生产者消费者问题设计

生产者消费者问题设计
生产者消费者问题设计

一、设计目的

本课程设计是学习完“操作系统原理”课程后进行的一次全面的综合训练,

通过课程设计,更好地掌握操作系统的原理及实现方法,加深对操作系统基础理

论和重要算法的理解,加强学生的动手能力。

二、设计内容

(1)概述

设计目的:通过研究Linux 的进程机制和信号量实现生产者消费者问题的

并发控制。

说明:有界缓冲区内设有20个存储单元,放入/取出的数据项设定为1-20这

20个整型数。

设计要求:(1)每个生产者和消费者对有界缓冲区进行操作后,即时显示有界

缓冲区的全部内容,当前指针位置和生产者/消费者县城的标识符。(2)生产者和

消费者各有两个以上。(3)多个生产者或多个消费者之间须有共享对缓冲区进行

操作的函数代码。

(2)设计原理

通过一个有界缓冲区把生产者和消费者联系起来。假定生产者和消费者的优先级是相同的,只要缓冲区未满,生产者就可以生产产品并将产品送入缓冲区。类似地,只要缓冲区未空,消费者就可以从缓冲区中取走产品。应该禁止生产者向满的缓冲区送入产品,同时也应该禁止消费者从空的缓冲区中取出产品,这一机制有生产者线程和消费者线程之间的互斥关系来实现。与计算打印两进程同步关系相同,生产者和消费者两进程P和C之间应满足下列两个同步条件:

①只有在缓冲池中至少有一个缓冲区已存入消息后,消费者才能从中提取信息,

否则消费者必须等待。

②只有缓冲池中至少有一个缓冲区是空时,生产者才能把消息放入缓冲区,否则

生产者必须等待。

为了满足第一个同步条件,设置一个同步信号量full,它代表的资源是缓冲区满,它的初始值为0,它的值为n时整个缓冲池满。这个资源是消费者类进程C所有,C进程可以申请该资源,对它施加P操作,而C进程的合作进程生产者进程P对它施加V操作。同样为了满足第二个同步条件,设置另一个同步信号量empty,它代表的资源是缓

冲空区,它的初始值为n,表示缓冲池中所有缓冲区空。信号量full表示可用缓冲区数量,信号量empty表示缓冲区数量,设置整型变量:存入指针in和取出指针out。

为解决生产者/消费者问题,应该设置两个资源信号量,其中一个表示空缓冲区的数目,用g_hFullSemaphore表示,其初始值为有界缓冲区的大小SIZE_OF_BUFFER;另一个表示缓冲区中产品的数目,用g_hEmptySemaphore表示,其初始值为0.另外,由于有界缓冲区是一个临界资源,必须互斥使用,所以还需要在设置一个互斥信号量

g_hMutex,初始值为1.

P原语的主要动作是:

①sem减1;

②若sem减一后仍大于或等于零,则进程继续执行;

③若sem减一后小于零,则该进程被阻塞后入与该信号相对应的队列

中,然后转进程调度。

V原语的操作主要动作是:

①sem加1;

②若相加结果大于零,进程继续执行;

③若相加结果小于或等于零,则从该信号的等待队列中唤醒一等待进程

然后再返回原进程继续执行或转进程调度。

采用的同步方法:

1)利用函数CreateMutex(NULL,FALSE,NULL)创建互斥信号量g_hMutex,表

示缓冲区当前的状态,若为true时,则表示缓冲区正被别的进程使用。三个参

数表示的意义分别为:指向安全属性的指针,初始化互斥对象的所有者,指向互

斥对象名的指针。

2)利用函数CreateSemaphore(NULL,SIZE_OF_BUFFER-1,SIZE_OF_BUFFER-1, NULL)创建缓冲区满的信号量g_hFullSemaphore,值为true时表示缓冲区已满。四

个参数分别为:表示是否允许继承、设置信号机的初始计数、设置信号机的最

大计数、指定信号机对象的名称(-1是因为计数从开始)。

3)利用函数CreateSemaphore(NULL,0,SIZE_OF_BUFFER-1,NULL)创建缓冲

区空的信号量g_hEmptySemaphore,该值为true时表示缓冲区为空。

5、数据定义及其详细解释

const unsigned short SIZE_OF_BUFFER = 20; //缓冲区长度

unsigned short ProductID = 0; //产品号

unsigned short ConsumeID = 0; //将被消耗的产品号

unsigned short in = 0; //产品进缓冲区时的缓冲区下标 unsigned short out = 0; //产品出缓冲区时的缓冲区下标 int g_buffer[SIZE_OF_BUFFER]; //缓冲区是个循环队列

bool g_continue = true; //使程序跳出循环,控制程序结束

HANDLE g_hMutex; //用于线程间的互斥

HANDLE g_hFullSemaphore; //当缓冲区满时迫使生产者等待

HANDLE g_hEmptySemaphore; //当缓冲区空时迫使消费者等待 DWORD WINAPI Producer(LPVOID); //生产者线程

DWORD WINAPI Consumer(LPVOID); //消费者线程

(3)详细设计及编码

流程图

生产者:

消费者:

sem=sem-1

入口

s>=0

调用进程入等待队列

转进程调度

返回

程序清单

1.存储结构定义

利用信号量解决生产者消费者问题

const unsigned short SIZE_OF_BUFFER = 10; //缓冲区长度

unsigned short ProductID = 0; //产品号

unsigned short ConsumeID = 0; //将被消耗的产品号

unsigned short in = 0; //产品进缓冲区时的缓冲区下标

unsigned short out = 0; //产品出缓冲区时的缓冲区下标

int g_buffer[SIZE_OF_BUFFER]; //缓冲区是个循环队列

bool g_continue = true; //控制程序结束

HANDLE g_hMutex; //用于线程间的互斥

HANDLE g_hFullSemaphore; //当缓冲区满时迫使生产者等待

HANDLE g_hEmptySemaphore; //当缓冲区空时迫使消费者等待

DWORD WINAPI Producer(LPVOID); //生产者线程

DWORD WINAPI Consumer(LPVOID); //消费者线程

2.算法相关的函数

(1)创建各个互斥信号以及生产者线程和消费者线程的函数在如下主函数里面所示:

int main()

