚度和耐力,以保证隔震系统正常工作。
4.结构模型分析:隔震设计需要进行结构模型分析,考虑地震力、地震波特性、结构响应等因素,通过计算分析得出隔震设计的参数和指标。
隔震设计的优点在于能大幅度减少地震对结构物的破坏,提高结构物的抗震性能和安全性。
然而,隔震设计也存在一些挑战,如隔震支座的设计和施工比较复杂,造价较高等问题。
消能减震设计是通过在结构中引入特殊的减震装置,通过消耗、分散地震能量,减小地震对建筑物的影响。
消能减震设计一般包括以下几个方面:1.减震器选择:减震器是消能减震设计的核心装置,根据荷载类型和地震响应要求,可以选择液压减震器、摩擦式减震器、摇摆巨型减震器等减震器。
不同类型的减震器各有优劣,需要根据具体工程的特点和要求选择合适的减震器。
2.减震器布置:减震器的布置是消能减震设计中的关键环节,需要考虑结构的刚度、强度、减振效果等因素,合理地布置减震器,以达到最佳减震效果。
3.减震装置与结构连接:减震装置与结构的连接需要具有适当的刚度和耐力,以保证减震器的正常工作。
连接部位的设计和施工要符合相关的规范和标准,确保结构的安全性。
浅析建筑结构隔震和减震措施

浅析建筑结构隔震和减震措施摘要:在社会发展的过程当中,建筑整体的结构设计越来越重视抗震,其中抗震又分为隔震和减震。
有效的抗震结构设计,可以保障建筑在遇到地震的过程当中,保持良好的稳定性,进而也就可以保障人们的安全。
目前在隔震和减震结构设计当中,有较多的方法和技术可以选择。
实际根据不同的建筑施工需求来合理选择和使用相应的结构设计方案。
这样可以有效保障建筑整体的结构稳定性。
关键词:建筑结构;隔震和减震;技术应用引言地震对建筑物的破坏,多数是由于地面的振动频率与建筑物主要结构构件的自然频率相偶合所致,在现代建筑设计中会考虑到抗震设计,来保证建筑结构安全。
建筑整体安全、抗震性能是设计过程中的重中之重,就目前来说隔震减震是减轻地震对建筑结构造成危害的最有效的手段。
隔震减震技术正在被广泛用以提升抗震能力,减少强震作用造成的地震反应,增加建筑结构的使用寿命。
1.建筑结构的隔震技术以及减震技术1.1建筑结构的减震技术通常情况下,建筑减震可以通过巧妙利用地震能量和建筑阻尼之间的内在联系实现。
如果增加建筑阻尼,可以在很大程度上消耗地震能量,基本上减震措施的基本出发点是使建筑阻尼增加,从而达到消耗地震能量的目的,减轻甚至避免地震对于建筑主体结构的破坏。
针对一些相关的布置问题,比如设置消能部件的个数、设置消能部件的位置等,都应该进行仔细的分析以及计算。
一般情况下,消能构件都是设置在结构的2个主轴方向上,这样可以使两个方向的刚度以及阻尼增加。
也可以将消能结构放置在变形较大的结构位置上,这样可以均衡整个建筑结构的阻尼分布,更容易分散地震能量,使整个建筑物的抗震性能大大提高,确保整个建筑物的安全性。
1.2建筑结构的隔震技术隔震措施往往会有一定的时间限制,因此建筑的隔震设计应该抢在建筑工程正式开工前,最晚也不能拖到建筑工程施工的时候再针对一些关键的部位设计隔震措施。
隔震措施设计时应该选择恰当的部位,一般都是选择建筑的关键部位以及基础部位。
建筑结构的隔震、减振和振动控制

建筑结构的隔震、减振和振动控制一、本文概述随着社会的快速发展和科技的进步,建筑结构的隔震、减振和振动控制成为了土木工程领域的重要研究方向。
地震、风振、机械振动等外部因素都可能对建筑结构产生破坏,严重时甚至威胁到人们的生命安全。
因此,如何有效地隔绝、减少和控制这些振动带来的影响,成为了建筑设计和施工中不可忽视的问题。
本文旨在全面介绍建筑结构的隔震、减振和振动控制的基本原理、技术方法和实际应用。
我们将首先概述隔震、减振和振动控制的基本概念和重要性,然后详细分析各类振动控制技术的原理、特点和应用范围。
在此基础上,我们将深入探讨建筑结构隔震、减振和振动控制的设计方法、施工技术和评价标准。
通过具体案例分析,展示这些技术在实际工程中的应用效果和经济效益。
