2022-2023学年高二上学期期末考试数学(文)试题

合集下载

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题(含答案解析)

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题(含答案解析)

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知实数a 、b ,那么||||||a b a b +=-是0ab <的()条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要2.若实数x ,y 满足约束条件020x y x y -≥⎧⎨+-≤⎩,则2z x y =-的最小值为()A .1-B .1C .2-D .23.已知数列{}n a 与{}n b 均为等差数列,且354a b +=,598a b +=,则47a b +=()A .5B .6C .7D .84.已知()110m a a a=++>,()31xn x =<,则m ,n 之间的大小关系是()A .m n >B .m n <C .m n=D .m n≤5.在ABC 中,内角A ,B ,C 所对的边为a ,b ,c ,若4,30a b A ===︒,则B =()A .30︒B .30︒或150︒C .60︒D .60︒或120︒6.若曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,则a b +=()A .2B .0C .1-D .2-7.抛物线()220x py p =>上一点M 的坐标为()2,1-,则点M 到焦点的距离为()A .3B .2C .1D .17168.函数()y f x =的图象如图所示,()f x '是函数()f x 的导函数,令(2)a f =',(4)b f =',(4)(2)2f f c -=,则下列数值排序正确的是()A .b a c <<B .a b c <<C .a c b <<D .c b a<<9.已知椭圆221(0)y x m m+=>的焦点在y 轴上,长轴长是短轴长的2倍,则m =()A .2B .1C .14D .410.已知函数()f x 的导函数()f x '的图像如图所示,以下结论:①()f x 在区间(2,3)-上有2个极值点②()f x '在=1x -处取得极小值③()f x 在区间(2,3)-上单调递减④()f x 的图像在0x =处的切线斜率小于0正确的序号是()A .①④B .②③④C .②③D .①②④11.函数()sin e xxf x =在[],ππ-上大致的图象为()A .B .C .D .12.已知定义在R 上的函数()f x 的导函数为()f x ',若()e xf x '<,且()22e 2f =+,则不等式()ln 2f x x >+的解集是()A .()20,eB .()0,2C .()2,e-∞D .(),2-∞二、填空题13.若命题“x ∃∈R ,22x m ->”是真命题,则实数m 的取值范围是______.14.已知直线1l :()2100mx y m ++=>,与双曲线C :2214x y -=的一条渐近线垂直,则m =__________.15.设{}n a 是公差不为0的等差数列,11a =且248,,a a a 成等比数列,则1291011a a a a ++= ___16.已知钝角三角形的三边a =k ,b =k +2,c =k +4,则k 的取值范围是___________.三、解答题17.设2:3,:11180p a x a q x x <<-+≤.(1)若1a =,“p 且q ”为真,求实数x 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.18.已知函数()29f x x x =+-.(1)解不等式()15f x <;(2)若关于x 的不等式()f x a <有解,求实数a 的取值范围.19.如图,已知平面四边形ABCD ,45A ∠=︒,75ABC ∠=︒,30BDC ∠=︒,2BD =,CD =(1)求CBD ∠;(2)求AB 的值.20.已知函数()2()4(),R f x x x a a =--∈且(1)0f '-=.(1)求a 的值;(2)讨论函数()f x 的单调性;(3)求函数()f x 在[2,2]-上的最大值和最小值.21.已知椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -,椭圆上任一点到两个焦点的距离之和(1)求椭圆C 的方程;(2)是否存在实数m ,使直线:l y x m =+与椭圆有两个不同的交点M 、N ,并使||||AM AN =,若存在,求出m 的值;若不存在,请说明理由.22.已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程;(2)当0a ≤时,对于任意0x >,证明:()cos f x x >.参考答案:1.D【分析】等式两边平方结合反例即可判断.【详解】因为2222||||||2|2|||0a b a b a ab b a ab b ab ab ab +=-⇒++=-+⇒=-⇒≤,所以必要性不成立;当1,2a b ==-时,满足0ab <,但||||||a b a b +≠-,所以必要性不成立;所以||||||a b a b +=-是0ab <的既不充分也不必要条件.故选:D .2.A【分析】画出可行域,平移基准直线20x y -=到可行域边界位置,由此来求得z 的最小值.【详解】020x y x y -=⎧⎨+-=⎩,解得1x y ==,设()1,1A ,平移基准直线20x y -=到可行域边界()1,1A 处时,2z x y =-取得最小值1211-⨯=-.故选:A3.B【分析】根据等差数列的性质即可求解.【详解】因为354a b +=,598a b +=,所以355912a b a b ++=+,即355912a a b b ++=+,根据等差数列的性质可知3559472212a a b b a b ++=+=+,所以476a b +=.故选:B.4.A【分析】利用基本不等式及其指数函数的单调性即可求解.【详解】∵0a >,∴1113m a a=++≥=,当且仅当1a =时,等号成立,即3m ≥,又∵1x <,∴1333x n =<=,即3n <,则m n >,故选:A .5.D【分析】根据4,30a b A ===︒,利用正弦定理求解.【详解】解:在ABC 中,4,30a b A ===︒,由正弦定理得sin sin a bA B=,所以sin sin 30sin 42b A B a ⋅===,所以B =60︒或120︒,故选:D 6.A【分析】求出导数,将0x =代入后,可得1a =,将()0,b 代入10x y -+=后可得1b =,进而得到a b +.【详解】由2y x ax b =++得2y x a '=+,又曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,故当0x =时,1y a '==又点()0,b 在10x y -+=上,则1b =,故2a+b =.故选:A .7.B【分析】将点M 坐标代入抛物线可得p ,则所求距离为12p+.【详解】()2,1M - 在抛物线上,42p ∴=,解得:2p =,∴点M 到焦点的距离为122p+=.故选:B.8.C【分析】利用导数的几何意义判断.【详解】由函数图象知:()()()42(2)442f f f f -''<<-,所以a c b <<,故选:C 9.D【分析】根据椭圆的方程,结合椭圆的几何性质,列式求解.【详解】由条件可知,2a m =,21b =,且22=⨯,解得:4m =.故选:D 10.B【分析】根据导函数()f x '的图像,求出函数的单调区间,求出函数的极值点,分析判断①②③,对于④:由于()f x 的图像在0x =处的切线斜率为()0f ',从而可由导函数的图像判断.【详解】根据()f x '的图像可得,在()2,3-上,()0f x '≤,所以()f x 在()2,3-上单调递减,所以()f x 在区间()2,3-上没有极值点,故①错误,③正确;由()f x '的图像可知,()f x '在()2,1--单调递减,在()1,1-单调递增,故②正确;根据()f x '的图像可得()00f '<,即()f x 的图像在0x =处的切线斜率小于0,故④正确.故选:B.11.B【分析】分析函数()f x 的奇偶性及其在[]0,π上的单调性,结合排除法可得出合适的选项.【详解】对任意的[]π,πx ∈-,()()()sin sin eexxx x f x f x ---==-=-,所以,函数()sin ex xf x =在[],ππ-上的图象关于原点对称,排除AC 选项,当0πx ≤≤时,()sin ex xf x =,则()πcos sin 4e e xxx x xf x ⎛⎫- ⎪-⎝⎭'==-,因为ππ3π444x -≤-≤,由()0f x '<可得π3π044x <-≤,则ππ4x <≤,由()0f x ¢>可得ππ044x -≤-<,则π04x ≤<,所以,函数()f x 在π0,4⎡⎫⎪⎢⎣⎭上单调递增,在π,π4⎛⎤ ⎥⎝⎦上单调递减,排除D 选项.故选:B.12.A【分析】设()()e 2xg x f x =-+,求导可得()g x 在R 上单调递减,再根据()ln 2f x x >+转化为()ln 4g x >,再结合()g x 的单调性求解即可.【详解】设()()e 2x g x f x =-+,则()()e xg x f x '-'=.因为()e xf x '<,所以()e 0x f x '-<,即()0g x '<,所以()g x 在R 上单调递减.不等式()ln 2f x x >+等价于不等式()ln 24f x x -+>,即()ln 4g x >.因为()22e 2f =+,所以()()222e 24g f =-+=,所以()()ln 2g x g >.因为()g x 在R 上单调递减,所以ln 2x <,解得20e x <<故选:A 13.(),2-∞【分析】求得22y x =-的最大值,结合题意,即可求得结果.【详解】22y x =-的最大值为2,根据题意,2m >,即m 的取值范围是(),2-∞.故答案为:(),2-∞.14.4【分析】求得双曲线C 的渐近线方程,根据直线垂直列出等量关系,即可求得结果.【详解】对双曲线C :2214x y -=,其渐近线方程为12y x =±,对直线1l :()2100mx y m ++=>,且斜率为02m-<,根据题意可得1122m -⨯=-,解得4m =.故答案为:4.15.910【详解】分析:由题意先求出{}n a 的通项公式,再利用裂项相消法求和即可.详解:∵数列{a n }是公差不为0的等差数列,a 1=1,且a 2,a 4,a 8成等比数列,∴(1+3d )2=(1+d )(1+7d ),解得d=1,或d=0(舍),∴a n =1+(n ﹣1)×1=n .∴129101111111111191112239102239101010a a a a ++=+++=-+-++-=-=⨯⨯⨯故答案为910点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=;(3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.16.26k <<【分析】先解不等式cos 0C <,再结合两边之和大于第三边求解.【详解】解:∵c b a >>,且ABC 为钝角三角形,∴C ∠为钝角,∴()()()()222222224412cos 022222k k k a b c k k C ab k k k k ++-++---===<++,∴24120k k --<,解得26k -<<,由两边之和大于第三边得24k k k ++>+,∴2k >.∴26k <<.故答案为:26k <<17.(1){23}x x ≤<(2){0a a ≤或23}a ≤≤【分析】(1)先分别求得P 为真命题和q 为真命题的实数x 的取值范围,再根据p 且q 为真命题,利用集合的交集运算求解;(2)记{3}C x a x a =<<,根据p 是q 的充分不必要条件,由C B Ü求解.【详解】(1)解:当1a =时,P 为真命题,实数x 的取值范围为{13}A x x =<<,211180(2)(9)029x x x x x -+≤⇒--≤⇒≤≤,q 为真命题,实数x 的取值范围为{}29B x x =≤≤,∵p 且q 为真命题所以实数x 的取值范围为{23}A B x x ⋂=≤<;(2)记{3}C x a x a =<<∵p 是q 的充分不必要条件所以C BÜ当0a ≤时,C =∅,满足题意;当0a >时,239a a ≥⎧⎨≤⎩解得23a ≤≤;综上所述:实数a 的取值范围为{0a a ≤或23}a ≤≤18.(1){}311x x <<;(2)9a >.【分析】(1)根据零点分段法可得()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,然后分段解不等式,即得;(2)由题可得()min a f x >,然后求函数的最小值即得.【详解】(1)因为函数()29f x x x =+-,所以()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,∵()15f x <,所以931815x x ≥⎧⎨-<⎩或091815x x ≤<⎧⎨-<⎩或018315x x <⎧⎨-<⎩,解得311x <<,所以原不等式的解集为{}311x x <<;(2)由()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,可得函数()f x 在(),9-∞上单调递减,在()9,+∞上单调递增,当9x =时,函数()f x 有最小值为9,∴9a >.19.(1)60︒;(2.【分析】(1)由余弦定理求2BC ,根据勾股逆定理知90DCB ∠=︒,即可求CBD ∠.(2)由(1)得120ADB ∠=︒,应用正弦定理即可求AB 的值.【详解】(1)在△BCD 中,由余弦定理,有2222cos301BC BD CD BD CD =+-⋅︒=,222BC CD BD ∴+=,即90DCB ∠=︒,60CBD ∴∠=︒.(1)在四边形ABCD 中,756015ABD ∠=︒-︒=︒,∴120ADB ∠=︒,在△ABD 中,由正弦定理sin120sin 45AB BD =︒︒,则sin120sin 45BD AB ⋅︒=︒20.(1)12a =(2)调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎛⎫- ⎪⎝⎭(3)最大值为92,最小值为5027-【分析】(1)求导得2()324f x x ax '=--,代入(1)0f '-=,得可得答案;(2)由题意可得()(34)(1)f x x x '=-+,分别解()0f x '>,()0f x '<,即可得函数的单调递增、减区间;(3)根据导数的正负,判断函数在[2,2]-上的单调性,即可得答案.【详解】(1)解:因为函数()2()4(),R f x x x a a =--∈,∴()22()2()4324f x x x a x x ax =-+-=--',由(1)0f '-=,得3240a +-=,解得12a =;(2)解:由(1)可知2()34(34)(1)f x x x x x ==-'--+,解不等式()0f x '>,得43x >或1x <-,所以函数()f x 的单调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,解不等式()0f x '<,得413x -<<,所以函数()f x 的单调递减区间为41,3⎛⎫- ⎪⎝⎭;(3)解:当22x -≤≤时,函数()f x 与()f x '的变化如下表所示:令()0f x '=,解得43x =或=1x -,x[)2,1--=1x -41,3⎛⎫- ⎪⎝⎭43x =4,23⎛⎤ ⎥⎝⎦()f x '+0-0+()f x 单调递增极大值单调递减极小值单调递增因为9(1)2f -=,(2)0f =;所以当=1x -时,函数()f x 取得极大值9(1)2f -=;又因为(2)0f -=,450327f ⎛⎫=- ⎪⎝⎭,所以当43x =时,函数()f x 取得极小值450327f ⎛⎫=- ⎪⎝⎭,∴函数()f x 的最大值为92,最小值为5027-.21.(1)2213x y +=(2)不存在,理由见解析【分析】(1)结合椭圆的定义,结合顶点坐标,即可求椭圆方程;(2)首先求线段MN 的中垂线方程,根据点A 在中垂线上,求m ,并判断是否满足0∆>.【详解】(1)椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -得1b =椭圆上任一点到两个焦点的距离之和2a =a =所以椭圆的方程为2213x y +=(2)设直线l 与椭圆C 两个不同的交点()()1122,,,M x y N x y ∵||||AM AN =所以,点A 在线段MN 的中垂线l ',下面求l '的方程联立方程2233y x m x y =+⎧⎨+=⎩去y ,可得2246330x mx m ++-=由()222(6)443312480m m m ∆=-⨯⨯-=-+>,解得22m -<<1232mx x +=-设MN 的中点为()00,P x y ,有120003244x x m m x y x m +==-=+=则l '的方程为344m m y x ⎛⎫-=-+ ⎪⎝⎭即2m y x =--由于点A 在直线MN 的中垂线l '上,解得2m =又∵22m -<<所以不存在实数m 满足题意.22.(1)1y x =-+或()2314y x =-(2)证明见解析【分析】(1)易知()1,0不在()f x 上,设切点()3000,1x x x -+,由导数的几何意义求出切线方程,将()1,0代入求出对应0x ,即可求解对应切线方程;(2)构造()()31cos 0g x x ax x x =-+->,求得()23sin g x x a x '=-+,再令()()u x g x '=,通过研究()u x '正负确定()g x '单调性,再由()g x '正负研究()g x 最值,进而得证.【详解】(1)由题,1a =时,()31f x x x =-+,()231f x x '=-,设切点()3000,1x x x -+,则切线方程为()()()320000131y x x x x x --+=--,该切线过点()1,0,则()()3200001311x x x x -+-=--,即3200230x x -=,所以00x =或032x =.又()01f =;()01f '=-;32328f ⎛⎫= ⎪⎝⎭,32324f ⎛⎫'= ⎪⎝⎭.所以,切线方程为1y x =-+或()2314y x =-;(2)设()()31cos 0g x x ax x x =-+->,则()23sin g x x a x '=-+,令()()()23sin 0u x g x x a x x '==-+>,则()6cos u x x x '=+,可知π02x <<,时,()0u x '>;π2x ≥时,()0u x '>,故0x >时均有()0u x '>,则()u x 即()g x '在()0,∞+上单调递增,()0g a '=-,因为0a ≤时,则()00g a '=-≥,()()00g x g ''>≥,故()g x 在()0,∞+上单调递增,此时,()()00g x g >=.所以,当0a ≤时,对于任意0x >,均有()cos f x x >.。

2022-2023学年河南省信阳市信阳高级中学高二上学期期末考试数学试题(解析版)

2022-2023学年河南省信阳市信阳高级中学高二上学期期末考试数学试题(解析版)

