四边形单元测试题含答案汇编
九年级数学-四边形-测试题(含答案)

平行四边形单元测试题一.选择题(每题5分,共30分) 1. 已知四边形ABCD ,以下有四个条件. (1)AB CD AB CD =∥, (2)AB AD AB BC ==, (3)A B C D ∠=∠∠=∠,(4)AB CD AD BC ∥,∥能判四边形ABCD 是平行四边形的有( ) A.1个B.2个C.3个D.4个2. 如图3,E F 、ABCD对角线AC上两点,且AE CF =,连结DE 、BF ,则图中共有全等 三角形的对数是( ) A.1对B.2对C.3对D.4对中,:::A B C D ∠∠∠∠的值可以是( ) A.1:2:3:4 B.1:2:2:1C.1:2:1:2D.1:1:2:24. 如图,在ABC △中,6AB AC D ==,是BC 上的点,DE AB ∥ 交AC 于点F ,DE AC ∥交AB 于E ,那么四边形AFDE 的周长为( ) A.6B.12C.18D.245. 如果平行四边形的两条对角线长分别是8和12,那么它的边长不能是( ) A.10B.8C.7D.66. 若平行四边形ABCD 的对角线cm cm AC a BD b ==,2b a -+0=,则下列哪个长度能作为平行四边形的一条边的长度( ) A.1B.5C.7D.3.5二.填空题(每题5分,共30分)7. 用两个全等的三角形最多..能拼成 个不同的平行四边形. 8. 四边形ABCD 中,已知AB CD =,则可再添加一个条件 可判定四边形ABCD 为平行四边形.9. E F G H 、、、分别为ABCD 四边的中点,则四边形EFGH 为 . ABCD 中,:4:3AB BC = ,周长是28cm ,则AD = ,CD = .中,AB BC CD 、、的长度分别为2134x x x ++,,, 则 的周长是 .图1ABBC12.ABCD 的周长为20cm ,对角线AC BD 、相交于 点O COB ,△的周长比AOB △的周长大2cm ,那么BC = cm . 三.解答题(每题10分,共40分)13.已知四边形ABCD ,从①AB DC ∥;②AB DC =;③AD BC ∥;④AD BC =;⑤A C ∠=∠;⑥B D ∠=∠中取出2个条件加以组合,能推出四边形ABCD 是平行四边形的有哪几种情况?请具体写出这些组合.14. 如图,在平行四边形ABCD 中,E F G H 、、、各点分别在AB BC CD DA 、、、上,且AE BF CG DH ===,请说明:EG 与FH 互相平分.15. 如图所示,以ABC △的三边AB BC CA 、、在BC 的同侧作等边ABD BCE CAF △、△、△,请说明:四边形ADEF 为平行四边形.ABCDODA BEFCHG F16. 如图所示,在平行四边形ABCD 中,AE CF 、分别是DAB BCD ∠∠,的平分线, 试说明四边形AFCE 是平行四边形.附答案: 一.选择题1.B 2.C 3. C 4.B 5. A 6.D 二.填空题7.3 8.AB CD ∥或BC AD = 9. 平行四边形 10.6cm ,8cm 11.32 12. 6 三.解答题13.解:有以下组合可以得到平行四边形:①与③;②与④;⑤与⑥;①与②;③与④;①与⑤;①与⑥;③与⑤;③与⑥. 14.提示:经证四边形HEFG 为平行四边形. 15. 提示:BDE ABC ECF △≌△≌△, 16.解:是平行四边形.理由如下: 四边形ABCD 是平行四边形,BAD BCD ∴∠=∠. AE CF 、是角平分线, .AEB FCE ∴∠=∠ AE CF ∴∥.又AF CE ∥,∴四边形AFCE 是平行四边形..DF AF AD FE ∴==,∴四边形ADEF 为平行四边形.ABCDFE。
最新初中数学四边形单元汇编及答案(3)

最新初中数学四边形单元汇编及答案(3)一、选择题1.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°, ∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-, 解得:32x =; ∴32BE =. 故选:C .【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.2.下列命题错误的是( )A .平行四边形的对角线互相平分B .两直线平行,内错角相等C .等腰三角形的两个底角相等D .若两实数的平方相等,则这两个实数相等【答案】D【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A 、平行四边形的对角线互相平分,正确;B 、两直线平行,内错角相等,正确;C 、等腰三角形的两个底角相等,正确;D 、若两实数的平方相等,则这两个实数相等或互为相反数,故D 错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.3.如图,□ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC .若4AB =,6AC =,则BD 的长为( )A .11B .10C .9D .8 【答案】B【解析】【分析】根据勾股定理先求出BO 的长,再根据平行四边形的性质即可求解.【详解】∵6AC =,∴AO=3,∵AB ⊥AC ,∴2234+∴BD=2BO=10,故选B.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.4.如图,在平行四边形ABCD 中,AC=4,BD=6,P 是BD 上的任一点,过点P 作EF ∥AC ,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=48 3x-+.故选C .5.如图,已知矩形ABCD 中,BC =2AB ,点E 在BC 边上,连接DE 、AE ,若EA 平分∠BED,则ABE CDE S S V V 的值为()A .232-B .2332-C .2333-D .233- 【答案】C【解析】【分析】过点A 作AF ⊥DE 于F ,根据角平分线上的点到角的两边距离相等可得AF=AB ,利用全等三角形的判定和性质以及矩形的性质解答即可.【详解】解:如图,过点A 作AF ⊥DE 于F ,在矩形ABCD 中,AB =CD ,∵AE 平分∠BED ,∴AF =AB ,∵BC =2AB ,∴BC =2AF ,∴∠ADF =30°,在△AFD 与△DCE 中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD ≌△DCE (AAS ),∴△CDE 的面积=△AFD 的面积=2113AF DF AF 3AF AB 222⨯=⨯= ∵矩形ABCD 的面积=AB •BC =2AB 2,∴2△ABE 的面积=矩形ABCD 的面积﹣2△CDE 的面积=(2﹣3)AB 2,∴△ABE 的面积=()2232AB -,∴2323323ABE CDE S S --==V V , 故选:C .【点睛】本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB .6.一个多边形的每一个外角都是72°,那么这个多边形的内角和为( )A .540°B .720°C .900°D .1080° 【答案】A【解析】【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:360572=, ∴该多边形的内角和为:(5-2)×180°=540°.故选A .【点睛】外角和是360°,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.7.如图,在矩形ABCD 中,AB m =,6BC =,点E 在边CD 上,且23CE m =.连接BE ,将BCE V 沿BE 折叠,点C 的对应点C '恰好落在边AD 上,则m =( )A .B .CD .4【答案】A【解析】【分析】设AC′=x ,在直角三角形ABC′和直角三角形DEC′中分别利用勾股定理列出关于x 和m 的关系式,再进行求解,即可得出m 的值.【详解】解:设AC′=x ,∵AB=m ,BC=6,23CE m =, 根据折叠的性质可得:BC′=6,EC′=23CE m =, ∴C ′D=6-x ,DE=13m ,在△ABC ′中,AB 2+AC′2=BC′2,即2226x m +=,在△DEC ′中,C′D 2+DE 2=C′E 2,即()22212633x m m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭, 化简得:()2236x m -=,代入2226x m +=中,得:()222366x x -=-,解得:x=3或x=6,代入2226x m +=,可得:当x=3时,m=-当x=6时,m=0(舍),故m 的值为故选A.【点睛】本题考查了折叠的性质,勾股定理,解一元二次方程,有一定难度,解题的关键是根据折叠的性质运用勾股定理求解.8.如图,在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF=6,AB=5,则AE 的长为( )A .4B .8C .6D .10【答案】B【解析】【分析】【详解】 解:设AG 与BF 交点为O ,∵AB=AF ,AG 平分∠BAD ,AO=AO ,∴可证△ABO ≌△AFO ,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF ∥BE ,∴可证△AOF ≌△EOB ,AO=EO ,∴AE=2AO=8,故选B .【点睛】本题考查角平分线的作图原理和平行四边形的性质.9.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH,若BE:EC=2:1,则线段CH 的长是( )A .3B .4C .5D .6【答案】B【解析】 试题分析:设CH =x , 因为BE :EC =2:1,BC =9,所以,EC =3, 由折叠知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理,得:222(9)3x x -=+,解得:x =4,即CH=4考点:(1)图形的折叠;(2)勾股定理10.下列说法中正确的是( )A.有一个角是直角的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直平分的四边形是正方形D.