{

//创建各个互斥信号

g_hMutex = CreateMutex(NULL,FALSE,NULL); 入 口

sem=sem-1 S<=0 唤醒等待队列中的一个进程返回或转进程调度 返回 否 是

g_hFullSemaphore

CreateSemaphore(NULL,SIZE_OF_BUFFER-1,SIZE_OF_BUFFER-1,NULL);

g_hEmptySemaphore = CreateSemaphore(NULL,0,SIZE_OF_BUFFER-1,NULL); //调整下面的数值,可以发现,当生产者个数多于消费者个数时,

//生产速度快,生产者经常等待消费者;反之,消费者经常等待。

const unsigned short PRODUCERS_COUNT = 3; //生产者的个数

const unsigned short CONSUMERS_COUNT = 1; //消费者的个数

//总的线程数

const unsigned short THREADS_COUNT

PRODUCERS_COUNT+CONSUMERS_COUNT;

HANDLE hThreads[PRODUCERS_COUNT]; //各线程的handle

DWORD producerID[CONSUMERS_COUNT]; //生产者线程的标识符

DWORD consumerID[THREADS_COUNT]; //消费者线程的标识符

//创建生产者线程

for (int i=0;i {

hThreads[i]=CreateThread(NULL,0,Producer,NULL,0,&producerID[i]); if (hThreads[i]==NULL)

return -1;

}

//创建消费者线程

for ( i=0;i {

hThreads[PRODUCERS_COUNT+i]=CreateThread(NULL,0,Consumer,NULL,0

&consumerID[i]);

if (hThreads[i]==NULL)

return -1;

}

while(g_continue)

{

if(getchar())

{ //按回车后终止程序运行

g_continue = false; }}

return 0; }

(2)生产者生产一个产品的函数:

//生产一个产品。简单模拟了一下,仅输出新产品的ID号

void Produce()

{

std::cerr << "Producing " << ++ProductID << " *** "; std::cerr << "Succeed" << std::endl;

}

(3)把新生产的产品放入缓冲区的函数:

//把新生产的产品放入缓冲区

void Append()

{

std::cerr << "Appending a product *** ";

g_buffer[in] = ProductID;

in = (in+1)%SIZE_OF_BUFFER;

std::cerr << "Succeed" << std::endl;

}

(4)输出缓冲区当前的状态的函数:

//输出缓冲区当前的状态

for (int i=0;i {

std::cout << i <<": " << g_buffer[i];

if (i==in)

std::cout << " <-- 生产";

if (i==out)

std::cout << " <-- 消费";

std::cout << std::endl;

}

从缓冲区中取出一个产品的函数:

//从缓冲区中取出一个产品

void Take()

{

std::cerr << "Taking a product *** ";

ConsumeID = g_buffer[out];

out = (out+1)%SIZE_OF_BUFFER;

利用信号量解决生产者消费者问题

std::cerr << "Succeed" << std::endl;

}

(5)输出缓冲区当前的状态的函数:

//输出缓冲区当前的状态

for (int i=0;i {

std::cout << i <<": " << g_buffer[i];

if (i==in)

std::cout << " <-- 生产";

if (i==out)

std::cout << " <-- 消费";

std::cout << std::endl;

}

}

(6)消耗一个产品的函数:

//消耗一个产品

void Consume()

{

std::cerr << "Consuming " << ConsumeID << " *** "; std::cerr << "Succeed" << std::endl;

}

3.生产者和消费者算法

(1)生产者算法:

//生产者

DWORD WINAPI Producer(LPVOID lpPara)

{

while(g_continue)

{

WaitForSingleObject(g_hFullSemaphore,INFINITE); WaitForSingleObject(g_hMutex,INFINITE);

Produce();

Append();

Sleep(1500);

ReleaseMutex(g_hMutex);

ReleaseSemaphore(g_hEmptySemaphore,1,NULL);

}

return 0;

(2)消费者算法:

//消费者

DWORD WINAPI Consumer(LPVOID lpPara)

{

while(g_continue)

{

WaitForSingleObject(g_hEmptySemaphore,INFINITE); WaitForSingleObject(g_hMutex,INFINITE);

Take();

Consume();

Sleep(1500);

ReleaseMutex(g_hMutex);

ReleaseSemaphore(g_hFullSemaphore,1,NULL);

}

return 0;

}

(4)运行结果分析

输入输出数据说明和分析:

该程序设置的缓冲区数据长度为20,生产者个数为3,消费者个数为1,程序启动后,生产者先进行生产,当3个生产者全部生产完之后,消费者开始从缓冲区中取出产品,当消费者取出一个后,生产者开始继续生产,当生产完3个之后,消费者开始从缓冲池中取产品,依次循环。

(5)设计小结

本次课程设计主要是对操作系统中线程,进程同步互斥等知识的应用,生产者—消费者问题是很著名的同步问题,的确是既简单又复杂。此次编写的程序基本实现了设计要求的功能,对于老师提出的关于程序的一点小修改仍未能解答出来,但是给我一点时间,我相信以后定能理解。

一个课程设计让我对本学期所学的操作系统课程有了更深刻的理解,加强了对基础的实践运用能力,让我能把所学的知识融会贯通。

(6)参考文献

【1】计算机操作系统(第3版),汤小丹,西安电子科技大学出版社.

【2】Visual C++面向对象编程教程,王育坚,清华大学出版社.

生产者与消费者问题(Java)

package Table; public class Message { public static int id; public String content; public String getContent() { return content; } public void setContent(String content) { this.content = content; } public int getId() { return id; } public void setId(int id) { Message.id = id; } } package Table; import java.util.ArrayList; import java.util.List; public class Queue { List queue = new ArrayList(); /** 队列中message对象的最大值,默认为10 */ int maxMessageNum = 10; public synchronized void produce(Message message) { /**synchronized为关键字,表示在任何一个线程要访问缓冲区时都会 检查有无其他线程访问此段内容,有的话则等待,无的话则直接访问**/ this.notifyAll(); while (queue.size() == maxMessageNum) { System.out.println(Thread.currentThread().getName() + "the desk is full, and the chef want to relax"); try { this.wait(); } catch (InterruptedException e) { e.printStackTrace();

