选修4化学反应原理章节知识点总结

选修4化学反应原理章节知识点总结
选修4化学反应原理章节知识点总结

选修4化学反应原理章节知识点总结

第一章化学反应与能量

一、反应热焓变

1、定义:化学反应过程中放出或吸收的热量叫做化学反应的反应热.

在恒温、恒压的条件下,化学反应过程中所吸收或释放的热量称为反应的焓变。

2、符号:△H

3、单位:kJ·mol-1

4、规定:吸热反应:△H > 0 或者值为“+”,放热反应:△H < 0 或者值为“-”

常见的放热反应和吸热反应

放热反应吸热反应

燃料的燃烧C+CO2, H2+CuO

酸碱中和反应C+H2O

金属与酸Ba(OH)2.8H2O+NH4Cl

大多数化合反应CaCO3高温分解

大多数分解反应

小结:

1、化学键断裂,吸收能量;

化学键生成,放出能量

2、反应物总能量大于生成物总能量,放热反应,体系能量降低,△H为“-”或小于0

反应物总能量小于生成物总能量,吸热反应,体系能量升高,△H为“+”或大于0

3、反应热数值上等于生成物分子形成时所释放的总能量与反应物分子断裂时所吸收的总能量之差

二、热化学方程式

1.概念:表示化学反应中放出或吸收的热量的化学方程式.

2.意义:既能表示化学反应中的物质变化,又能表示化学反应中的能量变化.

[总结]书写热化学方程式注意事项:

(1)反应物和生成物要标明其聚集状态,用g、l、s分别代表气态、液态、固态。

(2)方程式右端用△H 标明恒压条件下反应放出或吸收的热量,放热为负,吸热为正。

(3)热化学方程式中各物质前的化学计量数不表示分子个数,只表示物质的量,因此可以是整数或分数。

(4)对于相同物质的反应,当化学计量数不同时,其△H 也不同,即△H 的值与计量数成正比,当化学反应逆向进行时,数值不变,符号相反。

三、盖斯定律:不管化学反应是一步完成或分几步完成,其反应热是相同的。

化学反应的焓变(ΔH)只与反应体系的始态和终态有关,而与反应的途径无关。

总结规律:若多步化学反应相加可得到新的化学反应,则新反应的反应热即为上述多步反应的反应热之和。

注意:

1、计量数的变化与反应热数值的变化要对应

2、反应方向发生改变反应热的符号也要改变

反应热计算的常见题型:

1、化学反应中物质的量的变化与反应能量变化的定量计算。

2、理论推算反应热:

依据:物质变化决定能量变化

(1)盖斯定律设计合理路径

路径1总能量变化等于路径2总能量变化(2)通过已知热化学方程式的相加,得出新的热化学方程式:

物质的叠加,反应热的叠加

小结:

a:若某化学反应从始态(S)到终态(L)其反应热为△H,而从终态(L)到始态(S)的反应热为△H ’,这两者和为0。

即△H+△H ’ = 0

b:若某一化学反应可分为多步进行,则其总反应热为各步反应的反应热之和。

即△H= △H1+ △H2+ △H3+……

c:若多步化学反应相加可得到新的化学反应,则新反应的反应热即为上述多步反应的反应热之和。

标准燃烧热:在101kPa时,l mol物质完全燃烧的反应热.

热值:在101kPa时,l g物质完全燃烧的反应热.

2、注意:

①燃烧的条件是在101kPa;

②标准燃烧热:燃料是以1mol作为标准,因此书写热化学方程式时,其它物质的化学计量数可用分数表示;

③物质燃烧都是放热反应,所以表达物质燃烧时的△H均为负值;

④燃烧要完全:C元素转化为CO2,而不是CO;H元素转化为H2O(l),而不是H2O(g), N元素转化为N2。如:H2(g)+ 1/2 O2(g) = H2O(l); △H =-285.8 kJ/mol

化学反应速率与化学平衡

第一单元化学反应速率

一、化学反应速率

1.概念及计算公式

对于反应体系体积不变的化学反应,通常用单位时间内反应物浓度的减少或生成物浓度的增大来表示化学反应速率

计算公式:

单位:mol·L-1·s-1

2.应用中应注意的问题

①概念中的反应速率实际上是某段时间间隔内的平均反应速率。时间间隔越短,在这段时间发生的浓度变化越接近瞬时反应速率(指在某一瞬间的反应速率)

②对某一具体化学反应来说,在用不同物质表示化学反应速率时所得数值往往不同。用各物质表示的化学反应速率的数值之比等于化学方程式中各物质的系数之比

③、气体的浓度用容器的体积

气体的物质的量

来表示

④、无论用任何物质来表示,无论浓度的变化是增加还是减少,都取正值,反应速率都为正数(没有负数)。

⑤、在反应中对于固体或纯液体而言,其物质的量浓度无意义,所以不用它们来表示化学反应速率

二,影响化学反应速率的因素

㈠、内因:物质本身的结构和性质是化学反应速率大小的决定因素,反应类型不同有不同的化学反应速率,反应类型相同但反应物不同,化学反应速率也不同。

㈡、外界条件对化学反应速率的影响

1、浓度对化学反应速率的影响。结论:其他条件不变时,增大反应物的浓度,可以增大反应速率;减小反应物的浓度,可以减小化学反应的速率。

注意:a、此规律只适用于气体或溶液的反应,对于纯固体或液体的反应物,一般情况下其浓度是常数,因此改变它们的量不会改变化学反应速率。

原因:在其他条件不变时,对某一反应来说,活化分子百分数是一定的,所以当反应物的浓度增大时,单位体积内的分子数增多,活化分子数也相应的增多,反应速率也必然增大。

结论:对于有气体参加的反应,若其他条件不变,增大压强,反应速率加快;减小压强,反应速率减慢。

原因:对气体来说,若其他条件不变,增大压强,就是增加单位体积的反应物的物质的量,即增加反应物的

浓度,单位体积内活化分子数增多,因而可以增大化学反应的速率。

3、温度对化学反应速率的影响。

结论:其他条件不变时,升高温度,可以增大反应速率,降低温度,可以减慢反应速率。

原因:(1)浓度一定时,升高温度,分子的能量增加,从而增加了活化分子的数量,反应速率增大。

(2)温度升高,使分子运动的速度加快,单位时间内反应物分子间的碰撞次数增加,反应速率也会相应的加快。前者是主要原因。

4、催化剂对化学反应速率的影响。

结论:催化剂可以改变化学反应的速率。正催化剂:能够加快反应速率的催化剂。负催化剂:能够减慢反应速率的催化剂。

如不特意说明,指正催化剂。

原因:在其他条件不变时,使用催化剂可以大大降低反应所需要的能量,会使更多的反应物分子成为活化分子,大大增加活化分子百分数,因而使反应速率加快。

5、其他因素:如光照、反应物固体的颗粒大小、电磁波、超声波、溶剂的性质等,也会对化学反应的速率产生影响

6、有效碰撞:能够发生化学反应的碰撞。

活化分子:能量较高、有可能发生有效

碰撞的分子。

活化能:活化分子的平均能量与所有分子平均能量之差。

活化分子百分数:(活化分子数/反应物分子数)×100%

第二单元化学反应的方向和限度

一、自发反应:在一定条件下,无需外界帮助就能自动进行的反应。

能量判据:体系趋向于从高能状态转变为低能状态(△H <0)。

对于化学反应而言,绝大多数的放热反应能自发进行,且放出的热量越多,体系能量降低越多,反应越完全

焓变(△H)是决定反应能否自发进行的因素之一,但不是唯一因素

熵:衡量一个体系混乱度的物理量叫做熵,用符号S表示。

对于同一物质:S(g)﹥S(l)﹥S(s)

熵变:反应前后体系熵的变化叫做反应的熵变.用△S表示。

△S=S生成物总熵-S反应物总熵

反应的△S越大,越有利于反应自发进行

熵判据:体系趋向于由有序状态转变为无序状态,即混乱度增加(△S>0)。且△S越大,越有利于反应自发进行。

正确判断一个化学反应是否能够自发进行:必须综合考虑反应的焓变和熵变

焓变和熵变对反应方向的共同影响

判断依据:△G= △H-T △S <0 反应能自发进行

1. △H <0,△S>0 该反应一定能自发进行;

2. △H >0,△S<0 该反应一定不能自发进行;

3. △H <0,△S<0 该反应在较低温度下能自发进行

4. △H >0,△S>0 该反应在较高温度下能自发进行

注意:

1.反应的自发性只能用于判断反应的方向,不能确定反应是否一定会发生和过程发生的速率。例如金刚石有向石墨转化的倾向,但是能否发生,什么时候发生,多快才能完成,就不是能量判据和熵判据能解决的问题了。2.在讨论过程的方向时,指的是没有外界干扰时体系的性质。如果允许外界对体系施加某种作用,就可能出现相反的结果。例如石墨经高温高压还是可以变为金刚石的。

二.可逆反应

(1)可逆反应:在相同条件下,能同时向正、逆反应方向进行的反应。

不可逆反应:在一定条件下,进行得很彻底或可逆程度很小的反应。

(2)可逆反应的普遍性:大部分化学反应都是可逆反应。

(3)可逆反应的特点:

①相同条件下,正反应和逆反应同时发生②反应物、生成物共同存在

③可逆反应有一定的限度(反应不能进行到底)

三、化学平衡

1.化学平衡状态的定义

指在一定条件下的可逆反应里,正反应和逆反应的速率相等,反应混合物中各组分的浓度保持不变的状态

3.化学平衡状态的标志

(1)υ正= υ逆(本质特征)

①同一种物质:该物质的生成速率等于它的消耗速率。

②不同的物质:速率之比等于方程式中各物质的计量数之比,但必须是不同方向的速率。

(2)反应混合物中各组成成分的含量保持不变(外部表现):