两条对角线相等的菱形是正方形【答案】D【解析】【分析】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.【详解】A. 有一个角是直角的四边形是矩形,错误;B. 两条对角线互相垂直的四边形是菱形,错误;C. 两条对角线互相垂直平分的四边形是正方形,错误;D. 两条对角线相等的菱形是正方形,正确.故选D.【点睛】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.11.下列命题中是真命题的是()A.多边形的内角和为180°B.矩形的对角线平分每一组对角C.全等三角形的对应边相等D.两条直线被第三条直线所截,同位角相等【答案】C【解析】【分析】根据多边形内角和公式可对A进行判定;根据矩形的性质可对B进行判定;根据全等三角形的性质可对C进行判定;根据平行线的性质可对D进行判定.【详解】A.多边形的内角和为(n-2)·180°(n≥3),故该选项是假命题,B.矩形的对角线不一定平分每一组对角,故该选项是假命题,C.全等三角形的对应边相等,故该选项是真命题,D.两条平行线被第三条直线所截,同位角相等,故该选项是假命题,故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.熟练掌握矩形的性质、平行线的性质、全等三角形的性质及多边形的内角和公式是解题关键.12.如图,菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (0,23),∠DOB =60°,点P 是对角线OC 上的一个动点,已知A (﹣1,0),则AP +BP 的最小值为( )A .4B .5C .33D .19【答案】D【解析】【分析】 点B 的对称点是点D ,连接AD ,则AD 即为AP+BP 的最小值,求出点D 坐标解答即可.【详解】解:连接AD ,如图,∵点B 的对称点是点D ,∴AD 即为AP+BP 的最小值,∵四边形OBCD 是菱形,顶点B (0,23DOB=60°,∴点D 的坐标为(33∵点A 的坐标为(﹣1,0),∴22(3)419+=故选:D .【点睛】此题考查菱形的性质,关键是根据两点坐标得出距离.13.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中ABE △,BCF V ,CDG V ,DAH V 全等,AEH △,BEF V ,CFG △,DGH V 也全等,中间小正方形EFGH 的面积与ABE △面积相等,且ABE △是以AB 为底的等腰三角形,则AEH △的面积为( )A .2B .169C .32D .2【答案】C【解析】【分析】【详解】 解:如图,连结EG 并向两端延长分别交AB 、CD 于点M 、N ,连结HF ,∵四边形EFGH 为正方形,∴EG FH =,∵ABE △是以AB 为底的等腰三角形,∴AE BE =,则点E 在AB 的垂直平分线上,∵ABE △≌CDG V ,∴CDG V 为等腰三角形,∴CG DG =,则点G 在CD 的垂直平分线上,∵四边形ABCD 为正方形,∴AB 的垂直平分线与CD 的垂直平分线重合,∴MN 即为AB 或CD 的垂直平分线,则,EM AB GN CD ^^,EM GN =,∵正方形ABCD 的边长为4,即4AB CD AD BC ====, ∴4MN =,设EM GN x ==,则42EG FH x ==-,∵正方形EFGH 的面积与ABE △面积相等,即2114(42)22x x ?-,解得:121,4x x ==,∵4x =不符合题意,故舍去,∴1x =,则S 正方形EFGH 14122==⨯⨯=V ABE S , ∵ABE △,BCF V ,CDG V ,DAH V 全等,∴2====V V V V ABE BCF CDG DAH S S S S ,∵正方形ABCD 的面积4416=⨯=,AEH △,BEF V ,CFG △,DGH V 也全等, ∴1(4=V AEH S S 正方形ABCD − S 正方形EFGH 134)(16242)42-=⨯--⨯=V ABE S , 故选:C .【点睛】本题考查了正方形的性质、全等三角形的性质和等腰三角形的性质,解题的关键是求得ABE △的面积.14.如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F ,若BF=12,AB=10,则AE 的长为( )A .13B .14C .15D .16 【答案】D【解析】【分析】先证明四边形ABEF 是平行四边形,再证明邻边相等即可得出四边形ABEF 是菱形,得出AE ⊥BF ,OA=OE ,OB=OF=12BF=6,由勾股定理求出OA ,即可得出AE 的长. 【详解】如图所示:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAE=∠AEB ,∵∠BAD 的平分线交BC 于点E ,∴∠DAE=∠BAE ,∴∠BAE=∠BEA ,∴AB=BE ,同理可得AB=AF ,∴AF=BE ,∴四边形ABEF 是平行四边形,∵AB=AF ,∴四边形ABEF 是菱形,∴AE ⊥BF ,OA=OE ,OB=OF=12BF=6, ∴OA=2222=106AB OB --=8,∴AE=2OA=16.故选D .【点睛】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF 是菱形是解决问题的关键.15.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、B 与D 两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如图2)观察所得到的四边形,下列判断正确的是( )A .∠BCA =45°B .AC =BD C .BD 的长度变小D .AC ⊥BD【答案】B【解析】【分析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD 是平行四边形,又∵AB ⊥BC ,∴∠ABC =90°,∴四边形ABCD 是矩形,∴AC =BD .故选B .【点睛】 本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.下列结论正确的是()A.平行四边形是轴对称图形B.平行四边形的对角线相等C.平行四边形的对边平行且相等D.平行四边形的对角互补,邻角相等【答案】C【解析】【分析】分别利用平行四边形的性质和判定逐项判断即可.【详解】A、平行四边形不一定是轴对称图形,故A错误;B、平行四边形的对角线不相等,故B错误;C、平行四边形的对边平行且相等,故C正确;D、平行四边形的对角相等,邻角互补,故D错误.故选:C.【点睛】此题考查平行四边形的性质,掌握特殊平行四边形与一般平行四边形的区别是解题的关键.17.如图,在□ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G.下列结论中:①DE=DF;②AG=GF;③AF=DF;④BG=GC;⑤BF=EF,其中正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】由AAS证明△ABF≌△DEF,得出对应边相等AF=DF,BF=EF,即可得出结论,对于①②④不一定正确.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,即AB∥CE,∴∠ABF=∠E,∵DE=CD,∴AB=DE,在△ABF和△DEF中,∵===ABF E AFB DFE AB DE ∠∠⎧⎪∠∠⎨⎪⎩, ∴△ABF ≌△DEF (AAS ),∴AF=DF ,BF=EF ;可得③⑤正确,故选:B .【点睛】此题考查平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.18.如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,▱ABCD 的周长是在14,则DM 等于( )A .1B .2C .3D .4【答案】C【解析】 试题分析:∵BM 是∠ABC 的平分线,∴∠ABM=∠CBM ,∵AB ∥CD ,∴∠ABM=∠BMC ,∴∠BMC=∠CBM ,∴BC=MC=2,∵▱ABCD 的周长是14,∴BC+CD=7,∴CD=5,则DM=CD ﹣MC=3,故选C .考点:平行四边形的性质.19.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】 ∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC 长度2205OB C +=,∵O 点为AB 的中点,E 点为AD 的中点,∴OE 为△ABD 的中位线,即:OE=12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径,∴BD 的最小值为4,∴OE=12BD=2,即OE 的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.20.如图,菱形ABCD 中,对角线BD 与AC 交于点O , BD =8cm ,AC =6cm ,过点O 作OH ⊥CB 于点H ,则OH 的长为( )A .5cmB .52cm C .125cm D .245cm 【答案】C【解析】【分析】根据菱形的对角线互相垂直平分求出OB 、OC ,再利用勾股定理列式求出BC ,然后根据△BOC 的面积列式计算即可得解.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,111163,842222OC AC OB BD ==⨯===⨯= 在Rt △BOC 中,由勾股定理得,2222345BC OB OC ++=∵OH ⊥BC ,1122BOC S OC OB CB OH ∴=⋅=⋅V ∴1143522OH ⨯⨯=⨯ ∴125OH =故选C .【点睛】本题考查了菱形的性质,勾股定理,三角形的面积,熟记性质是解题的关键,难点在于利用两种方法表示△BOC 的面积列出方程.。
四边形单元考试题及答案