生产者消费者问题设计与实现

操作系统课程设计任务书

目录

1.选题背景 生产者消费者问题是研究多线程程序时绕不开的经典问题之一,它描述是有一块缓冲区作为仓库,生产者可以将产品放入仓库,消费者则可以从仓库中取走产品。解决生产者/消费者问题的方法可分为两类:(1)采用某种机制保护生产者和消费者之间的同步;(2)在生产者和消费者之间建立一个管道。第一种方式有较高的效率,并且易于实现,代码的可控制性较好,属于常用的模式。第二种管道缓冲区不易控制,被传输数据对象不易于封装等,实用性不强。因此本文只介绍同步机制实现的生产者/消费者问题。 同步问题核心在于:如何保证同一资源被多个线程并发访问时的完整性。常用的同步方法是采用信号或加锁机制,保证资源在任意时刻至多被一个线程访问。Java语言在多线程编程上实现了完全对象化,提供了对同步机制的良好支持。在Java中一共有四种方法支持同步,其中前三个是同步方法,一个是管道方法。 2.设计思路 .生产者—消费者问题是一种同步问题的抽象描述。 计算机系统中的每个进程都可以消费或生产某类资源。当系统中某一进程使用某一资源时,可以看作是消耗,且该进程称为消费者。 而当某个进程释放资源时,则它就相当一个生产者 3.过程论述 首先,生产者和消费者可能同时进入缓冲区,甚至可能同时读/写一个存储单元,将导致执行结果不确定。这显然是不允许的。所以,必须使生产者和消费者互斥进入缓冲区。即某时刻只允许一个实体(生产者或消费者)访问缓冲区,生产者互斥消费者和其他任何生产者。 其次,生产者不能向满的缓冲区写数据,消费者也不能在空缓冲区中取数据,即生产者与消费者必须同步。当生产者产生出数据,需要将其存入缓冲区之前,首先检查缓冲区中是否有“空”存储单元,若缓冲区存储单元全部用完,则生产者必须阻塞等待,直到消费者取走一个存储单元的数据,唤醒它。若缓冲区内有“空”存储单元,生产者需要判断此时是否有别的生产者或消费者正在使用缓冲区,若是有,则阻塞等待,否则,获得缓冲区的使用权,将数据存入缓冲区,释放缓冲区的使用权。消费者取数据之前,首先检查缓冲区中是否存在装有数据的存储单元,若缓冲区为“空”,则阻塞等待,否则,判断缓冲区是否正在被使用,

操作系统课程设计用多进程同步方法解决生产者消费者问题

操作系统课程设计 用多进程同步方法解决生产者-消费者问题 系别:计科系 专业: 计算机科学与技术 班级:04 级 4 班 学号:0410******* 姓名:苏德洪 时间:2006-7-7—2006-7-14

目录 一、题目: (3) 二、设计目的: (3) 三、总体设计思想概述: (3) 四、说明: (3) 五、设计要求: (3) 六、设计方案: (3) 七、流程图: (5) 八、运行结果 (7) 九、源程序 (11) 十、总结 (18) 十一、参考文献 (20)

一、题目: 用多进程同步方法解决生产者-消费者问题。 二、设计目的: 通过研究Linux 的进程机制和信号量实现生产者消费者问题的并发控制。 三、总体设计思想概述: 1、生产者—消费者问题是一种同步问题的抽象描述。 2、计算机系统中的每个进程都可以消费或生产某类资源。当系统中某一进程使用某一 资源时,可以看作是消耗,且该进程称为消费者。 3、而当某个进程释放资源时,则它就相当一个生产者。 四、说明: 有界缓冲区内设有20个存储单元,放入/取出的数据项设定为1-20这20个整型数。 五、设计要求: 1、每个生产者和消费者对有界缓冲区进行操作后,即时显示有界缓冲区的全部内容,当前 指针位置和生产者/消费者线程的标识符。 2、生产者和消费者各有两个以上。 3、多个生产者或多个消费者之间须有共享对缓冲区进行操作的函数代码。 六、设计方案: 通过一个有界缓冲区(用数组来实现,类似循环队列)把生产者和消费者联系起来。假定生产者和消费者的优先级是相同的,只要缓冲区未满,生产者就可以生产产品并将产品送入缓冲区。类似地,只要缓冲区未空,消费者就可以从缓冲区中去走产品并消费它。 应该禁止生产者向满的缓冲区送入产品,同时也应该禁止消费者从空的缓冲区中取出产品,这一机制有生产者线程和消费者线程之间的互斥关系来实现。 为解决生产者/消费者问题,应该设置两个资源信号量,其中一个表示空缓冲区的数目,用g_hFullSemaphore表示,其初始值为有界缓冲区的大小SIZE_OF_BUFFER;另一个表示缓冲区中产品的数目,用g_hEmptySemaphore表示,其初始值为0。另外,由于有界缓冲区是一个临界资源,必须互斥使用,所以还需要再设置一个互斥信号量g_hMutex,起初值为1。

生产者与消费者

重庆交通大学 《计算机操作系统》课程设计报告 班级:计软专业 2013 级 2 班 姓名: 学号: 课程设计题目:生产者/消费者与FCFS 所属课程:计算机操作系统 实验室(中心):语音大楼801 指导教师:刘洋 完成时间: 2015 年 12 月 5 日 信息科学与工程学院课程设计成绩单

课程名称:计算机操作系统指导教师:刘洋

重庆交通学院信息科学与工程学院课程设计任务书

生产者/消费者与FCFS 一、内容提要 操作系统是计算机的核心软件,是计算机专业学生的专业必修课。进程同步问题是计算机操作系统中的重点内容,而生产者-消费者问题是进程同步问题中的经典,它是计算机中相互合作进程关系的一种抽象,该问题具有很大的代表性和使用价值。 在计算机系统中,很多问题都可以归结为生产者与消费者问题,提别是在通讯和控制系统中。因此,对该类问题的研究是非常必要的。一般而言,我们把提供给某种资源的进程(线程)称之为生产者,二吧消耗资源的进程(线程)称之为消费者。在大多数情况下,生产者和消费者的数目都是多于一个的。下面以多个进程(线程)共享一有界缓冲池为例来说明。 如图,左端箭头表示生产者,右端箭头表示消费者,设P 1、P 2 、…、P K 是k 个想缓冲池装入数据的进程(线程)(生产者)C 1、C 2 、…、C m 是m个冲缓冲池 中取出数据进行处理的进程(线程)(消费者),假设对任何P i 每次向缓冲区 中申请一空白缓冲区,并把数据装入其中;而对于常见的情况是任何C i 每次都从缓冲池中取出一满缓冲区的内容,并进行相应的处理,并把缓冲区清空。而每次生产者装入数据和消费者取出数据都是相同的(这是最常见的情况)。针对以上进程(线程)通信,如不对生产者进程(线程)和消费者(线程)的操作进行限制,则可能破坏数据的完整性。一种情况是一个生产者进程(线程)正在装入数据到缓冲区时,另外的生产者进程(线程)可能同时把数据写入相同区域,造成数据破坏,另一种情况是一个生产者进程(线程)正在装入数据到缓冲区时,另外的消费者进程(线程)可能读入该区域数据,由于数据未写完,从而造成消