2022-2023学年河南省信阳市信阳高级中学高二上学期期末考试数学试题一、单选题1.双曲线22132x y -=的渐近线方程是( )A .23y x =± B .32y x =±C .y =D .y = 【答案】D【分析】根据焦点在横轴上双曲线的渐近线方程直接求解即可.【详解】由题得双曲线的方程为22132x y -=,所以a b =,所以渐近线方程为b y x a =±=. 故选:D2.若平面α的法向量为μ,直线l 的方向向量为v ,直线l 与平面α的夹角为θ,则下列关系式成立的是( ) A .cos ||||v v μθμ⋅=B .||cos ||||v v μθμ⋅=C .sin |||vv μθμ⋅=∣D .||sin ||||v v μθμ⋅=【答案】D【分析】由线面角的向量求法判断 【详解】由题意得||sin ||||v v μθμ⋅=, 故选:D3.若抛物线C :22x py =的焦点坐标为()0,1,则抛物线C 的方程为( ) A .22x y =- B .22x y =C .24x y =-D .24x y =【答案】D【分析】由已知条件可得12p=,求出p ,从而可求出抛物线的方程. 【详解】因为抛物线C :22x py =的焦点坐标为()0,1,所以12p=,得2p =, 所以抛物线方程为24x y =, 故选:D4.函数()f x 的定义域为R ,导函数()f x '的图象如图所示,则函数()f x ( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点 【答案】C【分析】设()f x '的图象与x 轴的4个交点的横坐标从左至右依次为1234,,,x x x x ,根据导函数的图象写出函数的单调区间,再根据极值点的定义即可得出答案.【详解】解:设()f x '的图象与x 轴的4个交点的横坐标从左至右依次为1234,,,x x x x , 当1x x <或23x x x <<或4x x >时,0fx,当12x x x <<或34x x x <<时,()0f x '<,所以函数()f x 在()1,x -∞,()23,x x 和()4,x +∞上递增, 在()12,x x 和()34,x x 上递减,所以函数()f x 的极小值点为24,x x ,极大值点为13,x x , 所以函数()f x 有两个极大值点、两个极小值点. 故选:C .5.已知点1,0A ,直线l :30x y -+=,则点A 到直线l 的距离为( )A .1B .2C D .【答案】D【分析】利用点到直线的距离公式计算即可.【详解】已知点(1,0)A ,直线:30l x y -+=,则点A 到直线l =故选:D .6.已知A ,B ,C ,D ,E 是空间中的五个点,其中点A ,B ,C 不共线,则“存在实数x ,y ,使得DE x AB y AC =+是“//DE 平面ABC ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【分析】利用存在实数x ,y ,使得DE xAB y AC =+⇔//DE 平面ABC 或DE ⊂平面ABC ,结合充分必要条件的定义即可求解.【详解】若//DE 平面ABC ,则,,DE AB AC 共面,故存在实数x ,y ,使得DE x AB y AC =+,所以必要性成立;若存在实数x ,y ,使得DE x AB y AC =+,则,,DE AB AC 共面,则//DE 平面ABC 或DE ⊂平面ABC ,所以充分性不成立;所以 “存在实数x ,y ,使得DE x AB y AC =+是“//DE 平面ABC ”的必要不充分条件, 故选:B【点睛】关键点点睛:本题考查空间向量共面的问题,理清存在实数x ,y ,使得DE xAB y AC =+⇔//DE 平面ABC 或DE ⊂平面ABC 是解题的关键,属于基础题.7.已知双曲线22221x y a b -=(a >0,b >0)与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1B .(1C .∞)D .,+∞)【答案】C【分析】根据渐近线的斜率的范围可求离心率的范围. 【详解】因为双曲线的一条渐近线方程为by x a=,由题意得2b a >,所以双曲线的离心率c e a ==故选:C.8.已知()f x 是定义在R 上的偶函数,当0x >时,()()0xf x f x '-<,且()20f -=,则不等式()0f x x>的解集是( ). A .()()2,00,2-⋃ B .()(),22,∞∞--⋃+ C .()()2,02,-+∞ D .()(),20,2-∞-【答案】D 【分析】记()()(),0f x g x x x=≠.判断出()g x 的奇偶性和单调性,即可解不等式. 【详解】记()()(),0f x g x x x=≠.因为()f x 是定义在R 上的偶函数,所以()()f x f x -= 因为()()()()f x f x g x g x x x --==-=--,所以()g x 为奇函数,所以()()()()222222f fg g --==-=--. 因为()20f -=,所以()()220g g -==. 当0x >时,()()()20xf x f x g x x'-'=<,所以()g x 在()0,∞+上单减.因为()g x 为奇函数,图像关于原点对称,所以()g x 在(),0∞-上单减. 不等式()0f x x>即为()0g x >.当0x >时, ()g x 在()0,∞+上单减,且()20g =,所以()0g x >的解集为()0,2; 当0x <时, ()g x 在(),0∞-上单减,且()20g -=,所以()0g x >的解集为(),2-∞-. 综上所述:()0f x x>的解集为()(),20,2-∞-.故选:D二、多选题9.下列导数运算正确的有( )A .211x x '⎛⎫= ⎪⎝⎭B .()(1)x x xe x e '=+C .()222x x e e '=D .()2ln 2x x'=【答案】BC【分析】根据导数的运算法则逐项运算排除可得答案.【详解】对于A ,()12211x x x x --'⎛⎫'==-=- ⎪⎝⎭,故错误;对于B , ()()(1)x x x x xe x e x e x e '''==++,故正确; 对于C , ()()22222x x x e x e e ''==,故正确; 对于D , ()()''11ln 222x x x x==,故错误. 故选:BC.10.设等差数列{}n a 的前n 项和为n S ,其公差1d >,且7916+=a a ,则( ). A .88a = B .15120S = C .11a < D .22a >【答案】ABC【分析】利用等差数列基本量代换,对四个选项一一验证.【详解】对于A :因为7916+=a a ,所以978216a a a +==,解得:88a =.故A 正确; 对于B :()1158151521581512022a a a S +⨯⨯===⨯=.故B 正确;对于C :因为88a =,所以178a d +=,所以187a d =-. 因为1d >,所以11a <.故C 正确;对于D :因为88a =,所以268a d +=,所以286a d =-. 因为1d >,所以22a <.故D 错误. 故选:ABC11.已知曲线1C :函数()nx m f x x m+=-的图像,曲线()()2222:12C x y r -+-=,若1C 的所有对称轴平分2C ,且1C 与2C 有公共点,则r 的值可以等于( ).ABCD .3【答案】BD【分析】先将()f x 整理成()nm mf x n x m+=+-可得()f x 的所有对称轴都经过(),m n ,故可求得1,2m n ==,再计算()f x 上的点到圆心()1,2M 的最短距离即可求得答案【详解】因为()nx m nm mf x n x m x m++==+--,且()f x 是由nm m y x +=向右平移m 个单位长度,向上平移n 个单位长度得到,nm my x+=的所有对称轴都经过()0,0, 所以()nx m nm mf x n x m x m++==+--的所有对称轴都经过(),m n , 因为1C 的所有对称轴平分2C ,所以1C 的所有对称轴经过2C 的圆心()1,2M , 所以1,2m n ==,所以()321f x x =+-, 设函数()f x 图象上的动点3,21P x x ⎛⎫+ ⎪-⎝⎭,则()()2233121611MP x x x x ⎛⎫⎛⎫=-+≥-= ⎪ ⎪--⎝⎭⎝⎭,当且仅当311x x -=-时,取等号, 所以()f x 上的点到圆心()1,2M 的最短距离为6, 若1C 与2C 有公共点,则6r ≥ 故选:BD12.我国知名品牌小米公司今年启用了具备“超椭圆”数学之美的全新Logo .新Logo 将原本方正的边框换成了圆角边框(如图),这种由方到圆的弧度变化,为小米融入了东方哲学的思想,赋予了品牌生命的律动感.设计师的灵感来源于数学中的曲线:1nnC x y +=,则下列有关曲线C 的说法中正.确.的是( ).A .对任意的n ∈R ,曲线C 总关于原点成中心对称B .当0n >时,曲线C 上总过四个整点(横、纵坐标都为整数的点) C .当01n <<时,曲线C 围成的图形面积可以为2D .当1n =-时,曲线C 上的点到原点最近距离为22【答案】ABD【分析】对于A :利用代数法验证;对于B :直接求出曲线C 过四个整点()()()()1,0,1,0,0,1,0,1--,即可判断;对于C :先判断出||||1x y +=与坐标轴围成的面积为2,再判断出1n nx y +=在||||1x y +=内部,即可判断;对于D :表示出距离222221x d x y x x ⎛⎫=+=+ ⎪-⎝⎭.令()11x t t -=>-,利用基本不等式求出最小值.【详解】对于A :在曲线:1nnC x y +=中,以x -替换x ,以y -替换y ,方程不变,则曲线C 关于原点成中心对称.故A 正确;对于B,当0n >时,令0x =,得1y =±;令0y =,得1x =±.曲线C 总过四个整点()()()()1,0,1,0,0,1,0,1--.故B 正确;对于C :当01n <<时,由1n nx y +=,得:1,1x y ≤≤,且等号不同时成立. ∴||||||||1n n x y x y +>+=.又||||1x y +=与坐标轴围成的面积为2222⨯=,且1n nx y +=在||||1x y +=内部,则曲线C 围成图形的面积小于2.故C 错误.对于D :当1n =-时,曲线C 的方程为:11||||1x y --+=.不妨令,x y 均大于0,曲线化为111x y +=,即1x y x =-,则222221x d x y x x ⎛⎫=+=+ ⎪-⎝⎭. 令()11x t t -=>-,则2222222112(1)2228t t d t t t t t t ++=++=++++≥=,当且仅当221t t =且22t t=,即1t =时等号成立.结合对称性可知,曲线C上点到原点距离的最小值为故D 正确.故选:ABD.三、填空题13.已知{}n a 是公比为2的等比数列,则1234a a a a ++的值为______. 【答案】14##0.25【分析】利用等比数列的通项公式计算即可. 【详解】{}n a 是公比为2的等比数列,121113411123148124a a a a a a a a a a ++∴===++ 故答案为:14.14.设点P是曲线32y x =+上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是______.【答案】20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【分析】求出23'=y xtan α≥α的范围可得答案. 【详解】∵23y x '=≥∴tan α≥ 又∵0απ≤≤, ∴02πα≤<或23a ππ≤< 则角α的取值范围是20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭.故答案为:20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭.15.已知数列{}n a 满足()21n a n m n =--,若满足123456a a a a a a <<<<<且对任意[)9,n ∈+∞,都有1n n a a +>,则实数m 的取值范围是______.【答案】1016,1117⎛⎫⎪⎝⎭【分析】由123456a a a a a a <<<<<解出1111m -<,由对任意[)9,n ∈+∞,都有1n n a a +>,解出1117m ->,即可求出实数m 的取值范围. 【详解】因为()21n a n m n =--,若满足123456a a a a a a <<<<<,所以()()()()()()222222111212313414515616m m m m m m --⨯<--⨯<--⨯<--⨯<--⨯<--⨯,解得:1111m -<. 因为对任意[)9,n ∈+∞,都有1n n a a +>,由二次函数的性质可得:()()101910212m m ⎧--<⎪+⎨-<⎪--⎩,解得:1117m ->. 所以1111711m <-<,解得:10161117m <<. 所以实数m 的取值范围为1016,1117⎛⎫⎪⎝⎭.故答案为:1016,1117⎛⎫⎪⎝⎭16.若方程2l e n 1x x ax x -=--存在唯一实根,则实数a 的取值范围是_____.【答案】(]1,01e ⎧⎫-∞+⎨⎬⎩⎭【分析】方程2l en 1xx ax x -=--存在唯一实根,则2ln 1e x x a x x-++=存在唯一实根,则函数y a =与函数()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>有唯一的交点,利用导数分析()f x 的单调性,并在同一坐标系中做出y a =与函数()e ln 1x f x xx x +=+的图象,即可求解【详解】方程2l e n 1x x ax x -=--存在唯一实根, 则2ln 1e x x a x x-++=存在唯一实根,令()()2ln 10e ,x x x x xf x -++=>,则()()2221e n e e 2l 1x x x x x x x x x x f x ---⎛⎫-+⋅- +⎪⎭+⎝'= ()222231l e l e n e n x x x x x x x x xx x ----+==-⋅-- 令()()()2211ln e e ln xxx x h x x x x x --⋅=-++⋅=,注意到()10h =,则()10f '=,且当()0,1x ∈时,210,ln 0,0,e 0x x x x >-<><, 所以()()22110,n e el 0x xx x x x x ⋅⋅--<+<,即()0h x <; 当()1,x ∈+∞时,210,ln 0,0,e 0x x x x >->>>, 所以()()22110,n e el 0x xx x x x x ⋅⋅-->+>,即()0h x >; 所以当()0,1x ∈时,0fx,()f x 单调递增;当()1,x ∈+∞时,()0f x '<,()f x 单调递减; 又()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>, 当()1,x ∈+∞时,()0f x >恒成立; 当0x →时,()f x →-∞;所以()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>的大致图象为:由2ln 1e xx a x x-++=存在唯一实根,则函数y a =与函数()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>有唯一的交点,由图象可知0a ≤或11ea =+时满足条件,所以方程2l e n 1x x ax x -=--存在唯一实根时, 实数a 的取值范围是(]1,01e a ⎧⎫∈-∞⋃+⎨⎬⎩⎭故答案为:(]1,01e ⎧⎫-∞⋃+⎨⎬⎩⎭四、解答题17.已知函数321()213f x x x =-++.(1)求()f x 的单调区间;(2)求函数()f x 在区间[]1,2-上的最大值与最小值.【答案】(1)单调递增区间为[]0,4;单调减区间为(),0∞-和()4,+∞;(2)()min 1f x =;()max 193f x =. 【解析】(1)求出导函数,令0fx,求出单调递增区间;令()0f x '<,求出单调递减区间.(2)求出函数的单调区间,利用函数的单调性即可求解. 【详解】(1)函数()f x 的定义域是R , 2()4f x x x '=-+,令()0f x '≥,解得04x ≤≤ 令()0f x '<,解得>4x 或0x <, 所以()f x 的单调递增区间为[]0,4, 单调减区间为(),0∞-和()4,+∞; (2)由()()1f x 在[)1,0-单调递减,在[]0,2单调递增,所以()()min 01f x f ==,而()81928133f =-++=,()11012133f -=++=, 故最大值是()9231f =. 18.已知抛物线2:2(0)C y px p =>的准线与x 轴交于点()1,0M -.(1)求抛物线C 的方程;(2)若过点M 的直线l 与抛物线C 相切,求直线l 的方程.【答案】(1)24y x =;(2)10x y -+=或10x y ++=【解析】(1)利用准线方程2p x =-求解 (2)设出直线方程,与抛物线方程联立,利用0∆=求解.【详解】(1)2:2(0)C y px p =>的准线2p x =-过()1,0M - 故12p -=-,则2p = 抛物线方程为24y x =(2)设切线方程为1x my =-与抛物线方程联立有2440y my -+=()24160m ∆=-=故1m =±故直线l 的方程为:10x y -+=或10x y ++=【点睛】求抛物线的切线方程的方法:方法一:将抛物线转化为二次函数,然后利用导数求解切线方程,这在开口朝上的抛物线中经常用到。

2022-2023学年四川省遂宁市安居区育才中学校高二上学期期末考试数学(文)试题(解析版)

2022-2023学年四川省遂宁市安居区育才中学校高二上学期期末考试数学(文)试题(解析版)