四边形单元考试题及答案一、选择题(每题4分,共20分)1. 四边形中,对角线互相垂直的平行四边形是:A. 矩形B. 菱形C. 正方形D. 梯形答案:B2. 四边形中,对角线相等的平行四边形是:A. 矩形B. 菱形C. 正方形D. 梯形答案:A3. 四边形中,对角线互相平分且相等的平行四边形是:A. 矩形B. 菱形C. 正方形D. 梯形答案:C4. 四边形中,一组邻边相等的平行四边形是:A. 矩形B. 菱形C. 正方形D. 梯形答案:B5. 四边形中,对角线互相垂直平分的平行四边形是:A. 矩形B. 菱形C. 正方形D. 梯形答案:C二、填空题(每题3分,共15分)1. 四边形中,对边平行且相等的四边形称为________。
答案:平行四边形2. 四边形中,对角线互相垂直且相等的平行四边形称为________。
答案:正方形3. 四边形中,对边相等且对角线相等的平行四边形称为________。
答案:矩形4. 四边形中,对角线互相垂直的平行四边形称为________。
答案:菱形5. 四边形中,对角线互相垂直平分的平行四边形称为________。
答案:正方形三、解答题(每题10分,共30分)1. 证明:若四边形ABCD是平行四边形,且AC=BD,则四边形ABCD是矩形。
答案:证明略。
2. 证明:若四边形ABCD是平行四边形,且AB=BC,则四边形ABCD是菱形。
答案:证明略。
3. 证明:若四边形ABCD是平行四边形,且∠A=90°,则四边形ABCD 是矩形。
答案:证明略。
四、综合题(每题15分,共25分)1. 已知四边形ABCD是平行四边形,且AB=CD=6cm,AD=BC=8cm,求对角线AC的长度。
答案:根据勾股定理,AC=√(AB²+AD²)=√(6²+8²)=10cm。
2. 已知四边形ABCD是平行四边形,且∠A=60°,求∠C的度数。
答案:由于平行四边形的对角相等,所以∠C=∠A=60°。
四边形单元测试卷含答案(谢)

平行四边形单元测试班次 姓名一、选择题(每小题3分,共24分)1.在平行四边形ABCD 中,∠B =110°,延长AD 至F , 延长CD 至E ,连结EF ,则∠E +∠F =( ) A .110°B .30°C .50°D .70°2.菱形具有而矩形不具有的性质是 ( ) A .对角相等B .四边相等C .对角线互相平分D .四角相等3.如图,平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE =3 cm ,则AB 的长为 ( ) A .3 cm B .6 cm C .9 cm D .12 cm4.已知:如图,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.若AB =2,AD =4,则图中阴影部分的面积为 ( ) A .8B .6C .4D.35.用两块全等的含有30°角的三角板拼成形状不同的平行四边形,最多可以拼成( ) A .1个B .2个C .3个D .4个6.如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示(单位:mm ),则该主板的周长是 ( ) A .88 mm B .96 mm C .80 mmD .84 mm7.如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 是AC 上的两点,当E 、F 满足下列哪个条件时,四边形DEBF 不一定是平行四边形 ( ) A .∠ADE =∠CBF B .∠ABE =∠CDF C .OE =OFD .DE =BF第6题8.如图是用4个相同的小矩形与1个小正方形镶嵌而成的正方形图案.已知该图案的面积为49,小正方形的面积为4,若用x 、y 表示小矩形的两边长(x >y ),请观察图案,指出以下关系式中不正确的是 ( )A .7=+y xB .2=-y xC .4944=+xyD .2522=+y x二、填空题(每小题4分,共24分)9.若四边形ABCD 是平行四边形,请补充条件 (写一个即可),使四边形ABCD 是菱形.10.如图,在平行四边形ABCD 中,已知对角线AC 和BD 相交于点O ,△ABO 的周长为15,AB =6,那么对角线AC +BD =_____. 11.如图,延长正方形ABCD 的边AB 到E ,使BE =AC ,则∠E = °.12.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =32,那么AP 的长为 .13.在平面直角坐标系中,点A 、B 、C 的坐标分别是A (-2,5),B (-3,-1),C (1,-1),在第一象限内找一点D ,使四边形ABCD 是平行四边形,那么 点D 的坐标是 .14.如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,A 1B 1C 1D 1是中点四边形.如果AC =3,BD =4, 那么A 1B 1C 1D 1的面积为 三、解答题(52分)15.(8分)如图,在矩形ABCD 中,AE 平分∠BAD ,∠1=15°. (1)求∠2的度数.(2)求证:BO =BE .16.(8分)已知:如图,D是△ABC的边BC上的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且BF=CE.当∠A满足什么条件时,四边形AFDE是正方形?请证明你的结论.17.(8分)如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.18.(8分)已知:如图,在正方形ABCD中,AC、BD交于点O,延长CB到点F,使BF=BC,连结DF交AB于E.求证:OE=( )BF(在括号中填人一个适当的常数,再证明).19.(8分)在一次数学探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等.(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有组.(2)请在下图的三个平行四边形中画出满足小强分割方法的直线.(3)由上述实验操作过程,你发现所画的两条直线有什么规律?20.(12分)已知:如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.(1)试猜想线段AE与BF有何关系?说明理由.(2)若△ABC的面积为3cm2,请求四边形ABFE的面积.(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由.第十九章 平行四边形单元测试(B 卷)得分一、选择题(本大题8个小题,每小题4分,共32分)1.用两块完全相同的直角三角形拼下列图形:①平行四边形 ②矩形 ③菱形 ④正方形 ⑤等腰三角形 ⑥等边三角形,一定能拼成的图形是( )A.①④⑤B.②⑤⑥C.①②③D.①②⑤ 2.顺次连结任意四边形四边中点所得的四边形一定是( )A.平行四边形B.矩形C.菱形D.正方形 3.用长为100cm 的金属丝制成一个矩形框子,框子的面积不可能是( )A.325cmB.500cmC.625cmD.800cm 4.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的 《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一 个大正方形(如图).如果大正方形的面积是13,小正方形的面积是1,直 角三角形较短直角边为a ,较长直角边为b ,那么(a +b )2的值为( )A.13B.19C.25D.169 5.如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E , AB=5,BC=3,则EC 的长( )A.1B.1.5C.2D.3 6.等腰梯形的两底之差等于腰长,则腰与下底的夹角为 ( )A.120°B.60°C.45°D.135°7.在平行四边形ABCD 中,∠B=110O,延长AD 至F,延长CD 至,连接EF,则∠E+∠F=( )A.110OB.30OC.50OD.70O8. 如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比( )A.3:4B.5:8C.9:16D.1:2二、填空题(本大题6个小题,每小题3分,共18分) 9.□ABCD 中,∠A =50°,则∠B =__________,∠C =__________.10.菱形ABCD 的周长为36,其相邻两内角的度数比为1:2,则此菱形的面积为___________. 11.对角线长为22的正方形的周长为___________,面积为__________.ABCDE F 第7题图C第8题图第5题图ABC D E第4题图12.在梯形ABCD 中,AD ∥BC ,∠A =90°,若BD =BC =DC =10,则此梯形的面积为_______. 13.已知菱形两条对角线长分别是4cm 和8cm ,则它的边长为__________.14.□ABCD 的对角线相交于点O ,△AOB 是等边三角形,且AB =3cm ,则此平行四边形的周长为__________,面积为___________. 三、解答题(共50分)15.(8分)已知:如图,梯形ABCD 中,AD ∥BC ,∠B=60°,∠C=30°,AD=2,BC=8.求:梯形两腰AB 、CD 的长.16.(8分)在直角梯形ABCD 中,∠A =90°,AB ∥DC ,AD =15,AB =16,BC =17,求CD 的长.17.(8分)如图,平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F.求证:∠BAE =∠DCF.AB C D第15题图 AB C DEF第17题图18.(8分)如图,四边形ABCD 中,AC 垂直平分BD 于点O.⑴ 图中有多少对全等三角形?请把它们都写出来; ⑵ 任选(1)中的一对全等三角形加以证明.19.(8分)如图,矩形ABCD 的两边AB =3,BC =4,P 是AD 上任一点,PE ⊥AC 于点E ,PF ⊥BD 于点F.求PE +PF 的值.20.(10分)已知四边形ABCD 中,P 是对角线BD 上的一点,过P 作MN ∥AD ,EF ∥CD ,分别交AB 、CD 、AD 、BC 于点M 、N 、E 、F ,设a =PM ·PE ,b =PN ·PF ,解答下列问题: (1)当四边形ABCD 是矩形时,见图1,请判断a 与b 的大小关系,并说明理由; (2)当四边形ABCD 是平行四边形,且∠A 为锐角时,见图2,(1)中的结论是否成立?并说明理由.C AB DO第18题图A B图1 图2NMPFE DCBA NMPF E D CB A参考答案A 卷一、选择题1.D2.B3.B4.C5.C6.B7.D8.D 二、填空题9. AB=BC 或AC ⊥BD 等 10.18 11.22.5 12.32或34 13.(2,5) 14.3 三、解答题15.(1)30°(2)证△AOB 为等边三角形 16.当∠A =90°时,证明略 17. 略 18.1219.(1)无数 (2)略 (3)经过对角线的交点 20.(1)AE 与BF 平行且相等 (2)122cm (3)60°B 卷一、选择题1.D2.A3.D4.C5.C6.B7.D8.B 二、填空题9.130°,50° 10.381 11.8,4 12.2375 13.52 14.39,366三、解答题15. AB=3,CD 33= 16.24 17.略18.(1)3对.分别是△AOB ≌△AOD ,△COB ≌△COD ,△ABC ≌△ADC (2)略 19.5620. (1)b a = (2)b a =.理由略.。