生产者消费者问题模拟实现(z)

生产者-消费者实验 1.1实验目的和要求 1.1.1实验目的 操作系统的基本控制和管理控制都围绕着进程展开,其中的复杂性是由于支持并发和并发机制而引起的。自从操作系统中引入并发程序设计后,程序的执行不再是顺序的,一个程序未执行完而另一个程序便已开始执行,程序外部的顺序特性消失,程序与计算不再一一对应。并发进程可能是无关的,也可能是交互的。然而,交互的进程共享某些变量,一个进程的执行可能会影响其他进程的执行结果,交互的并发进程之间具有制约关系、同步关系。其中典型模型便是生产者-消费者模型。 本实验通过编写和调试生产者-消费者模拟程序,进一步认识进程并发执行的实质,加深对进程竞争关系,协作关系的理解,掌握使用信号量机制与P、V操作来实现进程的同步与互斥。 1.1.2实验要求 1.用高级语言编写一个程序,模拟多个生产者进程和多个消费者进程并发执行,并采用信号量机制与P、V操作实现进程间同步与互斥。 2.撰写实验报告,报告应包含以下内容: (1)实验目的; (2)实验内容; (3)设计思路; (4)程序流程图; (5)程序中主要数据结构和函数说明; (6)带注释的源程序代码; (7)程序运行结果及分析; (8)实验收获与体会。 1.2预备知识 1.2.1生产者—消费者问题 生产者—消费者问题表述如下:如图3.1所示,有n个生产者和m个消费者,连接在具

有k个单位缓冲区的有界环状缓冲上,故又称有界缓冲问题。生产者不断生成产品,只要缓冲区未满,生产者进程pi所生产的产品就可投入缓冲区;类似的,只要缓冲区非空,消费者进程cj就可以从缓冲区取走并消耗产品。 图 3.1 生产者—消费者问题示意图 著名的生产者—消费者问题(producer-consumer problem)是计算机操作系统中并发进程内在关系的一种抽象,是典型的进程同步问题。在操作系统中,生产者进程可以是计算进程、发送进程,而消费者进程可以是打印进程、接收进程等,解决好生产者—消费者问题就解决了一类并发进程的同步问题。 操作系统实现进程同步的机制称为同步机制,它通常由同步原语组成。不同的同步机制采用不同的同步方法,迄今已设计出多种同步机制,本实验采用最常用的同步机制:信号量及PV操作。 1.2.2信号量与PV操作 1965年,荷兰计算机科学家E.W.Dijkstra提出新的同步工具——信号量和PV操作,他将交通管制中多种颜色的信号灯管理方法引入操作系统,让多个进程通过特殊变量展开交互。一个进程在某一关键点上被迫停止直至接收到对应的特殊变量值,通过这一措施任何复杂的进程交互要求均可得到满足,这种特殊变量就是信号量(semaphore)。为了通过信号量传送信号,进程可利用P和V两个特殊操作来发送和接收信号,如果协作进程的相应信号仍未到达,则进程被挂起直至信号到达为止。 在操作系统中用信号量表示物理资源的实体,它是一个与队列有关的整型变量。具体实现时,信号量是一种变量类型,用一个记录型数据结构表示,有两个分量:一个是信号量的值,另一个是信号量队列的指针。信号量在操作系统中主要用于封锁临界区、进程同步及维护资源计数。除了赋初值之外,信号量仅能由同步原语PV对其操作,不存在其他方法可以检查或操作信号量,PV操作的不可分割性确保执行的原子性及信号量值的完整性。利用信号量和PV操作即可解决并发进程竞争问题,又可解决并发进程协作问题。 信号量按其用途可分为两种:公用信号量,联系一组并发进程,相关进程均可在此信号量上执行PV操作,用于实现进程互斥;私有信号量,联系一组并发进程,仅允许此信号量所拥有的进程执行P操作,而其他相关进程可在其上执行V操作,初值往往为0或正整数,多用于并发进程同步。

操作系统实验报告生产者消费者问题

操作系统课程设计 一.实验目标 完成N个生产者和M个消费者线程之间的并发控制,N、M不低于30,数据发送和接收缓冲区尺寸不小于20个(每个产品占据一个)。 其中生产者线程1、3、5、7、9生产的产品供所有奇数编号的消费者线程消费,只有所有奇数编号的消费者线程都消费后,该产品才能从缓冲区中撤销。 其中生产者线程2、4、6、8、10生产的产品所有偶数编号的消费者线程都可消费,任一偶数编号消费者线程消费该消息后,该产品都可从缓冲区中撤销。 其中11-20号生产者线程生产的产品仅供对应编号的消费者线程消费。 其他编号生产者线程生产的产品可由任意的消费者线程消费。 每个生产线程生产30个消息后结束运行。如果一个消费者线程没有对应的生产者线程在运行后,也结束运行。所有生产者都停止生产后,如果消费者线程已经

没有可供消费的产品,则也退出运行。 二.实验原理 2.1原理 生产者与消费者线程采用posix互斥锁机制进行互斥进入各自的代码段,只有采用互斥锁临界区代码段才可以不被打扰的执行;同步机制采用的是posix条件变量pthread_cond_wait和pthraed_cond_signal进行同步的。 线程间的通信采用的是共享内存机制。(注:所有的共享内存块是在进程里建立的,线程只需链接上各自的共享内存块即可,每一块共享内存的大小是100). 在这里共享内存设置成一个100的数组。 具体实施:(1)为1.3.5.7.9建立一个共享内存1号,1.3.5.7.9生产者线程生产的产品都放入这块共享内存缓冲区,所有奇数的消费者线程要消费的话,只需在消费者线程中链接上这块共享内存,就可以直接消费1.3.5.7.9生产者线程生产的产品。 (2)为2.4.6.8.10建立一块共享内存2号。2.4.6.8.10生产的产品都放入2号共享内存缓冲区,所有的偶数的消费者线程只要链接上2号缓冲区,就可以消费2.4.6.8.10生产的产品。当偶数消费者线程消费产品后,产品即可从缓冲区撤销,方法是在消费线程里将消费的产品在共享内存数组里置0。 (3)为11--20的每一对生产者消费者线程建立一块共享内存,编号11--20. 11--20号的消费者线程能链接各自的共享内存缓冲区或奇数或偶数共享内存缓冲区,即11--20号的生产者生产的产品只能被对应的消费者消费而11-20的奇数消费者可以消费缓冲区1的产品,偶数消费者可消费缓冲区2的产品。 (4)为21--30号的生产者消费者线程只建立一块共享内存21号,21--30号生产者生产的产品都放入21号缓冲区,所有的消费者线程只要链接上21号共享内存,就可以消费21--30号生产者生产的产品。 用于控制线程是否结束的方法是:设置一个全局变量t,在生产者线程里进行t++,在生产者线程里当t达到10时(注:为了很好的测试程序,本应该在生产者生产30个产品时菜结束线程,这里设置成了10),就break跳出while()循环,这样线程自然就终止。同样在消费者线程里,当t达到10时,这里不用t++,就跳出while()循环,消费者线程自然就终止。这样设计满足了,当生产者生产30个产品时就终止生产者线程,生产者线程终止消费者线程也得终止的要求。 生产者从文件so.txt读取数据进行生产,这个文件里的数据是一连串的字符从a--z的组合,没有空格或其他字符。文件内容的格式没有特殊要求。

