挡土墙结构算例

挡土墙结构算例
挡土墙结构算例

4.3重力式挡土墙

4.3.1适用条件及设计原则

为防止土体坍滑,路线沿线应设置挡土墙,本例形式为重力式仰斜路肩墙,具体尺寸如下:

拟采用浆砌片石重力式路肩墙,如上图所示,墙高H=6m(未计倾斜基底)。 墙后填土容重为3/19m KN =γ,内摩擦角?=45?,砌体容重3/23m KN k =γ 4.3.2

4.3.3计算方法及步骤

1) 按墙高确定的附加荷载强度进行换算:

r

q

h =0,q 插求得q=15KPa

所以m h 789.00=

2) 土压力计算:

35,10==βα ??==45,23?δ

()

()()()()()KN

H K H E a a 966.168cos cos sin sin 1cos cos cos 21212

2

22

2=?

?

????-+-+++-==βαδαβφδφδαααφγγ ()

KN E E a ax 504.1422310cos 966.168)cos(=+?=+=??δα

()KN E E a ay 785.902310sin 966.168)sin(=+?=+=??δα ()

()()()()()KN

H K H E p p 511.37cos cos sin sin 1cos cos cos 21

212

222

2=?

?

????--+++-+==βαδαβφδφδαααφγγ

()KN E E p px 622.361023cos 511.37)cos(=-?=-=??αδ

()KN E E p py 119.81023sin 511.37)sin(=-?=-=??αδ

3) 挡土墙截面验算

如设计图,墙顶宽1.0m 。

① 计算墙身重及其力臂G Z ,计算结果如下:

218.1018.36106.162

1

1611m S =++=??+?+?=

KN S G 6.203118.1020=??==γ

倾斜基底,土压力对墙趾O 的力臂为:

m Z y 0.2=

m Z x 71.23/12.22=+=

② 抗滑稳定性

()[]

()0

210.72tan 1.1tan tan 1.121

1

02

1

>=+-++-++KN E E

E G E E E G p

Q x

Q y

Q p Q x

y

Q γγαγμ

αγαγ

所以抗滑稳定性满足要求 ③ 抗倾覆稳定性验算:

980.162)(8.021>=+-+KNm Z E Z E Z E GZ p p Q y x x y Q G γγ

所以抗倾覆稳定性亦满足要求。 ④ 基底应力验算:

N Z B

e -=

2

m B 06.3=

51.06

0766.0=<

=∴B

e

???

??+=∴B e A N P 611max

???

??-=

B e A N P 611min

其中

()KN

E E G N x Q y Q G 421.400sin cos 1.10

1011=+-+=αγαωγγ

KPa f KPa B e A N P 62.31935.2662.12.1512.15006.30766.06106.3421.400611max =?=<=???

???+=??? ??+=∴ KPa

B e A N P 201.11106.30766.06106.3421.400611min =??

? ???-=??? ??-=

其中206.30.1m B A =?=

⑤ 截面应力计算:

截面最大应力出现在接近基底处,由基底应力验算可知偏心距及基底应力均满足要求,故墙身截面应力也能满足要求,故不做验算。

通过上述计算及验算,所拟截面满足各项要求,故决定采用该截面。

4.4扶臂式挡土墙设计

扶壁式挡土墙的设计内容主要包括墙身构造设计、墙身截面尺寸的拟定,墙身稳定性和基底应力及合力偏心距验算、墙身配筋设计和裂缝开展宽度等。 4.4.1适用条件及设计原则

扶壁式挡土墙墙高不宜超过15m ,一般在9—10m 左右,段长度不宜大于20m ,扶肋间距应根据经济性要求确定,一般为1/4—1/2墙高,每段中宜设置三个或三个以上的扶肋,扶肋厚度一般为扶肋间距的1/10—1/4,但不应该小于0.3m 。采用随高度逐渐向后加厚的变截面,也可以采用等厚式,以便于施工。

墙面板宽度和墙底板的厚度与扶肋间距成正比,墙面板顶宽不得小于0.2m ,可采用等厚的垂直面板。墙踵板宽一般为墙高的1/4—1/2,且不小于0.5m 。墙趾板宽宜为墙高的1/20—1/5,墙底板板端厚度不小于0.3m 。如图4.2所示。

a)平面图; b)横断面图

图4.2扶壁式挡土墙构造(单位cm )

4.4.2构造设计

根据《建筑边坡工程技术规范》及工程地质条件,此扶壁式挡土墙墙高拟定为H=10m,分段长度为

20m,扶肋间距L=4m,扶肋宽度0.6m 。墙面板顶宽b=0.30m,为了利于施工,采用等厚垂直面板,墙底板板端厚度0.4m,墙踵板宽度B 1=1m

o.41L L

H

B1=(1/20-1/5)H

B3=(1/4-1/2)H

4.4.3计算及步骤 4.4.3.1土压力计算

图4.3 主动土压力计算图(其中?=23δ,?=45?,δ?ψ+=)

如图4.3所示,扶壁式挡土墙墙背垂直,BC 为开挖后的土坡坡面,作为第一破裂面,BC 与垂直方向的夹角为25度,ADBC 即为破裂棱体。这个棱体作用着三个力,即破裂棱体的自重W ,主动土压力的反力Ea ,破裂面的反力R 。其中Ea 的方向与墙背成δ角,由工程地质条件所给得?=23δ,且偏于阻止棱体下滑的方向。R 的方向与破裂面法线成?角,同样偏于阻止棱体下滑的方向。由于棱体处于平衡状态,因此力的三角形闭合。从力的三角形中可得:

式中

?=?+?=+=682345δ?ψ

根据前面计算得的稳定坡角,此处的挡墙后填土坡度拟定为25度,填土的重度为3/19m kN ,则:

cos()

sin()

Ea W

θ?θψ+=+

()?

++?+=25cos 2

2

AC AE h b a S ADBC

其中3,39.6257.48,9.6a m b tg m h m ==+?==。

,8.5AE b AC m ==

所以,算得67.7ADBC S =。 主动土压力:

4.4.3.2墙面板设计计算

1) 计算模型与计算荷载

墙面板计算通常取扶肋中到扶肋中或跨中到跨中的一段为计算单元(如图4.4所示),视为固支于扶肋及墙踵板上的三向固支板,属于超静定结构,一般作简化近似计算。计算时,将其沿墙高或墙长划分为若干单位宽度的水平板条与竖向板条,假设每一个单位条上作用均布荷载,其大小为该条单位位置处的平均值,近似按支承于扶肋的连续板来计算水平板条的弯矩和剪力,按固支于墙底板上的刚架梁来计算竖向板条的弯矩。

墙面板的荷载仅考虑墙后主动土压力的水平分力,而墙自重、土压力竖向分力及被动土压力等均不考虑。

其中土压应力为:

31/890.456.9/544.440/m kN H E e a hk ===

图4.4墙面板简化土应压力图

)

4/0(560.9/45.01H h h H h e i i i hk pi ≤<--=?=σkN

W

E a 544.440)

6825sin()

4525cos(=?+??+?=

)4/34/(945.225.0H h H e i hk pi ≤<--==σ

()())4/3(6.9560.9/6.945.0111H h H h H h e i i i hk pi ≤<---=-?=σ

2) 水平内力

根据墙面板计算模型,水平内力计算简图如图4.5所示。 各内力分别为:

支点负弯矩:kNm l M pi 593.300.4945.2212/112/1221-=??-=-=σ 支点剪力:kN l Q pi 890.452/==σ

跨中正弯矩:kNm l M pi 356.180.4945.2220/120/1222=??==σ 边跨自由端弯矩:kNm m 03= 其中,l 为扶肋间净距。

1/12

1/20

1/12

1/20

1/12

c)

b)

a)

a)计算模型;b)荷载的作用图;c)设计弯矩图

图4.5 墙面板的水平内力计算

墙面板承受的最大水平正弯矩及最大水平负弯矩在竖直方向上分别发生在扶肋跨中的1/2H 1处和扶肋固支处的第三个H 1/4处,如图4.6所示。

设计采用的弯矩值和实际弯矩值相比是安全的,如图4.5-c)所示。例如,对于固端梁而言,当它承受均布荷载时,其跨中弯矩应为2/24pi l σ,但是,考虑到墙面板虽然按连续梁计算,然而它们的固支程度并不充分,为安全起见,故设计值按式确定。

3) 竖直弯矩

墙面板在土压力的作用下,除了上述的水平弯矩外,将同时产生沿墙高方向的竖直弯矩。其扶肋跨中的竖直弯矩沿墙高的分布如图4.7所示。负弯矩出现在墙杯一侧底部H1/4范围内,正弯矩出现在墙面一侧,最大值在第三个H 1/4段内,其最大值可近似按下列公式计算:

竖直负弯矩:

b)

a)

a

b

c a

c b

d e

a)跨中弯矩 b)扶肋处弯矩

图4.6墙面板跨中及扶肋处的弯矩图

竖直正弯矩:

kNm

l

H e M hk D 865.5246.9890.4503.003.01-=???-=-=kNm

l H e M hk 216.134/46.9890.4503.04

/03.01=???==

沿墙长方向(纵向),竖直弯矩的分布如图4.6所示,呈抛物线形分布。设计时,可采用中部2l/3范围内的竖直弯矩不变,两端各l/6范围内的竖直弯矩较跨中减少一半的阶梯形分布。

b)

a)-

+

MD

MD/4

a)竖直弯矩沿墙高分布; b)竖直弯矩沿墙纵向分布

图4.7墙面板竖直弯矩图

4) 扶肋外悬臂长度l ’的确定

扶肋外外悬臂节长l ’,可按悬臂梁的固端弯矩与设计用弯矩相等求得,即:

2'2

1/121/2pi pi M l l σσ==

'0.41 1.64l l m ==

4.4.3.3墙踵板设计计算 1) 计算模型和计算荷载

墙踵板可视为支承于扶肋上的连续板,不计墙面板对它的约束,而视其为铰支。内力计算时,可将墙踵板顺墙长方向划分为若干单位宽度的水平板条,根据作用于墙踵板上的荷载,对每一个连续板条进行弯矩,剪力计算,并假定竖向荷载在每一连续板条上的最大值均匀作用在板条上。

作用在墙踵板上的力有:计算墙背间与实际墙背的土重W1;墙踵板自重W2;作用在墙踵板顶面上的土压力竖向分力W3;作用在墙踵板端部的土压力竖向分力W4;由墙趾板固端弯矩M1的作用在墙踵板上引起的等代荷载W5;以及地基反力等,如图所示。

为了简化计算,假设W3为中心荷载,W4是悬臂端荷载E ty 所引起的,实际应力呈虚线表示二次抛物线分布,简化为实线表示的三角形分布;M1引起的等代荷载的竖向应力近似地假设成图 4.7所示的抛物线形,其重心位于距固支端5/8B3处,以其对固支端的力矩与M1相平衡,可得墙踵处的应力

2532.41/w M B σ=。

将上述荷载在墙踵板上的引起的竖向应力叠加,即可得到墙踵板的计算荷载。由于墙面板对墙踵板的支撑约束作用,在墙踵板与墙面板的衔接处,墙踵板沿墙长方向板条的弯矩为零,并向墙踵方向变形逐渐增大。故可近似假设沿墙踵板的计算荷载为三角形分布,最大值在踵点处。如图4.8所示。

各部分应力计算:

kPa B H W 312.222)35tan 36.9(19)tan (311=??+?=+=βγσ

kN t h W 84.02032=?==γσ

270

.0cos cos cos cos cos cos cos 2

2

22=-+--=?

ββ?βββ

a K m kN K H E a B /454.290270.0650.10192

1

21223=???==

γkPa B E B W 533.550

.335sin 454.290sin 333=?

?==

βσ

所以,

kPa B E t W 051.1340.335sin 567.3502sin 234=?

??==

βσ

墙踵板固端处的计算弯矩M1:

2111112[3()(2)()]6i h pj B B M t t B

σγγσσ=--+--

其中:max

min

N M

A W

σ=± kN N 537.802=

21(10.33) 4.3A m =?++=

22211

1 4.3 3.0866

W ab m ==??=

kNm Ne M 649.5212323.4537.8020=??

?

??-?==

所以

kPa W M A N 270.17003.35608

.3649.5213.4537.802max min

=±=±=

σ

kPa kPa 270.17;003.35621==σσ

求得

()()()()()()kNm

B B t t B M pj h 039.1643.41270.17003.3563.024.01924003.356361236

2121112

11=???

???--?+--?=??

????

--+--=

σσγγσ

3

4sin 2B E t W βσ=

kPa B M W 744.433039

.1644.24.22

2315=?=?

=σ 所以

kPa

W W W W W W 475.448270.17744.43051.134638.578312.2222

54321=-++++=-++++=σσσσσσσ

kNm

l M W 967.59712

4475.448122

2

1-=?-=-=σ

M1

e)

d)

c)

b)

EB3y

Et

EB3EB3

a)墙踵板受力图;b) 3B y E 对墙踵板的作用;c) ty E 对墙踵板的作用;

d)M1对墙踵板的作用;e)墙踵板法向应力总和

图4.8墙踵板计算荷载图式

上述中:

3B E ——作用在BC 面上的土压力(kN );

t E ——作用在CD 面上的土压力(kN ); M1——墙趾板固端处的计算弯矩(kNm );

,h γγ——墙后填土和钢筋混凝土的容重(Kn/m );

3t ——墙踵板厚度(m );

2σ——墙踵板端处的地基反力(kPa)。

2) 纵向内力

墙踵板顺墙长方向板条的弯矩和剪力计算与墙面板相同,各内力分别为:

支点负弯矩:

kNm

l M W 780.35820

4475.448202

2

2=?==σ支点剪力:

跨中正弯矩:

边跨自由端弯矩:30M = 3) 横向弯矩 墙踵板沿墙长方向(横向)的弯矩由两部分组

成:

在图4.7-e 所示的三角形分布荷载作用下产生的横向弯矩最大值出现在墙踵板的根部。由于墙踵板的宽度通常只有墙高的1/3左右,其值一般较小,对墙踵板横向配筋不起控制作用,故不必计算此横向弯矩。

由于在荷载作用下墙面板与墙踵板有相反方向的移动趋势,即在墙踵板根部产生与墙面板的竖直弯矩纵向分布的相同。如图4.7-b)所示。 4.4.3.4扶肋设计计算

1) 计算模型与计算荷载

a) b) c)

图4.9扶肋计算图式

扶肋可视为锚固在墙踵板上的T 形变截面悬臂梁,墙面板则作为该T 形梁的翼缘板,如图4.9-a)所示,翼缘板的有效计算宽度由墙顶向下逐渐加宽,如图4.9-a),b)所示,为了简化计算,只考虑墙背主动土压力的水平分力,而扶肋和墙面板的自重以及土压力的竖向分力忽略不计。