第19章《四边形》综合测试题及答案

四边形综合测试题一、选择题(每小题3分,共30分)1、关于四边形ABCD ①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC 和BD 相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有( )。
(A ) 1个 (B )2个 (C )3个 (D )4个2、若顺次连结四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必定是( )A 、菱形B 、对角线相互垂直的四边形C 、正方形D 、对角线相等的四边形 3、如图1,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( )A.S 1 > S 2B.S 1 = S 2C.S 1<S 2D.S 1、S 2 的大小关系不确定 4、矩形一个角的平分线分矩形一边为1cm 和3cm 两部分,则这个矩形的面积为( )A.3cm 2B. 4cm 2C. 12cm 2D. 4cm 2或12cm 2 5、如图2,菱形花坛 ABCD 的边长为 6m ,∠B =60°,其中由两个正六边形组成的图形部分种花,则种花部分的图形的周长(粗线部分)为( )B.20mC.22mD.24m6、如图3,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则折痕EF 的长是( ) AB. CD.7、如图4,在宽为20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地. 根据图中数据,计算耕地的面积为( )A .600m 2B .551m 2C .550 m 2D .500m 28、如图5,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是 ( )A.3∶4B.5∶8C.9∶16D.1∶29、如图6,矩形ABCD 中,DE ⊥AC 于E ,且∠ADE :∠EDC=3:2,则∠BDE 的度数为 ( )A 、36oB 、9oC 、27oD 、18o图4FEDCBA图3图2图110、如图7,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心O 1,再从中心O 1走到正方形O 1GFH 的中心O 2,又从中心O 2走到正方形O 2IHJ 的中心O 3,再从中心O 3走2走到正方形O 3KJP 的中心O 4,一共走了31 2 m ,则长方形花坛ABCD 的周长是( )A.36 mB.48mC.96 mD.60 m二、填空题(每小题3分,共30分)11,如图8, 若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于___.12,如图9,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1 S 2(填“>”或“<”或“=”).13,如图10,四边形ABCD 是正方形,P 在CD 上,△ADP 旋转后能够与△ABP ′重合,若AB =3,DP =1,则PP ′=___.14,已知菱形有一个锐角为60°,一条对角线长为6cm ,则其面积为___cm 2. 15,如图11,在梯形ABCD 中,已知AB ∥CD ,点E 为BC 的中点, 设△DEA 的面积为S 1,梯形ABCD 的面积为S 2,则S 1与S 2的关系为___.16,如图12,四边形ABCD 的两条对角线AC 、BD 互相垂直,A 1B 1C 1D 1四边形ABCD 的中点四边形.如果AC =8,BD =10,那么四边形A 1B 1C 1D 1的面积为___.17,如图13,□ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,AC图5图7图12 A 1 B 1C 1D 1 D AB C B 图13 D B A 图8 图10图9 N M Q D C BA 图11 E D C BA点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为___.18,将一张长方形的纸对折,如图14所示,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕,如果对折n 次,可以得到 条折痕.19、如图15,已知AB ∥DC ,AE ⊥DC ,AE =12,BD =15,AC =20, 则梯形ABCD 的面积为___.20、在直线l 上依次摆放着七个正方形(如图16所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=___.三、解答题21、(8分)如图17,把一张长方形ABCD 的纸片沿EF 折叠后,ED 与BC 的交点为G ,点D 、C 分别落在D ′、C ′的位置上,若∠EFG=55°,求∠AEG 和∠EGB 的度数。
平行四边形单元测试题(含答案)

平行四边形单元测试题【2 】班别姓名学号分数一.选择题(每小题5分,共40分)1.在平行四边形ABCD中,∠A:∠B:∠C=2:3:2,则∠D=()(A)36°(B)108°(C)72°(D)60°2.假如等边三角形的边长为3,那么贯穿连接各边中点所成的三角形的周长为().(A)9 (B)6 (C)3 (D)9 23.平行四边形的两条对角线分离为6和10,则个中一条边x的取值规模为().(A)4<x<6 (B)2<x<8 (C)0<x<10 (D)0<x<64.平行四边形的周长为24cm,相邻双方长的比为3:1,那么平行四边形较短的边长为().(A)6cm (B)3cm (C)9cm (D)12cm5.下列说法准确的是().(A)有两组对边分离平行的图形是平行四边形(B)平行四边形的对角线相等(C)平行四边形的对角互补,邻角相等(D)平行四边形的对边平等且相等6.将一张平行四边形的纸片折一次,使得折痕等分这个平行四边形的面积,则如许的折纸办法有().A.很多种B.4种C.2种D.1种7.一个多边形的内角和等于外角和的一半,那么这个多边形是()(A)三角形(B)四边形(C)五边形(D)六边形8.在等腰三角形ABC中,∠C=90°,BC=2厘米,假如以AC的中点O为扭转中间,•将这个三角形扭转180°,点B 落在点B ′处,那么点B ′与点B 的本来地位相距若干厘米( ) A .3 B .23 C .5 D .25 二.填空题(每小题6分,共36分)9.如图1,在平行四边形ABCD 中,BE ⊥CD,BF ⊥AD,垂足分离为E,F,∠FBE=60°,AF=3cm,CE=4.5cm,则∠A=______度,AB=______,BC=_______. 10.如图2,在平行四边形ABCD 中,DB=CD,∠C=70°,AE ⊥BD 于点E .则∠DAE=°. 11在平行四边形ABCD 中,AE ⊥BC 于E, AF ⊥CD 于F ,AE=4,AF=6,平行四边形ABCD 的周长为40,则平行四边形ABCD 的面积为.12已知平行四边形ABCD 的两条对角线订交于直角坐标系的原点,点A,B 的坐标分离为(-1,-5),(-1,2),则C.D 的坐标分离为_________________.13如图3,BC 为固定的木条,AB,AC 为可伸缩的橡皮筋.当点A 在与BC•平行的轨道上滑动时,△ABC 的面积将若何变化.(变大.变小.不变.不必定)14如图4,在平行四边形ABCD 中,E是BC 上一点,且AB=BE, AE 的延伸线交DC 的延伸线于点F,若∠F=50°,则∠D=°.三.简答题(共24分)15.(8分)已知:如图,在平行四边形ABCD 中,E.F 是对角线BD 上的两点,且BE =DF.求证:(1)AE =CF;(2)AE ∥CF .16. (8分)如图,把一张长方形ABCD 的纸片沿EF 折叠后,ED 与BC 的 AB CDEFCDBAFE交点为G ,点D.C 分离落在D ′.C ′的地位上,若∠EFG=55°,求∠AEG 和∠ECB 的度数.17. (8分)如图,在平行四边形ABCD 中,BE ⊥AC,DF ⊥AC,E.F 分离为垂足, •试解释四边形BEDF 是平行四边形.答案:1.B 2.D 3.B 4.B 5.D 6.A 7.A 8.D9.60°,6cm,9cm10. 20°1148. 12 (1,5)(1,-2)13 不变. 14 80° 15.(略);16.(略);17.(略)。
(完整版)四边形单元测试题含答案,推荐文档
多有两条,能否做到:
(用“能”或“不能”填空).若填“能”,请确定裁剪线的位置,
D
并说明拼接方法;若填“不能”,请简要说明理由.
A
答案:能
如图,取四边形 ABCD 各边的中点 E形形形 G F H ,连接 EF形 GH ,则
EF形 GH 为裁剪线. EF形 GH 将四边形 ABCD 分成 1,2,3,4 四个部分,拼接时,图中 B
12cm2,则打开后梯形的周长是
()
A、(10+2 5 )cm B、(12+2 5 )cm C、22cm D、20cm
10、如图,正方形 ABCD 的边长为 2,点 E 在 AB 边
上,四边形 EFGB 也为正方形,设 △AFC 的面积为
A
S ,则( ) A. S 2
B. S 2.4
FE
C. S 4
17、(7 分)已知任意四边形 ABCD ,且线段 AB 、 BC 、 CD 、 DA 、 AC 、 BD 的中点分别是 E 、 F 、 G 、 H 、 P 、 Q .(1)若四边形 ABCD 如图①,判断下列结论是否正确(正确的在括号里填“√”,错误的在括号里填“×”)
.