操作系统生产者与消费者问题实验报告

《操作系统》实验报告 生产者和消费者的问题 一、实验目的 1.掌握基本的同步与互斥的算法,理解基本的生产者与消费者的模型。 2.学习使用Windows 2000/XP中基本的同步对象,掌握相关的API的使用方法。 3.了解Windows 2000/XP中多线程的并发执行机制,线程间的同步和互斥。 二、实验的内容及其要求 1.实验内容 以生产者/消费者模型为根据,在Windows 2000环境下创建一个控制台进程,在改进程中创建n个线程模拟生产者和消费者,实现进程(线程)的同步与互斥。 2.实验要求 ①学习并理解生产者/消费者模型及其同步/互斥规则 ②学习了解Windows同步对象及其特性 ③熟悉实验环境,掌握相关API的使用方法 ④设计程序,实现生产者/消费者进程(线程)的同步与互斥 ⑤提交实验报告 三、实验的时间安排 1.实验前,先到图书馆或上网百度了解有关生产者/消费者模型的相关知识,建立生产者/消费者模型的基本概念。 2.利用13周、15周、17周的上机时间编写和调试程序代码。 3.利用其他课余时间来分析实验的最终结果并完成相关的实验报告。 四、实验的环境 1.硬件条件:普通计算机一台 2.软件条件:①操作系统:Windows 2000/XP ②开发语言:VC++ 本实验是在Windows 2000+VC6.0环境下实现的,利用Windows SDK提供的系统接口(API)完成程序的功能。实验在Windows下安装VC后进行,因为VC是一个集成开发环境,其中包含了Windows SDK所有工具和定义,所以安装了VC后就不用特意安装SDK了。实验中所用的API(应用程序接口),是操作系统提供的用来进行应用程序设计的系统功能接口。要使用这些API,需要包含对这些函数进行说明的SDK 头文件,最常见的就是windows.h。一些特殊的API调用还需要包含其他的头文件。 五、正文 1.程序结构图:

实验1:生产者消费者问题

福建农林大学金山学院实验报告 系(教研室):专业:计算机科学与技术年级: 实验课程:生产者与消费者实验姓名:学号: 实验室号:1#608 计算机号:实验时间:指导教师签字:成绩: 实验1:生产者消费者问题 一、实验目的 生产者消费者问题是操作系统中经典的同步和互斥问题。通过实验,要求学生掌握两者之间的同步信号量和互斥信号量的使用,更深刻了解临界资源、同步和互斥的概念。 二、实验要求 1.一组生产者通过一个具有N个缓冲区的缓冲池循环不断地向一组消费者提供产 品。 2.建一个队列, 队列的长度由n记录, 定义两个指针, 分别指向队列的头和尾消 费者从头指针读取数据,每读取一个数据把n--,生产者把数据写入尾指针, 每写入一个数据就n++,当n=N的时候生产者暂停写入数据。 3.注意:缓冲池队列,用互斥锁保护。 三、实验内容和原理 1.分别画出生产者和消费者的流程图

2.针对生产者和消费者问题,可以分为哪几种情况,使用了哪些原语?分别代表 什么意思?过程如何?阐述哪些进程之间存在同步,哪些进程之间存在互斥。 3.缓冲区是否为临界资源?是否可以循环使用?通过什么来实现?举例说明(可 画图) 四、实验环境 1. 硬件:PC机; 2. 软件:Windows操作系统、。 五、算法描述及实验步骤 #include <> #include const unsigned short SIZE_OF_BUFFER = 10; unsigned short ProductID = 0; unsigned short ConsumeID = 0;

unsigned short in = 0; unsigned short out = 0; int g_buffer[SIZE_OF_BUFFER]; bool g_continue = true; HANDLE g_hMutex; HANDLE g_hFullSemaphore; HANDLE g_hEmptySemaphore; DWORD WINAPI Producer(LPVOID); DWORD WINAPI Consumer(LPVOID); int main() { g_hMutex = CreateMutex(NULL,FALSE,NULL); g_hFullSemaphore = CreateSemaphore(NULL,SIZE_OF_BUFFER-1,SIZE_OF_BUFFER-1,NULL); g_hEmptySemaphore = CreateSemaphore(NULL,0,SIZE_OF_BUFFER-1,NULL); const unsigned short PRODUCERS_COUNT = 3; const unsigned short CONSUMERS_COUNT = 1; const unsigned short THREADS_COUNT = PRODUCERS_COUNT+CONSUMERS_COUNT; HANDLE hThreads[PRODUCERS_COUNT]; DWORD producerID[CONSUMERS_COUNT]; DWORD consumerID[THREADS_COUNT]; for (int i=0;i

生产者与消费者问题(附源码)