①各组成成分的质量、物质的量、分子数、体积(气体)、物质的量浓度均保持不变。

②各组成成分的质量分数、物质的量分数、气体的体积分数均保持不变。

③若反应前后的物质都是气体,且总体积不等,则气体的总物质的量、总压强(恒温、恒容)、平均摩尔质量、混合气体的密度(恒温、恒压)均保持不变。

④反应物的转化率、产物的产率保持不变。四.化学平衡常数

(1)定义:在一定温度下,当一个可逆反应达到化学平衡时,生成物浓度系数之幂的积与反应物浓度系数之幂的积比值是一个常数,这个常数就是该反应的化学平衡常数。用K 表示。

(2) 表达式:aA(g)+bB(g) cC(g)+ dD(g)

在一定温度下无论反应物的起始浓度如何,反应达平衡状态后,将各物质的物质量浓度代入下式,得到的结果是一个定值。

这个常数称作该反应的化学平衡常数,简称平衡常数

(1)K 的意义:K 值越大,说明平衡体系中生成物所占的比例越大,它的正反应进行的程度大,反应物的转化率也越大。因此,平衡常数的大小能够衡量一个化学反应进行的程度,又叫反应的限度。

(2)一定温度时,同一个反应,其化学方程式书写方式、配平计量数不同,平衡常数表达式不同。

(3)在平衡常数的表达式中,物质的浓度必须是平衡浓度(固体、纯液体不表达)。在稀溶液中进行的反应,水的浓度可以看成常数,不表达在平衡常数表达式中,但非水溶液中的反应,如果反应物或生成物中有水,此时水的浓度不能看成常数。

(4)K>105时,可认为反应进行基本完全。

(5)K只与温度有关,与反应物或生成物浓度变化无关,与平衡建立的途径也无关,在使用时应标明温度。温度一定时,K 值为定值。

2 、平衡转化率

(1)定义:

(2)表达式:

小结:反应的平衡转化率能表示在一定温度和一定起始浓度下反应进行的限度。

利用化学平衡常数可预测一定温度和各种起始浓度下反应进行的限度。

第三单元化学平衡的移动

一、化学平衡的移动

(1)定义:可逆反应中旧的化学平衡的破坏,新化学平衡的建立过程叫化学平衡的移动。

(2)移动的原因:外界条件发生变化。

移动的方向:由v正和v逆的相对大小决定。

旧平衡新平衡

)

(

)

(

)

(

)

(

B

c

A

c

D

c

C

c

K

b

a

d

c

?

?

=

%

100

)

(

)

(

)

(

%

100

)

(

)

(

)

(

?

-

=

?

-

=

转化率

c

c

c

n

n

n

α

%

100

(

?

=

气体体积

或质量

物质的量

理论上可得到的产物的

气体体积

或质量

实际生成产物的物质的

产率

条件改变一段时间

v正≠v逆

(3)平衡移动的标志:

各组分浓度与原平衡比较发生改变。 (4)影响化学平衡的条件

(1)增大反应物或减小生成物的浓度化学平衡向正反应方向移动 减小反应物或增大生成物的浓度化学平衡向逆反应方向移动

(2) A :温度升高,会使化学平衡向着吸热反应的方向移动; B :温度降低,会使化学平衡向着放热反应的方向移动。

(3) (对于反应前后气体体积改变的反应)

A :增大压强,会使化学平衡向着气体体积缩小的方向移动;

B :减小压强,会使化学平衡向着气体体积增大的方向移动。 [注意]

①对于反应前后气体总体积相等的反应, 改变压强不能使化学平衡移动;

②对于只有固体或液体参加的反应, 改变压强不能使化学平衡移动; (4)催化剂只能使正逆反应速率等倍增大,不能使化学平衡移动。 二、勒夏特列原理∶

如果改变影响平衡的条件之一(如温度,压强,以及参加反应的化学物质的浓度),平衡将向着能够减弱这种改变的方向移动。 三、等效平衡

化学平衡的建立与途径无关,即可逆反应无论从反应物方向开始,还是从生成物方向开始,只要条件不变(定温定容、定温定压),都可以达到同一平衡状态,此为等效平衡。

(1)定义:在一定条件下(恒温恒容或恒温恒压)下,只是起始加入情况不同的同一可逆反应达到平衡后,任何相同组分的分数(体积、物质的量)均相等,这样的化学平衡互称为等效平衡。

在等效平衡中,若不仅任何相同组分的分数(体积、物质的量)均相同,而且相同组分的物质的量均相同,这类

等效平衡又互称为同一平衡。同一平衡是等效平衡的特例。 (2) 等效平衡的规律:

①在定温定容条件下,对于反应前后气体分子数可变的可逆反应,只改变起始时加入物质的物质的量,如通过反应的计量数换算成同一半边物质的物质的量与原平衡的相同,则两平衡等效。

②在定温定容条件下,对于反应前后气体分子数不变的反应,只改变起始时加入物质的物质的量,如通过反应的计量数换算成同一半边物质的物质的量之比与原平衡的相同,则两平衡等效。

③在定温定压条件下,改变起始时加入物质的物质的量,如通过反应的计量数换算成同一半边物质的物质的量之比与原平衡的相同,则两平衡等效。

第三章 水溶液中的离子平衡 一、电解质的有关定义

1、电解质与非电解质本质区别:

在一定条件下(溶于水或熔化)能否电离(以能否导电来证明是否电离) 电解质——离子化合物或共价化合物 非电解质——共价化合物 离子化合物与共价化合物鉴别方法:熔融状态下能否导电

2、强电解质与弱电质的本质区别:在水溶液中是否完全电离(或是否存在电离平衡)

注意:①电解质、非电解质都是化合物 ②SO 2、NH 3、CO 2等属于非电解质 ③强电解质不等于易溶于水的化合物(如BaSO 4不溶于水,但溶于水的BaSO 4全部电离,故BaSO 4为强电解质)

4、强酸(HA )与弱酸(HB )的区别:(1)溶液的物质的量浓度相同时,pH (HA)<pH (HB) (2)pH 值相同时,溶液的浓度C HA <C HB (3)pH 相同时,加水稀释同等倍数后,pH HA >pH HB 二、水的电离和溶液的酸碱性

1、水离平衡:H 2O H + + OH - 水的离子积:K W = [H +

]·[OH -]

25℃时, [H +]=[OH -] =10-7 mol/L ; K W = [H +

]·[OH -] = 10-14

注意:K W 只与温度有关,温度一定,则K W 值一定; K W 不仅适用于纯水,适用于任何溶液(酸、碱、盐)。 2、水电离特点:(1)可逆 (2)吸热 (3)极弱 3、影响水电离平衡的外界因素:

(1)酸、碱 :抑制水的电离(pH 之和为14的酸和碱的水溶液中水的电离被同等的抑制)(2)温度:促进水的电离(水的电离是吸热的)(3)易水解的盐:促进水的电离(pH 之和为14两种水解盐溶液中水的电离被同等的促进) 4、溶液的酸碱性和pH :

(1)pH= -lg[H +

] 注意:①酸性溶液不一定是酸溶液(可能是 溶液) ;②pH <7 溶液不一定是酸性溶液(只有温度为常温才对); ③碱性溶液不一定是碱溶液(可能是 溶液)。 (2)pH 的测定方法:酸碱指示剂——甲基橙、石蕊、酚酞

pH 试纸 ——最简单的方法。 操作:将一小块pH 试纸放在洁净的玻璃片上,用玻璃棒 沾取未知液点试纸中部,然后与标准比色卡比较读数即可。 注意:①事先不能用水湿润PH 试纸;②只能读取整数值或范围 (3)常用酸碱指示剂及其变色范围:

指示剂 变色范围的PH 石蕊 <5红色 5~8紫色 >8蓝色 甲基橙 <3.1红色 3.1~4.4橙色 >4.4黄色 酚酞

<8无色

8~10浅红

>10红色

三 、混合液的pH 值计算方法公式

1、强酸与强酸的混合:(先求[H +]混:将两种酸中的H +离子数相加除以总体积,再求其它)[H +]混 =([H +

]1V 1+[H +]2V 2)/(V 1+V 2)

2、强碱与强碱的混合:(先求[OH -]混:将两种酸中的OH -离子数相加除以总体积,再求其它)[OH -]混=

①若V 正>V 逆 , 平衡不移动。

②若V 正=V 逆 , ③若V 正<V 逆 ,平衡向逆反应方向移V (逆

)

V (正)

V

V (正)

V (逆) ① 升高温度度 ② 降低温

V

V (正)

V (逆)

V

(逆)

V (正) 平衡向正反应方向移动。 物质 单质 化合物

电解质 非电解质:大多数非金属氧化物和有机物。如SO 3、CO 2、C 6H 12O 6、CCl 4、CH 2=CH 2…… 强电解质:强酸、强碱、绝大多数金属氧化物和盐。如HCl 、NaOH 、NaCl 、BaSO 4

弱电解质:弱酸、弱碱和水。如HClO 、NH 3·H 2O 、Cu(OH)2、H 2O ……

混和物

纯净物

([OH-]1V1+[OH-]2V2)/(V1+V2)(注意:不能直接计算[H+]混)

3、强酸与强碱的混合:(先据H++ OH- ==H2O计算余下的H+或OH-,①H+有余,则用余下的H+数除以溶液总体积求[H+]混;OH-有余,则用余下的OH-数除以溶液总体积求[OH-]混,再求其它)

注意:在加法运算中,相差100倍以上(含100倍)的,小的可以忽略不计!