2) 剪力和弯矩

kN l Q W 950.8962/4475.4482/=?==σ

悬臂式挡土墙验算全解

悬臂式挡土墙验算[执行标准:公路] 计算项目:悬臂式挡土墙 8 计算时间: 2015-10-09 11:20:24 星期五 ------------------------------------------------------------------------ 原始条件: 墙身尺寸: 墙身高: 7.000(m) 墙顶宽: 0.250(m) 面坡倾斜坡度: 1: 0.000 背坡倾斜坡度: 1: 0.200 墙趾悬挑长DL: 2.000(m) 墙趾跟部高DH: 0.600(m) 墙趾端部高DH0: 0.600(m) 墙踵悬挑长DL1: 2.000(m) 墙踵跟部高DH1: 0.600(m) 墙踵端部高DH2: 0.600(m) 加腋类型:两边加腋 面坡腋宽YB1: 0.500(m) 面坡腋高YH1: 0.300(m) 背坡腋宽YB2: 0.500(m) 背坡腋高YH2: 0.500(m) 设防滑凸榫 防滑凸榫尺寸BT1: 1:0.100(m) 防滑凸榫尺寸BT: 1.500(m) 防滑凸榫尺寸HT: 0.600(m) 防滑凸榫被动土压力修正系数: 1.000 防滑凸榫容许弯曲拉应力: 0.500(MPa) 防滑凸榫容许剪应力: 0.990(MPa) 钢筋合力点到外皮距离: 50(mm) 墙趾埋深: 3.000(m) 物理参数: 混凝土墙体容重: 25.000(kN/m3) 混凝土强度等级: C30 纵筋级别: HRB400 抗剪腹筋等级: HRB400

裂缝计算钢筋直径: 18(mm) 挡土墙类型: 浸水地区挡土墙 墙后填土内摩擦角: 35.000(度) 墙后填土粘聚力: 0.000(kPa) 墙后填土容重: 19.000(kN/m3) 墙背与墙后填土摩擦角: 17.500(度) 地基土容重: 18.000(kN/m3) 修正后地基土容许承载力: 232.000(kPa) 地基土容许承载力提高系数: 墙趾值提高系数: 1.200 墙踵值提高系数: 1.300 平均值提高系数: 1.000 墙底摩擦系数: 0.300 地基土类型: 土质地基 地基土内摩擦角: 20.000(度) 墙后填土浮容重: 9.000(kN/m3) 地基浮力系数: 0.700 土压力计算方法: 库仑 坡线土柱: 坡面线段数: 1 折线序号水平投影长(m) 竖向投影长(m) 换算土柱数 1 10.000 0.000 1 第1个: 定位距离0.000(m) 挂车-80级(验算荷载) 作用于墙上的附加外荷载数: 1 (作用点坐标相对于墙左上角点) 荷载号 X Y P 作用角 (m) (m) (kN) (度) 1 -0.500 -5.167 100.000 270.000 地面横坡角度: 0.000(度) 墙顶标高: 0.000(m) 挡墙内侧常年水位标高: -0.500(m) 挡墙外侧常年水位标高: -4.500(m) 浮力矩是否作为倾覆力矩加项: 是 挡墙分段长度: 15.000(m) 钢筋混凝土配筋计算依据:《混凝土结构设计规范》(GB 50010--2002) ===================================================================== 第 1 种情况: 一般情况 ============================================= 组合系数: 1.000 1. 挡土墙结构重力分项系数 = 1.000 √ 2. 填土重力分项系数 = 1.000 √ 3. 填土侧压力分项系数 = 1.000 √ 4. 车辆荷载引起的土侧压力分项系数 = 1.000 √ 5. 计算水位的浮力分项系数 = 1.000 √ 6. 计算水位的静水压力分项系数 = 1.000 √ 7. 附加力分项系数 = 1.000 √ =============================================

几种挡土墙算例..

挡土墙设计实例 本实例主要讲述5种常见挡土墙的设计计算实例。 1、重力式挡土墙 ------------------------------------------------------------------------ 原始条件: 墙身尺寸: 墙身高: 6.500(m) 墙顶宽: 0.660(m) 面坡倾斜坡度: 1:0.250 背坡倾斜坡度: 1:0.200 采用1个扩展墙址台阶: 墙趾台阶b1: 0.300(m) 墙趾台阶h1: 0.500(m) 墙趾台阶与墙面坡坡度相同 墙底倾斜坡率: 0.200:1 物理参数: 圬工砌体容重: 23.000(kN/m3) 圬工之间摩擦系数: 0.400 地基土摩擦系数: 0.500

砌体种类: 片石砌体 砂浆标号: 5 石料强度(MPa): 30 挡土墙类型: 一般挡土墙 墙后填土内摩擦角: 35.000(度) 墙后填土粘聚力: 0.000(kPa) 墙后填土容重: 19.000(kN/m3) 墙背与墙后填土摩擦角: 17.500(度) 地基土容重: 18.000(kN/m3) 修正后地基土容许承载力: 500.000(kPa) 地基土容许承载力提高系数: 墙趾值提高系数: 1.200 墙踵值提高系数: 1.300 平均值提高系数: 1.000 墙底摩擦系数: 0.500 地基土类型: 土质地基 地基土内摩擦角: 30.000(度) 土压力计算方法: 库仑 坡线土柱: 坡面线段数: 2 折线序号水平投影长(m) 竖向投影长(m) 换算土柱数 1 3.000 2.000 0 2 5.000 0.000 0 坡面起始距离: 0.000(m) 地面横坡角度: 20.000(度) 墙顶标高: 0.000(m) 挡墙分段长度: 10.000(m) ===================================================================== 组合1(仅取一种组合计算) ============================================= 组合系数: 1.000 1. 挡土墙结构重力分项系数 = 1.000 √ 2. 墙顶上的有效永久荷载分项系数 = 1.000 √ 3. 墙顶与第二破裂面间有效荷载分项系数 = 1.000 √ 4. 填土侧压力分项系数 = 1.000 √ 5. 车辆荷载引起的土侧压力分项系数 = 1.000 √ ============================================= [土压力计算] 计算高度为 7.309(m)处的库仑主动土压力 无荷载时的破裂角 = 28.320(度) 按实际墙背计算得到: 第1破裂角: 28.320(度)

挡土墙计算实例

挡土墙计算 一、设计资料与技术要求: 1、土壤地质情况: 地面为水田,有60公分的挖淤,地表1—2米为粘土,允许承载力为[σ]=800KPa ;以下为完好砂岩,允许承载力为[σ]=1500KPa ,基底摩擦系数为f 在~之间,取。 2、墙背填料: 选择就地开挖的砂岩碎石屑作墙背填料,容重γ=20KN/M 3,内摩阻角?=35o。 3、墙体材料: 号砂浆砌30号片石,砌石γr =22 KN/M 3 ,砌石允许压应力[σr ] =800KPa ,允 许剪应力[τr ] =160KPa 。 4、设计荷载: 公路一级。 5、稳定系数: [Kc]=,[Ko]=。 二、挡土墙类型的选择: 根据从k1+120到K1+180的横断面图可知,此处布置挡土墙是为了收缩坡角,避免多占农田,因此考虑布置路肩挡土墙,布置时应注意防止挡土墙靠近行车道,直接受行车荷载作用,而毁坏挡土墙。 K1+172断面边坡最高,故在此断面布置挡土墙,以确定挡土墙修建位置。为保证地基有足够的承载力,初步拟订将基础直接置于砂岩上,即将挡土墙基础埋置于地面线2米以下。因此,结合横断面资料,最高挡土墙布置端面K1+172断面的墙高足10米,结合上诉因素,考虑选择俯斜视挡土墙。 三、挡土墙的基础与断面的设计; 1、断面尺寸的拟订: 根据横断面的布置,该断面尺寸如右图所示: 1B =1.65 m 2B =1.00 m 3B =3.40 m B =4.97 m 1N = 2N = 3N = 1H =7.00 m 2H =1.50 m H =9.49 m =d + = 1.6 m α=1arctan N =2.0arctan = o δ=?21=35 o/2= o 2、换算等代均布土层厚度0h : 根据路基设计规范, γq h =0,其中q 是车辆荷载附加荷载强度,墙高小于2m 时,取20KN/m 2;