操作系统实验报告 专业网络工程班级08102 学号姓名 课程名称操作系统学年2010-2011 学期下 课程类别专业必修■限选□任选□实践□实验时间2010年11月3日 实验名称 实验一:生产者与消费者问题 实验目的和要求 全面理解生产者与消费者问题模型,掌握解决该问题的算法思想,正确使用同步机制。 实验软硬件要求 Pentium ||| 450以上CPU 64MB以上内存 WINDOWS XP Visual C++6.0 实验内容、方法和步骤(可附页) 问题描述:一组生产者向一组消费者提供商品,共享一个有界缓冲池,生产者向其中放入商品,消费者从中取得商品。假定这些生产者和消费者互相等效,只要缓冲池未满,生产者可将商品送入缓冲池;只要缓冲池未空,消费者可从缓冲池取走一商品。 功能要求:根据进程同步机制,编写一个解决上述问题的程序,可显示缓冲池状态、放商品、取商品等过程。 具体参数:3个生产者进程,2个消费者进程; 缓冲区单元个数N=4; 在本程序中是缓冲区中的数从0变为1表示模拟生产一个产品,消费时则将对应缓冲区内的1变为0,为模拟消费一个产品。 实验结果(可附页) 见截图 小结 这次多线程的操作系统实验,使我对线程的概念以及多线程程序中线程间的运行有了更深的认识,同时也让我的编程能力得到了一定的提高。 这次做的用多线程实现生产者与消费者模型的实验,由于我的编程能力基础比较差,对线程也是一无所知,所以一开始觉得无从下手,但幸好老师给了充足的时间,我通过看网上找的视频资料以及请教同学才渐渐地有了一点概念,然后我试着从网上下了一些多线程的程序分析里面的语句,基本弄懂了多线程的原理。 评定成绩:批阅教师:年月日

实验报告五 生产者和消费者问题

实验报告五 ——生产者和消费者问题 姓名:丛菲学号:20100830205 班级:信息安全二班一、实习内容 ?1、模拟操作系统中进程同步和互斥 ?2、实现生产者和消费者问题的算法实现 二、实习目的 ?1、熟悉临界资源、信号量及PV操作的定义与物理意义 ?2、了解进程通信的方法 ?3、掌握进程互斥与进程同步的相关知识 ?4、掌握用信号量机制解决进程之间的同步与互斥问题 ?5、实现生产者-消费者问题,深刻理解进程同步问题 三、实习题目 ?在Linux操作系统下用C实现经典同步问题:生产者—消费者,具体要求如下: (1)一个大小为10的缓冲区,初始状态为空。 (2)2个生产者,随机等待一段时间,往缓冲区中添加数据,若缓冲区已满,等待消 费者取走数据之后再添加,重复10次。 (3)2个消费者,随机等待一段时间,从缓冲区中读取数据,若缓冲区为空,等待生 产者添加数据之后再读取,重复10次。 ?提示 本实验的主要目的是模拟操作系统中进程同步和互斥。在系统进程并发执行异步推进的过程中,由于资源共享和进程间合作而造成进程间相互制约。进程间的相互制约有两种不同的方式。 (1)间接制约。这是由于多个进程共享同一资源(如CPU、共享输入/输出设备)而引起的,即共享资源的多个进程因系统协调使用资源而相互制约。 (2)直接制约。只是由于进程合作中各个进程为完成同一任务而造成的,即并发进程各自的执行结果互为对方的执行条件,从而限制各个进程的执行速度。 生产者和消费者是经典的进程同步问题,在这个问题中,生产者不断的向缓冲区中写入数据,而消费者则从缓冲区中读取数据。生产者进程和消费者对缓冲区的操作是互斥,即当前只能有一个进程对这个缓冲区进行操作,生产者进入操作缓冲区之前,先要看缓冲区是否已满,如果缓冲区已满,则它必须等待消费者进程将数据取出才能写入数据,同样的,消费者进程从缓冲区读取数据之前,也要判断缓冲

操作系统课程设计——生产者消费者问题

计算机与信息学院 《操作系统与编译原理联合课程设计报告》 专题:操作系统部分 学生姓名: 学号: 专业班级: 指导教师: 2014 年 7 月

一、设计目标 多进程/线程编程:生产者-消费者问题。设置两类进程/线程,一类为生产者,一类为消费者;建立缓冲区的数据结构;随机启动生产者或消费者;显示缓冲区状况;随着进程/线程每次操作缓冲区,更新显示。 二、设计思路 1.开发平台:Visual C++6.0 2.设计思路: 若干个生产者和若干个消费者共享一个有界缓冲区,生产者生产产品,消费者消费产品。消费者进程与生产者进程随机切换。生产者将产品生产出来后,存放到缓冲区中的空闲位置并将此缓冲区的标识置为满,若此时无空缓冲区,则进行等待。消费者将标识为满的缓冲区中的产品取出,进行消费并将该缓冲区的标志位置为空,若此时无满的缓冲区,则进行等待。 由于消费者与生产者共享缓冲区资源,且缓冲区资源属于互斥资源,所以生产者和消费者需要按照一定的规则访问缓冲区,访问规则如下: (1)当一个消费者访问缓冲区时其他消费者不允许访问缓冲区,同样的,当一个生产者访问缓冲区时其他生产者也不能访问缓冲区。 (2)当消费者访问缓冲区资源时生产者不能访问,反之,当生产者访问缓冲区资源时消费者不能访问。 (3)当缓冲区中无产品时,消费者不能访问;当缓冲区已满时,生产者不能访问缓冲区。 生产者与消费者问题伪代码如下: VAR mutex, empty, full: semaphore := 1, n, 0 ; in,out: integer := 0, 0 ; Buffer: array [0..n-1] of item ; Parbegin Producer: begin repeat produce an item in nextp; wait(empty); wait(mutex); Buffer(in) := nextp; in := (in + 1) mod n; signal(mutex); signal(full); until false end Consumer: begin repeat

计算机操作系统课程设计源代码《生产者---消费者问题源代码》

生产者 --- 消费者问题源代 码》 #include #include #include #include #include #include #include #include #include #include #define NUM_THREADS_P 5 #define NUM_THREADS_C 5 #define MAX_BUFFER 20 #define RUN_TIME 20 int buffer[MAX_BUFFER]; /* 定义数据为生产者 */ /* 定义数据为消费者 */ /* 定义数据为缓存区 */ /* 定义运行时间 */ /* 定义最大缓存区 */ */ pthread_t threads_p[NUM_THREADS_P]; /* 声明生产者线程 */ pthread_t threads_c[NUM_THREADS_C]; /* 声明消费者线程 */ FILE* fd; void *producer_thread(void *tid); void *consumer_thread(void *tid); /* void showbuf(); /* 声明 showbuf 方法 */ void handler(){ int i; /* 定义 i*/ for(i=0;i