4、稀释过程溶液pH值的变化规律:

(1)强酸溶液:稀释10n倍时,pH稀=pH原+ n(但始终不能大于或等于7)

(2)弱酸溶液:稀释10n倍时,pH稀<pH原+n (但始终不能大于或等于7)

(3)强碱溶液:稀释10n倍时,pH稀=pH原-n(但始终不能小于或等于7)

(4)弱碱溶液:稀释10n倍时,pH稀>pH原-n(但始终不能小于或等于7)

(5)不论任何溶液,稀释时pH均是向7靠近(即向中性靠近);任何溶液无限稀释后pH均为7

(6)稀释时,弱酸、弱碱和水解的盐溶液的pH变化得慢,强酸、强碱变化得快。

四、“酸、碱恰好完全反应”与“自由H+与OH-恰好中和”酸碱性判断方法

1、酸、碱恰好反应:恰好生成盐和水,看盐的水解判断溶液酸碱性。(无水解,呈中性)

2、自由H+与OH-恰好中和(现金相等),即“14规则:pH之和为14的两溶液等体积混合,谁弱显谁性,无弱显中性。”

五、盐类的水解(只有可溶于水的盐才水解)

1、盐类水解规律:

①有弱才水解,无弱不水解,越弱越水解;谁强显谁性,两弱相促进,两强不水解。②多元弱酸根,浓度相同时正酸根比酸式酸水解程度大,碱性更强。(如:Na2CO3>NaHCO3)③弱酸酸性强弱比较:

A、同主族元素最高价含氧酸的酸性递减,无氧酸的酸性递增(利用特殊值进行记忆。如酸性:

HFH3PO4)

B、饱和一元脂肪酸的碳原子数越小,酸性越强(如HCOOH>CH3COOH)

C、一些常见的酸的酸性:HClO、HAlO2、苯酚为极弱酸;醋酸>碳酸;磷酸和H2SO3为中强酸;

HClO4为最强含氧酸等。

2、盐类水解的特点:(1)可逆(2)程度小(3)吸热

3、影响盐类水解的外界因素:①温度:温度越高水解程度越大(水解吸热)②浓度:浓度越小,水解程度越大(越稀越水解)③酸碱:促进或抑制盐的水解(H+促进阴离子水解而抑制阳离子水解;OH-促进阳离子水解而抑制阴离子水解)

4、酸式盐溶液的酸碱性:①只电离不水解:如HSO4-②电离程度>水解程度,显酸性(如: HSO3-、H2PO4-)

③水解程度>电离程度,显碱性(如:HCO3-、HS-、HPO42-)。

5、双水解反应:

(1)构成盐的阴阳离子均能发生水解的反应为双水解反应(即弱酸弱碱盐)。双水解反应相互促进,水解程度较大,有的甚至水解完全。其促进过程以NH4Ac为例解释如下:

NH4Ac == NH4++ Ac-NH4++ H2O NH3·H2O + H+Ac—+ H2O HAc + OH-

两个水解反应生成的H+和OH—反应生成水而使两个水解反应的生成物浓度均减少,平衡均右移。

(2)常见的双水解反应完全的为:Fe3+、Al3+与AlO2-、CO32-(HCO3-)、S2-(HS-)、SO32-(HSO3-);其特点是相互水解成沉淀或气体。双水解完全的方程式写“==”并标“↑↓”,其离子方程式配平依据是两边电荷平衡,如:2Al3++ 3S2- + 6H2O == 2Al(OH)3↓+ 3H2S↑

6、盐类水解的应用:

①混施化肥(N、P、K三元素不能变成↑和↓)②泡沫灭火剂(用硫酸铝和小苏打为原料,双水解)③FeCl3溶液止血剂(血浆为胶体,电解质溶液使胶体凝聚)④明矾净水(Al3+水解成氢氧化铝胶体,胶体具有很大的表面积,吸附水中悬浮物而聚沉)⑤NH4Cl焊接金属(氯化铵呈酸性,能溶解铁锈)⑥判断溶液酸碱性(强者显性)⑦比较盐溶液离子浓度的大小⑧判断离子共存(双水解的离子产生沉淀和气体的不能大量共存)⑨配制盐溶液(加对应的酸防止水解)

六、电离、水解方程式的书写原则

1、多元弱酸(多元弱酸盐)的电离(水解)的书写原则:分步书写

例:H2S的电离H2S H++ HS-;HS-H++ S2-

例:Na2S的水解:H2O+ S2-HS- +OH- H2O + HS-H2S + OH-

注意:不管是水解还是电离,都决定于第一步,第二步一般相当微弱。

2、多元弱碱(多元弱碱盐)的电离(水解)书写原则:一步书写例:Al3++ 3H2O Al(OH)3 + 3H+

七、溶液中微粒浓度的大小比较

1、基本原则:抓住溶液中微粒浓度必须满足的两种守恒关系:

①电荷守恒(电荷数前移):任何溶液均显电中性,各阳离子浓度与其所带电荷数的乘积之和=各阴离子浓度与其所带电荷数的乘积之和

②物料守恒(原子个数前移):某原子的总量(或总浓度)=其以各种形式存在的所有微粒的量(或浓度)之和

③质子守恒(得失H+个数前移)::∑得质子后形成的微粒浓度·得质子数== ∑失质子后形成的微粒浓度·失质子数

2、同浓度的弱酸和其弱酸盐、同浓度的弱碱和其弱碱盐的电离和水解强弱规律:

①中常化学常见的有三对

等浓度的HAc与NaAc的混合溶液:弱酸的电离>其对应弱酸盐的水解,溶液呈酸性

等浓度的NH3·H2O与NH4Cl的混合液:弱碱的电离>其对应弱碱盐的水解,溶液呈碱性

等浓度的HCN与NaCN的混合溶液:弱酸的电离<其对应弱酸盐的水解,溶液呈碱性

②掌握其处理方法(即抓主要矛盾)

八、溶解平衡

1、难溶电解质的溶解平衡的一些常见知识

(1)溶解度小于0.01g的电解质称难溶电解质。生成难溶电解质的反应为完全反应,用“=”。

(2)反应后离子浓度降至1×10-5mol/L以下的反应为完全反应,用“=”。如酸碱中和时[H+]降至10-7mol/L<10-5mol/L,故为完全反应,用“=”,常见的难溶物在水中的离子浓度均远低于10-5

mol/L,故均用“=”。

(3)难溶并非不溶,任何难溶物在水中均存在溶解平衡。

(4)掌握三种微溶物质:CaSO4、Ca(OH)2、Ag2SO4

(5)溶解平衡常为吸热,但Ca(OH)2为放热,升温其溶解度减少。

(6)溶解平衡存在的前提是:必须存在沉淀,否则不存在平衡。

2、溶解平衡方程式的书写:注意在沉淀后用(s)标明状态,并用“”。如:Ag2S(s)2Ag++ S2-

3、沉淀生成的三种主要方式

(1)加沉淀剂法:K sp越小(即沉淀越难溶),沉淀越完全;沉淀剂过量能使沉淀更完全。

(2)调pH值除某些易水解的金属阳离子:常加入难溶性的MO、M(OH)2、MCO3等除M2+溶液中易水

解的阳离子。如加MgO除去MgCl2溶液中FeCl3。

(3)氧化还原沉淀法:加氧化剂或还原剂将要除去的离子变成沉淀而除去(较少见)

4、沉淀的溶解:沉淀的溶解就是使溶解平衡正向移动。常采用的方法有:①加水;②加热;③减少生成物(离子)的浓度。使沉淀溶解的方法一般为减少生成物的浓度,因为对于难溶物加水和加热对其溶解度的影响并不大。

5、沉淀的转化:溶液中的沉淀反应总是向着离子浓度减少的方向进行,简而言之,即溶解度大的生成溶解度小的,溶解度小的生成溶解度更小的。

第四章电化学基础

一,.原电池

1. 定义:把化学能转化为电能的装置

2.构成条件:(1)两种不同的金属(或一种金属与石墨)作电极

(2)插入电解质溶液里

(3)形成闭合回路

3.原电池的化学原理

电子从负极(较活泼金属)流向正极(较不活泼金属或碳棒), 负极发生氧化反应,正极发生还原反应。

4.半电池:包括电极材料和电解质溶液,两个隔离的半电池通过盐桥连接起来。 原电池正负极的判断方法:

负极: (1)相对活泼的金属(2)失电子,发生氧化反应(3)质量减少(4)电解质溶液中阴离子的定向移动方向 正极: (1)相对不活泼的金属 或 非金属(2)得电子,发生还原反应(3)质量增加 或 生成气体 (4)电解质溶液中阳离子的定向移动方向

二,化学电池:利用原电池原理制造的供电装置 ①一次电池—不可充电电池—如:干电池 ②二次电池——充电电池——如:蓄电池

③燃料电池:燃料电池是利用氢气、天然气、甲醇等燃料与氧气或空气进行电化学反应时释放出来的化学能直接转化成电能的一类原电池。

书写电极反应式应注意以下几点:

1.电极反应是一种离子反应,遵循书写离子反应的所有规则(如“拆”、“平”);

2.将两极反应的电子得失数配平后,相加得到总反应,总反应减去一极反应即得到另一极反应;

3.负极失电子所得氧化产物和正极得电子所得还原产物,与溶液的酸碱性有关如+4价的C 在酸性溶液中以CO2形式存在,在碱性溶液中以CO32-形式存在);

三,电解池:将电能转化成化学能的装置。 电解池形成的条件:

a.有与直流电源相连的两极

b.电解质溶液或熔融的电解质

c.形成闭合回路

电解:在直流电作用下,在两极上分别发生氧化反应和还原反应的过程。 电极名称及判断: 阴极:与电源负极相连的一极,物质在该得到电子,发生还原反应,阳离子向阴极移动 阳极:与电源正极相连的一极,物质在该失去电子,发生氧化反应,阴离子向阳极移动 离子的放电顺序

阳离子(在阴极): Ag +>Cu 2+ >H +> Na + (离子得电子能力,氧化性减弱)