悬臂式挡土墙计算书

悬臂式挡土墙计算书 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、示意图: 二、基本资料: 1.依据规范及参考书目: 《水工挡土墙设计规范》(SL379-2007),以下简称《规范》 《水工混凝土结构设计规范》(SL 191-2008),以下简称《砼规》 《水工建筑物荷载设计规范》(DL 5077-1997) 《水工挡土墙设计》(中国水利水电出版社) 2.断面尺寸参数: 墙顶宽度B1 = 0.30m,墙面上部高度H = 7.20m 前趾宽度B2 = 1.00m,后踵宽度B3 = 5.20m 前趾端部高度H2 = 0.80m,前趾根部高度H4 = 0.80m 后踵端部高度H1 = 0.40m,后踵根部高度H3 = 0.80m

墙背坡比= 1 : 0.069,墙面坡比= 1 : 0.000 挡土墙底板前趾高程=0.00 m,底板底部坡比=0.000 : 1 墙前填土顶面高程▽ 前地=0.50 m,墙前淤沙顶面高程▽ 沙 =1.00 m 3.设计参数: 挡土墙的建筑物级别为4级。 抗震类型:非抗震区挡土墙。 水上回填土内摩擦角φ=32.00度,水下回填土内摩擦角φ' =32.00度回填土凝聚力C =0.00kN/m2 地基土质为:松软 墙底与地基间摩擦系数f =0.45 4.回填土坡面参数: 回填土表面折线段数为:1段 折线起点距墙顶高差=0.00 m 第一段折线水平夹角β1=15.00度,折线水平长L1=2.00 m 第二段折线水平夹角β2=20.00度 5.材料参数: 回填土湿容重γs=18.00kN/m3,回填土浮容重γf=10.00kN/m3 混凝土强度等级:C15 钢筋强度等级:一级,保护层厚度as = 0.050 m 地基允许承载力[σo] = 300.00 kPa 6.荷载计算参数: 淤沙浮容重γy=17.00kN/m3,淤沙内摩擦角φs =15.00 度

五种常见挡土墙的设计计算实例

挡土墙设计实例 挡土墙是指支承路基填土或山坡土体、防止填土或土体变形失稳的构造物。在挡土墙横断面中,与被支承土体直接接触的部位称为墙背;与墙背相对的、临空的部位称为墙面;与地基直接接触的部位称为基地;与基底相对的、墙的顶面称为墙顶;基底的前端称为墙趾;基底的后端称为墙踵。 根据挡土墙的设置位置不同,分为路肩墙、路堤墙、路堑墙和山坡墙等。设置于路堤边坡的挡土墙称为路堤墙;墙顶位于路肩的挡土墙称为路肩墙;设置于路堑边坡的挡土墙称为路堑墙;设置于山坡上,支承山坡上可能坍塌的覆盖层土体或破碎岩层的挡土墙称为山坡墙。 本实例中主要讲述了5种常见挡土墙的设计计算实例。 1、重力式挡土墙 ------------------------------------------------------------------------ 原始条件: 墙身尺寸: 墙身高: 6.500(m) 墙顶宽: 0.660(m)

面坡倾斜坡度: 1:0.250 背坡倾斜坡度: 1:0.200 采用1个扩展墙址台阶: 墙趾台阶b1: 0.300(m) 墙趾台阶h1: 0.500(m) 墙趾台阶与墙面坡坡度相同 墙底倾斜坡率: 0.200:1 物理参数: 圬工砌体容重: 23.000(kN/m3) 圬工之间摩擦系数: 0.400 地基土摩擦系数: 0.500 砌体种类: 片石砌体 砂浆标号: 5 石料强度(MPa): 30 挡土墙类型: 一般挡土墙 墙后填土内摩擦角: 35.000(度) 墙后填土粘聚力: 0.000(kPa) 墙后填土容重: 19.000(kN/m3) 墙背与墙后填土摩擦角: 17.500(度) 地基土容重: 18.000(kN/m3) 修正后地基土容许承载力: 500.000(kPa) 地基土容许承载力提高系数: 墙趾值提高系数: 1.200 墙踵值提高系数: 1.300 平均值提高系数: 1.000 墙底摩擦系数: 0.500 地基土类型: 土质地基 地基土内摩擦角: 30.000(度) 土压力计算方法: 库仑 坡线土柱: 坡面线段数: 2 折线序号水平投影长(m) 竖向投影长(m) 换算土柱数 1 3.000 2.000 0 2 5.000 0.000 0 坡面起始距离: 0.000(m) 地面横坡角度: 20.000(度) 墙顶标高: 0.000(m) 挡墙分段长度: 10.000(m) ===================================================================== 组合1(仅取一种组合计算)

(完整版)挡土墙结构算例.doc

4.3 重力式挡土墙 4.3.1 适用条件及设计原则 为防止土体坍滑,路线沿线应设置挡土墙,本例形式为重力式仰斜路肩墙, 具体尺寸如下: 拟采用浆砌片石重力式路肩墙,如上图所示,墙高H=6m( 未计倾斜基底)。 墙后填土容重为19KN / m3,内摩擦角45 ,砌体容重k23KN / m3 4.3.2 构造设计 重力式挡土墙拟定计算图示如下: 图 4.1重力式挡土墙拟定计算示意图 θ 4.3.3 计算方法及步骤 1)按墙高确定的附加荷载强度进行换算: q h0,q插求得q=15KPa 所以 h00.789m 2)土压力计算:

10 , 35 23 , 45 E a 1 H 2 K a 1 H 2 cos 2 2 2 2 cos 2 cos 1 sin sin cos cos 168.966KN E ax E a cos( ) 168.966 cos 10 23 142.504 KN E ay E a sin( ) 168.966 sin 10 23 90.785KN E p 1 H 2K p 1 H 2 cos 2 2 2 2 cos 2 cos 1 sin sin cos cos 37.511KN E px E p cos( ) 37.511 cos 23 10 36.622KN E py E p sin( ) 37.511 sin 23 10 8.119KN 3) 挡土墙截面验算 如设计图,墙顶宽 1.0m 。 ① 计算墙身重及其力臂 Z G ,计算结果如下: S 1 1 6 1 1 6 1.06 1 6 3.18 10.18m 2 2 G S 20 10.18 1 203.6 KN 倾斜基底,土压力对墙趾 O 的力臂为: Z y 2.0m Z x 2 2.12 / 3 2.71m ② 抗滑稳定性 1.1G Q1 E y E x tan 0 Q 2 E p tan 0 1.1G Q1 E y tan 0 Q1 E xQ 2 E p 72.210KN 所以抗滑稳定性满足要求 ③ 抗倾覆稳定性验算:

悬臂式挡土墙计算书

悬臂式挡土墙计算书项目名称__________________________ 设计_____________校对_____________审核_____________ 计算时间 2017年11月3日(星期五)18:21 图 1 一、设计数据和设计依据 1.基本参数 挡土墙类型: 一般地区挡土墙 墙顶标高: 1.100m 墙前填土面标高: 0.000m 2.土压力计算参数

土压力计算方法: 库伦土压力 主动土压力增大系数: λE = 1.0 3.安全系数 抗滑移稳定安全系数: K C = 1.30 抗倾覆稳定安全系数: K0 = 1.60 4.裂缝控制 控制裂缝宽度: 否 5.墙身截面尺寸 墙身高: H = 2.100m 墙顶宽: b = 0.250m 墙面倾斜坡度: 1:m1 = 1:0.0000 墙背倾斜坡度: 1:m2 = 1:0.0000 墙趾板长度: B1 = 0.500m 墙踵板长度: B3 = 0.500m 墙趾板端部高: h1 = 0.400m 墙趾板根部高: h2 = 0.400m 墙踵板端部高: h3 = 0.400m 墙踵板根部高: h4 = 0.400m 墙底倾斜斜度: m3 = 0.000 加腋类型: 两侧加腋 墙面腋宽: y1 = 0.000m 墙面腋高: y2 = 0.000m 墙背腋宽: y3 = 0.000m 墙背腋高: y4 = 0.000m 6.墙身材料参数 混凝土重度: γc = 25.00 KN/m3 混凝土强度等级: C30 墙背与土体间摩擦角: δ = 17.50° 土对挡土墙基底的摩擦系数: μ = 0.600 钢筋合力点至截面近边距离: a s = 35 mm 纵向钢筋级别: HRB400 纵向钢筋类别: 带肋钢筋 箍筋级别: HRB400 7.墙后填土表面参数 表 1 墙后填土表面参数 坡线编号与水平面夹角 (°) 坡线水平投影长 (m) 坡线长 (m) 换算土柱数 1 0.00 2.00 2.00 0.00 表 2 换算土柱参数 土柱编号距坡线端部距离 (m) 土柱高度 (m) 土柱水平投影长 (m) 8.墙后填土性能参数 表 3 墙后填土性能参数 层号土层名称层厚 (m) 层底标高 (m) 重度γ (kN/m3) 粘聚力c (kPa) 内摩擦角φ (°) 1 中砂7.000 -5.900 18.00 2.00 35.00 9.地基土参数 地基土修正容许承载力: f a = 260.00kPa 基底压力及偏心距验算: 按基底斜面长计算 10.附加外力参数 是否计算附加外力: 否

挡土墙计算

6.2 挡土墙土压力计算 6.2.1 作用在挡土墙上的力系 挡土墙设计关键是确定作用于挡土墙上的力系,其中主要是确定土压力。 作用在挡土墙上的力系,按力的作用性质分为主要力系、附加J力和特殊力. 主要力系是经常作用于挡土墙的各种力,如图6—11所示, 它包括: 1.挡土墙自重G及位于墙上的衡载; 2.墙后土体的主动土压力Ea(包括作用在墙后填料破裂棱体上的荷载,简称超载); 3.基底的法向反力N及摩擦力T; 4.墙前土体的被动土压力Ep . 对浸水挡土墙而言,在主要力系中尚应包括常水位时的静水压力和浮力。 附加力是季节性作用于挡土墙的各种力,例如洪水时的静水压力和浮力、动力压力、波浪冲击力、冻胀压力以及冰压力等。 特殊力是偶然出现的力,例如地震力、施工荷载、水流漂浮物的撞击力等。 在一般地区,挡土墙设计仅考虑主要力系.在浸水地区还应考虑附加力,而在地震区应考虑地震对挡土墙的影响。各种力的取舍,应根据挡土墙所处的具体工作条件,按最不利的组合作为设计的依据。 6.2.2 一般条件下库伦(coulomb)主动土压力计算 土压力是挡土墙的主要设计荷载。挡土墙的位移情况不同,可以形成不同性质的土压力(图6—12)。当挡土墙向外移动时(位移或倾覆),土压力随之减少,直到墙后土体沿破裂面下滑而处于极限平衡状态,作用于墙背的土压力称主动土压力;当墙向土体挤压移动,土压力随之增大,上体被推移向上滑动处于极限平衡状态,此时土体对墙的抗力称为被动土压力;墙处于原来位置不动,土压力介于两者之间,称为静止土压力.

采用哪种性质的土压力作为档土墙设计荷载,要根据挡土墙的具体条件而定。 路基档土墙一般都可能有向外的位移或倾覆,因此在设计中按墙背土体达到主动极限平衡状态,且设计时取一定的安全系数,以保证墙背土体的稳定。对于墙趾前土体的被动土压力Ep, 在挡土墙基础一般埋深的情况下,考虑到各种自然力和人畜活动的作用,一般均不计,以偏于安全. 主动土压力计算的理论和方法,在土力学中已有专门论述,这里仅结合路基挡土墙的设计,介绍库伦土压力计算方法的具体应用。 (一)各种边界条件下主动土压力计算 路基挡土墙因路基形式和荷载分布的不同,土压力有多种计算图式. 以路堤挡土墙为例,按破裂面交于路基面的位置不同,可分为5种图示:破裂面交于内边坡,破裂面交于荷载的内侧、中部和外侧,以及破裂面交于外边坡。兹分述如下: 1.破裂面交于内边坡(图6—13) 这一图式适用于路堤式或路堑式挡土墙。图中AB为挡土墙墙背,BC为破裂面,BC与铅垂线的夹角θ为破裂角,ABC为破裂棱 体。棱体上作用着三个力,即破裂棱体自重G、主动土压力的反力Ea和破裂面上的反力R。Ea的方向与墙背法线成δ角,且偏于阻止棱体下滑的方向; R的方向与破裂面法线成φ角,且偏于阻止棱体下滑的方向。取挡土墙长度为1m计算,作用于棱体上的平衡力三角形abc可得:

仰斜重力式挡土墙计算书

重力式挡土墙计算书 计算项目: 俯斜式路肩墙 一、设计资料 墙身尺寸: 如图1-1 墙身高: H=4.0(m) 墙顶宽: b=1.5(m) 面坡倾斜坡度: 1:0 背坡倾斜坡度: 1:0.25 墙底宽:B=2.5(m) 物理参数: 圬工砌体容重: )/(0.233m kN r =墙 地基土摩擦系数: f=0.4 图1-1 砌体种类: 片石砌体 砂浆标号: M7.5 石料极限抗压强度(MPa): 3.0 挡土墙类型: 一般挡土墙 墙后填土内摩擦角: 填?=35° 墙后填土粘聚力: 0(kPa) 墙后填土容重: )/(0.183m kN r =填 墙背与墙后填土摩擦角: ?δ==35° 地基土容重: )/(0.193m kN r =基 地基土容许承载力: []0σ=250.0(kPa) 墙底摩擦系数: μ=0.4 地基土类型: 土质地基 地基土内摩擦角: =基?35° 土压力计算方法: 库仑土压力 二、车辆荷载等代均布土层厚度换算 查《公路路基设计规范》(JTG D30—2004)(以下简称《路基规范》)得:公式5.4.2-3 r q h =0 其中 q --车辆荷载附加荷载强度,墙高小于2m ,取20kN/m 2;墙高大于10m ,取10 kN/m 2; 墙高在2~10m 之间时,附加荷载强度用直线内插法计算。 r --墙背填土的重度 代入数值计算得 972.018 5.170 ==h m 三、土压力计算 1、计算破裂角