2022-2023学年四川省遂宁市安居区育才中学校高二上学期期末考试数学(文)试题一、单选题1.若直线的倾斜角为120°,则直线的斜率为( )AB .CD .【答案】B【分析】求得倾斜角的正切值即得.【详解】k =tan120°=故选:B .2.有下列事件:①在标准大气压下,水加热到80℃时会沸腾;②实数的绝对值不小于零;③某彩票中奖的概率为1100000,则买100000张这种彩票一定能中奖;④连续两次抛掷一枚骰子,两次都出现2点向上.其中必然事件是( ) A .② ③ B .③④ C .①②③④ D .②【答案】D【解析】根据随机事件、必然事件的定义,逐项判定,即可求解.【详解】因为在标准大气压下,水加热到100℃才会沸腾,所以①不是必然事件; 因为实数的绝对值不小于零,所以②是必然事件; 因为某彩票中奖的概率为1100000,仅代表可能性,所以买100000张这种彩票不一定能中奖,即③不是必然事件;抛掷一枚骰子,每一面出现都是随机的,所以④是随机事件. 故选:D .3.过点(1,3)-且与直线230x y -+=平行的直线方程是( ) A .250x y --= B .270x y -+= C .210x y +-= D .250x y +-=【答案】B【分析】设直线方程为20x y c -+=,(3)c ≠,将点(1,3)-代入即可求解. 【详解】设直线方程为20x y c -+=,(3)c ≠, 直线过点(1,3)-,∴代入直线方程的1230c --⨯+=,得7c =,则所求直线方程为270x y -+=, 故选:B .4.已知O 的圆心是坐标原点O ,且被直线250x y -+=截得的弦长为4,则O 的方程为( ) A .224x y += B .228x y += C .228x y += D .229x y +=【答案】D【分析】设圆O 的方程为222x y r +=,结合圆的弦长公式,列出方程,求得2r 的值,即可求解. 【详解】由题意,设圆O 的标准方程为222x y r +=, 则圆心(0,0)O 到直线250x y -+=的距离为22552(1)d ==+-,又由圆O 被直线250x y -+=截得的弦长为4, 可得2224r d -=,化简得22(5)4r -=,解得29r =, 即圆的方程为229x y +=. 故选:D.5.如图,长方体ABCD A B C D -''''中,底面ABCD 是边长为10的正方形,高AA '为12,点P 为体对角线BD '的中点,则P 点坐标为( )A .()5,6,5B .()6,6,5C .()5,5,6D .()6,5,5【答案】C【分析】先求出点B 和点D 的坐标,再利用中点坐标公式即可求解.【详解】长方体ABCD A B C D -''''中,底面ABCD 是边长为10的正方形,高AA '为12, 所以()0,0,12D ',()10,10,0B ,所以对角线BD'的中点P点坐标为010010012,,222P+++⎛⎫⎪⎝⎭即()5,5,6,故选:C.6.某农村中学高中部有高一、高二、高三共有200名学生,为调查他们的体育锻炼情况,通过分层抽样获得了20名学生一周的锻炼时间,数据如下表(单位:小时):则根据上述样本数据估计该校学生一周的锻炼时间不小于7小时的人数为()A.100 B.120 C.140 D.160【答案】C【分析】根据分层抽样的性质即可求解.【详解】由表格中,可得样本数据中该校学生一周的锻炼时间不小于7小时的人数为:20614-=人,所以,该校学生一周的锻炼时间不小于7小时的人数为:1420014020⨯=人.故选:C.7.若实数x、y满足约束条件20x yx yx+-≤⎧⎪-≤⎨⎪≥⎩,则12yzx+=-的最小值为()A.-2 B.3 2 -C.-1 D.1 2 -【答案】A【解析】画出约束条件20x yx yx+-≤⎧⎪-≤⎨⎪≥⎩的可行域,再由12yzx+=-为点()x y,与点P()21-,确定的直线的斜率求解.【详解】画出约束条件2000x y x y x +-≤⎧⎪-≤⎨⎪≥⎩的可行域如图所示阴影部分:因为12y z x +=-可以看作经过点()x y ,与点P ()21-,的直线的斜率, 结合图像易知,当直线经过点()11A ,时,斜率最小, 所以12y z x +=-的最小值为11212+=--, 故选:A8.某医院某科室有5名医护人员,其中有医生2名,护士3名.现要抽调2人前往新冠肺炎疫情高风险地区进行支援,则抽调的2人中恰好为1名医生和1名护士的概率是( ) A .16B .25C .35D .23【答案】C【分析】根据条件列举出所有的情况,找出其中恰好为1名医生1名护士的种类数,相除即可. 【详解】设5名医护人员,2名医生a ,b ,3名护士c ,d ,e ,则抽调2人的情况有ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de 共10种不同结果, 其中恰好为1名医生和1名护士的不同结果有6种, 故所求概率为63105= 故选:C.9.下列推理错误的是( )A .∈A l ,A α∈,B l ∈,B α∈⇒l ⊂α B .A α∈,A β∈,B α∈,B β∈⇒AB αβ=C .l α⊄,∈A l ⇒A αD .∈A l ,l α⊂⇒A α∈ 【答案】C【分析】根据公理1,判断A ,C ,D ,根据公理2,判断B ,【详解】由 ∈A l ,A α∈,B l ∈,B α∈根据公理1可得l ⊂α,A 对, 由∈A l ,l α⊂根据公理1可得A α∈,D 对, 由l α⊄,∈A l 可得A α或A α∈,C 错, 由A α∈,A β∈,B α∈,B β∈根据公理2可得AB αβ=,B 对,故选:C10.已知直线l 经过两直线l 1:3x ﹣y +12=0,l 2:3x +2y ﹣6=0的交点,且与直线x ﹣2y ﹣3=0垂直,则坐标原点O 到直线l 的距离为( ) A .255B .2C .55D .3【答案】A【分析】先联立方程求得交点坐标,再利用直线垂直求得直线l 的斜率,从而求得直线l 的方程,进而利用点线距离公式即可得解.【详解】联立方程组可得31203260x y x y -+=⎧⎨+-=⎩,解得26x y =-⎧⎨=⎩,故交点A 的坐标为()2,6-,因为直线x ﹣2y ﹣3=0的斜率为12,又直线l 与直线x ﹣2y ﹣3=0垂直,所以直线l 的斜率为﹣2, 故直线l 的方程为()622y x -=-+,即2x +y ﹣2=0;所以原点O 到直线l 的距离为222010225521d ⨯+⨯-==+. 故选:A.11.圆22(1)1x y -+=及22(1)1y x +-=围成的平面阴影部分区域如图所示,向正方形OACB 中随机投入一个质点,则质点落在阴影部分区域的概率为( )A .13π- B .12π- C .4π D .5π【答案】B【分析】利用几何概型的概率公式即可求解.【详解】圆22(1)1x y -+=及22(1)1y x +-=分别以1,0A 和()0,1B 为圆心, 半径都是1.连接OC ,可知阴影部分由分别以,A B 为圆心, 1为半径的两个四分之一弓形组成,阴影部分的面积为2111π21111422S π⎛⎫=⨯-⨯⨯=- ⎪⎝⎭,正方形的面积为111S =⨯=, 所以质点落在阴影部分区域的概率为1π12S S =-, 故选:B.12.已知点(1,0)P 及圆22:2C x y +=,点 M ,N 在圆C 上,若PM PN ⊥,则||MN 的取值范围为( ) A .[31,31]-+ B .[22,22]-+C .[23,23]-+D .[22,23]-+【答案】A【解析】如图所示,当四边形PMQN 为正方形且MN OP ⊥时,||MN 取得最小值或最大值,求出M 的坐标即可得出答案. 【详解】如图所示,当四边形PMQN 为正方形且MN OP ⊥时,||MN 取得最小值或最大值. 由图可知PM 所在直线斜率1k =,则PM 方程为1y x =-,则PM 与圆222x y +=的两个交点分别为M 、M ',2221x y y x ⎧+=⎨=-⎩,解得M xM x '所以M,M ', 则||MN的最小值为:2||1M y =,最大值为:2||1M y '=, 所以||MN的取值范围为11]. 故选:A .【点睛】解题的关键是根据题意,根据对称性,求得PM 的方程,进而可求得M 点坐标,即可求得答案,考查数形结合的解题思想,考查了计算能力,属中档题.二、填空题13.在区间[0,4]上随机地取一个数x ,则事件“111x -≤-≤”发生的概率为___________ 【答案】12##0.5【分析】利用几何概型求解即可. 【详解】在区间[0,4]的长度为4,111x -≤-≤,解得[]0,2x ∈,长度为2, 故在区间[0,4]上随机地取一个数x , 则事件“111x -≤-≤”发生的概率为2142P ==. 故答案为:1214.设x ,y 满足约束条件2120y x y x x ≥-⎧⎪≤+⎨⎪≥⎩,则x y +的最大值为________.【答案】8【分析】作出可行域,平移目标函数找到取最大值的点,代入可求最大值. 【详解】作出不等式组表示的可行域,如图,设z x y =+,由图可知,当直线z x y =+经过点A 时,取到最大值,联立212y x y x =-⎧⎨=+⎩可得(3,5)A ,代入可得z 取得最大值8.【点睛】本题主要考查线性规划求解最值,作出可行域先确定最值点是求解关键,侧重考查直观想象,逻辑推理的核心素养.15.已知直线:1l y kx =-与圆22:430C x y x +-+=相切,则正实数k 的值为___________.【答案】43【分析】利用圆心到直线的距离等于半径即可求解. 【详解】:110l y kx kx y =-⇒--=, ()2222:43021C x y x x y +-+=⇒-+=,圆心为()2,0,1r =,22111k k -=+,解得43k =或0k =,所以正实数k 的值为43故答案为:4316.设,,αβγ为两两不重合的平面, ,,l m n 为两两不重合的直线,给出下列四个命题: ①若,,//,//m n m n ααββ,则//αβ; ②若,m n αβ⊥⊥且,m n ⊥则αβ⊥ ③若l //,ααβ⊥,则l β⊥; ④若,,,l m n l αββγγα===//γ ,则m //n则上述命题中正确的是_________【答案】②④【分析】根据平行垂直的判定与性质逐项分析即可.【详解】对于① 由于不确定m,n 是否相交,所以推不出//αβ ②因为,m n ⊥m α⊥,所以n ⊂α或//n α, 可知α必过β的一条垂线,所以αβ⊥正确.③若l //,ααβ⊥,可能l //β,推不出l β⊥④,,,l m n l αββγγα===//γ,可推出//,//l m l n ,所以m //n 正确.故填②④.【点睛】本题主要考查了线面垂直,线面平行,面面垂直,面面平行的判定和性质,属于中档题.三、解答题17.如图所示的多面体中, AC ⊥BC ,四边形ABED 是正方形,平面ABED ⊥平面ABC ,点F ,G ,H 分别为BD ,EC ,BE 的中点,求证:(1) BC ⊥平面ACD (2)平面HGF ∥平面ABC .【答案】(1)证明见解析;(2)证明见解析.【解析】(1)利用面面垂直的性质证得AD ⊥平面ABC ,得出AD BC ⊥即可; (2)利用中位线关系证明,HG HF 平行于平面ABC 即可. 【详解】(1)由题:平面ABED ⊥平面ABC ,交线为AB , 四边形ABED 是正方形,所以AD AB ⊥,AD ⊆平面ABED , 所以AD ⊥平面ABC ,BC ⊆平面ABC ,AD BC ⊥, 由题AC ⊥BC , ,AD AC 是平面ACD 内的两条相交直线, 所以BC ⊥平面ACD(2)在EBC ∆中,H G 分别是,EB EC 的中点,所以//HG BC ,HG ⊄平面ABC ,BC ⊆平面ABC ,所以//HG 平面ABC ,在EBD ∆中,H F 分别是,EB DB 的中点,所以//,//HF ED ED AB , 所以//HF AB ,HF ⊄平面ABC ,⊆AB 平面ABC ,所以//HF 平面ABC ,,HF HG 是平面HGF 内两条相交直线,所以平面HGF ∥平面ABC.【点睛】此题考查通过面面垂直的性质证明线面垂直,通过线面平行关系证明面面平行. 18.已知直线1l :20mx y m +--=,2l :340x y n +-=.(1)求直线1l 的定点P ,并求出直线2l 的方程,使得定点P 到直线2l 的距离为85;(2)过点P 引直线l 分别交x ,y 轴正半轴于A 、B 两点,求使得AOB 面积最小时,直线l 的方程. 【答案】(1)()1,2,3430x y +=-或34190x y +-= (2)240x y +-=【分析】(1)消掉直线中的参数即可得定点,利用点到直线的距离公式即可求解; (2)利用基本不等式即可求解.【详解】(1)直线1l :20mx y m +--=, 即()120m x y -+-=,令10x -=,求得1x =,2y =,可得直线1l 的定点()1,2P .定点()1,2P 到直线2l :340x y n +-=的距离为85=∴3n =或19n =,故直线2l :3430x y +=-或34190x y +-=.(2)设过点P 引直线l 分别交x ,y 轴正半轴于A 、B 两点, 设(),0A a 、()0,B b ,则P 、A 、B 三点共线,202110ba --=--, ∴2ab a b =+≥令0t ab =>,则有:280t t -≥, 解得:0t <(舍)或8t ≥, ∴t 的最小值为:8.∴AOB 面积为12ab 最小值为:4,此时,2a =,4b =,直线l 的斜率为2-, 直线l 的方程为:()221y x -=--, 即240x y +-=.19.已知直线l 经过两点()2,1A --,()6,3B (1)求直线l 的方程;(2)圆C 的圆心C 在直线l 上,并且与x 轴相切于点(2,0),求圆C 的方程; (3)若过B 点向(2)中圆C 引切线BS ,BT ,S ,T 分别是切点,求ST 直线的方程. 【答案】(1)20x y -= (2)22(2)(1)1x y -+-= (3)42110x y +-=【分析】(1)根据直线方程的两点式求解 (2)设出圆心(2,)C b b ,根据圆与x 轴相切求解. (3) 四点,,,B S C T 四点共圆,两个圆公共弦所在直线方程.【详解】(1)由题可知:直线l 经过点A ()2,1--,B (6,3),由两点式可得直线l 的方程为:()()()()123162y x ----=----,整理得:20x y -=.(2)依题意,可设圆C 的圆心为(2,)C b b ,圆的方程为:222(2)()x b y b r -+-=, ∵圆C 与x 轴相切于点(2,0),∴22b =,解得1b =,∴半径1r =, ∴圆C 的方程为22(2)(1)1x y -+-=.(3)由于,CS BS CT BT ⊥⊥,则四点,,,B S C T 四点共圆,这个圆以BC 为直径其方程为()()22425x y -+-=,ST 为两圆的公共弦, 把两圆方程化为一般方程224240x y x y +--+=和2284150x y x y +--+=, 两式相减得公共弦方程:42110x y +-=.20.芯片作为在集成电路上的载体,广泛应用在手机、军工、航天等多个领域,是能够影响一个国家现代工业的重要因素.根据市场调研与统计,某公司七年时间里在芯片技术上的研发投入x (亿元)与收益y (亿元)的数据统计如下:(1)由折线图看出,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明; (2)根据折线图的数据,求y 关于x 的线性回归方程(系数精确到整数部分);(3)为鼓励科技创新,当研发技术投入不少于15亿元时,国家给予公司补贴4亿元,预测当芯片的研发投入为16亿元时公司的实际收益.附:样本(),(1,2,,)i i x y i n =⋅⋅⋅的相关系数()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑线性回归方程y bx a =+中的系数()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-,当||[0.75,1]r ∈时,两个变量间高度相关.参考数据:()()71400i i i x xy y =--≈∑,()72198i i x x=-≈∑,()7211800i i y y=-≈∑.【答案】(1)答案见解析;(2)412y x =+;(3)80亿元. 【分析】(1)计算出0.950.75r ≈>即可得结果;(2)计算出系数b ,a ,即可得y 关于x 的线性回归方程; (3)将16x =代入线性回归方程即可.【详解】(1)()()()()71772211981800iii i i i i x x y y r x xy y===--=⨯-⋅-∑∑∑400200.950.7542021==≈>, 所以y 与x 两个变量高度相关,可以用线性回归模型拟合.(2)因为()()()7172140020049849iii ii x x y y b x x ==--===≈-∑∑, 所以27220046127497a y bx =-=-⨯≈, 故y 关于x 的线性回归方程为412y x =+. (3)当16x =时,4161276y =⨯+=亿元,故当16x =亿元时,公司的实际收益的预测值为76480+=亿元.21.第24届冬季奥林匹克运动会将于2022年2月在中国北京举行.为迎接此次冬奥会,北京市组织大学生开展冬奥会志愿者的培训活动,并在培训结束后统一进行了一次考核.为了了解本次培训活动的效果,从A 、B 两所大学随机各抽取10名学生的考核成绩,并作出如图所示的茎叶图.考核成绩 [60,85] [86,100] 考核等级 合格 优秀(1)计算A 、B 两所大学学生的考核成绩的平均值;(2)由茎叶图判断A 、B 两所大学学生考核成绩的稳定性;(不用计算)(3)将学生的考核成绩分为两个等级,如下表所示.现从样本考核等级为优秀的学生中任取2人,求2人来自同一所大学的概率.【答案】(1)80,80;(2)A 所大学学生的成绩比B 所大学学生的成绩稳定;(3)25.【分析】(1)直接利用平均数公式计算得解;(2)直接观察茎叶图判断A 、B 两所大学学生考核成绩的稳定性; (3)直接利用古典概型的概率公式求解. 【详解】(1)64757878797285869192800801010A x +++++++++===67627079788784859593800801010B x +++++++++===(2)由茎叶图可知,A 所大学学生的成绩比B 所大学学生的成绩稳定. (3)记事件M 为“从样本考核等级为优秀的学生中任取2人,2人来自同一所大学”.本中,A 校考核等级为优秀的学生共有3人,分别记为a ,b ,c ,B 校考核等级为优秀的学生共有3人,分别记为A ,B ,C ,从这6人中任取2人,所有的基本事件个数为ab ,ac ,aA ,aB ,aC ,bc ,bA ,bB ,bC ,cA ,cB ,cC ,AB ,AC ,BC 共15种,而事件M 包含的基本事件是ab ,ac ,bc ,AB ,AC ,BC 共6种, 因此()62155P M ==. 【点睛】方法点睛:求古典概型的概率的解题步骤:(1)求出总的基本事件的总数;(2)求出事件A 的基本事件的总数;(3)代入古典概型的概率公式求解.22.如图,圆22():21M x y -+=,点(1,)P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为A ,B .(1)若1t =,求PA ,PB 所在直线方程; (2)若两条切线P A ,PB 与y 轴分别交于S 、T 两点. ①求PST 面积的最小值.②在①的条件下,过点P 的直线1l 与圆22():21M x y -+=相交,且圆M 上恰有3个点到直线1l 的距离相等,求此时直线1l 的方程. 【答案】(1)1y =,3410x y +-= (2)2②351)y x =+【分析】(1)根据直线与圆相切时,圆心到直线的距离等于半径即可求解;(2) ①分别表示出S 、T 的坐标,从而表示ST 的长度,从而可讨论三角形面积的最值;②由于圆M 上恰有3个点到直线1l 的距离相等,所以圆心M ()2,0到直线1l 的距离等于圆M 半径的一半,即可求解.【详解】(1)由圆()22:21M x y -+=的方程可知:圆心()2,0M ,半径为1,过点(1,1)P -引圆M 的切线方程斜率显然存在可设为:()11y k x =++,所以圆心(2,0)M 到直线()11y k x =++的距离1d =,229611k k k ++=+,2860k k +=,∴0k =,或34k =-,由图可有0PA k =,所以直线PA 的方程为1y =;又34PB k =-,所以直线PB 的方程为3(1)14y x =-++,即3410x y +-=.(2)(2)①设切线方程为(1)y t k x -=+,即0kx y k t -++=,故圆心(2,0)M 到直线0kx y k t -++=的距离1d ==,即228610k kt t ++-=,设P A ,PB 的斜率分别为1k ,2k ,则1234t k k +=-,21218t k k -=,把0x =代入0kx y k t -++=,得y k t =+,1212|()||∣∴=+-+=-==ST k t k t k k∴当0=t 时,ST .又点P 到直线ST (y 轴)的距离为1,所以PST 面积的最小值112=, ②由①知(1,0)P -,直线斜率显然存在,所以设直线1l :(1)y k x =+, 要使圆M 上恰有3个点到直线1l 的距离相等,则需圆心M ()2,0到直线1l 的距离等于圆M 半径的一半,12=,解得k =1l 的方程为1)y x =+.。

河北省唐山市2022-2023学年高二上学期期末数学试题(答案版)

河北省唐山市2022-2023学年高二上学期期末数学试题(答案版)