甲:顺次连接 EF 、 FG 、 GH 、 HE 一定得到平行四边形;( )
D
6. 已知点 A(2,0) 、点 B ( 1 , 0 )、点 C ( 0 ,1),以 A 、 B 、 C 三点为顶点画平行四边形,则第四个顶点不可能 2
在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7、如图,在平行四边形 ABCD 中, AC形 BD 相交于点 O .下列结论: ① OA OC ,② BAD BCD ,③ AC BD ,④ BAD ABC 180 .其
最新初中数学四边形单元检测附答案
最新初中数学四边形单元检测附答案一、选择题∆绕点A顺时针旋转90︒到1.如图,点E是正方形ABCD的边DC上一点,把ADE∆的位置.若四边形AECF的面积为20,DE=2,则AE的长为()ABFA.4 B.25C.6 D.26【答案】D【解析】【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】Q绕点A顺时针旋转90︒到ABFADE∆∆的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,∴==,25AD DCQ,DE=2∴∆中,2226Rt ADEAE AD DE=+=故选:D.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.2.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③△EFG ≌△GBE;④EG=EF,其中正确的个数是()A.1 B.2 C.3 D.4【答案】D【解析】【分析】由平行四边形的性质可得AB =CD ,AD =BC ,BO =DO =12BD ,AO =CO ,AB ∥CD ,即可得BO =DO =AD =BC ,由等腰三角形的性质可判断①,由中位线定理和直角三角形的性质可判断②④,由平行四边形的性质可判断③,即可求解.【详解】解:∵四边形ABCD 是平行四边形∴AB =CD ,AD =BC ,BO =DO =12BD ,AO =CO ,AB ∥CD ∵BD =2AD∴BO =DO =AD =BC ,且点E 是OC 中点∴BE ⊥AC ,∴①正确∵E 、F 、分别是OC 、OD 中点∴EF ∥DC ,CD =2EF∵G 是AB 中点,BE ⊥AC∴AB =2BG =2GE ,且CD =AB ,CD ∥AB∴BG =EF =GE ,EF ∥CD ∥AB∴四边形BGFE 是平行四边形,∴②④正确,∵四边形BGFE 是平行四边形,∴BG =EF ,GF =BE ,且GE =GE∴△BGE ≌△FEG (SSS )∴③正确故选D .【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,直角三角形的性质,三角形的中位线及等腰三角形的性质,熟练运用这些性质进行推理是本题的关键.3.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得 226810BD =+=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.4.如图,在菱形ABCD 中,点E 在边AD 上,30BE ADBCE ⊥∠=︒,.若2AE =,则边BC 的长为( )A 5B 6C 7D .22【答案】B【解析】【分析】 由菱形的性质得出AD ∥BC ,BC=AB=AD ,由直角三角形的性质得出3,在Rt △ABE 中,由勾股定理得:BE 2+22=3)2,解得:2,即可得出结果.【详解】∵四边形ABCD 是菱形,∴AD BC BC AB =,∥.∵BE AD ⊥.∴BE BC ⊥.∴30BCE ∠=︒,∴2EC BE =, ∴223AB BC EC BE BE ==-=.在Rt ABE △中,由勾股定理得()22223BE BE +=, 解得2BE =,∴36BC BE ==.故选B.【点睛】 此题考查菱形的性质,含30°角的直角三角形的性质,勾股定理,熟练掌握菱形的性质,由勾股定理得出方程是解题的关键.5.设四边形的内角和等于α,五边形的外角和等于β,则α与β的关系是( ) A .αβ>B .αβ=C .αβ<D .180βα=+o【答案】B【解析】【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【详解】解:∵四边形的内角和等于a ,∴a=(4-2)•180°=360°.∵五边形的外角和等于β,∴β =360°, ∴a=β. 故选B .【点睛】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.6.如图,在矩形ABCD 中, 4,6,AB BC ==点E 是AD 的中点,点F 在DC 上,且1,CF =若在此矩形上存在一点P ,使得PEF V 是等腰三角形,则点P 的个数是( )A .3B .4C .5D .6【答案】D【解析】【分析】根据等腰三角形的定义,分三种情况讨论:①当EF 为腰,E 为顶角顶点时,②当EF 为腰,F 为顶角顶点时,③当EF 为底,P 为顶角顶点时,分别确定点P 的位置,即可得到答案.【详解】∵在矩形ABCD 中,461AB BC CF ===,,,点E 是AD 的中点,4EF ∴==>.∴PEF V 是等腰三角形,存在三种情况:①当EF 为腰,E 为顶角顶点时,根据矩形的轴对称性,可知:在BC 上存在两个点P ,在AB 上存在一个点P ,共3个,使PEF V 是等腰三角形;②当EF 为腰,F 为顶角顶点时,6,Q∴在BC 上存在一个点P ,使PEF V 是等腰三角形;③当EF 为底,P 为顶角顶点时,点P 一定在EF 的垂直平分线上,∴EF 的垂直平分线与矩形的交点,即为点P ,存在两个点.综上所述,满足题意的点P 的个数是6.故选D .【点睛】本题主要考查等腰三角形的定义,矩形的性质,熟练掌握等腰三角形的定义和矩形的性质,学会分类讨论思想,是解题的关键.7.在平面直角坐标系中,A ,B ,C 三点坐标分别是(0,0),(4,0),(3,2),以A ,B ,C 三点为顶点画平行四边形,则第四个顶点不可能在( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】A 点在原点上,B 点在横轴上,C 点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C8.如图,在菱形ABCD 中,对角线AC =8,BD =6,点E ,F 分别是边AB ,BC 的中点,点P 在AC 上运动,在运动过程中,存在PE +PF 的最小值,则这个最小值是( )A.3 B.4 C.5 D.6【答案】C【解析】【分析】先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF 的最小值,再根据菱形的性质求出E′F的长度即可.【详解】解:如图∵四边形ABCD是菱形,对角线AC=6,BD=8,∴AB=22=5,34作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=5.故选C.9.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE:EC=2:1,则线段CH的长是()A .3B .4C .5D .6【答案】B【解析】 试题分析:设CH =x , 因为BE :EC =2:1,BC =9,所以,EC =3, 由折叠知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理,得:222(9)3x x -=+,解得:x =4,即CH=4考点:(1)图形的折叠;(2)勾股定理10.如图,四边形ABCD 的对角线相交于点O ,且点O 是BD 的中点,若AB =AD =5,BD =8,∠ABD =∠CDB ,则四边形ABCD 的面积为( )A .40B .24C .20D .15 【答案】B【解析】【分析】根据等腰三角形的性质得到AC ⊥BD ,∠BAO=∠DAO ,得到AD=CD ,推出四边形ABCD 是菱形,根据勾股定理得到AO=3,于是得到结论.【详解】∵AB =AD ,点O 是BD 的中点,∴AC ⊥BD ,∠BAO =∠DAO ,∵∠ABD =∠CDB ,∴AB ∥CD ,∴∠BAC =∠ACD ,∴∠DAC =∠ACD ,∴AD =CD ,∴AB =CD ,∴四边形ABCD 是菱形,∵AB =5,BO 12=BD =4, ∴AO =3,∴AC =2AO =6,∴四边形ABCD 的面积12=⨯6×8=24, 故选:B .【点睛】 本题考查了菱形的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,正确的识别图形是解题的关键.11.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC长度=2205OB C+=,∵O点为AB的中点,E点为AD的中点,∴OE为△ABD的中位线,即:OE=12 BD,∵D点是圆上的动点,由图可知,BD最小值即为BC长减去圆的半径,∴BD的最小值为4,∴OE=12BD=2,即OE的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.12.如图11-3-1,在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=12∠ADC D.∠ADE=13∠ADC【答案】D【解析】【分析】【详解】设∠ADE=x,∠ADC=y,由题意可得,∠ADE+∠AED+∠A=180°,∠A+∠B+∠C+∠ADC=360°,即x+60+∠A=180①,3∠A+y=360②,由①×3-②可得3x-y=0,所以13x y=,即∠ADE=13∠ADC.故答案选D.考点:三角形的内角和定理;四边形内角和定理.13.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72【答案】B【解析】【分析】 根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =V V ,∴18 EFCABCDSS=V四边形,∴1176824AGH EFCABCDS SS+=+=V V四边形=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.14.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴2AB,∵2AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质15.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD 于F,交AB于G,连接EF,则线段EF的长为()A.1 B.34C.23D.12【答案】D【解析】【分析】由等腰三角形的判定方法可知△AGC是等腰三角形,所以F为GC中点,再由已知条件可得EF为△CBG的中位线,利用中位线的性质即可求出线段EF的长.【详解】∵AD 是△ABC 角平分线,CG ⊥AD 于F ,∴△AGC 是等腰三角形,∴AG=AC=3,GF=CF ,∵AB=4,AC=3,∴BG=1,∵AE 是△ABC 中线,∴BE=CE ,∴EF 为△CBG 的中位线,∴EF=12BG=12, 故选:D .【点睛】 此题考查等腰三角形的判定和性质、三角形的中位线性质定理,解题关键在于掌握三角形的中位线平行于第三边,并且等于第三边的一半.16.已知ABCD Y (AB BC >),用尺规在ABCD 内作菱形,下列作法错误的是( )A .如图1所示,作对角线AC 的垂直平分线EF ,则四边形AECF 为所求B .如图2所示,在AB DC ,上截取AE AD DF DA ==,,则四边形AEFD 为所求 C .如图3所示,作ADC ABC ∠∠、的平分线DE BF ,,则四边形DEBF 为所求 D .如图4所示,作BDE BDC DBF DBA ∠=∠∠=∠,,则四边形DEBF 为所求【答案】C【解析】【分析】根据平行四边形的性质及判定、菱形的判定逐个判断即可.