阴离子(在阳极):金属单质(Pt 、Au 除外) >Cl - >OH ->含氧酸根(失电子能力,还原性减弱) .电解方程式的书写规则

(1)按得失电子数相等来配平电极方程式

(2)若H +或OH -放电,电极方程式写离子形式,电解方程式写H 2O (3)==上标明通电二字

完成下列溶液的电极反应(以石墨为电极电解) 硫酸溶液: CuBr2溶液: KOH 溶液: CuSO4溶液: 用惰性电极电解电解质溶液的规律

电解水型:含氧酸、强碱、活泼金属的含氧酸盐(如NaOH 、H2SO4、K2SO4)的电解 电解电解质型:无氧酸、不活泼的无氧酸盐(如HCl 、CuCl2)溶液的电解 电解质和水同时被电解型

A 、放氢生碱型:活泼金属的无氧酸盐(如NaCl 、MgBr2)溶液的电解

B 、放氧生酸型:不活泼金属的含氧酸盐(如CuSO4、AgNO3)溶液的电解

相互关系:往往同时发生,电化腐蚀要比化 第三单元 金属的腐蚀与防护 1、金属防护的几种重要方法

①改变金属内部的组织结构,制成合金。

②在金属表面覆盖保护层。如油漆、油脂等,电镀Zn,Cr 等易氧化形成致密的氧化物薄膜作保护层。 原理:隔绝金属与外界空气、电解质溶液的接触。 ③电化学保护法,即将金属作为原电池的正极或电解池的阴极而受到保护。 2、牺牲阳极的阴极保护法:

原理 :形成原电池反应时,让被保护金属做正极,不反应,起到保护作用;而活泼金属反应受到腐蚀。 3、外加电源的阴极保护法:

将被保护金属与另一附加电极作为电解池的两个极,使被保护的金属作为阴极,在外加直流电的作用下使阴极得到保护。此法主要用于防止土壤、海水及水中金属设备的腐蚀。

小结:

原电池

(电解质溶液)

e-

(氧化反应)

分析电解反应的一般思路:

明确溶液中存在哪些离子

根据阳极氧化,阴极还原分析得出产物

阴阳两极附近有哪些离子

1、盐桥的作用: 使Cl -向锌盐方向移 动,K +

向铜盐方向移动, 使Zn 盐和Cu 盐溶液一直 保持电中性,从而使电 子不断从Zn 极流向Cu 金属(或合金)跟周围接触到的气体 (或液体)反应而腐蚀损耗的过程。

高中化学选修4化学反应原理-知识点

化学反应原理 第一章化学反应与能量 第一节化学反应与能量的变化 第二节燃烧热能源 第三节化学反应热的计算 归纳与整理 第二章化学反应速率和化学平衡 第一节化学反应速率 第二节影响化学反应速率的因素第二节影响化学反应速率的因素 第三节化学平衡 第四节化学反应进行的方向 归纳与整理 第三章水溶液中的离子平衡 第一节弱电解质的电离 第二节水的电离和溶液的酸碱性 第三节盐类的水解 第四节难溶电解质的溶解平衡 归纳与整理 第四章电化学基础 第一节原电池 第二节化学电源 第三节电解池 第四节金属的电化学腐蚀与防护 归纳与整理 化学选修4化学反应与原理 章节知识点梳理 第一章化学反应与能量 一、焓变反应热 1.反应热:一定条件下,一定物质的量的反应物之间完全反应所放出或吸收的热量 2.焓变(ΔH)的意义:在恒压条件下进行的化学反应的热效应(1).符号:△H(2).单位:kJ/mol 3.产生原因:化学键断裂——吸热化学键形成——放热 放出热量的化学反应。(放热>吸热) △H 为“-”或△H <0 吸收热量的化学反应。(吸热>放热)△H 为“+”或△H >0 ☆常见的放热反应:①所有的燃烧反应②酸碱中和反应 ③大多数的化合反应④金属与酸的反应 ⑤生石灰和水反应⑥浓硫酸稀释、氢氧化钠固体溶解等 ☆常见的吸热反应:①晶体Ba(OH)2·8H2O与NH4Cl ②大多数的分解反应 ③以H2、CO、C为还原剂的氧化还原反应④铵盐溶解等 二、热化学方程式 书写化学方程式注意要点: ①热化学方程式必须标出能量变化。 ②热化学方程式中必须标明反应物和生成物的聚集状态(g,l,s分别表示固态,液态,气态,水溶液中溶质用aq表示) ③热化学反应方程式要指明反应时的温度和压强。

高中化学选修四《化学反应原理》《盖斯定律》【创新教案】

选修4 化学反应原理第一章化学反应与能量 第三节盖斯定律及其应用 核心素养:通过对盖斯定律的发现过程及其应用的学习,感受化学科学对人类生活和社会发展的贡献。 一、教材分析 1、本节教学内容分析 前面学生已经定性地了解了化学反应与能量的关系,通过实验感受到了反应热,并且了解了物质发生反应产生能量变化与物质的质量的关系,以及燃烧热的概念。在此基础上,本节介绍了盖斯定律,并从定量的角度来进一步认识物质发生化学反应伴随的热效应。本节内容分为两部分: 第一部分,介绍了盖斯定律。教科书以登山经验“山的高度与上山的途径无关”浅显地对特定化学反应的反应热进行形象的比喻,帮助学生理解盖斯定律。然后再通过对能量守恒定律的反证来论证盖斯定律的正确性。最后通过实例使学生感受盖斯定律的应用,并以此说明盖斯定律在科学研究中的重要意义。 第二部分,利用反应热的概念、盖斯定律和热化学方程式进行有关反应热的计算,通过三道不同类型的例题加以展示。帮助学生进一步巩固概念、应用定律、理解热化学方程式的意义。 本节引言部分用几句简短的话说明了学习盖斯定律的缘由以及盖斯定律的应用,本节内容中,盖斯定律是个难点,为了便于学生理解,教科书以测山高为例,并用能量守恒定律来论证。最后用CO的摩尔生成焓的计算这个实例来加强学生对于盖斯定律的理解。学生在掌握了热化学方程式和盖斯定律的基础上,利用燃烧热的数据,就可以进行简单的热化学计算。这样的安排符合学生的认知规律,并让学生掌握一种着眼于运用的学习方式,体现了新课标的精神。 2、课标分析 3、本节在本章及本模块中的地位和作用

能源是人类生存和发展的重要物质基础,本章通过化学能与热能转化规律的研究帮助学生认识热化学原理在生产、生活和科学研究中的应用,了解化学在解决能源危机中的重要作用,知道节约能源、提高能量利用率的实际意义。 在必修化学2中,学生初步学习了化学能与热能的知识,对于化学键与化学反应中能量变化的关系、化学能与热能的相互转化有了一定的认识,本章是在此基础上的扩展与提高。引入了焓变的概念,使学生认识到在化学反应中能量的释放或吸收是以发生变化的物质为基础的,二者密不可分,但以物质为主。而能量的多少则是以反应物和产物的物质的量为基础。把对于化学反应中的能量变化的定性分析变成了定量分析。解决了各种热效应的测量和计算的问题。在这一节里,我们将进一步讨论在特定条件下,化学反应中能量变化以热效应表现时的“质”“能”关系,这既是理论联系实际方面的重要内容,对于学生进一步认识化学反应规律和特点也具有重要意义。 本节内容是第一章的重点,因为热化学研究的主要内容之一就是反应热效应的计算。反应热的计算对于燃料燃烧和反应条件的控制、热工和化工设备的设计都具有重要意义。 二、教学目标 (一)知识与技能 1.了解反应途径与反应体系 2. 理解盖斯定律的涵义,能用盖斯定律进行有关反应热的简单计算。 3.能利用热化学方程式进行有关反应热的简单计算; (二)过程与方法 1.从途径角度、能量守恒角度分析和论证盖斯定律,培养分析问题的能力;2.通过热化学方程式的计算和盖斯定律的有关计算,培养计算能力。 (三)情感态度与价值观 1.通过对盖斯定律的发现过程及其应用的学习,感受化学科学对人类生活和社会发展的贡献。同时养成深入细致的思考习惯。 2.通过加强练习,及时巩固所学知识,养成良好学习习惯;形成良好的书写习惯。 三、教学重点

人教版高中化学选修四知识点总结

化学选修4化学反应与原理 第一章化学反应与能量 一、焓变反应热 1.反应热:一定条件下,一定物质的量的反应物之间完全反应所放出或吸收的热量2.焓变(ΔH)的意义:在恒压条件下进行的化学反应的热效应 (1).符号:△H(2).单位:kJ/mol 3.产生原因:化学键断裂——吸热化学键形成——放热 放出热量的化学反应。(放热>吸热)△H为“-”或△H<0 吸收热量的化学反应。(吸热>放热)△H为“+”或△H>0 ☆常见的放热反应:①所有的燃烧反应②酸碱中和反应③大多数的化合反应④金属与酸的反应⑤生石灰和水反应⑥浓硫酸稀释、氢氧化钠固体溶解等 ☆常见的吸热反应:①晶体Ba(OH)2·8H2O与NH4Cl②大多数的分解反应 ③以H2、CO、C为还原剂的氧化还原反应④铵盐溶解等 二、热化学方程式 书写化学方程式注意要点: ①热化学方程式必须标出能量变化。 ②热化学方程式中必须标明反应物和生成物的聚集状态(g,l,s分别表示固态,液态,气态,水溶液中溶质用aq表示) ③热化学反应方程式要指明反应时的温度和压强。 ④热化学方程式中的化学计量数可以是整数,也可以是分数 ⑤各物质系数加倍,△H加倍;反应逆向进行,△H改变符号,数值不变 三、燃烧热