唐山市2022~2023学年度高二年级第一学期学业水平调研考试数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线2330x y +-=的一个方向向量是()A.()2,3- B.()2,3 C.()3,2- D.()3,2【答案】C 【解析】【分析】当直线的斜率存在时,由直线的方向向量为(,)n x y = ,则yk x=代入计算即可.【详解】因为2330x y +-=,所以23k =-,设直线的方向向量为(,)n x y = ,则23yk x=-=,取3x =,则=2y -,所以直线的一个方向向量为(3,2)n =-.故选:C.2.在等差数列{}n a 中,11a =,923a =-,则5a =()A.-11B.-8C.19D.16【答案】A 【解析】【分析】代入等差数列通项公式求出公差,再代入公式即可求得.【详解】因为数列{}n a 为等差数列,11a =,923a =-,所以91823a a d =+=-,解得3d =-,则51411211a a d =+=-=-.故选:A3.已知向量()0,1,1a =- ,()1,2,b y = ,3a b ⋅=-,则a 与b 的夹角为()A.30︒ B.60︒C.120︒D.150︒【答案】D 【解析】【分析】根据题意,先得到b的坐标,然后根据空间向量数量积的坐标运算即可得到结果.【详解】根据题意可得,0231a b y y ⋅=-+=-⇒=-,即()1,2,1b =-则cos ,2a b a b a b⋅<>==-,且[],0,πa b <>∈r r ,所以a 与b的夹角为150︒故选:D4.在正方体1111ABCD A B C D -中,E 为11C D 的中点,则异面直线1B C 与DE 所成角的余弦值为()A.5B.105-C.4D.4-【答案】A 【解析】【分析】设出正方体的棱长,建立空间直角坐标系,得到各点坐标,表达出1B C 和DE,即可得出异面直线1B C 与DE 所成角的余弦值.【详解】由题意在正方体1111ABCD A B C D -中,E 为11C D 的中点,设正方体的棱长为2a ,建立空间直角坐标系如下图所示,则()10,0,0A ,()12,0,0B a ,()2,2,2C a a a ,()12,2,0C a a ,()0,2,2D a a ,(),2,0E a a ∴()10,2,2B C a a = ,(),0,2DE a a =-,设异面直线1B C 与DE 所成角为θ,1110cos 5B C D B EC DEθ==⋅ ,∴异面直线1B C 与DE 所成角的余弦值为105,故选:A.5.F 为抛物线C :24x y =的焦点,点A 在C 上,点()0,5B ,若AF BF =,则ABF △的面积为()A. B. C.4D.8【答案】B 【解析】【分析】求出焦点F 的坐标,根据两点间距离公式求得BF ,即AF 的长度,根据抛物线定义可求得A 点坐标,进而可求出面积.【详解】解:因为抛物线C :24x y =,所以()0,1F ,准线为:1y =-因为()0,5B ,所以4BF AF ==,设()11,A x y ,根据抛物线定义可知:114y +=,解得13y =,所以()A ±,所以111422ABF S BF x =⋅⋅=⨯⨯= .故选:B6.设直线210x y --=与x 轴的交点为椭圆()222210x y a b a b+=>>的右焦点2F ,过左焦点1F 且垂直x 轴的直线与椭圆交于M ,132F M =,则椭圆的离心率为()A.33B.22C.12D.32【答案】C 【解析】【分析】根据题意可得()21,0F 以及2132b F M a =±=,再结合椭圆,,a bc 的关系,列出方程即可得到结果.【详解】根据题意可得,直线210x y --=与x 轴的交点为()1,0,即()21,0F ,所以1c =,且过左焦点1F 且垂直x 轴的直线与椭圆交于M ,将x c =-代入椭圆方程可得,2by a=±,即2132b F M a =±=,所以232b a =所以2222132c ba abc =⎧⎪⎪=⎨⎪=+⎪⎩,解得21a b c =⎧⎪=⎨⎪=⎩12c e a ==故选:C7.已知圆O :2216x y +=和点(P ,若过点P 的5条弦的长度构成一个递增的等比数列,则该数列公比的取值范围是()A.(B.(]1,2C.( D.(]0,2【答案】A 【解析】【详解】圆半径4r =,OP r ==,则点P 在圆内,则过点P 的弦长[]2,8d Î=,(乱码,查看原文亦是乱码)故所求公比的取值范围是(乱码,查看原文亦是乱码)1,纟çúçú棼,即(.故选:A8.已知数列{}n a 满足11a =,()121n n n a a a ++=,令1n n n b a a +=,则数列{}n b 的前2022项和2022S =()A.40444045B.20224045C.40434045D.20244045【答案】B 【解析】【分析】化简()121n n n a a a ++=,得1112n na a +-=,可得1n a ⎧⎫⎨⎬⎩⎭是等差数列,求出通项公式,再用裂项相消的方法求数列{}n b 的前2022项和即可.【详解】因为数列{}n a 满足()121n n n a a a ++=,即112n n n n a a a a ++⋅+=,即1112n na a +-=,111a =,所以数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,2为公差的等差数列,所以121n n a =-,则121n a n =-,因为1n n n b a a +=,则()()1111(212122121n b n n n n ==-+-+-,数列{}n b 的前2022项和2022111111112022(1(1233522022122022122202214045S =-+-++-=-=⨯-⨯+⨯+ .故选:B【点睛】易错点睛:裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知直线l :y x =+,圆O :222(0)x y r r +=>,且圆O 上至少有三个点到直线l 的距离都等于1,则r 的值可以是()A.1 B.2C.3D.4【答案】CD 【解析】【分析】根据圆的对称性,结合圆心到直线距离列式求解即可.【详解】圆O 到直线的距离2d ==,由圆O 上至少有三个点到直线l 的距离都等于1得13r d r -侈.故选:CD.10.将数列{}n 中的各项依次按第一个括号1个数,第二个括号2个数,第三个括号3个数,第四个括号4个数,…,进行排列:()1,()2,3,()4,5,6,()7,8,9,10,…,则()A.第8个括号内的第一个数是29B.前9个括号内共有45个数C.第10个括号内的数的和比第8个括号内的数的和大136D.2022在第64个括号内【答案】ABD 【解析】【分析】第n 个括号有n 个数,则括号里数的数量满足等差数列,且括号里的数同为等差数列,根据等差数列的通项公式及求和公式逐个判断即可.【详解】对A ,第n 个括号有n 个数,则前7个括号内共有()177282+´=个数,故第8个括号内的第一个数是29,A 对;对B ,前9个括号内共有()199452+⨯=个数,B 对;对C ,由AB 得,第10个括号内的数的和为()4655105052+´=,第8个括号内的数的和为()293682602+´=,故第10个括号内的数的和比第8个括号内的数的和大505260245-=,C 错;对D ,设2022在第()*k k ∈N 个括号内,则有()()()1111202222k k k k +--+<£,解得64k =,D 对.故选:ABD.11.已知双曲线C :2213y x -=的左,右焦点分别为1F ,2F ,P 是C 的右支上一点,则()A.若120PF PF ⋅≤ ,则P 到x 轴的最大距离为32B.存在点P ,满足124PF PF =C.P 到双曲线的两条渐近线的距离之积为34D.12PF F △内切圆半径r 的取值范围是0r <<【答案】ACD 【解析】【分析】利用数量积坐标运算表示120PF PF ⋅≤,解不等式求点P 的纵坐标范围,判断A ,结合双曲线定义判断B ,利用点到直线的距离公式求P 到双曲线的两条渐近线的距离之积判断C ,根据直线与双曲线的位置关系确定12PF F ∠的范围,结合内切圆的性质判断D.【详解】设双曲线的实半轴为a ,虚半轴为b ,半焦距为c ,则双曲线2213y x -=的焦点1F 的坐标为()2,0-,2F 的坐标为()2,0,1,2a b c ===,渐近线方程为y =,设点P 的坐标为(),m n ,则m 1≥,2213n m -=,对于A ,因为()()122,,2,PF m n PF m n =---=--,所以()()222122240PF PF m m n m n ⋅=---+=+≤- 所以221403n n ++-≤,所以3322n -≤≤,所以P 到x 轴的最大距离为32,A 正确;对于B ,由已知124PF PF =,122PF PF -=,所以223PF =,又21PF c a ≥-=,矛盾,B 错误,对于C ,点P223344m n -==,C 正确;对于D ,因为12,,P F F 三点不共线,所以直线1PF 的斜率不为0,可设直线1PF 的方程为()2y k x =+,0k ≠,联立()22132y x y k x ⎧-=⎪⎨⎪=+⎩,消y ,得()222234430k x k x k ----=,方程()222234430kxk x k ----=的判别式()()422216434336360k k k k ∆=----=+>,由已知224303k k--<-,所以23k <,又0k ≠,故0k <<或0k <<,设12PF F △的内切圆的圆心为E ,12PF F △的内切圆与x 轴相切于点M ,因为122PF PF -=,所以122MF MF -=,又124MF MF +=,所以13MF =,设122PF F θ∠=,则π023θ<<,又12PF F △内切圆半径1tan 3tan r MF θθ==,所以0r <<D 正确.故选:ACD.【点睛】本题为双曲线的综合性问题,考查双曲线的定义,直线与双曲线的位置关系,双曲线的性质,难度较大.12.已知正方体1111ABCD A B C D -的棱长为2,点P 在正方形ABCD 内运动(含边界),则()A.存在点P ,使得11D P BC ⊥B.若15D P =BP 的最小值为221C.若11D P B D ⊥,则P 2D.若1A P BD ⊥,直线1A P 与直线1BD 所成角的余弦值的最大值为33【答案】BD 【解析】【分析】A 选项,建立适当空间直角坐标系,利用向量垂直的坐标运算判定即可;B 选项,找出动点P 在正方体底面ABCD 内的运动轨迹,利用点到圆上点的最值求解即可;C 选项,根据立体几何中线面垂直推出线线垂直,可找出动点P 在正方体底面ABCD 内的运动轨迹是线段AC ,即可求解;D 选项:建立适当空间直角坐标系,利用1A P BD ⊥可得出点(),2,0P x x -,再利用空间向量的坐标表示求解即可.【详解】对于A 选项:如图1,以D 为坐标原点建立空间直角坐标系,则()2,2,0B ,()10,2,2C ,()10,0,2D ,设(),,0P x y ,[],0,2x y ∈,则()1,,2D P x y =- ,()12,0,2BC =-,若11D P BC ⊥,则11240D P BC x ×=--=,解得2x =-,不合题意,错误;对于B 选项:如图2,若15D P =DP ,则点P 在以D 为圆心,DP 为半径的圆上,此时点P 的轨迹为 FPE ,又15D P =,12DD =,2211541DP D P DD \=-=-,min 221BP BD DP \=-=,故正确;对于C 选项:如图3,连接1AD ,AC ,BD ,1CD ,11B D ,ABCD 为正方形,则AC BD ⊥,又1DD ⊥Q 平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,1BD DD D = ,1,BD DD ⊂平面11BDD B ,AC ∴⊥平面11BDD B ,1B D ⊂平面11BDD B ,1AC B D ∴⊥,同理可证:11AD B D ⊥,又1AC AD A =I ,1,AC AD ⊂平面1ACD ,1B D ∴⊥平面1ACD ,平面1ACD ⋂平面ABCD AC =,故点P 在正方体底面ABCD 内的运动轨迹是线段AC ,又正方体1111ABCD A B C D -的棱长为2,AC ∴=,故错误;对于D 选项:如图4,以D 为坐标原点建立空间直角坐标系,连接AC ,BD ,1BD ,1A P ,则()2,2,0B ,()12,0,2A ,()10,0,2D ,()0,0,0D ,设(),,0P x y ,[],0,2x y ∈,则()1-2,,2A P x y =- ,()2,2,0BD =--,当1A P BD ⊥,有()122202240A P BD x y x y ×=---+=--+=,则2y x =-,此时(),2,0P x x -,又()12,2,2A P x x =--- ,()12,2,2BD =--,111111cos ,A P BD A P BD A P BD ×\<>==×当2x =时,11cos,A P BD <> 有最大值,此时11cos ,A P BD <>=.故答案选:BD.【点睛】关键点点睛:立体几何中线面垂直的判定定理,动点在立体几何中的轨迹问题,以及利用空间向量法解决立体几何的问题,属于难题.三、填空题:本题共4小题,每小题5分,共20分.13.已知正项等比数列{}n a ,若1234a a +=,343a a +=,则4a =______.【答案】2【解析】【分析】由等比数列基本量列方程求得基本量,即可得结果.【详解】由题意,设等比数列的公比()0q q >,则()121314a a a q +=+=,()234113a a a q q +=+=,两式相除得,242q q =⇒=,∴31411,24a a a q ===.故答案为:2.14.正四面体ABCD 中,若M 是棱CD 的中点,AP AM λ= ,1166AB BP AC AD +=+,则λ=______.【答案】13【解析】【分析】根据空间向量线性运算得到1166AC AM AD λλ+= ,证明出共线定理的推论,由,,M C D 三点共线,得到11166λλ+=,求出13λ=.【详解】因为AB BP AP +=,所以1166AP AC AD =+ ,即1166AC A AM D λ+= ,1166AC AM AD λλ+=,下面证明:已知OB xOA yOC =+,若,,A B C 三点共线,则1x y +=,因为,,A B C 三点共线,所以存在非零实数t ,使得AB t AC =,即()OB OA t OC OA -=- ,整理得()1OB tOC t OA =+- ,故1x t =-,y t =,所以1x y +=,因为,,M C D 三点共线,故11166λλ+=,解得:13λ=.故答案为:1315.已知圆1O :221x y +=,圆2O :22(3)(4)100x y -+-=,过圆2O 上的任意一点P 作圆1O 的两条切线,切点为A ,B ,则四边形1PAO B 面积的最大值为______.【答案】【解析】【分析】根据题意分析可得四边形1PAO B面积112△PAO B PAO S S ==,结合圆的性质求1PO 的最大值即可.【详解】圆1O :221x y +=的圆心()10,0O ,半径11r =,圆2O :22(3)(4)100x y -+-=的圆心()23,4O ,半径210r =,四边形1PAO B面积1111222△PAO B PAO S S PA AO PA ==⨯⨯⨯===,∵11221015PO O O r ≤+=+=,∴四边形1PAO B=.故答案为:.16.设双曲线C :()222210,0x y a b a b-=>>的右焦点为F ,点()0,P b ,直线20x y m ++=与C 交于M ,N 两点.若0FM FN FP ++=,则C 的离心率为______.【答案】233【解析】【分析】设()()1122,,,M x y N x y ,(),0F c ,根据0FM FN FP ++=,得到F 为MNP △的重心,利用重心的坐标式得到12123x x cy y b+=⎧⎨+=-⎩,再利用点差法和222c a b =+得到,,a b c 关系求解即可.【详解】设()()1122,,,M x y N x y ,(),0F c ,因为0FM FN FP ++=,所以F 为MNP △的重心,则1212303x x c y y b +⎧=⎪⎪⎨++⎪=⎪⎩,即12123x x c y y b +=⎧⎨+=-⎩,①因为()()1122,,,M x y N x y 在双曲线C :()222210,0x ya b a b-=>>上,所以22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得:22221212220x x y y a b ---=,化简得:()()()()12121212220x x x x y y y y a b +-+--=,即()()()()12121222120x x y y y y a b x x ++⋅--=⋅-,②将①代入②得:()()22320b c a b--⋅-=,即()222322bc a c b ==-,解得:2c b =,所以a ==,则233c e a ==,即C 的离心率为233.故答案为:3.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知圆心为()3,3C 的圆经过点()1,5A .(1)求圆C 的方程;(2)过点()1,5B -作直线l 与圆C 交于E ,F 两点.若4EF =,求直线l 的方程.【答案】(1)22(3)(3)8x y -+-=(2)1x =或158550x y --=.【解析】【分析】(1)直接将点A 的坐标代入圆的方程,即可得到结果;(2)根据截得的弦长,分l 的斜率不存在与l 的斜率存在分别讨论,结合点到直线的距离公式,列出方程,即可得到结果.【小问1详解】设所求圆C 的方程为222(3)(3)x y r -+-=,因为点()1,5A 在圆C 上,则222(13)(53)r -+-=,解得28r =,所以圆C 的方程为22(3)(3)8x y -+-=.【小问2详解】因为直线l 被圆C 截得的弦长为4,所以圆心到直线l的距离2d ==.当l 的斜率不存在时,直线l 方程为1x =,符合题意.当l 的斜率存在时,设直线l 方程为()51y k x +=-,即50kx y k ---=.则2d =,解得158k =.此时直线l 方程为155(1)8y x +=-,即158550x y --=.综上所述,直线l 的方程为1x =或158550x y --=.18.如图,在直三棱柱111ABC A B C -中,M ,N 分别为AC ,1BB 的中点.(1)证明://MN 平面11A B C ;(2)若CB ⊥平面11ABB A ,2AB BC ==,14BB =,求点A 到平面11A B C 的距离.【答案】(1)证明见解析(2)5【解析】【分析】(1)要证明//MN 平面11A B C ,通过证明平面MHN ∥平面11A B C 即可证得;(2)根据已知条件可以以B 为原点建立空间直角坐标系,求出平面11A B C 的法向量,以及一个方向向量,代入公式计算即可.【小问1详解】证明:取1AA 的中点H ,连接MH ,HN .因为M 为AC 的中点,所以1MH A C ∥.因为MH ⊄平面11A B C ,1AC ⊂平面11A B C ,所以MH ∥平面11A B C .因为H ,N 分别为1AA ,1BB 的中点,所以11HN A B ∥,因为HN ⊄平面11A B C ,11A B ⊂平面11A B C ,所以HN ∥平面11A B C .因为,,MH HN H MH HN ⋂=⊂面MHN ,所以平面MHN ∥平面11A B C .因为MN ⊂平面MHN ,所以//MN 平面11A B C .【小问2详解】因为CB ⊥平面11ABB A ,AB ⊂平面11ABB A ,所以CB AB ⊥.因为三棱柱111ABC A B C -是直三棱柱,所以1BB BC ⊥,1BB AB ⊥.以BA ,1BB ,BC 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系B xyz -,则()0,0,0B ,()2,0,0A ,()10,4,0B ,()12,4,0A ,()0,0,2C ,()10,4,0AA = ,()10,4,2CB =- ,()112,0,0B A =.设平面11A B C 的法向量为(),,n x y z =.由11100CB n B A n ⎧⋅=⎪⎨⋅=⎪⎩,得42020y z x -=⎧⎨=⎩,取()0,1,2n = .所以点A 到平面11A B C 的距离1455AA n d n⋅==.19.已知抛物线C :24y x =的焦点为F ,O 为坐标原点,A ,B 为C 上异于O 的两点,OA OB ⊥.(1)证明:直线AB 过定点;(2)求4AF BF +的最小值.【答案】(1)证明见解析(2)21【解析】【分析】(1)设()11,A x y ,()22,B x y ,直线AB 的方程为x m ty -=,联立抛物线方程,由垂直斜率关系及韦达定理可求得参数m ,进而确定定点;(2)由抛物线定义结合基本不等式求最值.【小问1详解】设()11,A x y ,()22,B x y ,直线AB 的方程为x m ty -=,将直线AB 的方程代入24y x =,得2440y ty m --=.由OA OB ⊥,得121212441y y x x y y ⋅=-=⋅,即1216y y =-,所以416m -=-,4m =,故直线AB :4x ty -=,恒过定点()4,0.【小问2详解】抛物线准线为=1x -,由抛物线的定义,()()121144x x AF BF =++++221254y y =++12521y y ≥+=,当且仅当221248y y ==时等号成立,所以4AF BF +的最小值为21.20.已知数列{}n a 满足11a =,11,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数.(1)记2n n b a =,写出1b ,2b ,3b ,4b ,并猜想数列{}n b 的通项公式;(2)证明(1)中你的猜想;(3)若数列{}n a 的前n 项和为n S ,求2n S .【答案】(1)12b =,25b =,311b =,423b =,猜想1321n n b -=⨯-(2)证明见解析(3)123236n n S n +=⨯--【解析】【分析】(1)根据{}n a 的递推关系式及首项,写出2348,,,,a a a a L ,进而求得1b ,2b ,3b ,4b ,根据推导过程及各项即可猜想其通项公式;(2)因为2n n b a =,所以找到22n a +和2n a 的关系,即1n b +与n b 的关系,对式子进行配凑,可发现{}1n b +是以3为首项,2为公比的等比数列,即可得{}n b 的通项公式;(3)根据2122n n a a +=,可得2112n n a b --=,将2n S 写为()()1321242n n a a a a a a -+++++++ ,再将2112n n a b --=,2n n a b =代入,可得()211123n n n S b b a b b -=+++++ ,将1321n n b -=⨯-代入,再利用等比数列的求和公式即可得2n S .【小问1详解】由题知11,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数,因为11a =,所以12112b a a ==+=,3224a a ==,24315b a a ==+=,54210a a ==,536111b a a +===,76222a a ==,748123b a a +===,综上:12b =,25b =,311b =,423b =,猜想1321n n b -=⨯-.【小问2详解】由题意,知2122n n a a +=,22211n n a a ++=+,代入得22221n n a a +=+,于是222122n n a a ++=+,即()1121n n b b ++=+,因为113b +=,所以{}1n b +是以3为首项,2为公比的等比数列,故1321n n b -=⨯-.【小问3详解】因为()()2112112122n n n n a a a b ---+-===,()()21321242n n n S a a a a a a -=+++++++()()112112222n n a b b b b b b -=++++++++ ()11213n n b b b b a -=+++++ ()()1012332323232111n n n --=⨯+⨯++⨯+⨯---+ ()()1012332323232111n n n --=⨯+⨯++⨯+⨯---+ ()()11311122332n n n --⎛⎫ ⎪=+⨯ ⎪⎝⎭----13236n n +=⨯--.21.在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ABC ∠=︒,PB PD =,PA AC ⊥.(1)证明:PA ⊥平面ABCD ;(2)若PA =PC 上是否存在点M ,使直线AM 与平面PBC 所成角的正弦值为154?若存在,求出点M 的位置;若不存在,请说明理由.【答案】(1)证明见解析(2)不存在,理由见解析【解析】【分析】(1)由线线垂直证BD ⊥平面PAO ,再依次证PA BD ⊥、PA ⊥平面ABCD ;(2)以A 为坐标原点,分别以AH ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立如图的空间直角坐标系A xyz -,设()01PM PC λλ=≤≤,由向量法建立线面角正弦值的方程,从解的情况即可判断.【小问1详解】证明:连接BD 交AC 于O ,连接PO .因为底面ABCD 是边长为2的菱形,所以BD AO ⊥,因为O 是BD 中点,PB PD =,所以BD PO ⊥.因为AO PO O = ,AO PO ⊂、平面PAO ,所以BD ⊥平面PAO ,因为PA ⊂平面PAO ,所以PA BD ⊥.因为PA AC ⊥,BD AC O ⋂=,BD AC ⊂、平面ABCD ,所以PA ⊥平面ABCD .【小问2详解】如图,取线段BC 的中点H ,连接AH ,易知AH AD ⊥.以A 为坐标原点,分别以AH ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立如图的空间直角坐标系A xyz -,则()0,0,0A,)1,0B-,)C,(P .()0,2,0BC =uu u r,PC = .设()01PM PC λλ=≤≤,则有(),,,,M M Mx y z λ=,解得),Mλ-,进而),AM λ=.设平面PBC 的法向量为(),,m x y z =.由00m BC m PC ⎧⋅=⎪⎨⋅=⎪⎩,得200y y =⎧⎪+=,取()1,0,1m = .设直线AM 与平面PBC 所成的角为θ,则154sin cos ,m AM AM m m AMθ==⋅===⋅,化简得,2353070λλ-+=,此方程无解,所以满足条件的点P 不存在.22.已知点()4,0A ,()10B ,,动点P 满足6AB AP PB ⋅=.(1)求动点P 的轨迹C 的方程;(2)设点10,2E ⎛⎫ ⎪⎝⎭,斜率为k 的直线l 与曲线C 交于M ,N 两点.若EM EN =,求k 的取值范围.【答案】(1)22143x y +=(2)1122k -<<【解析】【分析】(1)设动点(),P x y ,分别表示出,,AB AP PB,然后代入计算,化简即可得到结果;(2)根据题意,分0k =与0k ≠两种情况讨论,当0k ≠时,设直线l :y kx m =+,联立直线与椭圆方程,结合韦达定理表示出MN 的中点Q 的坐标,再由条件列出方程,即可得到结果.【小问1详解】设动点(),P x y ,则()3,0AB =- ,()4,AP x y =-,()1,PB x y =--,由已知,得3(4)x --=,化简,得223412x y +=,故动点P 的轨迹C 的方程是22143x y +=.【小问2详解】当0k ≠时,设直线l :y kx m =+,将y kx m =+代入22143x y+=,整理,得()2223484120kxkmx m +++-=,设()11,M x y ,()22,N x y ,()()2222644412340k m m k∆=-⨯-⨯+>,整理,得22430k m +->,①设MN 的中点为Q ,1224234x x km k +=-+,()12122232234k x x m y y mk +++==+,所以2243,3434km m Q k k ⎛⎫-⎪++⎝⎭,由EM EN =,得EQ MN ⊥,即直线EQ 的斜率为1k-,所以22131234434m k km k k-+=-+,化简,得()21432m k =-+,②将②代入①式,解得1122k -<<且0k ≠.当0k =时,显然存在直线l ,满足题设.综上,可知k 的取值范围是1122k -<<.。

2022-2023学年贵州省贵阳市普通中学高二上学期期末监测考试数学试题(解析版)

2022-2023学年贵州省贵阳市普通中学高二上学期期末监测考试数学试题(解析版)