假设破裂面交于荷载内,墙体受力如图3-1。查《路基设计手册》取计算公式如下: ))((A tg tg ctg tg tg ++±-=ψψ?ψθ δα?ψ++=, αtg A -= 04.843504.1435=++=ψ25 .0-=A 684.102579.9±-=θtg (-19.712)554.0= 29=θ (或 1.87-=θ 舍去) 验算破裂面位置 破裂面顶端距墙顶内缘的距离为: 图3-1 m tg tg H 5.5204.3)554.025.0(4)(<=+?=+θα 破裂面角于荷载内,与假设相符,采用公式正确。 2、计算主动土压力系数,查《路基设计手册》取计算公式如下: 487.0899 .0438.0)()sin()cos(==+++=αθ?θ?θtg tg K 486.14 972.0212101=?+=+=H h K 3、计算土压力E 及作用点位置Zx Zy ,(相对于墙趾的力臂),查《路基设计手册》取计算公式如下: kN KK H r E 210.104486.1487.04182 121212=????==填 kN E E x 362.68656.0210.104)cos(=?=+=?α kN E E y 679.78755.0210.104)sin(=?=+=?α m K h H Z x 551.1486 .13972.034330=?+=+= m tg Z B Z x y 112.225.0551.15.2=?-=-=α 四、挡土墙稳定性验算 应用方法:极限应力法 组合Ⅰ =============================================

挡土墙计算模板

二、挡土墙计算书 (一)、荷载计算 1.设计资料 挡土墙高度: m H 7.2= 室外堆载:2/10m KN P g = 2.荷载计算 21/10m KN P q g == 2012/3.347.2185.010m KN H k q q =??+=+=γ (以下计算方法源于静力计算手册) KN H q q R A 69.1640 7.2)3.3441011(40)411(21=??+?=+= m KN H q q M B ?-=??+?-=+-=3.103120 6)3.348107(120)87(2 221 2120/3.24103.34m KN q q q =-=-= 291.03 .341021===q q μ 583.020 4291.07291.092047922=+?+?=++=μμυ

m l x 11.17.2291 .01291.0583.010=?--=--=μμυ 7.2611.13.24211.11011.169.16623 23002010max ??-?-?=--=H x q x q x R M A m KM ?=31.10 (二)、墙体配筋计算 1、基本计算条件 m KN M B ?-=3.103 m KN M ?=31.10max 取1m 宽板带进行计算,构件截面尺寸为:mm mm h b 2501000?=? 混凝土等级为:C30(2/3.14mm N f c =) 钢筋等级为:HRB335级()300MPa f y = 混凝土保护层厚度:a s =35mm 2、配筋计算 (1) 支座处外侧: mm a h h s 215352500=-=-= 156.0215 10003.14103.10326 201=???==bh f M c s αα 171.0156.0211211=?--=--=s αξ 2101752300 3.142151000171.0mm f f bh A y c s =???==αξ (2) 跨中内测: mm a h h s 215352500=-=-= 016.0215 10003.141031.1026 201=???==bh f M c s αα 016.0016.0211211=?--=--=s αξ 2101643003.142151000016.0mm f f bh A y c s =???==αξ 实配钢筋:跨中 16@150,支座处: 16@150

挡土墙计算算例

挡土墙计算算例

第8章路基防护与支挡 合理的路基设计,应在路基位置、横断面尺寸、岩土组成等方面进行综合考虑。为确保路基的强度与稳定性,路基的防护,同样也是不可缺少的工程技术措施。为维护正常的交通运输,减少公路病害,确保行车安全,保持公路与自然环境协调,路基的加固更具有重要意义。路基防护应按照设计施工与养护相结合的原则,根据当地气候环境、工程地质和材料等情况,选用适当的工程类型或采用相应的综合措施。 为保持结构物两侧土体、物料有一定高差的结构称为支挡结构。支挡结构在各种土建工程中得到了广泛的应用,如公路、铁路、桥台、水利、港湾工程的河岸及水闸的岸强,建筑工程的地下连续墙、开挖支撑等。随着大量土木工程在地形较为复杂的地区的兴建,支挡结构愈加显得重要。支挡结构的设计,将直接影响到工程的经济效益和安全。路基的支档结构设计应满足在各种设计荷载组合下支档结构的稳定、坚固和耐久;结构类型选择以及位置确定应安全可靠、经济合理、便于施工养护;结构材料应符合耐久、耐腐蚀的要求。 8.1 坡面防护 路基防护与加固措施,主要有边坡坡面防护、沿河路堤防护与加固以及湿软地基的加固处治。本设计路段无不良地质情况,故只对路基采取防护措施。 K14+686.256~K14+740.000路段为深挖路堑路段,综合考虑当地气候环境、工程地质和材料供应等情况,故在此选用骨架植物防护措施。在骨架植物防护的各种类型中采用水泥混凝土骨植草护坡措施。K14+686.256~K14+740.000路段边坡为土质边坡,坡度均缓于1:0.75,分别有1:1.0、1:1.5、1:1.75三种。骨架形式为菱形,框架内采用植草辅助防护措施。 8.2 挡土墙 以刚性角较大的墙体支撑填土和物料并保证其稳定性的支挡结构称为挡土墙(简称挡墙);而对于具有一定柔性的结构,如板桩墙、开挖支撑称为柔性挡土墙或支护结构。本设计路段主要有挡土墙的设计。挡土墙具有阻挡墙后土体下滑,保护路基和收缩坡脚等功能。在路基工程中,挡土墙用来克服地形或地物的限制和干扰,减少土石方、拆迁和占地数量,防止填土挤压河床和水流冲刷岸边,整治坡体下滑等病害。 挡土墙的适用范围: (1)路堑开挖深度较大,山坡陡峻,用以降低边坡高度,减少山坡开挖,避免破坏山体平衡;

挡土墙的计算方法

挡土墙计算方法 挡土墙的形式多种多样,按结构特点可分为:重力式、衡重式、轻型式、半重力式、钢悬臂式、扶壁式、柱板式、锚杆式、锚定板式及垛式等类型。当墙高<5时,采用重力式挡土墙,可以发挥其形式简单,施工方便的优势。所以这里只介绍应用最为广泛的重力式挡土墙的设计计算方法。 一:基础资料 1. 填料内摩擦角。当缺乏试验数据时,填料的内摩擦角可参照表一选用。 表一:填料内摩擦角ψ 3. 墙背摩擦角δ(外摩擦角) 填土与墙背间的摩擦角δ应根据墙背的粗糙程度及排水条件确定。对于浆砌片石墙 体、排水条件良好,均可采用δ=ψ/2。 1)按DL5077-1997〈水工建筑物荷载设计规范〉及SL265-2001〈水闸设计规范〉 ??? ?? ? ?-=-=-=-=?δ?δ?δ?δ)(时:墙背与填土不可能滑动)(时:墙背很粗糙,排水良好 )(:墙背粗糙,排水良好时 )(:墙背平滑,排水不良时 0.167.067.05.05.033.033.00 从经济合理的角度考虑,对于浆砌石挡土墙,应要求施工时尽量保持墙后粗糙,可采用δ值等于或略小于?值。 ξ:填土表面倾斜角;θ:挡土墙墙背倾斜角;?:填土的内摩擦角。 ` 4. 基底摩擦系数 基底摩擦系数μ应依据基底粗糙程度、排水条件和土质确定。 5. 地基容许承载力