1.概念:25℃,101kPa时,1mol纯物质完全燃烧生成稳定的化合物时所放出的热量。燃烧热的单位用kJ/mol表示。 ※注意以下几点: ①研究条件:101kPa②反应程度:完全燃烧,产物是稳定的氧化物。 ③燃烧物的物质的量:1mol④研究内容:放出的热量。(ΔH<0,单位kJ/mol) 四、中和热 1.概念:在稀溶液中,酸跟碱发生中和反应而生成1molH2O,这时的反应热叫中和热。 2.强酸与强碱的中和反应其实质是H+和OH-反应,其热化学方程式为:H+(aq)+OH-(aq)=H2O(l)ΔH=-57.3kJ/mol 3.弱酸或弱碱电离要吸收热量,所以它们参加中和反应时的中和热小于57.3kJ/mol。4.中和热的测定实验 五、盖斯定律 1.内容:化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关,如果一个反应可以分几步进行,则各分步反应的反应热之和与该反应一步完成的反应热是相同的。 第二章化学反应速率和化学平衡 一、化学反应速率 1.化学反应速率(v) ⑴定义:用来衡量化学反应的快慢,单位时间内反应物或生成物的物质的量的变化 ⑵表示方法:单位时间内反应浓度的减少或生成物浓度的增加来表示 ⑶计算公式:v=Δc/Δt(υ:平均速率,Δc:浓度变化,Δt:时间)单位:mol/(L·s)

人教版高中化学选修四《化学反应原理》课本习题参考答案

人教版高中化学选修四——《化学反应原理》课本习题参考答案第一单元第一节化学反应与能量的变化 1. 化学反应过程中所释放或吸收的能量,叫做反应热,在恒压条件下,它等于反应前后物质的焓变,符号是ΔH,单位是kJ/mol.例如 1 mol H2 (g)燃烧,生成 1 mol H2O(g), 其反应热ΔH=-241.8 kJ/mol. 2. 化学反应的实质就是反应物分子中化学键断裂,形成新的化学键,重新组合成生成物的分子.旧键断裂需要吸收能量,新键形成需要放出能量.当反应完成时,若生成物释放的能量比反应物吸收的能量大, 则此反应为放热反应; 若生成物释放的能量比反应物吸收的能量小,反应物需要吸收能量才能转化为生成物,则此反应为吸热反应. 第二节燃烧热能源 1. 在生产和生活中,可以根据燃烧热的数据选择燃料.如甲烷,乙烷,丙烷,甲醇, 乙醇,氢气的燃烧热值均很高,它们都是良好的燃料. 2. 化石燃料蕴藏量有限,不能再生,最终将会枯竭,因此现在就应该寻求应对措施. 措施之一就是用甲醇,乙醇代替汽油,农牧业废料,高产作物(如甘蔗,高粱,甘薯,玉米等) ,速生树木(如赤杨,刺槐,桉树等) ,经过发酵或高温热分解就可以制造甲醇或乙醇. 由于上述制造甲醇,乙醇的原料是生物质,可以再生,因此用甲醇,乙醇代替汽油是应对能源危机的一种有效措施. 3. 氢气是最轻的燃料,而且单位质量的燃烧热值最高,因此它是优异的火箭燃料,再加上无污染,氢气自然也是别的运输工具的优秀燃料.在当前,用氢气作燃料尚有困难,一是氢气易燃,易爆,极易泄漏,不便于贮存, 运输; 二是制造氢气尚需电力或别的化石燃料, 成本高. 如果用太阳能和水廉价地制取氢气的技术能够突破, 则氢气能源将具有广阔的发展前景. 4. 甲烷是一种优质的燃料,它存在于天然气之中.但探明的天然气矿藏有限,这是人们所担心的.现已发现海底存在大量水合甲烷,其储量约是已探明的化石燃料的2倍.如果找到了适用的开采技术,将大大缓解能源危机. 5. 柱状图略.关于如何合理利用资源,能源,学生可以自由设想.在上述工业原材料中,能源单耗最大的是铝;产量大,因而总耗能量大的是水泥和钢铁.在生产中节约使用原材料,加强废旧钢铁,铝,铜,锌,铅,塑料器件的回收利用,均是合理利用资源和能源的措施. 6. 公交车个人耗油和排出污染物量为私人车的1/5,从经济和环保角度看,发展公交车更为合理. 第三节化学反应热的计算1. C(s)+O2 (g) == CO2 (g) H=-393.5 kJ/mol 2.5 mol C 完全燃烧,H=2.5 mol×(-393.5 kJ/mol)=-983.8 kJ/mol 2. H2 (g)的燃烧热H=-285.8 kJ/mol 欲使H2完全燃烧生成液态水,得到1 000 kJ 的热量,需要H2 1 000 kJ÷285.8 kJ/mol=3.5 mol 3. 设S 的燃烧热为H S(s)+O2 (g) == SO2 (g) 32 g/mol H 4g -37 kJ H=32 g/mol×(-37 kJ)÷4 g =-296 kJ/mol 4. 设CH4的燃烧热为H CH4 (g)+O2 (g) == CO2 (g)+2H2O(g) 16 g/mol H 1g -55.6 kJ H=16 g/mol×(-55.6 kJ)÷1 g =-889.6 kJ/mol 5. (1)求3.00 mol C2H2完全燃烧放出的热量Q C2H2 (g)+5/2O2 (g) == 2CO2 (g)+H2O(l) 26 g/mol H 2.00 g -99.6 kJ H=26 g/mol×(-99.6 kJ)÷2.00 g =-1 294.8 kJ/mol Q=3.00 mol×(-1 294.8 kJ/mol)=-3 884.4 kJ≈-3 880 kJ (2)从4题已知CH4的燃烧热为-889.6 kJ/mol,与之相比,燃烧相同物质的量的C2H2放出的热量多. 6. 写出NH3燃烧的热化学方程式NH3 (g)+5/4O2 (g) == NO2 (g)+3/2H2O(g) 将题中(1)式乘以3/2,得: 3/2H2 (g)+3/4O2 (g) == 3/2H2O(g) 3/2H1=3/2×(-241.8 kJ/mol) =-362.7 kJ/mol 将题中(2)式照写: 1/2N2 (g)+O2 (g) == NO2 (g) H2=+33.9 kJ/mol 将题中(3)式反写,得NH3 (g) == 1/2N2 (g)+3/2H2 (g) -H3=46.0 kJ/mol 再将改写后的3式相加,得: 2 7. 已知1 kg 人体脂肪储存32 200 kJ 能量,行走1 km 消耗170 kJ,求每天行走5 km,1年因此而消耗的脂肪量: 170 kJ/km×5 km/d×365 d÷32 200 kJ/kg=9.64 kg 8. 此人脂肪储存的能量为4.2×105 kJ.快速奔跑1 km 要消耗420 kJ 能量,此人脂肪可以维持奔跑的距离为:4.2×105 kJ÷420 kJ/km=1 000 km 9. 1 t 煤燃烧放热2.9×107 kJ 50 t 水由20 ℃升温至100 ℃,温差100 ℃-20 ℃=80 ℃,此时需吸热: 50×103 kg×80 ℃×4.184 kJ/(kg℃)=1.673 6×107 kJ 锅炉的热效率=(1.673 6×107 kJ÷2.9×107 kJ)×100% =57.7% 10. 各种塑料可回收的能量分别是: 耐纶5 m3×4.2×104 kJ/m3=21×104 kJ 聚氯乙烯50 m3×1.6×104 kJ/m3=80×104 kJ 丙烯酸类塑料 5 m3×1.8×104

《选修4化学反应原理》焓变知识点总结

【 一、焓变、反应热 要点一:反应热(焓变)的概念及表示方法 化学反应过程中所释放或吸收的能量,都可以用热量来描述,叫做反应热,又称焓变,符号为ΔH,单位为kJ/mol,规定放热反应的ΔH为“—”,吸热反应的ΔH为“+”。 特别提醒: (1)描述此概念时,无论是用“反应热”、“焓变”或“ ΔH”表示,其后所用的数值必须带“+”或“—”。 (2)单位是kJ/mol,而不是kJ,热量的单位是kJ。 (3)在比较大小时,所带“+”“—”符号均参入比较。 要点二:放热反应和吸热反应 1.放热反应的ΔH为“—”或ΔH<0 ;吸热反应的ΔH为“+”或ΔH >0 ?H=E(生成物的总能量)-E(反应物的总能量) ?H=E(反应物的键能)-E(生成物的键能) 2.常见的放热反应和吸热反应 ①放热反应:活泼金属与水或酸的反应、酸碱中和反应、燃烧反应、多数化合反应。 ②吸热反应:多数的分解反应、氯化铵固体与氢氧化钡晶体的反应、水煤气的生成反应、炭与二氧化碳生成一氧化碳的反应 3.需要加热的反应,不一定是吸热反应;不需要加热的反应,不一定是放热反应 4.通过反应是放热还是吸热,可用来比较反应物和生成物的相对稳定性。 如C(石墨,s)C(金刚石,s)△H3= +1.9kJ/mol,该反应为吸热反应,金刚石的能量高,石墨比金属石稳定。 二、热化学方程式的书写 书写热化学方程式时,除了遵循化学方程式的书写要求外,还要注意以下几点: 1.反应物和生成物的聚集状态不同,反应热的数值和符号可能不同,因此必须注明反应物和生成物的聚集状态,用s、l、g分别表示固体、液体和气体,而不标“↓、↑”。 2.△H只能写在热化学方程式的右边,用空格隔开,△H值“—” 表示放热反应,△H值“+”表示吸热反应;单位为“kJ/mol”。 3.热化学方程式中各物质化学式前面的化学计量数仅表示该物质的物质的量,并不表示物质的分子数或原子数,因此,化学计量数可以是整数,也可以是分数。 4.△H的值要与热化学方程式中化学式前面的化学计量数相对应,如果化学计量数加倍,△H也要加倍。 5.正反应若为放热反应,则其逆反应必为吸热反应,二者△H的数值相等而符号相反。 三、燃烧热、中和热、能源 要点一:燃烧热、中和热及其异同