2022-2023学年贵州省贵阳市普通中学高二上学期期末监测考试数学试题一、单选题1.已知两个空间向量(),4,2a m =-,()1,2,1b =-,且a b ,则实数m 的值为( )A .2B .12C .12-D .2-【答案】D【分析】根据空间向量平行的坐标运算得出答案. 【详解】a b ∥,(),4,2a m =-,()1,2,1b =-, 42121m -∴==-,解得2m =-, 故选:D.2.在等比数列{}n a 中,24a =,42a =,则6a =( )A .1-B .1C .1或1-D 【答案】B【分析】根据等比数列基本量的计算即可求解.【详解】设公比为,q 则由24a =,42a =得222421422a a q q q ===⇒=,故226421a a q q ===, 故选:B3.已知直线l :0Ax By C ++=,如果0AC <,0BC <,那么直线l 不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C【分析】根据题意,求出直线在坐标轴上的截距,即可求解. 【详解】当0x =时,Cy B =-,由0BC <得0C B->, 即点(0,)CB -在y 轴的正半轴;当0y =时,Cx A =-,由0AC <得0C A->, 即点(,0)CA-在x 轴的正半轴, 又直线l 过点(0,)C B -和点(,0)CA -,所以直线l 不经过第三象限.4.以下四个命题,正确的是( )A .若直线l 的斜率为1,则其倾斜角为45°或135°B .经过()()101,3A B -,,两点的直线的倾斜角为锐角 C .若直线的倾斜角存在,则必有斜率与之对应 D .若直线的斜率存在,则必有倾斜角与之对应 【答案】D【分析】根据直线的倾斜角和斜率的概念依次判断选项即可. 【详解】A :直线的斜率为1,则直线的倾斜角为45︒,故A 错误; B :过点A 、B 的直线的斜率为3030112k -==-<--, 即3tan 02α=-<(α为直线的倾斜角),则α为钝角,故B 错误;C :当直线的倾斜角为90︒时,该直线的斜率不存在,故C 错误;D :若直线的斜率存在,则必存在对应的倾斜角,故D 正确. 故选:D.5.如图,在三棱柱111ABC A B C 中,M ,N 分别是1BB 和11A C 的中点,且1MN xAB y AC z AA =++,则实数x ,y ,z 的值分别为( )A .111,,22-B .111,,22--C .111,,22---D .111,,22-【答案】A【分析】根据题意用空间基底向量表示向量,结合空间向量的线性运算求解. 【详解】由题意可得:()11111111112222MN MB B C C N AA AC AB AC AB AC AA =++=+--=-++, 故111,,22x y z =-==.故选:A.6.等差数列{}n a 的前n 项和记为n S ,且510S =,1050S =,则15S =( ) A .70B .90C .100D .120【分析】根据等差数列前n 项和的性质可得51051510,,S S S S S --成等差数列,即可求得15S 的值. 【详解】在等差数列{}n a 中,51051510,,S S S S S --成等差数列,所以()051051512S S S S S -=-+,则()152********S ⨯-=+-,即15120S =. 故选:D.7.设1F ,2F 分别是双曲线C :2212y x -=的左、右焦点,P 为C 上一点且在第一象限若122PF PF =,则点P 的纵坐标为( ) A .1 B .3C .2D .23【答案】C【分析】根据双曲线的定义可得124,2PF PF ==,进而根据长度关系判断212PF F F ⊥,代入3x =即可求解.【详解】根据题意可知:1,2,3a b c === ,由122PF PF =以及1222PF PF a -==可得124,2PF PF ==,又12223F F c ==,由于2221212PF PF F F =+,故212PF F F ⊥,即三角形12PF F 为直角三角形,将3x =代入2212y x -=得2y =,由于P 为C 在第一象限,故点P 的纵坐标为2, 故选:C8.已知直线l :210x y --=是圆C :22610()x y x ay a +-++=∈R 的对称轴,过点()4,P a -作圆的一条切线,切点为A ,则PA =( ) A .10 B .7 C .3D .2【答案】B【分析】根据题意分析可得直线l 过圆心C ,可求得2a =-,再根据圆的切线长公式运算求解. 【详解】由题意可知:直线l :210x y --=过圆心3,2a C ⎛⎫- ⎪⎝⎭,则32102a ⎛⎫-⨯--= ⎪⎝⎭,解得2a =-,故圆C :226210x y x y +--+=的圆心为()3,1C ,半径3r =,且点()4,2P --, ∵()()22432158PC =--+--=,∴227PA PC r =-=.故选:B.二、多选题9.斐波那刻螺旋线被骨为自然界最完美的“黄金螺旋”,自然界存在很多斐波那契螺旋线的图案,例如向日葵,鹦鹉螺等.如图,小正方形的边长分别为斐波那契数1,1,2,3,5,8....,从内到外依次连接通过小正方形的14圆弧,就得到了一条被称为“斐波那契螺旋”的弧线,现将每一段“斐波那契螺旋”弧线所在的正方形边长设为(N )n a n *∈,数列{}n a 满足11a =,21a =,21(N )n n n a a a n *++=+∈,每一段“斐波那契螺旋”弧线与其所在的正方形围成的扇形面积设为(N )n b n *∈,则下列说法正确的有( )A .13578a a a a α+++=B .62984a a a a a +++=C .()54364πb b a a -=D .()67544b b b +=【答案】AC【分析】由题意可得{}n a 的前9项分别为1,1,2,3,5,8,13,21,34,根据运算即可判断AB,根据2π4n n b a =,利用平方差公式以及12n n n a a a --=+即可判断选项C,代入计算即可判断D.【详解】根据11a =,21a =,21(N )n n n a a a n *++=+∈得数列的前9项分别为1,1,2,3,5,8,13,21,34,所以135781251321a a a a α=+++=+++=,629841382133a a a a a =+++=+++≠,故A 正确,B 错误,由题意可得2π4n n b a =,即24πn n b a =,所以2254545454364()π()π()()πb b a a a a a a a a -=-=-+=,故C 正确, ()222256564()π()π5889πb b a a =+=+=+,22774ππ13169πb a ==⨯=,所以()67544b b b +≠,故D 错误, 故选:AC.10.如图,在正方线ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,K ,L 分别是AB ,BB 1,B 1C 1,C 1D 1,D 1D 1,DA 各棱的中点,则下列选项正确的有( )A .向量EA ,EK ,EF 共面B .A 1C ⊥平面EFGHKL C .BC 与平面EFGHKL 3D .∠KEF =90°【答案】BCD【分析】建系,利用空间向量判断向量共面和线、面关系以及求线面夹角. 【详解】如图,以D 为坐标原点建立空间直角坐标系,设2AD =, 则()()()()()()()()12,0,0,2,2,0,0,2,0,2,0,2,2,1,0,2,2,1,0,0,1,0,2,1A B C A E F K H ,可得()()()()()()10,1,0,2,1,1,0,1,1,2,2,2,2,0,0,0,1,1EA EK EF A C BC KH =-=--==--=-=, 对A :若向量EA ,EK ,EF 共面,则存在实数,λμ,使得EA EK EF λμ=+成立,∵()()0,1,0,2,,EA EK EF λμλλμλμ=-+=+-+,可得2010λλμλμ=⎧⎪+=-⎨⎪-+=⎩,无解,∴不存在实数,λμ,使得EA EK EF λμ=+成立, 故向量EA ,EK ,EF 不共面,A 错误; 对B :由题意可得:EF KH =,则EF KH ,同理可得:ELGH ,KL GF ,故,,,,,E F G H K L 六点共面,∵()()()1122212102021210AC EK ACEF ⎧⋅=-⨯+⨯+-⨯-=⎪⎨⋅=-⨯+⨯+-⨯=⎪⎩,则11,A C EK A C EF ⊥⊥, EKEF E =,,EK EF ⊂平面EFGHKL ,∴1A C ⊥平面EFGHKL ,B 正确;对C :由B 可得()12,2,2AC =--是平面EFGHKL 的法向量, ∵11143cos ,3223BC A C BC A C BC A C⋅===⨯,∴BC 与平面EFGHKL 所成角的正弦值为33,C 正确; 对D :∵()2011110EK EF ⋅=⨯+⨯+-⨯=,则EK EF ⊥, ∴90KEF ∠=︒,D 正确. 故选:BCD.【点睛】方法点睛:利用空间向量处理立体几何问题的一般步骤:(1)建立恰当的空间直角坐标系;(2)求出相关点的坐标,写出相关向量的坐标; (3)结合公式进行论证、计算; (4)转化为几何结论.三、填空题11.直线l 1:10x y +-=与直线l 2:30x y ++=间的距离是___________. 【答案】2【分析】根据两平行线间距离公式运算求解.【详解】由题意可得:直线l 1:10x y +-=与直线l 2:30x y ++=间的距离22132211d --=+.故答案为:22.12.已知空间向量(1,2,2)a =-,()1,0,1b =,则2a ab -⋅=___________. 【答案】6【分析】利用空间向量数量积运算法则计算即可.【详解】()()()21441,2,21,0,19126a a b -⋅=++--⋅=-+=. 故答案为:613.已知a ,b ,c 成等比数列,则二次函数22y ax bx c =++的图像与x 轴的交点个数是___________. 【答案】1【分析】根据题意有2b ac =,再借助二次函数的判别式判断交点个数 【详解】a ,b ,c 成等比数列,则2b ac =, ()224440b ac ac ac ∆=-=-=,则二次函数的图像与x 轴有1个交点, 故答案为:1.14.已知抛物线2:4C y x =的准线是直线l ,M 为C 上一点,MN l ⊥,垂足为N ,点P 的坐标是()0,2,则PM MN +的最小值为___________. 【答案】5【分析】由抛物线的定义可得出MN MF =,当M 为线段PF 与抛物线C 的交点时,PM MN +取最小值可得结果.【详解】抛物线C 的焦点为()1,0F ,准线为:1l x =-,如图所示:由抛物线的定义可得MN MF =,所以,()()2201205PM MN PM MF PF +=+≥=-+-= 当且仅当M 为线段PF 与抛物线C 的交点时,等号成立,因此,PM MN +的最小值为5. 故答案为:5.15.若直线y x b =+与曲线214x y y =+-有公共点,则b 的取值范围是___________.【答案】122,3⎡⎤-⎣⎦【分析】由题意可得:该曲线为以()1,2为圆心,半径2r =的右半圆,根据图象结合直线与圆的位置关系运算求解.【详解】∵2141x y y =+-≥,整理得()()()221241x y x -+-=≥, ∴该曲线为以()1,2为圆心,半径2r =的右半圆, 直线y x b =+的斜率1k =,如图所示: 当直线0x y b -+=与圆相切时,则()2212211b -+=+-,解得122b =-或122b =+(舍去);当直线y x b =+过点()1,4A 时,则41b =+,解得3b =; 综上所述:b 的取值范围是122,3⎡⎤-⎣⎦. 故答案为:122,3⎡⎤-⎣⎦.【点睛】方法点睛:直线与圆位置关系问题的求解思路:研究直线与圆的位置关系主要通过圆心到直线的距离和半径的比较实现,结合图象分析相应的性质与关系,列式求解.四、解答题16.如图,四棱柱1111ABCD A B C D -的底面是菱形,1AA ⊥底面ABCD ,AB =BD =2,13AA =,E ,F 分别是棱BB 1,DD 1上的动点(不含端点),且1BE D F =.(1)求四棱锥A BEFD -的体积;(2)当BE =1时,求平面AEF 与平面11BB D D 夹角的余弦值. 【答案】(1)3 (2)64【分析】(1)作出辅助线,得到AO 是四棱锥A BEFD -的高,求出各边的长,利用锥体体积公式求出答案;(2)建立空间直角坐标系,利用空间向量求解两平面的夹角的余弦值.【详解】(1)如图,连接AC 交BD 于点O ,因为底面ABCD 是菱形,所以AO BD ⊥,因为点E ,F 分别在1BB ,1DD 上, 所以1AA //BE //DF , 又1AA ⊥底面ABCD ,AO ⊂底面ABCD ,BD ⊂底面ABCD ,所以BE ⊥BD ,BE ⊥AO ,所以四边形BEFD 是直角梯形, 且因为13AA =,1BE D F =,所以3BE DF +=, 又因为BD BE B ⋂=,,BD BE ⊂平面BEFD ,所以AO ⊥平面BEFD ,即AO 是四棱锥A BEFD -的高, 因为AB =BD =2,底面ABCD 是菱形,所以ABD △是等边三角形,故1OB =,33AO OB ==, 所以()1332A BEFD BE DF BDV AO -+⋅=⋅=,所以四棱锥A BEFD -的体积为3(2)以O 为原点,分别以OA ,OB 所在直线为x 轴,y 轴,建立如图所示的空间直角坐标系, 则()3,0,0A,()0,1,1E ,()0,1,2F -,所以()3,1,1AE =-,()3,1,2AF =--. 设(),,n x y z =是平面AEF 的法向量,则()()()(),,3,1,130,,3,1,2320n AE x y z x y z n AF x y z x y z ⎧⋅=⋅=++=⎪⎨⋅=⋅--=--+=⎪⎩, 取1y =,则3x =2z =. 所以,()3,1,2n =是平面AEF 的一个法向量,由(1)可知,OA ⊥平面BEFD ,即OA ⊥平面11BB D D , 所以()3,0,0OA =是平面11BB D D 的一个法向量,而(3,1,23,0,06cos ,3143n OA n OA n OA⋅⋅<>===++⨯ 所以平面AEF 与平面11BB D D 617.设直线()2R x my m =+∈与抛物线22(0)y px p =>相交于,A B 两点,且OA OB ⊥. (1)求抛物线方程;(2)求AOB 面积的最小值. 【答案】(1)22y x = (2)4【分析】(1)联立直线与抛物线方程,消元得出韦达定理,将OA OB ⊥表示为坐标形式,列方程化简计算,可得抛物线方程;(2)利用三角形的面积公式,结合韦达定理,根据m 的取值,得出面积的最小值. 【详解】(1)设直线与抛物线交于点()()1122,,,A x y B x y ,联立222(0)x my y px p =+⎧⎨=>⎩得2240y pmy p --=,显然0∆>,所以121224y y pm y y p +=⎧⎨=-⎩,因为OA OB ⊥,所以12120x x y y +=,即()()1212220my my y y +++=,化简得()()212121240m y y m y y ++++=,代入得()2241440p m pm -+++=解得1p =,所以抛物线方程为22y x =(2)因为直线2x my =+过定点()2,0, 所以12121242AOBSy y y y =⨯⨯-=-==,当且仅当0m =时,AOB 的面积取得最小值为418.已知圆O :224x y +=,过定点()1,1A 作两条互相垂直的直线1l ,2l ,且1l 交圆O 于()()111333,,,P x y P x y 两点,2l 交圆O 于()()222444,,,P x y P x y 两点. (1)若13PP =1l 的方程;(2)求证:1234x x x x +++为定值. 【答案】(1)20x y +-= (2)证明见解析【分析】(1)根据题意分析可得()0,0O 到直线1l 的距离为d =点到直线的距离运算求解;(2)讨论直线是否与坐标轴垂直,结合韦达定理证明结论. 【详解】(1)由题设可知圆O 的圆心为()0,0O ,半径为2r =,由13PP =()0,0O 到直线1l 的距离为d == 因为直线1l 经过点()1,1A ,则有:当直线1l 的斜率不存在时,则1:1l x =,此时()0,0O 到直线1l 的距离为1d =,不合题意; 当直线1l 的斜率存在时,设直线1l 的方程为()11y k x -=-,即10kx y k --+=,=1k =-,所以直线1l 的方程为()11y x -=--,即20x y +-=.(2)∵2OA r ==<,即定点()1,1A 在圆O 内, ∴直线12,l l 与圆O 均相交,当直线1l 与x 轴垂直时,直线2l 与x 轴平行,此时132x x +=,240x x +=, 所以12342x x x x +++=;当直线2l 与x 轴垂直时,直线1l 与x 轴平行,此时130x x +=,242x x +=, 所以12342x x x x +++=;当直线1l 与不坐标轴垂直时,设直线1l 的方程为()()110y k x k =-+≠, 则直线2l 的方程为()()1110y x k k=--+≠, 联立方程()22114y k x x y ⎧=-+⎨+=⎩,消去y 得()()2222122230k x k k x k k ++-+--=, 所以2132221k kx x k-+=+, 同理可得242221kx x k ++=+, 所以12342x x x x +++=,综上所述:1234x x x x +++为定值2. 19.设数列{}n a 满足()123212n a a n a n +++-=.(1)求1a ,2a ,3a ,试猜想{}n a 的通项公式,并证明;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和.【答案】(1)12a =,223a =,325a =,221n a n =-,证明见解析 (2)()3223nn +-【分析】(1)根据已知求出1a ,2a ,3a ,猜想数列{}n a 的通项公式为221n a n =-,当2n ≥时,()()12132321n a a n a n -+++-=-,结合已知式子两式相减即可得出当2n ≥时,221n a n =-,再验证1n =成立即可;(2)结合第一问结论得出数列2n n a ⎧⎫⎨⎬⎩⎭的通项,利用错位相减法得出答案.【详解】(1)因为()123212n a a n a n+++-=①,当1n =时,12a =当2n =时,1234a a +=,可得223a =, 当3n =时,123356a a a ++=,可得325a =, 所以猜想数列{}n a 的通项公式为221n a n =-,证明如下: 由题意,当2n ≥时,()()12132321n a a n a n -+++-=-②,-①②,得()212n n a -=,所以221n a n =-, 当1n =时,上式为12a =,这就是说,当1n =时,上式也成立. 因此,数列{}n a 的通项公式为221n a n =-; (2)由(1)知()12221n n n n a -=-,记2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则()0112123221n n S n -=⨯+⨯++-③,故()()12122123223221n n n S n n -=⨯+⨯++-+-④,-④③,得()()12122222211n n n S n -=-++++--,()()()121222211322312n nnn n --=-⨯+--=+--,所以数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为()3223nn +-.20.阅读材料:(一)极点与极线的代数定义;已知圆锥曲线G :22220Ax Cy Dx Ey F ++++=,则称点P (0x ,0y )和直线l :()()00000Ax x Cy y D x x E y y F ++++++=是圆锥曲线G 的一对极点和极线.事实上,在圆锥曲线方程中,以0x x 替换2x ,以02x x+替换x (另一变量y 也是如此),即可得到点P (0x ,0y )对应的极线方程.特别地,对于椭圆22221x y a b+=,与点P (0x ,0y )对应的极线方程为00221x x y y a b +=;对于双曲线22221x y b b-=,与点P (0x ,0y )对应的极线方程为00221x x y y a b -=;对于抛物线22y px =,与点P (0x ,0y )对应的极线方程为()00y y p x x =+.即对于确定的圆锥曲线,每一对极点与极线是一一对应的关系. (二)极点与极线的基本性质、定理①当P 在圆锥曲线G 上时,其极线l 是曲线G 在点P 处的切线;②当P 在G 外时,其极线l 是曲线G 从点P 所引两条切线的切点所确定的直线(即切点弦所在直线); ③当P 在G 内时,其极线l 是曲线G 过点P 的割线两端点处的切线交点的轨迹. 结合阅读材料回答下面的问题:(1)已知椭圆C :22221(0)x y a b a b +=>>经过点P (4,0)C 的方程并写出与点P对应的极线方程;(2)已知Q 是直线l :142y x =-+上的一个动点,过点Q 向(1)中椭圆C 引两条切线,切点分别为M ,N ,是否存在定点T 恒在直线MN 上,若存在,当MT TN =时,求直线MN 的方程;若不存在,请说明理由.【答案】(1)221164x y +=,40x -= (2)存在,240x y +-=【分析】(1)根据题意和离心率求出a 、b ,即可求解;(2)利用代数法证明点Q 在椭圆C 外,则点Q 和直线MN 是椭圆C 的一对极点和极线.根据题意中的概念求出点Q 对应的极线MN 方程,可得该直线恒过定点T (2,1),利用点差法求出直线的斜率,即可求解.【详解】(1)因为椭圆22221(0)x y a b a b +=>>过点P (4,0),则2222140a b +=,得4a =,又c e a ==,所以c =,所以2224b a c =-=, 所以椭圆C 的方程为221164x y +=. 根据阅读材料,与点P 对应的极线方程为401164x y ⨯+=,即40x -=; (2)由题意,设点Q 的坐标为(0x ,0y ),因为点Q 在直线142y x =-+上运动,所以00142y x =-+,联立221164142x y y x ⎧+=⎪⎪⎨⎪=-+⎪⎩,得28240x x -+=,Δ64424320=-⨯=-<,该方程无实数根,所以直线142y x =-+与椭圆C 相离,即点Q 在椭圆C 外,又QM ,QN 都与椭圆C 相切,所以点Q 和直线MN 是椭圆C 的一对极点和极线.对于椭圆221164x y +=,与点Q (0x ,0y )对应的极线方程为001164x x y y +=, 将00142y x =-+代入001164x x y y +=,整理得()0216160x x y y -+-=,又因为定点T 的坐标与0x 的取值无关,所以2016160x y y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,所以存在定点T (2,1)恒在直线MN 上. 当MT TN =时,T 是线段MN 的中点,设()()1122,,M x y N x y ,,直线MN 的斜率为k ,则2211222211641164x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,整理得21122112442211616212y y x x x x y y -+⨯=-⋅=-⋅=--+⨯,即12k =-, 所以当MT TN =时,直线MN 的方程为()1122y x -=--,即240x y +-=.。

广东省佛山市2022-2023学年高二上学期期末数学试题(答案版)

广东省佛山市2022-2023学年高二上学期期末数学试题(答案版)