【详解】解:A 、根据线段的垂直平分线的性质可知AB =AD ,一组邻边相等的平行四边形是菱形;符合题意;B 、根据四条边相等的四边形是菱形,符合题意;C 、根据两组对边分别平行四边形是平行四边形,不符合题意;D 、根据一组邻边相等的平行四边形是菱形,符合题意.故选:C .【点睛】本题考查了复杂作图,解决本题的关键是利用平行四边形的性质及判定、菱形的判定.17.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E,连接BF、DF,则DFC∠的度数是()A.130︒B.120︒C.110︒D.100︒【答案】A【解析】【分析】首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB即可解决问题;【详解】∵四边形ABCD是菱形,∴∠ACD=∠ACB=12∠BCD=25°,∵EF垂直平分线段BC,∴FB=FC,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故选:A.【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.18.下列结论正确的是()A.平行四边形是轴对称图形B.平行四边形的对角线相等C.平行四边形的对边平行且相等D.平行四边形的对角互补,邻角相等【答案】C【解析】【分析】分别利用平行四边形的性质和判定逐项判断即可.【详解】A、平行四边形不一定是轴对称图形,故A错误;B、平行四边形的对角线不相等,故B错误;C、平行四边形的对边平行且相等,故C正确;D、平行四边形的对角相等,邻角互补,故D错误.故选:C.【点睛】此题考查平行四边形的性质,掌握特殊平行四边形与一般平行四边形的区别是解题的关键.19.如图,在△ABC 中,点D 为BC 的中点,连接AD ,过点C 作CE ∥AB 交AD 的延长线于点E ,下列说法错误的是( )A .△ABD ≌△ECDB .连接BE ,四边形ABEC 为平行四边形 C .DA =DED .CE =CD【答案】D【解析】【分析】 根据平行线的性质得出∠B=∠DCE ,∠BAD=∠E ,然后根据AAS 证得△ABD ≌△ECD ,得出AD=DE ,根据对角线互相平分得到四边形ABEC 为平行四边形,CE=AB ,即可解答.【详解】∵CE ∥AB ,∴∠B=∠DCE ,∠BAD=∠E ,在△ABD 和△ECD 中,===B DCE BAD E BD CD ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△ECD (AAS ),∴DA=DE ,AB=CE ,∵AD=DE ,BD=CD ,∴四边形ABEC 为平行四边形,故选:D .【点睛】此题考查平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解题的关键是证明△ABD ≌△ECD .20.如图,在菱形ABCD 中,AB =10,两条对角线相交于点O ,若OB =6,则菱形面积是( )A.60 B.48 C.24 D.96【答案】D【解析】【分析】由菱形的性质可得AC⊥BD,AO=CO,BO=DO=6,由勾股定理可求AO的长,即可求解.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO=6,∴AO22100368AB OB-=-=,∴AC=16,BD=12,∴菱形面积=12162⨯=96,故选:D.【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直平分是本题的关键.。
最新初中数学四边形单元汇编及答案
最新初中数学四边形单元汇编及答案一、选择题1.四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,∠DHO =20°,则∠CAD 的度数是().A .25°B .20°C .30°D .40°【答案】B【解析】 ∵四边形ABCD 是菱形,∴OB=OD ,AC ⊥BD ,∵DH ⊥AB ,∴OH=OB=12BD , ∵∠DHO=20°, ∴∠OHB=90°-∠DHO=70°,∴∠ABD=∠OHB=70°,∴∠CAD=∠CAB=90°-∠ABD=20°.故选A .2.如图,在四边形ABCD 中,90,150,BAD BCD ADC ∠=∠=︒∠=o 连接对角线BD ,过点D 作//DE BC 交AB 于点,E 若23,AB AD CD =+=,则CD =( )A .2B .1C .13+D 3【答案】B【解析】【分析】 先根据四边形的内角和求得∠ABC 30︒=,再根据平行线的性质得到∠AED 30︒=,∠EDB=∠DBC ,然后根据三角形全等得到∠ABD=∠DBC ,进而得到EB=ED ,最后在Rt ADE V 中,利用勾股定理即可求解.【详解】解:在四边形ABCD 中∵90,150,BAD BCD ADC ∠=∠=︒∠=o∴∠ABC 30︒=∵//DE BC∴∠AED 30︒=,∠EDB=∠DBC在Rt ABD V 和Rt BCD △中 ∵AD CD BD BD =⎧⎨=⎩∴Rt ABD Rt BCD ≅V V∴∠ABD=∠DBC∴∠EDB=∠ABD∴EB=ED ∵23AB =+在Rt ADE △中,设AD=x,那么DE=2x,AE=232x +-()2222322x x x ++-=解得:121;73x x ==+(舍去)故选:B .【点睛】此题主要考查四边形的内角和、全等三角形的判断、平行线的性质和勾股定理的应用,熟练进行逻辑推理是解题关键.3.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A .24B .18C .12D .9【答案】A【解析】 【分析】易得BC 长为EF 长的2倍,那么菱形ABCD 的周长=4BC 问题得解.【详解】∵E 是AC 中点,∵EF ∥BC ,交AB 于点F ,∴EF 是△ABC 的中位线,∴BC=2EF=2×3=6,∴菱形ABCD 的周长是4×6=24,故选A .【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.4.如图 ,矩形 ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点 M ,CN ⊥AN 于点 N .则 DM +CN 的值为(用含 a 的代数式表示)( )A .aB .45 aC .22aD 3 【答案】C【解析】【分析】 根据“AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N”得∠MDC=∠NCD=45°,cos45°=DM CN DE CE= ,所以DM+CN=CDcos45°;再根据矩形ABCD ,AB=CD=a ,DM+CN 的值即可求出.【详解】∵AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N ,∴∠ADM=∠MDC=∠NCD=45°, ∴00cos 4545D CNMcos +=CD ,在矩形ABCD 中,AB=CD=a ,∴DM+CN=acos45°=22a. 故选C.【点睛】此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=DM CN DE CE =5.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是这个菱形内部或边上的一点,若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为( )A .12B .1C 3D 31【答案】D【解析】【分析】分三种情形讨论①若以边BC 为底.②若以边PC 为底.③若以边PB 为底.分别求出PD 的最小值,即可判断.【详解】解:在菱形ABCD 中,∵∠ABC=60°,AB=1,∴△ABC ,△ACD 都是等边三角形,①若以边BC 为底,则BC 垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P 与点A 重合时,PD 值最小,最小值为1;②若以边PC 为底,∠PBC 为顶角时,以点B 为圆心,BC 长为半径作圆,与BD 相交于一点,则弧AC (除点C 外)上的所有点都满足△PBC 是等腰三角形,当点P 在BD 上时,PD 31③若以边PB 为底,∠PCB 为顶角,以点C 为圆心,BC 为半径作圆,则弧BD 上的点A 与点D 均满足△PBC 为等腰三角形,当点P 与点D 重合时,PD 最小,显然不满足题意,故此种情况不存在;上所述,PD 的最小值为31故选D .【点睛】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.6.如图,在矩形ABCD 中, 4,6,AB BC ==点E 是AD 的中点,点F 在DC 上,且1,CF =若在此矩形上存在一点P ,使得PEF V 是等腰三角形,则点P 的个数是( )A .3B .4C .5D .6【答案】D【解析】【分析】 根据等腰三角形的定义,分三种情况讨论:①当EF 为腰,E 为顶角顶点时,②当EF 为腰,F 为顶角顶点时,③当EF 为底,P 为顶角顶点时,分别确定点P 的位置,即可得到答案.【详解】∵在矩形ABCD 中,461AB BC CF ===,,,点E 是AD 的中点, 32184EF ∴==>.∴PEF V 是等腰三角形,存在三种情况:①当EF 为腰,E 为顶角顶点时,根据矩形的轴对称性,可知:在BC 上存在两个点P ,在AB 上存在一个点P ,共3个,使PEF V 是等腰三角形;②当EF 为腰,F 为顶角顶点时,186,<Q∴在BC 上存在一个点P ,使PEF V 是等腰三角形;③当EF 为底,P 为顶角顶点时,点P 一定在EF 的垂直平分线上,∴EF 的垂直平分线与矩形的交点,即为点P ,存在两个点.综上所述,满足题意的点P 的个数是6.故选D .【点睛】本题主要考查等腰三角形的定义,矩形的性质,熟练掌握等腰三角形的定义和矩形的性质,学会分类讨论思想,是解题的关键.7.如图,四边形ABCD 和四边形AEFG 均为正方形,连接CF ,DG ,则DG CF=( )A.23B.22C.33D.32【答案】B【解析】【分析】连接AC和AF,证明△DAG∽△CAF可得DGCF的值.【详解】连接AC和AF,则22AD AGAC AF==,∵∠DAG=45°-∠GAC,∠CAF=45°-GAC,∴∠DAG=∠CAF.∴△DAG∽△CAF.∴22DG ADCF AC==.故答案为:B.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,解题的关键是构造相似三角形.8.如图,已知矩形ABCD中,BC=2AB,点E在BC边上,连接DE、AE,若EA平分∠BED,则ABECDESSVV的值为()A.232-B.2332C.333D.233【答案】C【解析】【分析】过点A 作AF ⊥DE 于F ,根据角平分线上的点到角的两边距离相等可得AF=AB ,利用全等三角形的判定和性质以及矩形的性质解答即可.【详解】解:如图,过点A 作AF ⊥DE 于F ,在矩形ABCD 中,AB =CD ,∵AE 平分∠BED ,∴AF =AB ,∵BC =2AB ,∴BC =2AF ,∴∠ADF =30°,在△AFD 与△DCE 中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD ≌△DCE (AAS ),∴△CDE 的面积=△AFD 的面积=2113AF DF AF 3AF 22⨯== ∵矩形ABCD 的面积=AB •BC =2AB 2,∴2△ABE 的面积=矩形ABCD 的面积﹣2△CDE 的面积=(23AB 2,∴△ABE 的面积=(2232AB , ∴2323323ABE CDE S S --==V V 故选:C .【点睛】本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB .9.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③△EFG ≌△GBE;④EG=EF,其中正确的个数是()A.1 B.2 C.3 D.4【答案】D【解析】【分析】由平行四边形的性质可得AB=CD,AD=BC,BO=DO=12BD,AO=CO,AB∥CD,即可得BO=DO=AD=BC,由等腰三角形的性质可判断①,由中位线定理和直角三角形的性质可判断②④,由平行四边形的性质可判断③,即可求解.