【最新】高中化学选修4知识点分类总结(1)

化学选修4化学反应与原理 章节知识点梳理 第一章化学反应与能量 一、焓变反应热 1.反应热:化学反应过程中所放出或吸收的热量,任何化学反应都有反应热, 因为任何化学反应都会存在热量变化,即要么吸热要么放热。反应热可以分为(燃烧热、中和热、溶解热) 2.焓变(ΔH)的意义:在恒压条件下进行的化学反应的热效应.符号:△H.单位:kJ/mol ,即:恒压下:焓变=反应热,都可用ΔH表示,单位都是kJ/mol。 3.产生原因:化学键断裂——吸热化学键形成——放热 放出热量的化学反应。(放热>吸热) △H 为“-”或△H <0 吸收热量的化学反应。(吸热>放热)△H 为“+”或△H >0 也可以利用计算△H来判断是吸热还是放热。△H=生成物所具有的总能量-反应物所具有的总能量=反应物的总键能-生成物的总键能 ☆常见的放热反应:①所有的燃烧反应②所有的酸碱中和反应③大多数的化合反应④金属与水或酸的反应⑤生石灰(氧化钙)和水反应⑥铝热反应等 ☆常见的吸热反应:①晶体Ba(OH)2·8H2O与NH4Cl②大多数的分解反应③条件一般是加热或高温的反应 ☆区分是现象(物理变化)还是反应(生成新物质是化学变化),一般铵盐溶解是吸热现象,别的物质溶于水是放热。 4.能量与键能的关系:物质具有的能量越低,物质越稳定,能量和键能成反比。 5.同种物质不同状态时所具有的能量:气态>液态>固态 6.常温是指25,101.标况是指0,101.

二、热化学方程式 书写化学方程式注意要点: ①热化学方程式必须标出能量变化,即反应热△H,△H对应的正负号都不能省。 ②热化学方程式中必须标明反应物和生成物的聚集状态(s,l, g分别表示固态,液态,气态,水溶液中溶质用aq表示) ③热化学反应方程式不标条件,除非题中特别指出反应时的温度和压强。 ④热化学方程式中的化学计量数表示物质的量,不表示个数和体积,可以是整 数,也可以是分数 ⑤各物质系数加倍,△H加倍,即:△H和计量数成比例;反应逆向进行,△H 改变符号,数值不变。 6.表示意义:物质的量—物质—状态—吸收或放出*热量。 三、燃烧热 1.概念: 101 kPa时,1 mol纯物质完全燃烧生成稳定的氧化物(二氧化碳、二 氧化硫、液态水H2O)时所放出的热量。燃烧热的单位用kJ/mol表示。 ※注意以下几点: ①研究条件:101 kPa ②反应程度:完全燃烧,产物是稳定的氧化物。 ③燃烧物的物质的量: 1 mol ④研究内容:放出的热量。(ΔH<0,单位kJ/mol) 2.燃烧热和中和热的表示方法都是有ΔH时才有负号。 3.石墨和金刚石的燃烧热不同。不同的物质燃烧热不同。

高中化学选修4知识点归纳总结

高中化学选修4知识点归纳总结 高中化学选修4知识点归纳总结 高中化学选修4知识 化学守恒 守恒是化学反应过程中所遵循的基本原则,在水溶液中的化学反应,会存在多种守恒关系,如电荷守恒、物料守恒、质子守恒等。 1.电荷守恒关系: 电荷守恒是指电解质溶液中,无论存在多少种离子,电解质溶液必须保持电中性,即溶液中阳离子所带的正电荷总数与阴离子所带的负电荷总数相等,用离子浓度代替电荷浓度可列等式。常用于溶液中离子浓度大小的比较或计算某离子的浓度等,例如: ①在NaHCO3溶液中:c(Na+)+c(H+)=c(OH-)+2c(CO32-)+c(HCO3-); ②在(NH4)2SO4溶液中:c(NH4+)+c(H+)=c(OH-)+c(SO42—)。 2.物料守恒关系: 物料守恒也就是元素守恒,电解质溶液中由于电离或水解因素,离子会发生变化变成其它离子或分子等,但离子或分子中某种特定元素的原子的总数是不会改变的'。 可从加入电解质的化学式角度分析,各元素的原子存在守恒关系,要同时考虑盐本身的电离、盐的水解及离子配比关系。例如: ①在NaHCO3溶液中:c(Na+)=c(CO32-)+c(HCO3-)+c(H2CO3);

②在NH4Cl溶液中:c(Cl-)=c(NH4+)+c(NH3·H2O)。 3.质子守恒关系: 酸碱反应达到平衡时,酸(含广义酸)失去质子(H+)的总数等于碱(或广义碱)得到的质子(H+)总数,这种得失质子(H+)数相等的关系就称为质子守恒。 在盐溶液中,溶剂水也发生电离:H2OH++OH-,从水分子角度分析:H2O电离出来的H+总数与H2O电离出来的OH—总数相等(这里包括已被其它离子结合的部分),可由电荷守恒和物料守恒推导,例如: ①在NaHCO3溶液中:c(OH-)=c(H+)+c(CO32-)+c(H2CO3); ②在NH4Cl溶液中:c(H+)=c(OH-)+c(NH3·H2O)。 综上所述,化学守恒的观念是分析溶液中存在的微粒关系的重要观念,也是解决溶液中微粒浓度关系问题的重要依据。 高中化学选修4必背知识 电解的原理 (1)电解的概念: 在直流电作用下,电解质在两上电极上分别发生氧化反应和还原反应的过程叫做电解.电能转化为化学能的装置叫做电解池. (2)电极反应:以电解熔融的NaCl为例: 阳极:与电源正极相连的电极称为阳极,阳极发生氧化反应:2Cl-→Cl2↑+2e-. 阴极:与电源负极相连的电极称为阴极,阴极发生还原反应:Na++e-→Na.

高中化学选修化学反应原理知识点总结

化学选修化学反应原理复习 第一章 一、焓变反应热 1.反应热:一定条件下,一定物质的量的反应物之间完全反应所放出或吸收的热量 2.焓变(ΔH)的意义:在恒压条件下进行的化学反应的热效应(1).符号:△H(2).单位:kJ/mol 3.产生原因:化学键断裂——吸热化学键形成——放热 放出热量的化学反应。(放热>吸热) △H 为“-”或△H <0 吸收热量的化学反应。(吸热>放热)△H 为“+”或△H >0 ☆常见的放热反应:①所有的燃烧反应②酸碱中和反应 ③大多数的化合反应④金属与酸的反应 ⑤生石灰和水反应⑥浓硫酸稀释、氢氧化钠固体溶解等 ☆常见的吸热反应:①晶体Ba(OH)2·8H2O与NH4Cl ②大多数的分解反应 ③以H2、CO、C为还原剂的氧化还原反应④铵盐溶解等 二、热化学方程式 书写化学方程式注意要点: ①热化学方程式必须标出能量变化。 ②热化学方程式中必须标明反应物和生成物的聚集状态(g,l,s分别表示固态,液态,气态,水溶液中溶质用aq表示) ③热化学反应方程式要指明反应时的温度和压强。 ④热化学方程式中的化学计量数可以是整数,也可以是分数 ⑤各物质系数加倍,△H加倍;反应逆向进行,△H改变符号,数值不变 三、燃烧热 1.概念:25 ℃,101 kPa时,1 mol纯物质完全燃烧生成稳定的化合物时所放出的热量。燃烧热的单位用kJ/mol表示。 ※注意以下几点: ①研究条件:101 kPa ②反应程度:完全燃烧,产物是稳定的氧化物。 ③燃烧物的物质的量:1 mol ④研究内容:放出的热量。(ΔH<0,单位kJ/mol) 四、中和热 1.概念:在稀溶液中,酸跟碱发生中和反应而生成1mol H2O,这时的反应热叫中和热。 2.强酸与强碱的中和反应其实质是H+和OH-反应,其热化学方程式为: H+(aq) +OH-(aq) =H2O(l) ΔH=-mol 3.弱酸或弱碱电离要吸收热量,所以它们参加中和反应时的中和热小于mol。 4.中和热的测定实验 五、盖斯定律

高二化学选修4化学反应原理第四章电化学练习题

第四章电化学基础练习题 1.Cu2O是一种半导体材料,基于绿色化学理念设计的制取.Cu2O的电解池示 意图如下,电解总反应:2Cu+H2O==Cu2O+H2O↑。下列说法正确的是: () A.石墨电极上产生氢气B.铜电极发生还原反应 C.铜电极接直流电源的负极 D.当有0.1mol电子转移时,有0.1molCu2O生成。 2.下列叙述不正确的是() A.铁表面镀锌,铁作阳极 B.船底镶嵌锌块,锌作负极,以防船体被腐蚀 C.钢铁吸氧腐蚀的正极反应:O2 +2H2O+4e-=4OH— D.工业上电解饱和食盐水的阳极反应:2Cl一一2e一=C12↑ 3.控制适合的条件,将反应2Fe3++2I-2Fe2++I 2设计成如右图所示 的原电池。下列判断不正确 ...的是() A.反应开始时,乙中石墨电极上发生氧化反应 B.反应开始时,甲中石墨电极上Fe3+被还原 C.电流计读数为零时,反应达到化学平衡状态 D.电流计读数为零后,在甲中溶入FeCl2固定,乙中石墨电极为负极 4.可用于电动汽车的铝-空气燃料电池,通常以NaCl溶液或NaOH溶液为点解液,铝合金为负极,空气电极为正极。下列说法正确的是() A.以NaCl溶液或NaOH溶液为电解液时,正极反应都为:O2+2H2O+4e-=4OH- B.以NaOH溶液为电解液时,负极反应为:Al+3OH--3e=Al(OH)3↓ C.以NaOH溶液为电解液时,电池在工作过程中电解液的pH保持不变 D.电池工作时,电子通过外电路从正极流向负极 5.钢铁生锈过程发生如下反应:①2Fe+O2+2H2O=2Fe(OH)2;②4Fe(OH)2+O2+2H2O=4Fe(OH)3;③ 2Fe(OH)3=Fe2O3+3H2O。下列说法正确的是() A.反应①、②中电子转移数目相等B.反应①中氧化剂是氧气和水 C.与铜质水龙头连接处的钢质水管不易发生腐蚀 D.钢铁在潮湿的空气中不能发生电化学腐蚀() 6.化学在生产和日常生活中有着重要的应用。下列说法不正确的是 A.明矾水解形成的Al(OH)3胶体能吸附水中悬浮物,可用于水的净化 B.在海轮外壳上镶入锌块,可减缓船体的腐蚀速率 C.MgO的熔点很高,可用于制作耐高温材料 D.电解MgCl2饱和溶液,可制得金属镁 7.右图装置中,U型管内为红墨水,a、b试管内分别盛有食盐水和氯化铵溶液,各加入生铁块,放置一段时间。 下列有关描述错误的是() A.生铁块中的碳是原电池的正极 B.红墨水柱两边的液面变为左低右高 C.两试管中相同的电极反应式是:Fe-2e-Fe2+ D.a试管中发生了吸氧腐蚀,b试管中发生了析氢腐蚀 8.茫茫黑夜中,航标灯为航海员指明了方向。航标灯的电源必须长效、稳定。我国科技工作者研制出以铝合金、 Pt-Fe合金网为电极材料的海水电池。在这种电池中①铝合金是阳极②铝合金是负极③海水是电解液 ④铝合金电极发生还原反应()