通过阅读本文,读者可以深入了解建筑结构隔震、减振和振动控制的基本理论和实践方法,为未来的建筑设计和施工提供有益的参考和借鉴。
我们也期望通过本文的探讨,能够推动建筑结构振动控制技术的进一步发展,为社会的繁荣和进步贡献力量。
二、隔震技术建筑物与基础之间设置隔震层,以隔离地震波对建筑物的直接作用,从而减小建筑物的地震响应。
隔震技术的基本原理是利用隔震层的柔性和阻尼特性,延长建筑物的自振周期,避开地震能量集中的频段,同时消耗地震能量,达到减小地震对建筑物破坏的目的。
隔震层通常由橡胶隔震支座、阻尼器、滑移隔震支座等构成。
其中,橡胶隔震支座以其良好的弹性和耐久性,在隔震技术中得到了广泛应用。
阻尼器则通过吸收和消耗地震能量,进一步减小建筑物的振动幅度。
滑移隔震支座则利用滑移面的摩擦力来消耗地震能量,实现建筑物的隔震。
隔震技术的应用范围广泛,包括住宅、学校、医院等各类建筑。
在实际工程中,需要根据建筑的结构特点、地震烈度、场地条件等因素,选择合适的隔震技术和隔震层设计方案。
同时,隔震技术的实施需要严格遵守相关规范和标准,确保隔震层的质量和性能。
隔震技术的优点在于其能够有效地减小建筑物的地震响应,保护建筑物免受地震破坏。
隔震_消能减震结构与传统抗震结构的比较分析_李媛

中国科技信息2013年第10期 CHINA SCIENCE AND TECHNOLOGY INFORMATION May.2013
DOI:10.3969/j.issn.1001-8972.2013.10.031
隔震、消能减震结构与传统抗震结构的比较分析
李媛 兰州资源环境职业技术学院,甘肃兰州 730021
1 传统抗震结构
传统抗震结构的基本原理是通过增强结 构本身的抗震性能(强度、刚度)来抵御地 震作用,即依靠结构本身和承重构件的损坏 来储存、转换和消耗地震能量[1]。在传统抗 震结构中,通常采取提高结构自身强度和刚 度,即加强结构、增大构件截面尺寸、加多 配筋,允许结构局部损坏(硬伤)的措施来 抵御地震作用,结构抗震能力主要取决于结 构的弹塑性变形能力与滞回环耗能能力,而 结构本身不具备自我调节的能力,可以说是 被动消极的抗震措施。1995年日本发生了震 惊世界的阪神地震,当时日本的主流思想就 是用所谓“硬抗”的方法来抵抗地震,即靠 一味提高结构的强度而非利用结构延性消能 思想来抵御地震作用,所设计出的梁柱截面 尺寸都非常大,但最终还是发生了大量的房 屋脆性倒塌。事实证明,此种只单纯依靠提 高结构强度的方式很难抵抗地震尤其是大震 带来的破坏,而且,大大加大了经济投入, 可谓得不偿失。
3 结语 综上所述,由于空气动力目标对窄带
(2)隔震、消能减震结构体系更为经 济。传统抗震结构主要是通过增设剪力墙、 加大结构构件截面尺寸或者增加配筋等途径 来提高结构的抗震能力,这将导致结构造价 增高。而隔震、消能减震结构是通过“柔性 消能”的方式减少结构的地震反应,主体结 构和消能装置分工明确,主体结构的承重构 件负责承受主要荷载,而消能装置并非承重 构件,仅承担为结构提供较大阻尼,耗散输 入结构的地震能量的作用,这样,一方面能 够减少结构构件的设置、断面和配筋,另一 方面由于消能装置的协调合作,耗散了一部 分地震能量,从而提高了结构整体的抗震安 全度。工程资料表明,采用消能减震结构体 系,对于新建建筑可以节省结构5%~10%的 造价;对于旧有建筑抗震加固改造可以节省 10%~60%的造价[4]。此外,在隔震、消能 减震结构中,主体结构不会受到损伤,震后 无需修复,具有明显的社会与经济效益。
建筑结构的隔震与消能减震的分析研究

建筑结构的隔震与消能减震的分析研究建筑结构的隔震与消能减震是为了减少地震对建筑物造成的破坏而进行的研究与分析。
随着地震灾害的不断发生,科学家们逐渐认识到地震的危害性,并开始研究如何抵御地震的力量,保护建筑物及其内部人员的安全。
隔震与消能减震是两种常用的方法,下面将对它们进行分析研究。