【详解】解:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,BO=DO=12BD,AO=CO,AB∥CD∵BD=2AD∴BO=DO=AD=BC,且点E是OC中点∴BE⊥AC,∴①正确∵E、F、分别是OC、OD中点∴EF∥DC,CD=2EF∵G是AB中点,BE⊥AC∴AB=2BG=2GE,且CD=AB,CD∥AB∴BG=EF=GE,EF∥CD∥AB∴四边形BGFE是平行四边形,∴②④正确,∵四边形BGFE是平行四边形,∴BG=EF,GF=BE,且GE=GE∴△BGE≌△FEG(SSS)∴③正确故选D.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,直角三角形的性质,三角形的中位线及等腰三角形的性质,熟练运用这些性质进行推理是本题的关键.10.在四边形ABCD中,两对角线交于点O,若OA=OB=OC=OD,则这个四边形( ) A.可能不是平行四边形B.一定是菱形C.一定是正方形D.一定是矩形【答案】D【解析】【分析】根据OA=OC, OB=OD,判断四边形ABCD是平行四边形.然后根据AC=BD,判定四边形ABCD是矩形.【详解】解:这个四边形是矩形,理由如下:∵对角线AC、BD交于点O,OA= OC, OB=OD,∴四边形ABCD是平行四边形,又∵OA=OC=OD=OB,∴AC=BD,∴四边形ABCD是矩形.故选D.【点睛】本题考查了矩形的判断,熟记矩形的各种判定方法是解题的关键.11.如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD ﹣MC=3,故选C.考点:平行四边形的性质.12.如图,平行四边形ABCD 的周长是26,cm 对角线AC 与BD 交于点,,O AC AB E ⊥是BC 中点,AOD △的周长比AOB V 的周长多3cm ,则AE 的长度为( )A .3cmB .4cmC .5cmD .8cm【答案】B【解析】【分析】 根据题意,由平行四边形的周长得到13AB AD +=,由AOD △的周长比AOB V 的周长多3cm ,则3AD AB -=,求出AD 的长度,即可求出AE 的长度.【详解】解:∵平行四边形ABCD 的周长是26cm , ∴126132AB AD +=⨯=, ∵BD 是平行四边形的对角线,则BO=DO ,∵AOD △的周长比AOB V 的周长多3cm ,∴()()3AO OD AD AO OB AB AD AB ++-++=-=,∴5AB =,8AD =,∴8BC AD ==,∵AC AB ⊥,点E 是BC 中点,∴118422AE BC ==⨯=; 故选:B .【点睛】 本题考查了平行四边形的性质,直角三角形斜边上的中线等于斜边的一半,解题的关键是熟练掌握平行四边形的性质进行解题.13.如图11-3-1,在四边形ABCD 中,∠A=∠B=∠C ,点E 在边AB 上,∠AED=60°,则一定有( )A.∠ADE=20°B.∠ADE=30°C.∠ADE=12∠ADC D.∠ADE=13∠ADC【答案】D【解析】【分析】【详解】设∠ADE=x,∠ADC=y,由题意可得,∠ADE+∠AED+∠A=180°,∠A+∠B+∠C+∠ADC=360°,即x+60+∠A=180①,3∠A+y=360②,由①×3-②可得3x-y=0,所以13x y,即∠ADE=13∠ADC.故答案选D.考点:三角形的内角和定理;四边形内角和定理.14.如图,在□ABCD中,E、F分别是边BC、CD的中点,AE、AF分别交BD于点G、H,则图中阴影部分图形的面积与□ABCD的面积之比为()A.7 : 12 B.7 : 24 C.13 : 36 D.13 : 72【答案】B【解析】【分析】根据已知条件想办法证明BG=GH=DH,即可解决问题;【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,AD=BC,∵DF=CF,BE=CE,∴12DH DFHB AB==,12BG BEDG AD==,∴13DH BGBD BD==,∴BG=GH=DH,∴S△ABG=S△AGH=S△ADH,∴S平行四边形ABCD=6 S△AGH,∴S△AGH:ABCDS平行四边形=1:6,∵E、F分别是边BC、CD的中点,∴12EFBD=,∴14EFCBCDDSS=VV,∴18EFCABCDSS=V四边形,∴1176824AGH EFCABCDS SS+=+=V V四边形=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.15.如图,四边形ABCD的对角线为AC、BD,且AC=BD,则下列条件能判定四边形ABCD 为矩形的是()A.BA=BCB.AC、BD互相平分C.AC⊥BDD.AB∥CD【答案】B【解析】试题分析:根据矩形的判定方法解答.解:能判定四边形ABCD是矩形的条件为AC、BD互相平分.理由如下:∵AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴▱ABCD是矩形.其它三个条件再加上AC=BD均不能判定四边形ABCD是矩形.故选B.考点:矩形的判定.16.如图,将一个大平行四边形在一角剪去一个小平行四边形,如果用直尺画一条直线将其剩余部分分割成面积相等的两部分,这样的不同的直线一共可以画出()A.1条B.2条C.3条D.4条【答案】C【解析】【分析】利用平行四边形的性质分割平行四边形即可.【详解】解:如图所示,这样的不同的直线一共可以画出三条,故答案为:3.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的中心对称性.4,1, 点D的坐标为17.如图,在菱形ABCD中,点A在x轴上,点B的坐标轴为()()0,1,则菱形ABCD的周长等于()A5B.3C.45D.20【解析】【分析】如下图,先求得点A 的坐标,然后根据点A 、D 的坐标刻碟AD 的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC 、BD ,交于点E∵四边形ABCD 是菱形,∴DB ⊥AC ,且DE=EB又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴AD=()()2220015-+-=∴菱形ABCD 的周长为:45故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.18.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )A .130︒B .120︒C .110︒D .100︒【答案】A【解析】【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;∵四边形ABCD 是菱形,∴∠ACD =∠ACB =12∠BCD=25°, ∵EF 垂直平分线段BC ,∴FB=FC ,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故选:A .【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.19.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,将边长为4的菱形OBCD 的边OB 固定在x 轴上,开始时30DOB ∠=︒,现把菱形向左推,使点D 落在y 轴正半轴上的点D ¢处,则下列说法中错误的是( )A .点C '的坐标为()4,4B .60CBC '∠=︒ C .点D 移动的路径长度为4个单位长度D .CD 垂直平分BC '【答案】C【解析】【分析】 先证明四边形OBC′D′是正方形,且边长=4,即可判断A ;由平行线的性质得∠OBC 的度数,进而得到60CBC '∠=︒,即可判断B ;根据弧长公式,求出点D 移动的路径长度,即可判断C ;证明CD ⊥BC ′,BC′=BC=2BE ,即可判断D .【详解】∵四边形OBCD 是菱形,∴OB=BC=CD=OD ,∴OB=BC ′=C ′D ′=OD ′,∵∠BOD′=90°,∴四边形OBC′D′是正方形,且边长=4,∴点C '的坐标为()4,4,故A 不符合题意.∵30DOB ∠=︒,OD ∥BC ,∴∠OBC=180°-30°=150°,∵∠OBC ′=90°,∴60CBC '∠=︒,故B 不符合题意.∵点D 移动的路径是以OD 长为半径,圆心角为∠DOD ′=90°-30°=60°的弧长,∴点D 移动的路径长度=604180π⨯=43π,故C 符合题意. 设CD 与BC′交于点E ,∵在菱形OBCD 中,∠C=30DOB ∠=︒,∵60CBC '∠=︒,∴∠BEC=180°-60°-30°=90°,即CD ⊥BC ′,∴BC′=BC=2BE ,∴CD 垂直平分BC ',故D 不符合题意.故先C .【点睛】本题主要考查菱形的性质,正方形的判定和性质以及点的坐标,熟练掌握菱形的性质和正方形性质,含30°角的直角三角形的性质,是解题的关键.20.如图,在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF=6,AB=5,则AE 的长为( )A .4B .8C .6D .10【答案】B【解析】【分析】【详解】 解:设AG 与BF 交点为O ,∵AB=AF ,AG 平分∠BAD ,AO=AO ,∴可证△ABO ≌△AFO ,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF ∥BE ,∴可证△AOF ≌△EOB ,AO=EO ,∴AE=2AO=8,故选B .【点睛】本题考查角平分线的作图原理和平行四边形的性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习-----好资料 更多精品文档 四边形全章综合测试 1、如图,EF、是ABCD对角线AC上两点,且AECF,连结DE、BF,则图中共有全等三角形的对数是( ) A.1对 B.2对 C.3对 D.4对
2、如图,在在平行四边形ABCD中,对角线ACBD,相交于点O,EF,是对角线AC上的两点,当EF,满足下列哪个条件时,四边形DEBF不一定是是平行四边形( ) A.OEOF B.DEBF C.ADECBF D.ABECDF 3、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ). A.测量对角线是否相互平分 B.测量两组对边是否分别相等 C.测量一组对角线是否都为直角 D.测量其中三角形是否都为直角 4、如果一个四边形绕对角线的交点旋转90,所得的图形与原来的图形重合,那么这个四边形一定是( ) A.平行四边形 B.矩形 C.菱形 D.正方形
6. 已知点(20)A,、点B(12,0)、点C(0,1),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 7、如图,在平行四边形ABCD中,ACBD,相交于点O.下列结论:①OAOC,②BADBCD,③ACBD,④180BADABC.其中,正确的个数有( ) A.1个 B.2个 C.3个 D.4个 8、如图,平行四边形ABCD中,AB3,5BC,AC的垂直平分线交AD于E,则CDE△的周长是( ) A.6 B.8 C.9 D.10
9、把长为10cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,如果剪掉..部分的面积为12cm2,则打开后梯形的周长是 ( )
A、(10+25)cm B、(12+25)cm C、22cm D、20cm 10、如图,正方形ABCD的边长为2,点E在AB边上,四边形EFGB也为正方形,设AFC△的面积为 S,则( )A.2S B.2.4S C.4S D.S与BE长度有关
11、梯形ABCD中,AD∥BC,E、F为BC上点,且DE∥AB,AF∥DC,DE⊥AF于G,若AG=3,DG=4,四边形ABED的面积为36,则梯形ABCD的周长为( ) A.49 B.43 C.41 D.46
12、 已知:如图,正方形ABCD,AC、BD相交于点O,E、F分别 为BC、CD上的两点,BE=CF,AE、BF分别交BD、AC于M、N两点, 连结OE、OF.下列结论,其中正确的是( ).