高二化学选修4知识点总结

高二化学知识点总结 化学反应原理复习(一) 第1章、化学反应与能量转化 化学反应的实质是反应物化学键的断裂和生成物化学键的形成,化学反应过程中伴随着能量的释放或吸收。 一、化学反应的热效应 1、化学反应的反应热 (1)反应热的概念: 当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热。用符号Q表示。 (2)反应热与吸热反应、放热反应的关系。 Q>0时,反应为吸热反应;Q<0时,反应为放热反应。 (3)反应热的测定 测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热,计算公式如下: Q=-C(T2-T1) 式中C表示体系的热容,T1、T2分别表示反应前和反应后体系的温度。实验室经常测定中和反应的反应热。 2、化学反应的焓变 (1)反应焓变 物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H,单位为kJ·mol-1。 反应产物的总焓与反应物的总焓之差称为反应焓变,用ΔH表示。 (2)反应焓变ΔH与反应热Q的关系。 对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=ΔH=H(反应产物)-H(反应物)。 (3)反应焓变与吸热反应,放热反应的关系: ΔH>0,反应吸收能量,为吸热反应。 ΔH<0,反应释放能量,为放热反应。 (4)反应焓变与热化学方程式: 把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:H2(g)+O2(g)=H2O(l);ΔH(298K)=-285.8kJ·mol-1 书写热化学方程式应注意以下几点: ①化学式后面要注明物质的聚集状态:固态(s)、液态(l)、气态(g)、溶液(aq)。 ②化学方程式后面写上反应焓变ΔH,ΔH的单位是J·mol-1或kJ·mol-1,且ΔH后注明反应温度。 ③热化学方程式中物质的系数加倍,ΔH的数值也相应加倍。 3、反应焓变的计算 (1)盖斯定律 对于一个化学反应,无论是一步完成,还是分几步完成,其反应焓变一样,这一规律称为盖斯定律。 (2)利用盖斯定律进行反应焓变的计算。 常见题型是给出几个热化学方程式,合并出题目所求的热化学方程式,根据盖斯定律可知,该方程式的ΔH为

最全面高二化学选修4知识点归纳总结大全(精华版)

高二化学选修 4 知识点归纳总结大全 高二部分理科生可能觉得学习化学知识点归纳不重要,可一到考试就不知道怎么去复习了。为了方便大家的时间, 第 1 章、化学反应与能量转化 化学反应的实质是反应物化学键的断裂和生成物化学键的形 成,化学反应过程中伴随着能量的释放或吸收。 一、化学反应的热效应 1、化学反应的反应热 (1)反应热的概念: 当化学反应在一定的温度下进行时,反应所释放或吸收的热量 称为该反应在此温度下的热效应,简称反应热。用符号Q 表示。 (2)反应热与吸热反应、放热反应的关系。 Q0 时,反应为吸热反应;Q0 时,反应为放热反应。 (3)反应热的测定 测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热,计算公式如下: Q=-C(T2-T1) 式中C 表示体系的热容,T1、T2 分别表示反应前和反应后体系的温度。实验室经常测定中和反应的反应热。 2、化学反应的焓变 (1)反应焓变 物质所具有的能量是物质固有的性质,可以用称为焓的物理量

来描述,符号为H,单位为kJmol-1。 反应产物的总焓与反应物的总焓之差称为反应焓变,用H 表示。 (2)反应焓变H 与反应热Q 的关系。 对于等压条件下进行的化学反应,若反应中物质的能量变化全 部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为: Qp=H=H( 反应产物)-H( 反应物)。 (3)反应焓变与吸热反应,放热反应的关系: H0,反应吸收能量,为吸热反应。 H0,反应释放能量,为放热反应。 (4)反应焓变与热化学方程式: 把一个化学反应中物质的变化和反应焓变同时表示出来的化学 方程式称为热化学方程式,如:H2(g)+ O2(g)=H2O(l);H(298K)=-285.8kJmol-1 书写热化学方程式应注意以下几点: ①化学式后面要注明物质的聚集状态:固态(s)、液态(l)、气态 (g)、溶液(aq)。 ②化学方程式后面写上反应焓变H,H 的单位是Jmol-1 或kJmol-1,且H 后注明反应温度。 ③热化学方程式中物质的系数加倍,H 的数值也相应加倍。 3、反应焓变的计算 (1)盖斯定律 对于一个化学反应,无论是一步完成,还是分几步完成,其反

高中化学选修4知识点总结(详细版)知识讲解

化学选修4 化学反应与原理 第一章化学反应与能量 一、焓变反应热 1 .反应热:化学反应过程中所放出或吸收的热量,任何化学反应都有反应热,因为任何化学反应都会存在热量变化,即要么吸热要么放热。反应热可以分为(燃烧热、中和热、溶解热) 2 .焓变(△ H)的意义:在恒压条件下进行的化学反应的热效应.符号:△ H.单位: kJ/mol ,即:恒压下:焓变二反应热,都可用△ H表示,单位都是kJ/mol。 3. 产生原因:化学键断裂——吸热化学键形成——放热 放出热量的化学反应。(放热〉吸热)△ H为“-”或△ H <0 吸收热量的化学反应。(吸热>放热)△ H为“+”或厶H >0 也可以利用计算厶H来判断是吸热还是放热。△日=生成物所具有的总能量-反应物所具有的总能量=反应物的总键能-生成物的总键能☆常见的放热反应:① 所有的燃烧反应② 所有的酸碱中和反应③ 大多数的化合反应④ 金属与水或酸的反应⑤ 生石灰(氧化钙)和水反应⑥铝热反应等 ☆常见的吸热反应:① 晶体Ba(OH)? 8H2O与NH4C②大多数的分解反应③ 条件一般是加热或高温的反应 ☆区分是现象(物理变化)还是反应(生成新物质是化学变化),一般铵盐溶解是吸热现象,别的物质溶于水是放热。 4. 能量与键能的关系:物质具有的能量越低,物质越稳定,能量和键能成反比。 5. 同种物质不同状态时所具有的能量:气态>液态>固态 6. 常温是指25,101. 标况是指0,101. 7. 比较△ H时必须连同符号一起比较。 二、热化学方程式书写化学方程式注意要点:

①热化学方程式必须标出能量变化,即反应热△ H,A H对应的正负号都不能省。 ②热化学方程式中必须标明反应物和生成物的聚集状态(s,l, g 分别表示固态,液态,气态,水溶液中溶质用aq 表示) ③热化学反应方程式不标条件,除非题中特别指出反应时的温度和压强。 ④热化学方程式中的化学计量数表示物质的量,不表示个数和体积,可以是整数,也可以是分数 ⑤各物质系数加倍,△ H加倍,即:△ H和计量数成比例;反应逆向进行,△ H改变符号数值不变。 6. 表示意义:物质的量—物质—状态—吸收或放出*热量。 三、燃烧热 1.概念:101 kPa 时,1 mol 纯物质完全燃烧生成稳定的氧化物(二氧化碳、二氧化硫、液态水H2Q)时所放出的热量。燃烧热的单位用kJ/mol表示。 ※注意以下几点: ①研究条件:101 kPa ②反应程度:完全燃烧,产物是稳定的氧化物。 ③燃烧物的物质的量:1 mol ④研究内容:放出的热量。(△ HvO,单位kJ/mol ) 2. 燃烧热和中和热的表示方法都是有△ H时才有负号。 3. 石墨和金刚石的燃烧热不同。不同的物质燃烧热不同。 四、中和热 1. 概念:在稀溶液中,酸跟碱发生中和反应

新人教版高中化学选修4知识点总结:第四章电化学基础

电化学基础 一、原电池 课标要求 1、掌握原电池的工作原理 2、熟练书写电极反应式和电池反应方程式 要点精讲 1、原电池的工作原理 (1)原电池概念:化学能转化为电能的装置,叫做原电池。 若化学反应的过程中有电子转移,我们就可以把这个过程中的电子转移设计成定向的移动,即形成电流。只有氧化还原反应中的能量变化才能被转化成电能;非氧化还原反应的能量变化不能设计成电池的形式被人类利用,但可以以光能、热能等其他形式的能量被人类应用。 (2)原电池装置的构成 ①有两种活动性不同的金属(或一种是非金属导体)作电极。 ②电极材料均插入电解质溶液中。 ③两极相连形成闭合电路。 (3)原电池的工作原理 原电池是将一个能自发进行的氧化还原反应的氧化反应和还原反应分别在原电池的负极和正极上发生,从而在外电路中产生电流。负极发生氧化反应,正极发生还原反应,简易记法:负失氧,正得还。 2、原电池原理的应用 (1)依据原电池原理比较金属活动性强弱 ①电子由负极流向正极,由活泼金属流向不活泼金属,而电流方向是由正极流向负极,二者是相反的。