2022~2023学年上学期佛山市普通高中教学质量检测高二数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,直线l 的倾斜角为()A.π4B.π3C.3π4D.5π6【答案】C 【解析】【分析】根据倾斜角的定义分析运算.【详解】由题意可知:直线l 的倾斜角为π4的补角,即为3π4.故选:C.2.已知向量()4,2,3a =- ,()1,5,b x = ,满足a b ⊥,则x 的值为()A.2B.-2C.143 D.143-【答案】A 【解析】【分析】直接利用空间向量垂直的公式计算即可.【详解】a b ⊥ ,()4,2,3a =-,()1,5,b x = ()412530x ∴⨯+-⨯+=,解得2x =故选:A.3.已知圆的一条直径的端点分别为()12,5P ,()24,3P ,则此圆的标准方程是()A.()()22348x y +++= B.()()22348x y -+-=C.()()22342x y +++= D.()()22342x y -+-=【答案】D 【解析】【分析】求出圆心坐标以及圆的半径,即可得出该圆的标准方程.【详解】由题意可知,圆心为线段12PP 的中点,则圆心为()3,4C ,圆的半径为1CP ==故所求圆的方程为()()22342x y -+-=.故选:D.4.已知向量(a = ,()1,2,0b = ,则b 在a上的投影向量是()A.12,,055⎛⎫ ⎪⎝⎭B.13,0,55⎛⎫⎪ ⎪⎝⎭C.13,0,44⎛⎫⎪⎪⎝⎭D.11,,042⎛⎫⎪⎝⎭【答案】C 【解析】【分析】根据投影向量的概念结合空间向量的坐标运算求解.【详解】由题意可得:110201,2a b a ⋅=⨯+⨯+===r rr,故b 在a上的投影向量为11,0,44a b a a aa ⎛⋅== ⎝⎭r r rr rr .故选:C.5.一个袋子中装有形状大小完全相同的6个红球,n 个绿球,现采用不放回的方式从中依次随机取出2个球.若取出的2个球都是红球的概率为13,则n 的值为()A.4B.5C.12D.15【答案】A 【解析】【分析】利用古典概型概率计算公式列出方程,能求出n 的值.【详解】一个袋子中有若干个大小质地完全相同的球,其中有6个红球,n 个绿球,从袋中不放回地依次随机取出2个球,取出的2个球都是红球的概率是13,则()()651653n n ⨯=++,解得4n =(负值舍去).故选:A .6.已知直线1:210l x ay +-=与()2:3110l a x ay ---=平行,则实数a 的值为()A.16B.12C.0或16D.12或1【答案】C 【解析】【分析】利用两直线平行可得出关于实数a 的等式与不等式,解之即可.【详解】由已知可得()231311a a a a ⎧-=-⎨-≠⎩,解得0a =或16.故选:C.7.过点()2,1M 作斜率为1的直线,交双曲线()222210,0y x a b a b-=>>于A ,B 两点,点M 为AB 的中点,则该双曲线的离心率为()A.2B.C.2D.【答案】B 【解析】【分析】设点()()1122,,,A x y B x y ,代入双曲线方程后做差,整理,可得,a b 关系,再利用222c a b =+消去b 即可求得离心率.【详解】设点()()1122,,,A x y B x y ,则有22112222222211y x a b y x a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式做差后整理得2121221212y y y y a x x x x b -+⋅=-+,由已知121212121,4,2y y x x y y x x -=+=+=-,2224a b ∴=,又222c a b =+,22212a c a∴=-,得ca=故选:B8.在两条异面直线a ,b 上分别取点1A ,E 和点A ,F ,使1AA a ⊥,且1AA b ⊥.已知12A E =,3AF =,5EF =,1AA =,则两条异面直线a ,b 所成的角为()A.π6B.π3C.2π3 D.5π6【答案】B 【解析】【分析】设两条异面直线a ,b 所成的角为π02θθ⎛⎫<≤ ⎪⎝⎭,将等式11EF EA A A AF =++ 两边同时平方计算可得答案.【详解】如图,设两条异面直线a ,b 所成的角为π02θθ⎛⎫<≤⎪⎝⎭,1AA a ⊥ ,1AA b ⊥,12A E =,3AF =,5EF =,1AA =,11EF EA A A AF ∴=++ ,则2222211111111()222EF EA A A AF EA A A AF EA A A EA AF A A AF=++=+++⋅+⋅+⋅2222523223cos θ∴=++±⨯⨯,得1cos 2θ=或1cos 2θ=-(舍去)π3θ∴=故选:B二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分.有选错的得0分.部分选对的得2分.9.对于一个古典概型的样本空间Ω和事件A ,B ,其中()18n Ω=,()9n A =,()6n B =,()12n A B ⋃=则()A.事件A 与事件B 互斥B.()23P A B ⋃=C.事件A 与事件B 相互独立 D.()16P AB =【答案】BC 【解析】【分析】根据古典概型结合概率的性质以及事件的独立性分析判断.【详解】由题意可得:()()()()()()11,23P A P B n A n B n n ==ΩΩ==,则()()213P B P B =-=,∵()()()()n A B n A n B n AB ⋃=+-,∴()()()()30n A B n AB n A n B +-==≠U ,即事件A 与事件B 不互斥,A 错误;可得:()()()()Ω12n A B n n A n AB ⋃=-+=,故()()()()()()()()()()1215,,1,1Ω6Ω336n A B n AB P AB P A B P AB P A B P AB P AB n n ⋃==⋃===-⋃==-=,可知B 正确,D 错误;又∵()()()P AB P A P B =,∴事件A 与事件B 相互独立,C 正确;故选:BC.10.已知曲线C 的方程为221259x y k k+=-+,则C 可能是()A.的圆B.焦点在xC.等轴双曲线D.焦点在y 上的双曲线,且焦距为【答案】AD 【解析】【分析】根据曲线的形状求出参数的值或取值范围,再结合各曲线的几何性质逐项判断,可得出合适的选项.【详解】对于A 选项,若曲线C 为圆,则259250k kk -=+⎧⎨->⎩,解得8k =,此时,曲线C 的方程为2217x y +=,A 对;对于B 选项,若曲线C 表示焦点在x 轴上的椭圆,则25990k kk ->+⎧⎨+>⎩,解得98k -<<,此时,椭圆C 的长轴长为,B 错;对于C 选项,若曲线C 为等轴双曲线,则2590k k -++=,无解,C 错;对于D 选项,若曲线C 表示焦点在y 轴上的双曲线,则90250k k +>⎧⎨-<⎩,解得25k >,此时,双曲线C 的焦距为=,D 对.故选:AD.11.已知抛物线C :24y x =的焦点为F ,过F 的直线与C 交于A 、B 两点,且A 在x 轴上方,过A 、B 分别作C 的准线l 的垂线,垂足分别为A '、B ',则()A.OA OB⊥B.若5AF =,则A 的纵坐标为4C.若2AFFB =,则直线AB 的斜率为D.以A B ''为直径的圆与直线AB 相切于F 【答案】BCD 【解析】【分析】设直线AB 为1x my =+及交点坐标,利用韦达定理可得12124,4y y m y y +==-,对A :结合向量垂直的坐标表示分析判断;对B :根据抛物线的定义运算求解;对称:结合向量的坐标运算求解;对D :根据直线与圆的位置关系分析判断.【详解】由题意可得:抛物线C :24y x =的焦点()1,0F ,准线:1l x =-,设直线AB 为()22121121,,0,,44y y x my A y y B y ⎛⎫⎛⎫=+> ⎪ ⎪⎝⎭⎝⎭,则()()121,,1,A y B y ''--,联立方程214x my y x=+⎧⎨=⎩,消去y 可得:2440y my --=,则2121216160,4,4m y y m y y ∆=+>+==-,对A :∵221212,,,44y y OA y OB y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭uu r uu u r ,∴()212123016y y OA OB y y ⋅=+=-≠uu r uu u r ,∴,OA OB不相互垂直,A 错误;对B :∵21154y AF =+=,则14y =或24y =-(舍去),∴A 的纵坐标为4,B 正确;对C :∵2212121,,1,44y y y F FB y A ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭==uuu r uu r ,且2AF FB = ,∴122y y -=,则121212244y y y y m y y -=⎧⎪+=⎨⎪=-⎩,解得1224y y m ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩1224y y m ⎧⎪=-⎪⎪=⎨⎪⎪=-⎪⎩(舍去),故直线AB的斜率1k m==C 正确;对D :∵124,2y y m A B +''===∴A B ''的中点()1,2M m -到直线AB的距离12d A B ''==,又∵12MF A B ''===,故以A B ''为直径的圆与直线AB 相切于F ,D 正确;故选:BCD.12.如图,在棱长为1的正方体1111ABCD A B C D -中,O 为面11A ABB 的中心,E 、F 分别为BC 和11D C 的中点,则()A.1B D ⊥平面1A EFB.平面1ACD 与平面1A EF 相交C.点О到直线1A E的距离为6D.点O 到平面1A EF的距离为4【答案】BC 【解析】【分析】建系,利用空间向量处理线、面关系以及距离问题.【详解】如图,以D 为坐标原点建立空间直角坐标系,则有:()()()()()()11111111,0,0,0,1,0,0,0,0,,1,0,0,,1,1,,,1,0,1,1,1,1,0,0,12222A C D E F O A B D ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设平面1A EF 的法向量为(),,n x y z =,由11111,,0,,1,122A F A E ⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭uuu r uuu r ,则11102102n A F x y n A E x y z ⎧⋅=-+=⎪⎪⎨⎪⋅=-+-=⎪⎩ ,令2x =,则4,3y z ==,则()2,4,3n =,设平面1ACD 的法向量为(),,m a b c =,由()()11,1,0,0,1,1AC CD =-=-uuu r uuu r ,则100m AC a b m CD b c ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令1a =,则1b c ==,则()1,1,1m =,对A :∵()11,1,1DB = ,则243111≠≠,即1DB 与n 不共线,∴1B D 不与平面1A EF 垂直,A 错误;对B :∵243111≠≠,则m 与n 不共线,∴平面1ACD 与平面1A EF 相交,B 正确;对C :∵1110,,22A O ⎛⎫=- ⎪⎝⎭uuu r,则111111cos ,03A O A E A O A E A O A E ⋅==>uuu r uuu ruuu r uuu r uuu r uuu r ,即11,AO A E uuu r uuu r 为锐角,∴111sin ,3A O A E ==uuu r uuu r ,故点О到直线1A E 的距离为1112sin ,6A O A O A E =uuu r uuu r uuu r ,C 正确;对D :点O 到平面1A EF的距离为158AO n n=⋅r r uuu r ,D 错误.故选:BC.三、填空题:本题共4小题,每小题5分,共20分.13.从长度为4,6,8,10的4条线段中任取3条,则这三条线段能构成一个三角形的概率为__________.【答案】34或0.75【解析】【分析】利用古典模型概率即可求解.【详解】由题可得,取出的三条线段长度的可能性有:()()()()4,6,84,6,104,8,106,8,10,,,,其中能构成三角形的有()()()4,6,84,8,106,8,10,,,这三条线段能构成一个三角形的概率为34,故答案为:34.14.如图,在空间平移ABC 到A B C ''' ,连接对应顶点.设AA a '= ,AB b = ,AC c =,M 为A C ''中点,则用基底{},,a b c 表示向量BM =__________.【答案】12a b c-+【解析】【分析】根据空间向量的线性运算求解.【详解】由题意可得:1122BM BA AA A M AB AA AC a b c '''=++=-++=-+uuu r uu r uuu r uuuu r uu u r uuu r uuu r r r r.故答案为:12a b c -+.15.已知F 是双曲线C :()222103x y a a-=>的右焦点,Р是C 的左支上一动点,(0,A ,若APF 周长的最小值为10,则C 的渐近线方程为__________.【答案】y =【解析】【分析】设出(,0)F c '-,运用双曲线的定义可得2PF PF a '-=,则APF 的周长为||||||||||2PA PF AF PA PF a '++=+++,运用三点共线取得最小值,可得,,a b c 的关系,进而可得渐近线方程.【详解】由题意可得(()0,,,0A F c ,设(,0)F c '-,由双曲线的定义可得2PF PF a '-=,2PF a PF '=+,||AF =,则APF 的周长为||||||||||2||2PA PF AF PA PF a AF a ''++=++≥++当且仅当,,A P F '共线时,取得最小值,且为2a +由题意可得210a +=,即210a +=解得1a =,则渐近线方程为by x a=±=故答案为:y =.16.圆锥曲线具有丰富的光学性质,从椭圆的一个集点发出的光线,经过椭圆反射后,反射光线过椭圆的另一个焦点.如图,胶片电影放映机的聚光灯有一个反射镜.它的形状是旋转椭圆.为了使影片门(电影胶片通过的地方)处获得最强的光线,灯丝2F ,与影片门1F 应位于椭圆的两个焦点处.已知椭圆C :22143x y +=,椭圆的左右焦点分别为1F ,2F ,一束光线从2F 发出,射向椭圆位于第一象限上的Р点后反射光线经过点1F ,且124tan 3F PF ∠=,则12F PF ∠的角平分线所在直线方程为__________.【答案】4210x y --=【解析】【分析】先利用同角三角函数基本关系求出12cos F PF ∠,再在12F PF ∠ 中利用余弦定理及椭圆的定义求出12,PF PF ,进而得到12F F P 为直角三角形,利用12F F P 中角的关系可求出2tan PQF ∠,再通过1P x =求出P 点坐标,则直线方程可求.【详解】如图,设12F PF ∠的角平分线与x 轴交于点Q ,()2212121212112sin 4tan ,sin cos 1,0,πcos 3F PF F PF F PF F PF F PF F PF ∠∠==∠+∠=∠∈∠ ,1235cos F PF ∴=∠,设12,PF m PF n ==,则2221223cos 254m n F PF mn m n ⎧+-∠==⎪⎨⎪+=⎩,解得5232m n ⎧=⎪⎪⎨⎪=⎪⎩2221221254PF PF F F ∴==+,即12F F P 为直角三角形又212123cos 2cos125F PF F PF ∠∠=-= ,122cos 25F PF ∠∴=,121sin25F PF ∠=222π1cos cos sin 25PQF QPF QPF ⎛⎫∴∠=-∠=∠= ⎪⎝⎭,()2cos 0,πPQF ∠∈225sin 5PQF ∴∠=,222sin tan 2cos PQF PQF PQF ∠∠==∠当1x =时,21143y +=,得32y =±,31,2P ⎛⎫∴ ⎪⎝⎭,()3:212PQ l y x ∴-=-,即4210x y --=故答案为:4210x y --=四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.ABC 的三个顶点分别为()1,2A ,()3,0B ,()4,5C ,M 是AB 的中点.(1)求边AB 上的中线CM 所在直线的方程;(2)求BCM 的面积.【答案】(1)230x y --=(2)3【解析】【分析】(1)根据中点坐标公式结合直线的两点式方程运算求解;(2)根据点到直线距离公式和两点距离公式运算求解.【小问1详解】由题意可知:AB 的中点M 为()2,1,则边AB 上的中线CM 所在直线的方程为125142y x --=--,即230x y --=.【小问2详解】由(1)可得:CM ==,且点()3,0B 到直线CM的距离355d ==,故BCM的面积11353225S CM d =⨯=⨯=.18.每年的11月9日是我国的全国消防日.119为我国规定的统一火灾报警电话,但119台不仅仅是一部电话,也是一套先进的通讯系统.它可以同中国国土上任何一个地方互通重大灾害情报,还可以通过卫星调集防灾救援力量,向消防最高指挥提供火情信息.佛山某中学为了加强学生的消防安全意识,防范安全风险,特在11月9日组织消防安全系列活动.甲、乙两人组队参加消防安全知识竞答活动,每轮竞答活动由甲、乙各答一题.在每轮竞答中,甲和乙答对与否互不影响,各轮结果也互不影响.已知甲每轮答对的概率为23,乙每轮答对的概率为p ,且甲、乙两人在两轮竞答活动中答对3题的概率为512.(1)求p 的值;(2)求甲、乙两人在三轮竞答活动中答对4题的概率.【答案】(1)34(2)3196【解析】【分析】(1)利用相互独立事件概率的乘法公式列方程求解;(2)分甲有两题没有答对,乙有两题没有答对,甲乙各有一题没有答对三种情况,利用相互独立事件的概率以及独立重复事件的概率的乘法公式求出概率.【小问1详解】设事件A =“甲第一轮猜对”,事件B =“乙第一轮猜对”,事件C =“甲第二轮猜对”,事件D =“乙第二轮猜对,∴甲、乙两人在两轮竞答活动中答对3题的概率为(P ABCD ABCD ABCD ABC D +++()()()()()(()()()()()()()()()()P A P B P C P D P A P B P C P D P A P B P C P D P A P B P C P D =+++()2533331212221p p p p ⎡⎤=⨯⨯⨯+⨯-⨯⨯=⎢⎥⎣⎦解得34p =或54p =(舍去)34p ∴=;【小问2详解】三轮竞答活动中甲乙一共答6题,甲、乙两人在三轮竞答活动中答对4题,即总共有2题没有答对,可能甲有两题没有答对,可能乙有两题没有答对,可能甲乙各有一题没有答对.甲、乙两人在三轮竞答活动中答对4题的概率32322211223333231321213131C C +C C 344433334496P ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯⨯=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭19.已知椭圆C :()222210x y a b a b+=>>,四点()11,1P -,(2P ,331,2P ⎛⎫ ⎪⎝⎭,431,2P ⎛⎫-⎪⎝⎭中恰有三点在椭圆C 上.(1)求C 的方程;(2)若斜率存在且不为0的直线l 经过C 的右焦点F ,且与C 交于A 、B 两点,设A 关于x 轴的对称点为D ,证明:直线BD 过x 轴上的定点.【答案】(1)22143x y +=(2)证明见解析.【解析】【分析】(1)根据对称性得到椭圆上的点,再将点代入椭圆方程求解即可.(2)设直线:1l x ty =+,0t ≠,()()1122,,,A x y B x y ,则()11,D x y -,将直线方程和椭圆方程联立,利用韦达定理计算直线BD 与x 轴的焦点坐标即可.【小问1详解】根据椭圆对称性,点331,2P ⎛⎫⎪⎝⎭,431,2P ⎛⎫-⎪⎝⎭必在椭圆上,则()11,1P -不在椭圆上,()20,3P在椭圆上,2219143a b b ⎧+=⎪∴⎨⎪=⎩,解得23a b =⎧⎪⎨=⎪⎩所以C 的方程为22143x y +=【小问2详解】由(1)得右焦点()1,0F ,设直线:1l x ty =+,0t ≠,()()1122,,,A x y B x y ,则()11,D x y -联立221431x y x ty ⎧+=⎪⎨⎪=+⎩,消去x 得()2234690t y ty ++-=,则12122269,3434t y y y y t t +=-=-++又直线()212221:y y BD y x x y x x +=-+-,令0y =得()()()22122121221122212121y x x y x x y y x y x y x x x y y y y y y ----+++=+==+++又()()2211221121221212129211234114634t y ty y ty y x y x ty y t t y y y y y y t ⎛⎫- ⎪+++++⎝⎭==+=+=+++-+即0y =时,4x =,直线BD 过x 轴上的定点()4,0.20.如图,在多面体ABCDE 中,平面ABC ⊥平面ACDE ,四边形ACDE 是等腰梯形,ED AC ∥,AB AC ⊥,112AE ED DC AC ====(1)若1AB =,求BD 与平面ACDE 所成角的正弦值;(2)若平面BDE 与平面BCD 的夹角为π4,求AB 的长.【答案】(1)12(2)2【解析】【分析】(1)建系,利用空间向量求线面夹角;(2)分别求平面BDE 、平面BCD 的法向量,利用空间向量求面面夹角.【小问1详解】由题意可知:AB AC ⊥,平面ABC ⊥平面ACDE ,平面ABC ⋂平面ACDE AC =,可得AB ⊥平面ACDE ,如图,以A 为坐标原点建立空间直角坐标系,则()33132,0,0,,0,,,0,2222C D E ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,且平面ACDE 的一个法向量为()0,1,0m =,若1AB =,则()0,1,0B ,可得33,1,22BD ⎛⎫=- ⎪ ⎪⎝⎭ ,∵1cos ,2m BD m BD m BD⋅==-uu u r r uu u r r uu u r r ,故BD 与平面ACDE 所成角的正弦值为12.【小问2详解】设()0,,0B a ,平面BCD 的法向量()1,,n x y z =,∵()13,0,,2,,022CD CB a ⎛⎫=-=- ⎪ ⎪⎝⎭,则11102220n CD x z n CB x ay ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩ ,令x =,则y z a ==,∴取)1,n a =,设平面BDE 的法向量()2000,,n x y z =,∵()131,0,0,,,22DE BE a ⎛⎫=-=- ⎪ ⎪⎝⎭uuu r uur,则20200001022n DE x n BE x ay z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令0y =000,2x z a ==,∴取()22n a =,由题意可得:2121212πcos ,cos 42n n n n n n ⋅===,解得2a =或2a =-(舍去),故AB的长为2.【点睛】21.党的二十大报告提出要加快建设交通强国.在我国960万平方千米的大地之下拥有超过35000座,总长接近赤道长度的隧道(约37000千米).这些隧道样式多种多样,它们或傍山而过,上方构筑顶棚形成“明洞”﹔或挂于峭壁,每隔一段开出“天窗”形成挂壁公路.但是更多时候它们都隐伏于山体之中,只露出窄窄的出入口洞门、佛山某学生学过圆的知识后受此启发,为山体隧道设计了一个圆弧形洞门样式,如图所示,路宽AB 为16米,洞门最高处距路面4米.(1)建立适当的平面直角坐标系,求圆弧AB 的方程.(2)为使双向行驶的车辆更加安全,该同学进一步优化了设计方案,在路中间建立了2米宽的隔墙.某货车装满货物后整体呈长方体状,宽2米,高3.6米,则此货车能否通过该洞门?并说明理由.【答案】(1)()()22610004x y y ++=≤≤(2)不能,理由见解析【解析】【分析】(1)以点D 为坐标原点,AB 、DC 所在直线分别为x 、y 轴建立平面直角坐标系,分析可知圆心在y 轴上,设圆心坐标为()0,b ,设圆的半径为r ,将点B 、C 的坐标代入圆的方程,求出b 、r 的值,结合图形可得出圆弧 AB 的方程;(2)求出货车右侧的最高点的坐标,代入圆弧 AB 的方程,可得出结论.【小问1详解】解:以点D 为坐标原点,AB 、DC 所在直线分别为x 、y轴建立如下图所示的平面直角坐标系,则点()0,4C、()8,0B ,由圆的对称性可知,圆心在y 轴上,设圆心坐标为()0,b ,设圆的半径为r ,则圆弧 AB 所在圆的方程为()222x y b r +-=,因为点C 、B 在圆上,则()()222220480b r b r ⎧+-=⎪⎨+-=⎪⎩,解得6b =-,10r =。

2022-2023学年四川省内江市高二上学期期末考试数学(文)试题(解析版)

2022-2023学年四川省内江市高二上学期期末考试数学(文)试题(解析版)