隔震是指在建筑物与地震地面之间设置一层隔离体,通过隔离体的减振效果来减少地震力对建筑物的影响。
隔震体通常采用橡胶、弹簧等材料,可以有效地吸收和减小地震力的传递。
隔震减震的核心思想是利用隔离体的弹性特性,使地震力在穿越建筑物时减小,从而保护建筑物的完整性和稳定性。
隔震的优点是可以吸收并分散地震能量,减少建筑物所受到的地震冲击力;缺点是隔震体的安装和维护成本较高,需要对建筑物进行一定的结构调整。
消能减震是指在建筑物内部设置一种消能装置,通过消能装置吸收并转化地震能量,达到减小地震力的效果。
消能装置通常采用液体或橡胶等材料,可以吸收地震能量,并通过内部的阻尼机构将其耗散释放出去。
消能减震的核心思想是在地震发生时,通过消能装置将地震能量转化为不显式的损耗能量,从而减少地震对建筑物的破坏。
消能减震的优点是可以较好地保护建筑物的结构完整性和稳定性,减小地震危害;缺点是需要对建筑物进行一定的结构调整,且消能装置的维护和更新成本较高。
隔震与消能减震是建筑结构防护的重要手段,它们可以有效地减少地震对建筑物的破坏,提高建筑物的抗震性能。
然而,隔震与消能减震并非万能之策,还需要结合建筑物的实际情况和地震影响评估,进行综合分析和设计。
此外,隔震与消能减震也需要注意结构的稳定性和安全性,避免降低了地震危害而牺牲了建筑物的整体安全性。
总的来说,隔震与消能减震是建筑结构抗震设计中的重要内容,通过结构调整和装置设置,减小了地震对建筑物的影响。
随着科学技术的不断进步,隔震与消能减震技术也在不断改进和完善,为人们的生命财产安全提供了有力保障。
然而,隔震与消能减震技术仍然需要进一步研究和探索,以适应不同地震条件和建筑物类型的需要,提高抗震能力,实现更加可持续和安全的建筑结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(7)
把式(6)代入上式可得
d 4 y ( x) d 2 y ( x) Ei I i +P + β y ( x) = 0 4 2 dx dx
(8)
-29-
设上式解的形式为 把式(9)代入式(8),得
Ei I i λ 4 + Pλ 2 + β = 0
(9)
(10)
令 z = λ 2 ,则
Ei I i z 2 + Pz + β = 0
(11)
上式的判别式为
∆ = P 2 − 4 β Ei I i
(12)
当 ∆ ≤ 0 时,方程(8)的解为
-30-
(12) 式中, (13) (14)
δ = ζ 4 / k 4 −1
(15)
-31-
假设两端铰接,则 (16)
把式(12)代入上式,得
由于上式之解非0,则其行列式为0,由此可得δ=0,于是由(13) -(15)可得内芯的临界力为 (17) 由上式可知,内芯尺寸不能太小。
第二节 防屈曲支 撑阻尼器
1.主要构造形式 1.主要构造形式 1.1 钢管混凝土约束
(a)典型钢管混凝土约束防屈 曲支撑阻尼器基本构造
(b)耗能内芯与约束钢管混凝 土约组合形式 -1-
1.2 纯钢管约束 十字芯板+角钢约束
-2-
十字芯板+四小方钢管约束
-3-
一字芯板+槽钢约束
-4-
十字芯板+方钢管约束:之一
-37-
-21-
•San Diego试验
-22-
-23-
4.地震反应
-24-
5.稳定性 5.1整体弯曲
-25-
内芯平衡方程为
d 2 y ( x) Ei I i = − Py ( x) + M qr ( x) 2 dx
(1)
式中,Ei为内芯弹性模量,Ii为内芯截面惯性矩,x为截面距 左端的距离,y为x处的挠度对上式求二阶导数,P为轴力, q(x)为约束构件对内芯作用力,Mqr(x)为q(x) 和支座反力引起 的x截面的弯矩。 约束构件的平衡方程为
d 2 y ( x) Eo I o = − M qr ( x ) 2 dx
(2)
式中,Eo和Io分别为约束件的弹性模量和截面惯性矩。对于 钢管混凝土, Eo可取混凝土弹性模量, Io取混凝土惯性矩 -26- 和钢管折算惯性矩之和。