1实验1:生产者消费者问题

1实验1:生产者消费者问 题 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

福建农林大学金山学院实验报告 系(教研室):专业:计算机科学与技术年级: 实验课程:生产者与消费者实验姓名:学号: 实验室号:1#608 计算机号:实验时间:指导教师签字:成绩: 实验1:生产者消费者问题 一、实验目的 生产者消费者问题是操作系统中经典的同步和互斥问题。通过实验,要求学生掌握两者之间的同步信号量和互斥信号量的使用,更深刻了解临界资源、同步和互斥的概念。 二、实验要求 1.一组生产者通过一个具有N个缓冲区的缓冲池循环不断地向一组消费者提供 产品。 2.建一个队列, 队列的长度由n记录, 定义两个指针, 分别指向队列的头和尾消费 者从头指针读取数据,每读取一个数据把n--,生产者把数据写入尾指针, 每写 入一个数据就n++,当n=N的时候生产者暂停写入数据。 3.注意:缓冲池队列,用互斥锁保护。 三、实验内容和原理 1.分别画出生产者和消费者的流程图

2.针对生产者和消费者问题,可以分为哪几种情况,使用了哪些原语分别代表什 么意思过程如何阐述哪些进程之间存在同步,哪些进程之间存在互斥。 3.缓冲区是否为临界资源是否可以循环使用通过什么来实现举例说明(可画图) 四、实验环境 1. 硬件:PC机; 2. 软件:Windows操作系统、。 五、算法描述及实验步骤 #include <> #include const unsigned short SIZE_OF_BUFFER = 10; unsigned short ProductID = 0; unsigned short ConsumeID = 0; unsigned short in = 0;

生产者消费者问题设计与实现

操作系统课程设计任务书 学院计算机与信息工程专业计算机科学与技术课程名称操作系统题目生产者消费者问题设计 与实现 完成期限自2015年6月23日至2015年6月29日共1周 内容及任务一、项目的目的 1.理生产者消费者问题基本概念和工作原理,以及实现技术; 2.理解并掌握生产者消费者问题相关算法,以及它的实现方法; 3.掌握在eclipse环境下,系统开发的基本步骤和方法; 4.掌握在eclipse环境下,设计和开发一个简单的生产者消费者问题系统来模拟操作系统中生产者消费者问题。 二、项目任务的主要内容和要求 1.精读并理解和掌握生产者消费者问题; 2.编写程序来模拟生产者消费者问题的实现; 3.编写应用程序测试生产者消费者问题,并显示结果。 三、项目设计(研究)思路 本课程设计的基本思路是,首先理解和掌握生产者消费者问题的基本思想和原理,然后根据理解的基本思想和原理编程实现生产者消费者问题,最后通过数据分析生产者消费者问题。 四、具体成果形式和要求 成果:生产者消费者问题程序语言实现;设计说明书。 要求:编写好的生产者消费者问题程序能够正确启动运行;设计说明书规范、合理。 进度安排 起止日期工作内容2015.6.23至2015.6.24熟悉相关内容 2015.6.25至2015.6.26 系统设计和实现 2015.6.27至2015.6.29 系统实现和撰写相关文档

主要参考资料1.《计算机操作系统》汤子瀛哲凤屏汤小丹主编西安电子科技大学出版社. 2.《计算机操作系统概论》陈宏杨忠耀主编重庆邮电大学出版社. 3.《计算机操作系统基本知识》廖成崔阳主编电子工业出版社. 4.《操作系统实现与设计》陆刚望能主编电子工业出版社. 5.《java程序语言设计》丁振凡主编,薛清华副主编清华大学出版社. 指导教师 意见 (签字):年月日 系(教研室) 主任意见 (签字):年月日

操作系统课程设计生产者-消费者问题附代码

枣庄学院 信息科学与工程学院 课程设计任务书题目:生产者-消费者问题的实现 姓名: 学号: 专业:计算机科学与技术 课程:操作系统 指导教师:刘彩霞职称:讲师完成时间:2012年5月----2012 年6月 枣庄学院信息科学与工程学院制 课程设计任务书及成绩评定

目录 第1章引言 (1) 1.1 设计背景 (1) 1.2 问题分类 (1) 1.3 解决方案 (1) 第2章设计思路及原理 (2) 第3章程序详细设计 (3) 3.1程序模块设计 (3) 3.2程序代码结构 (5) 第4章实验结果 (7) 第5章实验总结 (8) 附录:实验代码 (9)

第1章引言 1.1 设计背景 生产者-消费者问题是一个经典的进程同步问题,该问题最早由Dijkstra 提出,用以演示他提出的信号量机制。在同一个进程地址空间内执行的两个线程。生产者线程生产物品,然后将物品放置在一个空缓冲区中供消费者线程消费。消费者线程从缓冲区中获得物品,然后释放缓冲区。当生产者线程生产物品时,如果没有空缓冲区可用,那么生产者线程必须等待消费者线程释放出一个空缓冲区。当消费者线程消费物品时,如果没有满的缓冲区,那么消费者线程将被阻塞,直到新的物品被生产出来。 1.2 问题分类 根据缓冲区的个数、大小以及生产者消费者的个数可以分为以下几类: 1.单缓冲区(适合单或多生产消费者); 2.环行多缓冲区(或无穷缓冲区)单生产消费者; 3.环行多缓冲区多生产消费者; 1.3 解决方案 1.用进程通信(信箱通信)的方法解决; 2.进程消息缓冲通信; 3.进程信箱通信;

第2章设计思路及原理 设计了两个主要函数:生产者函数、消费者函数; 设计了三个信号量:full信号量,判断缓冲区是否有值,初值为0; empty信号量,判断缓冲区是否有空缓冲区,初值为缓 冲区数; mutex信号量作为互斥信号量,用于互斥的访问缓冲区。 生产者函数通过执行P操作信号量empty减1,判断缓冲区是否有空。有空则互斥的访问缓冲区并放入数据,然后释放缓冲区,执行V操作,信号量full 加1。 消费者函数执行P操作,信号量full减1,判断是否有数据,有则互斥的访问缓冲区并取走数据,然后释放缓冲区,执行V操作,empty信号量加1。

生产者消费者问题操作系统课程设计

课程设计报告 课程名称:操作系统 专业____________ 计算机科学与技术__________ 学生姓名____________________________________ 班级_______________________________________ 学号_______________________________________ 指导教师____________________________________ 完成日期___________________________________ 信息工程学院