2022-2023学年四川省内江市高二上学期期末考试数学(文)试题一、单选题1.某个年级有男生180人,女生160人,用分层抽样的方法从该年级全体学生中抽取一个容量为68的样本,则此样本中女生人数为( ) A .40 B .36 C .34 D .32【答案】D【分析】根据分层抽样的性质计算即可. 【详解】由题意得:样本中女生人数为1606832180160⨯=+.故选:D2.已知向量()3,2,4m =-,()1,3,2n =--,则m n +=( ) A .22 B .8 C .3 D .9【答案】C【分析】由向量的运算结合模长公式计算即可. 【详解】()()()3,2,41,3,22,1,2m n +=-+--=-- ()()2222123m n +=-+-+=故选:C3.如图所示的算法流程图中,第3个输出的数是( )A .2B .32C .1D .52【答案】A【分析】模拟执行程序即得.【详解】模拟执行程序,1,1A N ==,输出1,2N =;满足条件,131+=22A =,输出32,3N =;满足条件,31+=222A =,输出2,4N =;所以第3个输出的数是2. 故选:A.4.一个四棱锥的三视图如图所示,则该几何体的体积为( )A .8B .83C .43D .323【答案】B【分析】把三视图转换为几何体,根据锥体体积公式即可求出几何体的体积. 【详解】根据几何体的三视图可知几何体为四棱锥P ABCD -, 如图所示:PD ⊥平面ABCD ,且底面为正方形,2PD AD == 所以该几何体的体积为:1822233V =⨯⨯⨯=故选:B5.经过两点(4,21)A y +,(2,3)B -的直线的倾斜角为3π4,则y =( ) A .1- B .3-C .0D .2【答案】B【分析】先由直线的倾斜角求得直线的斜率,再运用两点的斜率进行求解.【详解】由于直线AB 的倾斜角为3π4, 则该直线的斜率为3πtan14k ==-, 又因为(4,21)A y +,(2,3)B -, 所以()213142y k ++==--,解得=3y -.故选:B.6.为促进学生对航天科普知识的了解,进一步感受航天精神的深厚内涵,并从中汲取不畏艰难、奋发图强、勇于攀登的精神动力,某校特举办以《发扬航天精神,筑梦星辰大海》为题的航天科普知识讲座.现随机抽取10名学生,让他们在讲座前和讲座后各回答一份航天科普知识问卷,这10名学生在讲座前和讲座后问卷答题的正确率如下图,下列叙述正确的是( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座前问卷答题的正确率的极差小于讲座后正确率的极差 【答案】B【分析】根据题意以及表格,可分别计算中位数、平均数、极差等判断、排除选项是否正确,从而得出答案.【详解】讲座前问卷答题的正确率分别为:60%,60%,65%,65%,70%,75%,80%,85%,90%,95%,中位数为70%75%72.5%70%2+=> ,故A 错误; 讲座后问卷答题的正确率的平均数为0.80.8540.920.951289.5%85%10+⨯+⨯++⨯=> ,故B 正确;由图知讲座前问卷答题的正确率的波动性大于讲座后正确率的波动性,即讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,故C 错误;讲座后问卷答题的正确率的极差为100%-80%=20%,讲座前正确率的极差为95%-60%=35%,20%<35%,故D 错误. 故选:B.7.两条平行直线230x y -+=和340ax y -+=间的距离为d ,则a ,d 分别为( )A .6a =,d =B .6a =-,d =C .6a =-,d =D .6a =,d =【答案】D【分析】根据两直线平行的性质可得参数a ,再利用平行线间距离公式可得d . 【详解】由直线230x y -+=与直线340ax y -+=平行, 得()()2310a ⨯---⨯=,解得6a =,所以两直线分别为230x y -+=和6340x y -+=,即6390x y -+=和6340x y -+=,所以两直线间距离d = 故选:D.8.从1,2,3,4,5这五个数字中随机选择两个不同的数字,则它们之和为偶数的概率为A .15B .25C .35D .45【答案】B【分析】先求出基本事件总数n 25C 10==,再求出这两个数字的和为偶数包含的基本事件个数m 2223C C =+,由此能求出这两个数字的和为偶数的概率【详解】从1、2、3、4、5、这五个数字中,随机抽取两个不同的数字,基本事件总数n 25C 10==,这两个数字的和为偶数包含的基本事件个数m 2223C C =+=4,∴这两个数字的和为偶数的概率为p m 40.4n 10===. 故选B .【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.9.已知三条不同的直线l ,m ,n 和两个不同的平面α,β,则下列四个命题中错误的是( ) A .若m ⊥α,n ⊥α,则m //nB .若α⊥β,l ⊂α,则l ⊥βC .若l ⊥α,m α⊂,则l ⊥mD .若l //α,l ⊥β,则α⊥β【答案】B【分析】根据线面垂直的性质定理可知A 正确;根据面面垂直的性质定理可知B 不正确; 根据线面垂直的定义可知C 正确;根据面面垂直的判定可知D 正确.【详解】对A ,根据线面垂直的性质,垂直于同一平面的两条直线互相平行可知A 正确; 对B ,根据面面垂直的性质定理可知,若α⊥β,l ⊂α,且l 垂直于两平面的交线,则l ⊥β,所以B 错误;对C ,根据线面垂直的定义可知,C 正确;对D ,因为l //α,由线面平行的性质可知在平面α内存在直线//m l ,又l ⊥β,所以m β⊥,而m α⊂,所以α⊥β,D 正确. 故选:B .10.数学家欧拉在1765年提出定理:三角形的外心,重心,垂心依次位于同一直线上,这条直线后人称之为三角形的欧拉线.已知ABC ∆的顶点(0,0),(0,2),( 6.0)A B C -,则其欧拉线的一般式方程为( ) A .31x y += B .31x y -= C .30x y += D .30x y -=【答案】C【分析】根据题意得出ABC 为直角三角形,利用给定题意得出欧拉线,最后点斜式求出方程即可. 【详解】显然ABC 为直角三角形,且BC 为斜边, 所以其欧拉线方程为斜边上的中线, 设BC 的中点为D ,由(0,2),( 6.0)B C -, 所以()3,1D -,由101303AD k -==--- 所以AD 的方程为13y x =-,所以欧拉线的一般式方程为30x y +=. 故选:C.11.已知P 是直线:70l x y +-=上任意一点,过点P 作两条直线与圆22:(1)4C x y ++=相切,切点分别为A 、B .则四边形PACB 面积最小值为( )A .BC .D .28【答案】A【分析】当PC l ⊥时,||PC 取得最小值,根据切线长的表达式可知,||PA 最小,此时四边形PACB面积2S PA AC PA ==最小,求解即可.【详解】圆22:(1)4C x y ++=的圆心(1,0)C -,半径为2,当PC l ⊥时,||PC 取得最小值,即||PC 的最小值为点C 到直线l 的距离|8|422d -==, ∵2224PA PC AC PC =-=-,∴||PA 的最小值为27,∵四边形PACB 面积2S PA AC PA ==, ∴四边形PACB 面积S 的最小值为47. 故选:A .12.已知棱长为1的正方体1111ABCD A B C D -中,下列数学命题不正确的是A .平面1//ACB 平面11ACD 3B .点P 在线段AB 上运动,则四面体111PA BC 的体积不变 C .与所有122D .M 是正方体的内切球的球面上任意一点,N 是1AB C 外接圆的圆周上任意一点,则||MN 的最32-【答案】D【解析】根据面面平行的判定定理以及平行平面的距离进行证明,即可判断选项A ; 研究四面体的底面面积和高的变化判断选项B ;与所有12棱都相切的球的直径等于面的对角线1B C 的长度,求出球半径进行计算,即可判断选项C ; 根据正方体内切球和三角形外接圆的关系可判断选项D .【详解】对于选项A ,111//,AB DC AB ⊄平面111,AC D DC ⊂平面11AC D ,1//AB ∴平面11AC D ,同理可证//AC 平面11AC D ,11,,AB AC A AB AC =⊂平面1ACB ,∴平面1//ACB 平面11AC D ,正方体的对角线13BD =B 到平面1ACB 的距离为h , 则11221311,(2)11332B ACBC ABB V V h --=⨯=⨯⨯⨯,3h ,则平面1ACB 与平面11AC D 的距离为332d h == 故A 正确;对于选项B ,点P 在线段AB 上运动,点P 到底面111A B C 的距离不变, 底面积不变,则体积不变,故B 正确;对于选项C ,与所有12条棱都相切的球直径等于面的对角线12BC 23422(3V ππ=⨯⨯=C 正确;对于选项D ,设正方体的内切球的球心和外接球的球心为O , 则1ACB 的外接圆是正方体外接球的一个小圆,M 是正方体的内切球的球面上任意一点,N 是1AB C 外接圆的圆周上任意一点,∴线段MN 的最小值为正方体的外接球的半径减去正方体内切球的半径,正方体1111ABCD A B C D -棱长为1, ∴线段MN 312,故D 错误.故选:D.【点睛】本题考查命题的真假判断,涉及到空间几何体的结构,面面平行的判断,球的内切问题,涉及的知识点较多,综合性较强,属于较难题.二、填空题13.已知x 、y 满足约束条件202020x y x y -≤⎧⎪-≤⎨⎪+-≥⎩则2z x y =+的最大值是________.【答案】6【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由约束条件作出可行域如图:将目标函数2z x y =+转化为2y x z =-+表示为斜率为2-,纵截距为z 的直线, 当直线2y x z =-+过点B 时,z 取得最大值, 显然点()2,2B ,则max 2226z =⨯+=. 故答案为:6.14.直线l 与圆22(1)(1)1x y ++-=相交于,A B 两点,且()0,1A .若2AB l 的斜率为_________. 【答案】1±【分析】设直线方程,结合弦长求得圆心到直线的距离,利用点到直线的距离公式列出等式,即可求得答案.【详解】根据题意,直线l 与圆 22(1)(1)1x y ++-= 相交于,A B 两点,且()0,1A , 当直线斜率不存在时,直线0x = 即y 轴,显然与圆相切,不符合题意; 故直线斜率存在,设直线l 的方程为1y kx =+ ,即10kx y -+= , 因为圆22(1)(1)1x y ++-=的圆心为(1,1) ,半径为1r = ,又弦长||2AB =,所以圆心到直线的距离为22||12()1222AB d r =-=-=, 所以2||221k k =+,解得1k =±, 故答案为:1±.15.如图,111ABC A B C ﹣是直三棱柱,90BCA ∠=︒,点E F 、分别是1111A B AC 、的中点,若1BC CA AA ==,则BE 与AF 所成角的余弦值为__.【答案】3010【分析】取BC 的中点M ,连接MF ,则MF //BE ,所以MFA ∠就是异面直线BE 与AF 所成的角,再解三角形即可.【详解】取BC 的中点M ,连接MF ,则MF //BE ,所以MFA ∠就是异面直线BE 与AF 所成的角,设222655,(),,2222BC a MF a a a AM a AF a ==+===, 222655()()()30222cos 1065222a a a MFA a a+-∠==⨯⨯3016.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB ⋅的最大值是______. 【答案】5【详解】试题分析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,2||52AB PA PB ⨯≤=. 法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、重要不等式.三、解答题17.一汽车销售公司对开业4年来某种型号的汽车“五-”优惠金额与销售量之间的关系进行分析研究并做了记录,得到如下资料.(1)求出y 关于x 的线性回归方程ˆˆˆyb x a =+; (2)若第5年优惠金额8.5千元,估计第5年的销售量y(辆)的值.参考公式:()()()11211ˆˆˆ,()n ei i i i i i pz nzlii i x x y y x y nxybay bx xx xn x ====---===---∑∑∑∑ 【答案】(1)ˆ38.5y x =-;(2)第5年优惠金额为8.5千元时,销售量估计为17辆【分析】(1)先由题中数据求出x y ,,再根据()()()()1122211,ˆˆˆˆn niii ii i nn ii i i x x y y x y nxyb ay bx x x x n x ====---===---∑∑∑∑求出ˆb和ˆa ,即可得出回归方程; (2)将8.5x =代入回归方程,即可求出预测值.【详解】(1)由题中数据可得11.5,26x y ==,442111211,534i i i i i x y x ====∑∑∴()414222141211411.526153534411.554ˆi i i i i x y xybx x ==--⨯⨯====-⨯-∑∑,故26311ˆ.58.5ˆay bx =-=-⨯=-,∴38.5ˆy x =-(2)由(1)得,当8.5x =时,ˆ17y=,∴第5年优惠金额为8.5千元时,销售量估计为17辆. 【点睛】本题主要考查线性回归分析,熟记最小二乘法求ˆb和ˆa 即可,属于常考题型. 18.已知圆C 经过()6,1A 、()3,2B -两点,且圆心C 在直线230x y +-=上.(1)求经过点A ,并且在两坐标轴上的截距相等的直线的方程;(2)求圆C 的标准方程;(3)斜率为43-的直线l 过点B 且与圆C 相交于E F 、两点,求EF . 【答案】(1)60x y -=或70x y +-=(2)22(5)(1)5x y -++= (3)45【分析】(1)根据给定条件,利用直线方程的截距式,分类求解作答;(2)设圆心(32,)C b b -,由||||r AC BC ==解得1b,即得圆C 的标准方程;(3)求出直线l 的方程,利用弦长公式计算即可.【详解】(1)当直线过原点时,直线的方程为60x y -=, 当直线不过原点时,设直线的方程为1x y a a+=,将点(6,1)A 代入解得7a =,即直线的方程为70x y +-=, 故所求直线的方程为60x y -=或70x y +-=.(2)因圆心C 在直线230x y +-=上,则设圆心(32,)C b b -,又圆C 经过(6,1),(3,2)A B -两点,于是得圆C 的半径r AC BC ==,=1b,则圆心(5,1)C -,圆C 的半径r =所以圆C 的标准方程为22(5)(1)5x y -++=. (3)依题意,直线l 的方程为42(3)3y x +=--,即4360x y +-=, 圆心(5,1)C -到直线的距离为115d ==,所以45EF ===. 19.直四棱柱1111ABCD A B C D -,底面ABCD 是平行四边形,60ACB ∠=︒,13,1,27,,AB BC AC E F ===分别是棱1,A C AB 的中点.(1)求证:EF 平面1A AD :(2)求三棱锥1F ACA -的体积.【答案】(1)见解析(2)22【分析】(1)取1A D 的中点M ,连结,ME MA ,证明四边形AFEM 为平行四边形,则AM EF ∥,再根据线面平行的判定定理即可得证;(2)利用余弦定理求出AC ,再利用勾股定理求出1AA ,再根据11F ACA A AFC V V --=结合棱锥的体积公式即可得出答案.【详解】(1)证明:取1A D 的中点M ,连结,ME MA ,在1A DC 中,,M E 分别为11,A D AC 的中点, 所以ME DC ∥且12ME DC =, 底面ABCD 是平行四边形,F 是棱AB 的中点,所以AF DC 且12AF DC =, 所以ME AF ∥且ME AF =,所以四边形AFEM 为平行四边形, 所以,EF AM EF ⊄∥平面1,A AD AM⊂平面1A AD ,所以EF 平面1A AD ;(2)在ABC 中,60,3,1ACB AB BC ∠===, 由余弦定理有2222cos AB AC BC AC BC ACB ∠=+-⨯⨯,解得2AC =,则1312sin6022ABC S =⨯⨯⨯=, 因为F 为AB 的中点,所以1324ACF ABC S S ==, 由已知直四棱柱1111ABCD A B C D -,可得1190,2,27A AC AC AC ∠===, 可得128426A A =-=,1111132263342F ACA A AFC AFC V V S AA --==⋅=⨯⨯=. 20.某校从参加高一年级期中考试的学生中抽出40名学生,将其数学成绩(均为整数)分成六段[)40,50,[)50,60,,[]90,100后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)根据频率分布直方图估计这次数学考试成绩的平均分;(3)若将分数从高分到低分排列,取前15%的同学评定为“优秀”档次,用样本估计总体的方法,估计本次期中数学考试“优秀”档次的分数线.【答案】(1)答案见解析(2)71(3)86【分析】(1)根据所有频率和为1求第四小组的频率,计算第四小组的对应的矩形的高,补全频率分布直方图;(2)根据在频率分布直方图中,由每个小矩形底边中点的横坐标与小矩形的面积的乘积之和,求出平均分;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,由此即可估计“优秀”档次的分数线.【详解】(1)由频率分布直方图可知,第1,2,3,5,6小组的频率分别为:0.1,0.15,0.15,0.25,0.05,所以第四小组的频率为:10.10.150.150.250.050.3-----=,∴在频率分布直方图中第四小组对应的矩形的高为0.03,补全频率分布直方图对应图形如图所示:(2)由频率分布直方图可得平均分为:0.1450.15550.15650.3750.25850.059571⨯+⨯+⨯+⨯+⨯+⨯=;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,则估计本次期中数学考试“优秀”档次的分数线为:0.158010860.25+⨯=. 21.如图,正方形ABCD 和直角梯形ACEF 所在的平面互相垂直,FA AC ⊥,2AB =1EF FA ==.(1)求证:BE ⊥平面DEF ;(2)求直线BD 与平面BEF 所成角的大小.【答案】(1)证明见解析 (2)π4【分析】(1)设正方形ABCD 的对角线AC 与BD 交于O ,连接FO 、EO ,利用勾股定理逆定理推导出BE DE ⊥,BE EF ⊥,再利用线面垂直的判定定理可证得结论成立;(2)分析可知直线BD 与平面BEF 所成角为BDE ∠,求出BDE ∠的正弦值,即可求得BDE ∠的大小.【详解】(1)证明:设正方形ABCD 的对角线AC 与BD 交于O ,连接FO 、EO ,因为平面ABCD ⊥平面ACEF ,平面ABCD ⋂平面ACEF AC =,AF AC ⊥,AF ⊂平面ACEF , AF ∴⊥平面ABCD ,因为四边形ABCD 222AC AB =, 在直角梯形ACEF 中,//EF AC ,O 为AC 的中点,则AO EF =且//AO EF ,又因为AF EF =,AF AC ⊥,故四边形AFEO 是边长为1的正方形,所以,//AF EO ,所以,EO ⊥平面ABCD ,且1EO AF ==,BD ⊂平面ABCD ,EO BD ∴⊥,则222BE DE EO OB =+=所以,222DE B D E B +=,BE DE ∴⊥,AF ⊥平面ABCD ,AB ⊂平面ABCD ,AF AB ∴⊥,223BF AB AF =+=,222EF BE BF ∴+=,BE EF ∴⊥,DE EF E ⋂=,DE 、EF ⊂平面DEF ,BE ∴⊥平面DEF .(2)解:由(1)可知,BE ⊥平面DEF ,所以,直线BD 与平面BEF 所成角为BDE ∠,BE DE ⊥,2sin 2BE BDE BD ∠==, 又因为π02BDE <∠≤,故π4BDE ∠=,因此,直线BD 与平面BEF 所成角为π4. 22.已知圆22:(3)9M x y -+=,设()2,0D ,过点D 作斜率非0的直线1l ,交圆M 于,P Q 两点.(1)过点D 作与直线1l 垂直的直线2l ,交圆M 于,E F 两点,记四边形EPFQ 的面积为S ,求S 的最大值;(2)设()6,0B ,过原点O 的直线OP 与BQ 相交于点N .证明:点N 在定直线6x =-上.【答案】(1)S 的最大值为17.(2)证明见详解【分析】(1)由题意设出直线1l ,2l 方程,利用点到直线的距离公式,弦长公式以及基本不等式即可解决问题;(2)利用圆与直线的方程,写出韦达定理,求出直线OP 与直线BQ 的方程,且交于点N ,联立方程求解点N 即可证明结论.【详解】(1)由圆22:(3)9M x y -+=知,圆心为()3,0M ,半径3r =,因为直线1l 过点()2,0D 且斜率非0,所以设直线1l 方程为:()02y k x -=-,即20kx y k --=,则点M 到直线1l 的距离为:1223211k kk d k k -=++所以222222122289223292111k k k PQ r d k k k ⎛⎫+=--=- ⎪+++⎝⎭由12l l ⊥,且直线2l 过点D ,所以设直线2l 方程为:()102y x k -=--,即20x ky +-=, 则点M 到直线2l的距离为:2d =所以EF ====故1122S EF PQ =⋅⋅=⋅2=()2217122171k k +=⨯=+,当且仅当2289981k k k +=+⇒=±时取等号, 所以四边形EPFQ 的面积S 的最大值为17. (2)证明:设()()1122,,,P x y Q x y ,直线PQ 过点D , 则设直线PQ 方程为:2x my =+,联立()22239x my x y =+⎧⎪⎨-+=⎪⎩,消去x 整理得: ()221280m y my +--=,12122228,11m y y y y m m -+==++, 所以()1212121244y y m my y y y y y +=-⇒=-+, 由111100OP y y k x x -==-, 所以直线OP 的方程为:11y y x x =, 2222066BQ y y k x x -==--, 所以直线BQ 的方程为:()2266y y x x =--, 因为直线OP 与直线BQ 交于点N ,所以联立()112266y y x x y y x x ⎧=⎪⎪⎨⎪=-⎪-⎩, 所以()12121266N x y x x y y x =-- ()()()12121262226my y my y y my +=+-+-⎡⎤⎣⎦ 12212212161224my y y my y y my y y +=+-+ 12221362my y y y y +=+ ()()122213462y y y y y ⨯-⨯++=+ 12212212112126126622y y y y y y y y y --+--===-++, 所以6N x =-,所以点N 在定直线6x =-上.。