式(1)与(2)相加,得
d 2 y ( x) d 2 y ( x) Ei I i + Eo I o = − Py ( x ) 2 2 dx dx
5.2 内芯的高阶弯曲 : 钢管混凝土约束
发生高阶弯曲时,可把约束混凝土看作弹性地基,其 反力q(x)可表示为 q ( x) = − β y ( x) (6) 这里β是弹性地基的弹性系数,对于平面应变情况,
式中Ec是混凝土弹性模量,ν是泊松比。
-28-
对式(1)求二阶导可得
d 4 y ( x) d 2 y ( x) Ei I i = −P + q( x) 4 2 dx dx
-10-
-11-
-12-
-13-
-14-
桥梁加固,日本
-15-
新建钢结构,日本:十字内芯
-16-
钢结构拱桥,日本
-17-
混凝土结构加固,日本
-18-
混凝土结构加固,日本(续前页):相关实验
-19-
新建钢结构,日本:一字形内芯
-20-
3.滞回性能
•Berkerley试验
注意:由于内芯与约 束件间的摩擦,经常 使支撑压力大于拉力, 如右图所示。
-36-
主要参考文献
1. Cameron J. Black, Nicos Makris, and Ian D. Aiken, “Component testing, seismic evaluation and characterization of buckling-restrained braces”,Journal of Structural Engineering, Vol. 130, No. 6, June 1, 2004: 880-894 2. Tsai KC et al, “Seismic experiments on large scale frame structures”, The First Conference on Advanced in Experimental Structural Engineering (AESE), Nagoya,Japan, 2005 3. Lin ML et al, “Bi-directional sub-structural pseudo-dynamic tests of a full-scale 2-story brbf,part 2: compressive behavior of gusset plates”, Proceedings of the 8th U.S. National Conference on Earthquake Engineering, April 18-22, 2006, San Francisco, California, USA
(3)
上式即
d 2 y ( x) ( Ei I i + Eo I o ) = − Py ( x) 2 dx
(4)
上式与把内芯与约束件看成一个整体时的弯矩曲率方程完全 相同。 由式(4)可求得防屈曲支撑的临界力为
Pcr =
π2
( KL)
2
( Ei I i + Eo I o )
(5)
ቤተ መጻሕፍቲ ባይዱ
式中,L为支撑长度;KL为支撑有效长度;K与边界条件有关, -27- 两端铰接时K=1。
对接焊缝 环箍
说明: 1.图中支撑屈服力为54
防屈曲钢支撑阻尼器
1
1
-5-
十字芯板+方钢管约束:之二
-6-
双重圆钢管
-7-
一字芯板+方钢管约束
-8-
芯板与约束的其他组合形式
-9-
2.工程应用 2.工程应用 截至2006,在日本有近400栋、美国有50余栋建筑安装 了防屈曲支撑。(新日铁网站)
-32-
5.3扭转屈曲
式中,l、b和t分别为 十字形连接件四片钢 板的延支撑轴向的长 度、宽度和厚度,E 为其弹性模量,G为 剪切模量,ν为泊松比。 上式说明连接件不能 太长或太薄。
-33-
5.4节点板的稳定 (详见文献2和3)
•螺栓连接
(a)无边肋
(b)有边肋
-34-
•铰接
-35-
思考题:钢管混凝土约束和纯钢约束的防屈曲支撑 各有什么优缺点?