题目:生产者-消费者问题的模拟实现 一、设计目的 本课程设计是学习完“操作系统原理”课程后进行的一次全面的综合训练,通过课程设计,更好地掌握操作系统的原理及实现方法,加深对操作系统基础理论和重要算法的理解,加强学生的动手能力。 二、设计内容 (1)概述 设计目的:通过研究Linux的进程机制和信号量实现生产者消费者问题的并发控制。 说明:有界缓冲区内设有20个存储单元,放入/取出的数据项设定为1-20这20个整型数。 设计要求:(1)每个生产者和消费者对有界缓冲区进行操作后,即时显示有界缓冲区的全部内容,当前指针位置和生产者/消费者县城的标识符。(2)生产者和消费者各有两个以上。(3)多个生产者或多个消费者之间须有共享对缓冲区进行操作的函数代码。 (2)设计原理 通过一个有界缓冲区把生产者和消费者联系起来。假定生产者和消费者的优先级是相同的,只要缓冲区未满,生产者就可以生产产品并将产品送入缓冲区。类似地,只要缓冲区未空,消费者就可以从缓冲区中取走产品。应该禁止生产者向满的缓冲区送入产品,同时也应该禁止消费者从空的缓冲区中取出产品,这一机制有生产者线程和消费者线程之间的互斥关系来实现。与计算打印两进程同步关系相同,生产者和消费者两进程P和C之间应满足下列两个同步条件: ①只有在缓冲池中至少有一个缓冲区已存入消息后,消费者才能从中提取信息, 否则消费者必须等待。 ②只有缓冲池中至少有一个缓冲区是空时,生产者才能把消息放入缓冲区,否则生产者必 须等待。 为了满足第一个同步条件,设置一个同步信号量full,它代表的资源是缓冲区满, 它的初始值为0,它的值为n时整个缓冲池满。这个资源是消费者类进程C所有,C进 程可以申请该资源,对它施加P操作,而C进程的合作进程生产者进程P对它施加V操作。同样为了满足第二个同步条件,设置另一个同步信号量empty,它代表的资源是缓 冲空区,它的初始值为n,表示缓冲池中所有缓冲区空。信号量full表示可用缓冲区数量,信号

操作系统课程设计生产者消费者

(操作系统课程设计) 生 产 者 和 消 费 者 学生姓名: 学生学号:

班级: 0311401、02、03、04班制 二〇一三年十二月 一、课程题目分析 这个题目是生产者向消费者提供商品,消费者消耗商品,并且两组人共用同一缓冲区。生产者提供了商品之后消费者才能去取商品,消费者若不取走商品则当缓冲区用完之后生产者则不能再向缓冲区中添加新的商品。 思考问题: (1)对于生产者进程:每产生一个数据,则需去访问共用缓冲区是否有已满,未满则可以将该数据存入并通知消费者进程,否则不能。 (2)对于消费者进程:每当想去消费(取出数据)时,则需访问缓冲区是否为空,为空则不能消费(取出数据),否则可以取,并通知生产者。 (3)缓冲区是个临界资源,所有的进程对于该空间都是共享的,所以,还有互斥问题存在。 二、课程设计目的 通过实验模拟生产者与消费者之间的关系,了解并掌握他们之间的关系及原理。由此增加对进程同步问题的了解: (1)掌握基本的同步互斥算法,理解生产者与消费者模型 (2)了解windows中多线程(多进程)的并发执行机制,线程(进程)间的同步于互斥 (3)学习使用windows中基本的同步对象,掌握相应的API。 三、课程设计内容

有n个生产者和m个消费者,连接在具有k个单位缓冲区的有界环转缓冲上,故又称有界缓冲问题。其中P i和C j都是并发进程,只要缓冲区未满,生产者进程P i所生产的产品就可投入缓冲区;类似地,只要缓冲区非空,消费者进程C j就可以从缓冲区取走并消耗产品。 四、开发环境 操作系统:Windows系统 编写语言:C++语言 五、系统分析设计 (一)算法原理 生产者——消费者问题是典型的进程同步问题,这些进程必须按照一定的生产率和消费率来访问共享缓冲区,用P、V操作解决生产者和消费者共享单缓冲区的问题,可设置两个信号量empty和full,其初值分别为1和0,empty 指示能否向缓冲区放入产品,full指示能否从缓冲区取出产品。为了使其协调工作,必须使用一个信号量mutex(初值为1),以限制生产者和消费者互斥地对缓冲区进行存取,另用两个信号量empty1(初值为缓冲区大小)和full1(初值为0),以保证生产者不向已满的缓冲区中放入产品,消费者不从空缓冲区中取产品。 (二)功能描述 生产者功能描述:在同一个进程地址空间内执行两个线程。生产者线程生产物品,然后将物品放置在一个空缓冲区中供消费者线程消费。当生产者线程生产物品时,如果没有空缓冲区可用,那么生产者线程必须等待消费者线程释放出一个空缓冲区。

生产者与消费者实验报告

生产者和消费者实验报告 【实验目的】 1.加深对进程概念的理解,明确进程和程序的区别。 2.进一步认识并发执行的实质。 3.验证用信号量机制实现进程互斥的方法。 4.验证用信号量机制实现进程同步的方法。 【实验要求】 用c语言编程搭建“生产者和消费者”经典进程通信问题的环境。要求程序运行时,按任意键停止,显示当前系统的各个参数的值。提交实验报告,以及相关程序列表。打包成附件上传。 【实验环境】 Visual C++6.0 【实验内容】 1.了解经典同步问题“生产者和消费者” 生产者与消费者可以通过一个环形缓冲池联系起来,环形缓冲池由几个大小相等的缓冲块组成,每个缓冲块容纳一个产品。每个生产者可不断地每次往缓冲池中送一个生产产品,而每个消费者则可不断地每次从缓冲池中取出一个产品。指针i和指针j分别指出当前的第一个空缓冲块和第一个满缓冲块。 2.分析和理解 (1)既存在合作同步问题,也存在临界区互斥问题 合作同步:当缓冲池全满时,表示供过于求,生产者必须等待,同时唤醒消费者;当缓冲池全空时,表示供不应求,消费者应等待,同时唤醒生产者。 互斥:缓冲池显然是临界资源,所在生产者与消费都要使用它,而且都要改变它的状态。 (2)基于环形缓冲区的生产者与消费者关系形式描述: 公用信号量mutex:初值为1,用于实现临界区互斥 生产者私用信号量empty:初值为n,指示空缓冲块数目 消费者私用信号量full:初值为0,指示满缓冲块数目 整型量i和j初值为0,i指示首空缓冲块序号,j指示首满缓冲块序号 (3)PV原语 var mutex,empty,full:semaphore; i,j:integer;buffer:array[0...n-1] of item; i:=j:=1; Procedure producer; begin while true do begin

相关文档
最新文档