②在原电池中,活泼金属作负极,发生氧化反应;不活泼金属作正极,发生还原反应。 ③原电池的正极通常有气体生成,或质量增加;负极通常不断溶解,质量减少。 (2)原电池中离子移动的方向 ①构成原电池后,原电池溶液中的阳离子向原电池的正极移动,溶液中的阴离子向原电池的负极移动; ②原电池的外电路电子从负极流向正极,电流从正极流向负极。 注:外电路:电子由负极流向正极,电流由正极流向负极; 内电路:阳离子移向正极,阴离子移向负极。 3、原电池正、负极的判断方法: (1)由组成原电池的两极材料判断 一般是活泼的金属为负极,活泼性较弱的金属或能导电的非金属为正极。 (2)根据电流方向或电子流动方向判断。 电流由正极流向负极;电子由负极流向正极。 (3)根据原电池里电解质溶液内离子的流动方向判断 在原电池的电解质溶液内,阳离子移向正极,阴离子移向负极。 (4)根据原电池两极发生的变化来判断 原电池的负极失电子发生氧化反应,其正极得电子发生还原反应。 (5)根据电极质量增重或减少来判断。 工作后,电极质量增加,说明溶液中的阳离子在电极(正极)放电,电极活动性弱;反之,电极质量减小,说明电极金属溶解,电极为负极,活动性强。 (6)根据有无气泡冒出判断 电极上有气泡冒出,是因为发生了析出H2的电极反应,说明电极为正极,活动性弱。 本节知识树

《选修4 化学反应原理》知识点总结

一、焓变、反应热 要点一:反应热(焓变)的概念及表示方法 化学反应过程中所释放或吸收的能量,都可以用热量来描述,叫做反应热,又称焓变,符号为ΔH,单位为kJ/mol,规定放热反应的ΔH为“—”,吸热反应的ΔH为“+”。 特别提醒:(1)描述此概念时,无论是用“反应热”、“焓变”或“ ΔH”表示,其后所用的数值必须带“+”或“—”。 (2)单位是kJ/mol,而不是kJ,热量的单位是kJ。 (3)在比较大小时,所带“+”“—”符号均参入比较。 要点二:放热反应和吸热反应 1.放热反应的ΔH为“—”或ΔH<0 ;吸热反应的ΔH为“+”或ΔH >0 ?H=E(生成物的总能量)-E(反应物的总能量) ?H=E(反应物的键能)-E(生成物的键能) 2.常见的放热反应和吸热反应 ①放热反应:活泼金属与水或酸的反应、酸碱中和反应、燃烧反应、多数化合反应。 ②吸热反应:多数的分解反应、氯化铵固体与氢氧化钡晶体的反应、水煤气的生成反应、炭与二氧化碳生成一氧化碳的反应 3.需要加热的反应,不一定是吸热反应;不需要加热的反应,不一定是放热反应 4.通过反应是放热还是吸热,可用来比较反应物和生成物的相对稳定性。 如C(石墨,s)C(金刚石,s)△H3= +1.9kJ/mol,该反应为吸热反应,金刚石的能量高,石墨比金属石稳定。 二、热化学方程式的书写 书写热化学方程式时,除了遵循化学方程式的书写要求外,还要注意以下几点: 1.反应物和生成物的聚集状态不同,反应热的数值和符号可能不同,因此必须注明反应物和生成物的聚集状态,用s、l、g分别表示固体、液体和气体,而不标“↓、↑”。 2.△H只能写在热化学方程式的右边,用空格隔开,△H值“—” 表示放热反应,△H值“+”表示吸热反应;单位为“kJ/mol”。 3.热化学方程式中各物质化学式前面的化学计量数仅表示该物质的物质的量,并不表示物质的分子数或原子数,因此,化学计量数可以是整数,也可以是分数。 4.△H的值要与热化学方程式中化学式前面的化学计量数相对应,如果化学计量数加倍,△H 也要加倍。 5.正反应若为放热反应,则其逆反应必为吸热反应,二者△H的数值相等而符号相反。 三、燃烧热、中和热、能源 要点一:燃烧热、中和热及其异同

化学选修四所有知识点总结

化学选修四所有知识点总结 2016-09-25 第1章、化学反应与能量转化 化学反应的实质是反应物化学键的断裂和生成物化学键的形成,化学反应过程中伴随着能量的释放或吸收。 一、化学反应的热效应 1、化学反应的反应热 (1) 反应热的概念: 当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热。用符号Q表示。(2) 反应热与吸热反应、放热反应的关系。 Q> 0时,反应为吸热反应;C K 0时,反应为放热反应。 (3) 反应热的测定 测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热,计算公式如下: Q=- CE—T1) 式中C表示体系的热容,T1、T2分别表示反应前和反应后体系的温度。实验室经常测定中和反应的反应热。 2、化学反应的焓变 (1) 反应焓变 物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H单位为kJ ?mol-1。 反应产物的总焓与反应物的总焓之差称为反应焓变,用ΔH表示。 (2) 反应焓变ΔH与反应热Q的关系。 对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=ΔH= H(反应产物)—H(反应物)。 (3) 反应焓变与吸热反应,放热反应的关系: ΔH> 0,反应吸收能量,为吸热反应。 ΔH< 0,反应释放能量,为放热反应。 (4) 反应焓变与热化学方程式: 把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:H(g) + Q(g)= fθ(l) ; ΔH(298K)=- 285.8kJ ? mol -1 书写热化学方程式应注意以下几点: ①化学式后面要注明物质的聚集状态:固态(S)、液态(I)、气态(g)、溶液(aq)。 ②化学方程式后面写上反应焓变ΔH,ΔH的单位是J ?mol-1或kJ ?mol-1,且ΔH后注明反应温度。 ③热化学方程式中物质的系数加倍,ΔH 的数值也相应加倍。 3、反应焓变的计算 (1) 盖斯定律 对于一个化学反应,无论是一步完成,还是分几步完成,其反应焓变一样,这一规律称为盖斯定律。 (2) 利用盖斯定律进行反应焓变的计算。 常见题型是给出几个热化学方程式,合并出题目所求的热化学方程式,根据盖斯定律可知,该方程式的ΔH为上述各热化学方程式的ΔH的代数和。 (3) 根据标准摩尔生成焓,△ f H mθ计算反应焓变ΔHo 对任意反应:aA+ bB= cC+ dD

化学选修4《化学反应原理》课后习题和答案

化学选修4《化学反应原理》课后习题和答案 篇一:化学选修4《化学反应原理》课后习题和答案化学选修4《化学反应原理》课后习题和答案第一章化学反应与能量第二章第一节化学反应与能量的变化 P5习题 1.举例说明什么叫反应热,它的符号和单位是什么? 2.用物质结构的知识说明为什么有的反应吸热,有的反应放热。 3.依据事实,写出下列反应的热化学方程式。 (1)1 mol N2 (g)与适量H2(g)起反应,生成NH3(g),放出92.2 kJ热量。 (2)1 mol N2 (g)与适量O2(g)起反应,生成NO2(g),吸收68 kJ热量。 (3)1 mol Cu(s)与适量O2(g)起反应,生成CuO(s),放出157 kJ热量。 (4)1 mol C(s)与适量H2O(g)起反应,生成CO(g)和H2 (g),吸收131.3 kJ热量。 (5)卫星发射时可用肼(N2H4)作燃料,1 mol N2H4(l)在O2(g)中燃烧,生成N2(g)和H2O(l),放出622 kJ热量。 (6)汽油的重要成分是辛烷(C8H18),1 mol C8H18 (l)在O2(g)中燃烧,生成CO2(g)和H2O(l),放出5 518 kJ热量。 4.根据下列图式,写出反应的热化学方程式。P6习题 1.举例说明什么叫反应热,它的符号和单位是什么? 1、化学反应过程中所释放或吸收的热量叫做反应热。恒压条件下,它等于反应前后物质的焓变。、符号是ΔH、单位是kJ/mol或kJ?mol-1 。例如1molH2(g)燃烧,生成1molH2O(g),其反应热ΔH=-241.8kJ/mol。 2.用物质结构的知识说明为什么有的反应吸热,有的反应放热。 2、化学反应的实质就是反应物分子中化学键断裂,形成新的化学键,重新组合成生成物的分子。旧键断裂需要吸收能量,新键形成要放出能量。当反应完成时,若生成物释放的能量比反应物吸收的能量大,则此反应为放热反应;若生成物释放的能量比反应物吸收的能量小,反应物需要吸收能量才能转化为生成物,则此反应为吸热反应。 P10习题 1、燃烧热数据对生产、生活有什么实际意义? 1、在生产和生活中,可以根据燃烧热的数据选择燃料。如甲烷、乙烷、丙烷、甲醇、乙醇、氢气的燃烧热值均很高,它们都是良好的燃料 2、石油资源总有一天会枯竭,现在就应该寻求应对措施。目前已使用甲醇、乙醇作为汽油的代用品,这样做的好处是什么?化石燃料蕴藏量有限,不能再生,最终将会枯竭,因此现在就应该寻找对应措施。措施之一就是用甲醇、乙醇代替汽油,农牧业废料、高产作物(甘蔗、高粱、甘薯、玉米等)、速生树木(如赤杨、刺槐、桉树等),经过发酵或高温热分解就可以制造甲醇或

相关文档
最新文档