2022-2023学年陕西省部分名校高二上学期期末数学(文)试题 解析版

2022-2023学年陕西省部分名校高二上学期期末数学(文)试题 解析版

2022-2023学年陕西省部分名校高二上学期期末数学试卷(文科)考生注意:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.2. 请将各题答案填写在答题卡上.3. 本试卷主要考试内容:北师大版必修5占30%,选修1-1占70%.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 椭圆C :22143x y +=的长轴为( ) A. 1B. 2C. 3D. 42. 在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若3c =,4b =,3A π=,则a =( )A.B. C. 5 D. 63. 已知p :0x ∀>,230x x +>;q :x ∃∈R ,210x +=.则下列命题中,真命题是( )A. p q ⌝∧B. p q ⌝∨C. p q ∧⌝D. p q ∧4. 设0(3)(3)lim 6x f x f x x∆→+∆--∆=-∆,则()3f '=( )A. -12B. -3C. 3D. 125. 已知等比数列{}n a 的前n 项乘积为n T ,若25T T =,则4a =( ) A. 1B. 2C. 3D. 46. 已知双曲线()222210,0x y a b a b-=>>的一条渐近线方程为340x y +=,则该双曲线的离心率是( )A.43B.53C.54D.7. 已知抛物线C :220x y =-的焦点为F ,抛物线C 上有一动点P ,且()3,6Q --,则PF PQ +的最小值为( )A. 8B. 16C. 11D. 268. 已知数列{}n a 满足1n n a a d -=+,2n ≥,n ∈N ,则“2m n a a d -=”是“2m n -=”的( ) A. 充分必要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件9. 函数21()ln 32f x x x =++的最小值是( ) A.92 B. 4C.72D. 310. 设1a <,则1211a a+-+的最小值为( )A.32B. 32- C. 1D. 211. 已知P 为抛物线C :216x y =-上一点,F 为焦点,过P 作C 的准线的垂线,垂足为H ,若PFH △的周长不小于30,则点P 的纵坐标的取值范围是( ) A. (],5-∞-B. (],4-∞-C. (],2-∞-D. (],1-∞-12. 定义在()0,+∞上的函数()f x 的导函数为()f x ',且()()4xf x f x '<恒成立,则( )A. 16(1)4(2)f f f >>B. 16(1)(2)4f f f >>C. 16(1)4(2)f f f <<D. 16(1)(2)4f f f <<第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13. 已知双曲线C :2221(0)x y a a-=>的焦距为10,则a =______.14. 若x ,y 满足约束条件10201x y x y x +-≥⎧⎪-≥⎨⎪≤⎩,则z y x =-的最小值为______.15. 已知函数()ln 1f x x x mx =++的零点恰好是()f x 的极值点,则m =______.16. 已知椭圆C :2214x y +=的左、右焦点分别为1F ,2F ,P 为椭圆C 上的一点,若121cos 3F PF ∠=-,则12PF PF ⋅=______.三、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(10分) 已知函数()f x 满足32()(1)1f x x f x '=-⋅+.(1)求()1f '的值;(2)求()f x 的图象在2x =处的切线方程. 18.(12分)已知抛物线C :()220y px p =->,()06,A y -是抛物线C 上的点,且10AF =.(1)求抛物线C 的方程;(2)已知直线l 交抛物线C 于M ,N 两点,且MN 的中点为()4,2-,求直线l 的方程. 19.(12分)已知数列{}n a 的前n 项和为n S ,且(7)2n n n S +=. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 20.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin()bC A B a=--. (1)求A ;(2)设2a =,当b 的值最大时,求ABC △的面积. 21.(12分)已知函数()()ln 1f x x x a x =+-. (1)当2a =-时,求()f x 的单调区间;(2)证明:当1a <-时,()f x 在()1,+∞上存在唯一零点. 22.(12分)已知双曲线C :()222210,0x y a b a b-=>>的右焦点为),渐近线方程为2y x =±. (1)求双曲线C 的标准方程;(2)设D 为双曲线C 的右顶点,直线l 与双曲线C 交于不同于D 的E ,F 两点,若以EF 为直径的圆经过点D ,且DG EF ⊥于点G ,证明:存在定点H ,使GH 为定值.高二数学试卷参考答案(文科)1. D 椭圆C :22143x y +=的长轴为4. 2. A 由余弦定理可得2222cos 13a b c bc A =+-=,所以a = 3. C 由题意可得p 为真命题,q 为假命题.故p q ∧⌝为真命题.4. B 因为0(3)(3)lim2(3)6x f x f x f x∆→+∆--∆'==-∆,所以()33f '=-.5. A 因为25T T =,所以3451a a a =.因为2354a a a =,所以41a =.6. C 因为()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,所以:3:4b a =,54c e a ===.7. C 记抛物线C 的准线为l ,作PT l ⊥于T ,当P ,Q ,T 共线时,PF PQ +有最小值,最小值为6112p+=. 8. C 因为()2m n a a m n d d -=-=,所以2m n -=或0d =,故“2m n a a d -=”是“2m n -=”的必要不充分条件.9. C 由题意可得233111()x f x x x x -'=-=,令()0f x '>,1x >,令()0f x '<,得01x <<,则()f x 在()0,1上单调递减,在()1,+∞上单调递增,故()f x 的最小值是()712f =.10. A12112(11)11211a a a a a a ⎛⎫+=+-++ ⎪-+-+⎝⎭12(1)331122a a a a +-++-+=≥,当且仅当12(1)11a a a a+-=-+,即3a =-. 11. A 如图,设点P 的坐标为(),m n ,准线4y =与y 轴的交点为A ,则4PF PH n ==-,FH ====PFH △的周长为()24n -.设函数()2(4)(0)f n n n =-≤,则()f n 为减函数,因为()530f -=,所以()30f n ≥的解为5n ≤-.12. A 设函数4()()f x g x x=,0x >,则4385()4()()4()()0x f x x f x xf x f x g x x x''--'==<, 所以()g x 在()0,+∞上单调递减,从而(1)(2)g g g >>,即44(1)(2)12f f >>,则16(1)4(2)f f f >>.13. 2125a +=,解得a =a =-(舍去).14. -1 作出可行域(图略),当直线y x z =+经过点()1,0时,z y x =-取最小值,最小值为-1.15. -1 设0x 是()ln 1f x x x mx =++的零点,也是()f x 的极值点,则()ln 1f x x m '=++,所以0000ln 10ln 10x x mx x m ++=⎧⎨++=⎩,解得01x =,1m =-. 16. 3 因为22212121212cos 2PF PF F F F PF PF PF +-∠=⋅()21212122122PFPF PFPF PF PF +-⋅-=⋅122113PF PF =-=-⋅,所以123PF PF ⋅=.17. 解:(1)因为2()32(1)f x x f x ''=-⋅,所以(1)32(1)f f ''=-,解得(1)1f '=. (2)由(1)可得32()1f x x x =-+,2()32f x x x '=-,则()25f =,()28f '=.故所求切线的方程为()582y x -=-,即811y x =-. 18. 解:(1)因为6102pAF =+=, 所以8p =,故抛物线C 的方程为216y x =-.(2)易知直线l 的斜率存在,设直线l 的斜率为k ,()11,M x y ,()22,N x y ,则2112221616y x y x ⎧=-⎨=-⎩,两式相减得()22121216y y x x -=--,整理得12121216y y x x y y -=--+.因为MN 的中点为()4,2-,所以12121644y y k x x -==-=--,所以直线l 的方程为()244y x -=-+,即4140x y ++=. 19. 解:(1)当1n =时,111842a S ⨯===. 当2n ≥时,1(1)(6)2n n n S --+=,所以1(7)(1)(6)322n n n n n n n a S S n -+-+=-=-=+,因为1n =也满足,所以通项公式为3n a n =+.(2)因为11111(3)(4)34n n n b a a n n n n +===-++++, 所以1111111145563444416n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭. 20. 解:(1)三角形的性质和正弦定理可知sin sin sin()sin()sin()2cos sin sin b B C A B A B A B A B a A==--=+--=⋅,其中sin 0B ≠,所以2sin cos sin 21AA A ==,因为()0,A π∈,所以()20,2A π∈,故22A π=,4A π=.(2)由正弦定理有22sin 4sin sin b B Cb B C a A++===+,且34sin 4sin 4B C B B π⎛⎫+=+-⎪⎝⎭cos ))B B B ϕ=+=+,其中1tan 2ϕ=,所以当()sin 1B ϕ+=时,b +有最大值,此时sin cos 5B ϕ==,cos 5B =,所以sin sin()sin (sin cos )42C A B B B B π⎛⎫=+=+=+=⎪⎝⎭由正弦定理有sin sin a bA B=,故b =,所以1112sin 2225ABC S ab C ==⨯=△. 21.(1)解:当1a =时,()ln 1f x x '=-.令()0f x '<,得0e x <<,令()0f x '>,得e x >, 所以()f x 的单调递减区间为()0,e ,单调递增区间为()e,+∞. (2)证明:()()ln 1f x x a '=++,令()0f x '=,得1e a x --=,因为1a <-,所以10e e 1a -->=.当()11,e a x --∈时,()0f x '<,()f x 在()11,e a --上单调递减;当()1e ,a x --∈+∞时,()0f x '>,()f x 在()1e ,a --+∞单调递增. 而()1e (1)0af f --<=,且()()e e ln e e 10a a a af a a ----=+-=->, 又因为()f x 在()1e ,a --+∞上单调递增, 所以()f x 在()1e ,a --+∞上有唯一零点. 当()11,e a x --∈时,恒有()()10f x f <=,()f x 无零点.综上,当1a <-时,()f x 在()1,+∞上存在唯一零点.22.(1)解:由题意知c =因为双曲线C 的渐近线方程为2y x =±,所以2b a =.因为222a cb =-,所以2a =,b =故双曲线C 的标准方程为22143x y -=. (2)证明:设()11,E x y ,()22,F x y .①当直线l 的斜率存在时,设l 的方程为y kx m =+,联立方程组22143y kx m x y =+⎧⎪⎨-=⎪⎩,化简得()()2223484120k x kmx m ---+=,则()()222(8)4412340km m k ∆=++->,即22430m k -+>,且122212283441234km x x k m x x k ⎧+=⎪⎪-⎨--⎪=⎪-⎩. 因为()()1212220DE DF x x y y ⋅=--+=, 所以()()2212121(2)4k x x km x x m ++-+++()2222241281(2)403434m km k km m k k--=+⋅+-⋅++=--, 化简得221628(2)(14)0m km k m k m k ++=++=, 所以2m k =-或14m k =-,且均满足22430m k -+>.当2m k =-时,直线l 的方程为()2y k x =-,直线过定点()2,0,与已知矛盾; 当14m k =-时,直线l 的方程为()14y k x =-,过定点()14,0M . ②当直线l 的斜率不存在时,由对称性不妨设直线DE :2y x =-,联立方程组222143y x x y =-⎧⎪⎨-=⎪⎩,得2x =(舍去)或14x =,此时直线l 也过定点()14,0M .因为DG EF ⊥,所以点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径. 故存在定点()8,0H ,使GH 为定值6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022-2023学年度上学期期末考试高二数学试卷(文科)第Ⅰ卷(选择题,满分60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a ∈R ,则“1a >”是“21a >”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件2.直线1:30l x ay ++=和直线()2:230l a x y a -++=互相平行,则a 的值为( ). A .1-或3B .3-或1C .1-D .3-3、设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ). A .若m α∥,n α∥,则m n ∥B .若αβ∥,m α⊂,n β⊂,则m n ∥C .若m αβ⋂=,n α⊂,n m ⊥,则n β⊥D .若m α⊥,m n ∥,n β⊂,则αβ⊥4.已知圆的方程为2260x y x +-=,则过点()1,2的该圆的所有弦中,最短弦长为( ).A .12B .1C .2D .45.函数()1sin f x x =+,其导函数为()f x ',则π3f ⎛⎫'=⎪⎝⎭( ). A .12B .12-C .32 D 36.已知抛物线24x y =上一点M 到焦点的距离为3,则点M 到x 轴的距离为( ). A .12B .1C .2D .47.已知命题:p x ∀∈R ,210ax ax ++>;命题:q x ∃∈R ,20x x a -+=.若p q ∧是真命题,则a 的取值范围是( ).A .(),4-∞B .[]0,4C .10,4⎛⎫ ⎪⎝⎭D .10,4⎡⎤⎢⎥⎣⎦8.若函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( ). A .12a <≤B .4a ≥C .2a ≤D .03a <≤9.已知长方体1111ABCD A B C D -中,4AB BC ==,12CC =,则直线1BC 和平面1DBBD 所成角的正弦值等于( ). A .32B .52C .105D .101010.已知三棱锥P ABC -的三条侧棱两两互相垂直,且5AB =,7BC =,2AC =.则此三棱锥的外接球的体积为( ). A .8π3B .82π3C .16π3D .32π311.已知函数()21,12,1ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是( ). A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-12.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为( ). A .6B .3C .6D .3第Ⅱ卷(非选择题,满分90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上) 13.曲线21y x x=+在点()1,2处的切线方程为__________. 14.当直线()24y k x =-+和曲线24y x =-有公点时,实数k 的取值范围是__________. 15.点P 是椭圆221169x y +=上一点,1F ,2F 分别是椭圆的左,右焦点,若1212PF PF ⋅=.则12F PF ∠的大小为__________.16.若方程22112x y m m+=+-所表示曲线为C ,则有以下几个命题: ①当()1,2m ∈-时,曲线C 表示焦点在x 轴上的椭圆; ②当()2,m ∈+∞时,曲线C 表示双曲线; ③当12m =时,曲线C 表示圆; ④存在m ∈R ,使得曲线C 为等轴双曲线. 以上命题中正确的命题的序号是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题10分)已知2:280p x x --+≥,()22:2100q x x m m -+=≤>.(1)若p 是q 的充分条件,求实数m 的取值范围.(2)若“p ⌝”是“q ⌝”的充分条件,求实数m 的取值范围. 18.(本小题12分)求下列函数的导数:(1)sin xy e x =; (2)2311y x x x x ⎛⎫=++ ⎪⎝⎭; (3)(3)sin cos 22x xy x =-. 19.(本小题12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=︒.(1)证明:直线BC ∥平面PAD ;(2)若PCD △的面积为7P ABCD -的体积. 20.(本小题12分)已知抛物线()21:20C y px p =>过点()1,1A . (1)求抛物线C 的方程;(2)过点()3,1P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为12k k ,求证:12k k 为定值. 21.(本小题12分)已知若函数()34f x ax bx =-+,当2x =时,函数()f x 有极值43-. (1)求函数解析式; (2)求函数的极值;(3)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围. 22.(本小题12分)已知椭圆()2222:10x y C a b a b+=>>3. (1)求椭圆C 的离心率;(2)点33,M ⎭在椭圆C 上,不过原点O 与直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求OAB △的最大值.四平市第一高级中学2019-2020学年度上学期期末考试高二数学试卷(文科)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCACDACBCC13.10x y -+= 14.3,4⎡⎫+∞⎪⎢⎣⎭15.π316.②③ 三、解答题17.解:(1)因为2:280p x x --+≥,()22:2100q x x m m -+-≤>.故:42p x -≤≤,:11q m x m -≤≤+.若p 是q 的充分条件,则[][]4,21,1m m --⊆-+, 故4121mm-≥-⎧⎨≤+⎩,解得5m ≥.(2)若“p ⌝”是“q ⌝”的充分条件,即q 是p 的充分条件,则[][]1,14,2m m -+⊆-,即14120m m m -≥-⎧⎪+≤⎨⎪>⎩,解得01m <≤.即实数m 的取值范围为(]0,1.18.解:(1)()()sin sin sin cos xxxx y ex e x ex e x '''=+=+.(2)因为3211y x x =++,所以2323y x x '=-. (3)因为1sin 2y x x =-,所以11cos 2y x '=-. 19.解:(1)四棱锥P ABCD -中,因为90BAD ABC ∠=∠=︒,所以BC AD ∥. 因为AD ⊂平面PAD ,BC ⊄平面PAD , 所以直线BC ∥平面PAD . (2)由12AB BC AD ==,90BAD ABC ∠=∠=︒. 设2AD x =,则AB BC x ==,2CD x =.设O 是AD 的中点,连接PO ,OC . 设CD 的中点为E ,连接OE ,则22OE x =.由侧面PAD 为等边三角形,则3PO x =,且PO AD ⊥.平面PAD ⊥底面ABCD ,平面PAD ⋂底面ABCD ,且PO ⊂平面PAD . 故PO ⊥底面ABCD .又OE ⊂底面ABCD ,故PO OE ⊥,则2272x PE PO OE =+=, 又由题意可知PC PD =,故PE CD ⊥.PCD △面积为271272PE CD ⋅=,即:1722722x x =, 解得2x =,则3PO = 则()()111124223433232P ABCD V BC AD AB PO -=⨯+⨯⨯=⨯⨯+⨯⨯=. 20.解:(1)由题意抛物线22y px =过点()1,1A ,所以12p =. 所以抛物线的方程为2y x =.(2)设过点()3,1P -的直线l 的方程为()31x m y -=+, 即3x my m =++,代入2y x =得230y my m ---=,设()11,M x y ,()22,N x y ,则12y y m +=,123y y m =-, 所以()()1212122212121211111111111y y y y k k x x y y y y ----⋅=⋅=⋅=----++ ()()12121111312y y y y m m ===-++++--+.所以12k k ⋅为定值.21.解:(1)()23f x ax b '=-.由题意知()()2120428243f a b f a b '=-=⎧⎪⎨=-+=-⎪⎩,解得134a b ⎧=⎪⎨⎪=⎩. 所以所求的解析式为()31443f x x x =-+. (2)由(1)可得()()()2422f x x x x '=-=+-. 令()0f x '=得2x =或2x =-.当x 变化时,()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2 ()2,+∞()f x ' + 0 - 0 + ()f x↑极大值↓极小值↑所以当2x =-时,函数()f x 有极大值()23f -=; 当2x =时,函数()f x 有极小值()423f =-. (3)由(2)知,可得当2x <-或2x >时,函数()f x 为增函数; 当22x -<<时,函数()f x 为减函数. 所以函数()31443f x x x =-+的图象大致如图,由图可知当42833k -<<时,()f x 与y k =有三个交点,所以实数k 的取值范围为428,33⎛⎫-⎪⎝⎭. 22.解:(1)由题意,得3a c -=,则()2213a cb -=. 结合222b ac =-,得()()22213a c a c -=-,即22230c ac a -+=. 亦即22310e e -+=,结合01e <<,解得12e =. 所以椭圆C 的离心率为12. (2)由(1)得2a c =,则223b c =.将33,2M ⎭代入椭圆方程2222143x y c c +=,解得1c =. 所以椭圆方程为22143x y +=. 易得直线OM 的方程为12y x =. 当直线l 的斜率不存在时,AB 的中点不在直线12y x =上, 故直线l 的斜率存在.设直线l 的方程为()0y kx m m =+≠,与22143x y +=联立, 消y 得()2223484120k x kmx m +++-=, 所以()()()2222226443441248340k m k mk m ∆=-+-=+->.设()11,A x y ,()22,B x y ,则122834kmx x k +=-+,212241234m x x k -=+.由()121226234m y y k x x m k +=++=+,得AB 的中点2243,3434km m N k k ⎛⎫- ⎪++⎝⎭, 因为N 在直线12y x =上,所以224323434km m k k -=⨯++,解得32k =. 所以()248120m ∆=->,得1212m -<<,且0m ≠.则()222212121313412394122236m AB x x x x m m -=+-=-=-又原点O 到直线l 的距离213m d =所以()2222221393312121232666213AOBm m m S m m m -+=-=-⋅=△. 当且仅当2212m m -=,即6m =时等号成立,符合1212m -<<0m ≠.所以AOB △3。

相关文档
最新文档