地基容许承载力可按照《公路设计手册·路基》及有关设计规范规定选取。 6. 建筑材料的容重 根据有关设计规范规定选取。 7. 砌体的容许应力和设计强度 根据有关设计规范规定选取。 8. 砼的容许应力和设计强度 根据有关设计规范规定选取。 二:计算 挡土墙设计的经济合理,关键是正确地计算土压力,确定土压力的大小、方向与分布。土压力计算是一个十分复杂的问题,它涉及墙身、填土与地基三者之间的共同作用。计算土压力的理论和方法很多。由于库伦理论概念清析,计算简单,适用范围较广,可适用不同墙背坡度和粗糙度、不同墙后填土表面形状和荷载作用情况下的主动土压力计算,且一般情况下计算结果均能满足工程要求,因此库伦理论和公式是目前应用最广的土压力计算方法。填土为砂性土并且填土表面水平时,采用朗肯公式计算土压力较简单。 土压力分为主动、被动、静止土压力,为安全计,应按主动土压力计算。 1)库伦主动土压力公式: a K H F 22 1 γ= )cos(δε+=F F H )sin(δε+=F F V 2 2 2)cos()cos()sin()sin(1)(cos cos ) (cos ? ? ? ???-+-+++-= βεδεβ?δ?δεεε?a K ε:墙背与铅直面的夹角,β:墙后回填土表面坡度。 2)朗肯主动土压力公式: a K H F 22 1 γ= )2/45(2?-=o a tg K 注意:F 为作用于墙背的水平主动土压力,垂直主动土压力按墙背及后趾以上的土重计算。 3)回填土为粘性土时的土压力 按等值内摩擦角法计算主动土压力,可根据工程经验确定,也可用公式计算。 经验确定时: 挡土墙高度<6m 时,水上部分的等值内摩擦角可采用280 ~300,地下水位以下部分的等 值内摩擦角可采用250 ~280。挡土墙高度>6m 时,等值内摩擦角随挡土墙高度的加大而相应降低,具体可参照SL265-2001〈水闸设计规范〉。 公式计算时:

【精选】扶壁式挡土墙计算实例

本算例来自于: 书名特种结构 作者黄太华袁健成洁筠 出版社中国电力出版社 书号5083-8990-5 丛书普通高等教育“十一五”规划教材 扶壁式挡土墙算例 某工程要求挡土高度为8.3m,墙后地面均布荷载标准值按qk =10 kN / m2 考虑, 墙后填土为砂类土,填土的内摩擦角标准值jk = 35 o,填土重度g m =18 kN / m3 ,墙后 填土水平,无地下水。地基为粘性土,孔隙比e =0.786 ,液性指数IL =0.245 ,地基

承载力特征值fak =230 kPa ,地基土重度g=18.5kN / m3 。根据挡土墙所处的地理位 置及墙高等因素综合考虑,选择采用扶壁式挡土墙,挡土墙安全等级为二级,试设计该挡土墙。 解: IL = 0.245 <0.25 属坚硬粘性土,土对挡土墙基底的摩擦系数m.(0.35,0.45) , 取m=0.35 。查规范得hb =0.3 、hd =1.6 。 1)主要尺寸的拟定 为保证基础埋深大于0.5m,取d=0.7m,挡土墙总高H=8.3m+d=9m。两扶壁净距ln 取挡墙高度的1/3~1/4,可取ln=3.00 ~ 2.25 m,取ln=3.00m。 用墙踵的竖直面作为假想墙背,计算得主动土压力系数 2 jk 2 35 °

Ka = tan (45 °-) = tan (45 °-) = 0.271 22 根据抗滑移稳定要求,按式(3-6)计算得:22 ka B2 + B3 3 1.3( qH + 0.5g H )K = 1.3′(10 ′9 + 0.5′18′9) ′0.271 = 4.79 ,取

挡土墙计算算例

第8章路基防护与支挡 合理的路基设计,应在路基位置、横断面尺寸、岩土组成等方面进行综合考虑。为确保路基的强度与稳定性,路基的防护,同样也是不可缺少的工程技术措施。为维护正常的交通运输,减少公路病害,确保行车安全,保持公路与自然环境协调,路基的加固更具有重要意义。路基防护应按照设计施工与养护相结合的原则,根据当地气候环境、工程地质和材料等情况,选用适当的工程类型或采用相应的综合措施。 为保持结构物两侧土体、物料有一定高差的结构称为支挡结构。支挡结构在各种土建工程中得到了广泛的应用,如公路、铁路、桥台、水利、港湾工程的河岸及水闸的岸强,建筑工程的地下连续墙、开挖支撑等。随着大量土木工程在地形较为复杂的地区的兴建,支挡结构愈加显得重要。支挡结构的设计,将直接影响到工程的经济效益和安全。路基的支档结构设计应满足在各种设计荷载组合下支档结构的稳定、坚固和耐久;结构类型选择以及位置确定应安全可靠、经济合理、便于施工养护;结构材料应符合耐久、耐腐蚀的要求。 8.1 坡面防护 路基防护与加固措施,主要有边坡坡面防护、沿河路堤防护与加固以及湿软地基的加固处治。本设计路段无不良地质情况,故只对路基采取防护措施。 K14+686.256~K14+740.000路段为深挖路堑路段,综合考虑当地气候环境、工程地质和材料供应等情况,故在此选用骨架植物防护措施。在骨架植物防护的各种类型中采用水泥混凝土骨植草护坡措施。K14+686.256~K14+740.000路段边坡为土质边坡,坡度均缓于1:0.75,分别有1:1.0、1:1.5、1:1.75三种。骨架形式为菱形,框架内采用植草辅助防护措施。 8.2 挡土墙 以刚性角较大的墙体支撑填土和物料并保证其稳定性的支挡结构称为挡土墙(简称挡墙);而对于具有一定柔性的结构,如板桩墙、开挖支撑称为柔性挡土墙或支护结构。本设计路段主要有挡土墙的设计。挡土墙具有阻挡墙后土体下滑,保护路基和收缩坡脚等功能。在路基工程中,挡土墙用来克服地形或地物的限制和干扰,减少土石方、拆迁和占地数量,防止填土挤压河床和水流冲刷岸边,整治坡体下滑等病害。 挡土墙的适用范围: (1)路堑开挖深度较大,山坡陡峻,用以降低边坡高度,减少山坡开挖,避免破

挡土墙尺寸计算

解:(1)用库伦理论计算作用在墙上的主动土压力 已知:φ=30°,α=10°,β=0°,δ=15° 由公式计算得K a=0.4 主动土压力 E a=1/2γH2K a =1/2×18.5×52×0.4 =92.5kn/m 土压力的垂直分力 E az=E a sin(δ+α) =92.5sin25 =39.09kn/m 土压力的水平分力 E az=E a cos(δ+α) =92.5cos25 =83.83kn/m (2)挡土墙断面尺寸的选择 根据经验初步确定强的断面尺寸时,重力式挡土墙的顶宽约为1/12×H,底宽约为(1/2~1/3)H.设顶宽b1=0.42m,可初步确定底宽B=2.5m. 墙体自重为 G=1/2(b1+B)HγG=1/2(0.42+2.5) ×5×24=175.2kn/m (3)滑动稳定性验算 查表得,基底摩擦系数μ=0.4,由公式求得抗滑动稳定安全系数: K s=(G+E ay)μ/E ax=(175.2+39.09) ×0.4/83.83=1.02<1.3 其结果不满足抗滑稳定性要求,应修改断面尺寸,取顶宽b1=0.5m,底宽B=3.5m,再进行上述验算,此时墙体自重为: G=1/2(b1+B)HγG=1/2(0.5+3.5) ×5×24=240 kn/m K s=(G+E ay)μ/E ax=(240+39.09) ×0.4/83.83=1.33>1.3 满足抗滑稳定要求 (4)倾覆稳定验算 求出自重G的重心距离墙趾O点距离X0=0.77,土压力水平分力的力臂Hf=H/3=5/3m,土压力垂直分力力臂Xf=3.2,求得抗倾覆安全系数为 Kt=(GXo+EazXf)/ EaxHf=(240×0.77+39.09×3.2)/83.83×5/3 =2.22>1.6 抗倾覆验算满足要求,且安全系数较大,可见一般挡土墙抗倾覆稳定性验算,满足要求。 (4)地基承载力验算 作用在基础底面上总得垂直力 N=G+Eay=240+39.09=279.09 合力作用点距离o点的距离 C=(GXo+EazXf- EaxHf)/N=(240×0.77+39.09×3.2-83.83×5/3)/279.09 =0.6 偏心距e=B/2-C=3.5/2-0.6=1.15>B/6=0.58 基底压力P max min=N/A[1±6e/B]

1.悬臂式挡土墙计算书

高速公路桩基及支挡结构设计 悬臂式挡土墙设计计算 1.1工程地质资料 公路江门段K23+000--K23+110 地面标高:150.00m ;挡墙顶面标高:155.00m 地层顺序: 1.种植土含腐殖质约0.4m ; 2.低液限粘土:可-硬塑,厚度大于1.0m ;地基容许承载力200-250KPa; 3.泥岩全风化。呈硬塑状,厚度大于2.3m,地基容许承载力250KPa. 4. 硅化灰岩:弱风化层,岩质较硬,厚度大于3.2m ,地基容许承载力800KPa -1200KPa; 1.2设计资料 悬臂式路肩挡土墙 墙高6m ,顶宽b=0.25m ,力壁面坡坡度1:m=1:0.05,基础埋深h=1m 。 墙背填土重度γ=18kN/m 3 ,内摩擦角φ=30°。地基土内摩擦角φD =30°,摩擦系数f=0.4,容许承载力[σ]=250KPa 活荷载为公路-Ⅱ级,其等代土层厚度h 0=0.7m 。抗滑动和抗倾覆安全系数K c ≧1.3,K 0≧1.5。 钢筋混凝土结构设计数据 (1)混凝土标号C15,R=15MPa ,抗压设计强度R a =8500kPa ,弹性模量E h =2.3×107kPa ,抗拉设计强度R l =1.05MPa (2)I 级钢筋抗拉设计强度R g =2.4×105kPa ,弹性模量E g =2.1×108kPa (3)裂缝容许宽度δmax =0.2mm 。 2.土压力计算 由朗金公式计算土压力(β=0°) 得全墙土压力E 及力臂y 为 333 .030cos 1130cos 111cos cos cos cos cos cos cos 2 22 2 22=? -+?--? =-+--=? ββ?βββ a K kPa K H h kPa K h a H a h 16.40333.0)67.0(18)(27.3271.067.018000=?+?=+==??==γσγσH H h kN K H h H E a 6)67.03()3(07.133333.0)87 .021(61821)21(210202?+?+=??+???=+=γ

挡土墙算例

计算书 设计资料: 1.设计路线K58+070――K58+130,傍山路线,设计高程均为1654.50,山坡为砾石地层,附近有开挖石方路堑的石灰岩片石供作挡土墙材料。 5.墙体用50号砂浆砌片石,容重为γ=22.5千牛/米,容许压应力(σ)=2450千帕, 容许剪应力(τ)=862.4千帕,外摩阻角δ=Φ/2=17.5°. 6.设计荷载用汽――15,验算荷载用挂――80。 7.稳定系数:滑动稳定系数[Kc]=1.3,[Ko]=1.5. 墙体选择 选择路肩墙,因为通过试算判断,路堤墙的墙高比路肩墙要高,又因其所处地形横坡陡峻,墙背采用俯斜式,可以利用陡直墙面减小墙高、减少占地。若采用仰斜式,虽然墙后

压力较俯斜式小,但其较小的墙体自重不能提供足够的抗倾覆能力。因此在K58+80和K58+120处采用俯斜式路肩墙。 计算步骤 K58+80和K58+120处 初步选定的尺寸为: L =Htanθ+Htanα=6×0.443+6×0.325=4.6073m(<5.5+0.5=6m,所以破裂面交在荷载0 内)。 (2)纵向分布长度B 由规范可知,可设其分布长度为15m. (3)计算等代均布土层厚度 L=7.0m,重车在破裂棱体内能布置两辆。ΣG=700N. 车轮中心距路基边缘0.5m,

0h =ΣG/B 0L γ=400/(8.6×5.5×18.6)=0.456m 2) 验算荷载 挂车-80,0h =0.64m ,布置在路基全宽。 2、主动土压力计算 1)设计荷载 θ=24.00° 破裂棱体宽度L0=6×0.445+6×tan18°=4.622m (<7m,与假设相符)。 cos()0.515 (tan tan )0.7700.398sin()0.997K θ?θαθω+=+=?=+ 1tan tan d h θα = +=0

确定挡土墙尺寸

(1)确定挡土墙尺寸 顶宽为2米,高度6米,墙身墙背坡度为1:0.25,基底坡度为1:5 (2)取一米墙长为计算单元,计算墙重 1G =5.043×2×25=252.15KN 2G =0.5×2.4×25=30KN 3G =0.5×2.4×0.457×25=13.71KN G =1G +2G +3G =295.86KN (3)截面各部分重心至墙趾的距离 1Z =1+5.043×0.5×0.25+0.4+0.5×0.25=2.155m 2Z =1.2+0.5×0.25×0.5=1.2625m 3Z =(2.286+2.4)/3=1.562m 0Z =(1G ×1Z +2G ×2Z +3G ×3Z )/G =2.01m (4)再求土压力 a k =2tan (45-Φ/2)=2tan (45-34/2)=0.28 墙顶处a σ=3.5×0.28=0.98KPa 墙底处a σ=(3.5+18.2×6)×0.28=31.556KPa 土压力a E =1a E +2a E =0..98×6+31.556×6=97.608m KN / α=-14 δ=o.5ρ=17 ay E =97.608sin 3 ax E =97.608cos 3 作用点 f Z =∑ai E i Z /∑ai E =2.06m f X =2×0.25+2.4=2.915m

(5)抗滑移验算 (ay E G +)μ/a E =1.54>1.3 (6)抗倾覆验算 0x G +ax E f x =抗倾覆M =252.15×2.155+30×1.2625+13.71×1.562+97.608sin 3×2.915=617.56m ?KN ax E f Z =倾覆M =97.608cos 3×2.06=200.8m ?KN (0x G +ax E f x )/ax E f Z =3.076>1.5 因此墙体稳定性验算合格

相关文档
最新文档