①AE=BF;②AE⊥BF;③OM=ON=12DF ;④CE+CF=22AC . (A)①②④ (B)①② (C)①②③④ (D)②③④
G C D B F
A
E
A B
F E
C D
D
C
AB
O
FE
ABCD
OM
EN
F
A B C D O
A B C
D E
GFEDCB
A学习-----好资料
更多精品文档 14、已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=23,那么AP的长为 . 19、(7分)如图,在ABC△中,ABBC,D、E、F分别是BC、AC、AB边上的中点. (1) 求证:四边形BDEF是菱形; (2) 若12ABcm,求菱形BDEF的周长.
20、(7分)如图,将一张矩形纸片ABCD沿EF折叠,使点B落在AD 边上的点B处;沿BG折叠,使点D落在点D处,且BD过F点.
⑴试判断四边形BEFG的形状,并证明你的结论. ⑵当∠BFE为多少度时,四边形BEFG是菱形.
21、(7分)如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH. (1) 求证:四边形AFHD为平行四边形; (2)若CB=CE,∠BAE=600 ,∠DCE=200 求∠CBE的度数.
22、(7分)如图,梯形ABCD中,120ADBCABDCADC∥,,,对角线CA平分DCB,E为BC的中点,试求DCE△与四边形ABED面积的比.
A F B D C
E
A D B E C 学习-----好资料 更多精品文档 23、(8分)在矩形纸片ABCD中,33AB,6BC,沿EF折叠后,点C落在AB边上的点P处,点D落在点Q处,AD与PQ相交于点H,30BPE. (1)求BE、QF的长; (2)求四边形PEFH的面积.
25、(本题12分)如图,四边形ABCD位于平面直角坐标系的第一象限,B、C在x轴上,A点函数xy2上,且AB∥CD∥y轴,AD∥x轴,B(1,0)、C(3,0)。 ⑴试判断四边形ABCD的形状。
⑵若点P是线段BD上一点PE⊥BC于E,M是PD的中点,连EM、AM。 求证:AM=EM
参考答案: 学习-----好资料
更多精品文档 1、C 2、B 3、D 4、D 5、B 6、C 7、C 8、B 9、C 10、A 11、D 12、D 13、直线过AC与BD交点或经过
AD和BC的中点或经过A,C两点等 14、23或43 15、(1)(2)(6) (3)(4)(5)[或(3)(4)(6)] 16、8 17、(1)甲
√ 乙 ×。(2)证明(1)中对甲的判断:连接EF、FG、GH、HE,E∵、F分别是AB、BC的中点,∴EF
是△ABC的中位线.∴EFAC∥,12EFAC,同理,HGAC∥,12HGAC,∴EFHG∥,EFHG.∴四边形EFGH是平行四边形.
(3)类似于(1)中的结论甲、乙都成立(只对一个给2分). 18、(1)如图所示:
(2)如图所示: 19、(1)∵D、E、F分别是BC、AC、AB边上的中点,DEAB∴∥,EFBC∥,∴四边形BDEF是平行四边形.又12DEAB,12EFBC,且ABBC,DEEF∴,∴四边形BDEF是菱形.另解: ∵D、E、
F分别是BC、AC、AB边上的中点,12DEAB∴,12EFBC,又ABBC∵,
1122BDBFABBC∴,∴DEEFBFBD,∴四边形BDEF是菱形.(2)12AB∵cm,F为
AB的中点,6BF∴cm, ∴菱形BDEF的周长为:4624cm. 20、证明:⑴由题意,EFB=EFB,
∵BE∥FG,∴EFB=BEF, ∴BEF=EFB, ∴BE=BF,同理 BF=FG,∴BE=FG,∴四边形BEFG是平行四边形. ⑵当∠BFE =60°时,△BEF为等边三角形,∴BE=EF,∴平行四边形BEFG是菱形. 21、(1)证明:∵BF=BE CG=
CE ∴BC21FG 又∵H是FG的中点 ,∴FH=21FG ∴BCFH 又∵四边形ABCD是平行四边形,∴ADBC ∴ADFH ∴四边形AFHD是平行四边形-。 (2)∵四边形ABCD是平行四边形,∠BAE=600,∴∠BAE=∠DCB=600 又∵∠DCE=200 ,∴∠ECB=∠DCB-∠DCE=600-200=400 , ∵CE=CB ,∴∠CBE=∠ECB=21(1800-∠ECB)=
21(1800-400)=700 。
22、120ADBCADC∥,,60.DCE1230CADCB又平分,.
30CADADDC,.120ABDCBADADC,,90BAC.在
230ABCRt△中,,2ABBC.E为BC的中点,
BEECAD.四边形ABED为平行四边形.DCE△与四边形
A
B C
1 2
中点 中点
① ②
③ ① ② ③
中点 中点
① ② ③ ④ ⑥
中点
中点 ⑤ ① ②
③ ④ ⑥
⑤ 学习-----好资料
更多精品文档 ABED面积的比为1:2.
23、(1)设BEx,在RtPBE△中,30BPE,2PEx∴,3PBx.由题意得2ECPEx.BEECBC∵,36x∴,2x,即2BE.4EC∴,
23PB.3PABAPB∴.在RtAPH△中,60APH,3AH∴,
23PH.33233HQPQPH∴.在RtHQF△中,30QHF,1QF∴. (2)
115(14)33322FECDS梯形∵,131322HFQS△,
15337322HFQHFQPEFHPEFQFECDSSSSS△△四边形梯形梯形∴.
24、(1)结论①、②成立-。(2)结论①、②仍然成立 理由为:∵四边形ABCD为正方形, ∴AD=DC=CB 且∠ADC=∠DCB=900,在Rt△ADF和Rt△ECD中 AD=DC ∠ADC=∠DCB CE=DF ,∴Rt△ADF≌ Rt△ECD(SAS), ∴AF=DE ∴∠DAF=∠CDE,∵∠ADE+∠CDE=900,∴∠ADE+∠DAF=900 , ∴ ∠AGD=900 ∴AF⊥DE。(3)结论:
四边形MNPQ是正方形。证明:∵AM=ME AQ=QD ∴MQ21DE ,同理可证: PN21DE MN21AF
PQ21AF ,∵AF=DE ∴MN=NP=PQ=QM ,∴四边形MNPQ是菱形, 又∵AF⊥DE ∴∠MQP=∠QMN=∠MNP=∠NPQ=900 ,∴四边形MNPQ是正方形。
25、⑴∵AB∥CD∥y轴,AD∥x轴,∴四边形ABCD为矩形,当x=1时y=2 AB=2 BC=3-1=2,∴AB=BC ,∴四边形ABCD是正方形。 ⑵证明:延长EM交CD的延长线于G,连AE、AG,PE∥GC,∴∠PEM=∠DGM,又∵∠PME=∠GMD,PM=DM,∴△PME≌△DMG,∴EM=MG PE=GD,∵PE=BE,∴BE=GD,在Rt△ABE与Rt△ADG中,AB=AD BE=GD ,∠ABE=∠ADG=900,∴Rt△ABE≌Rt△ADG, ∴AE=AG ∠BAE=∠DAG, ∴∠GAE=900 ,
∴AM=21EG=EM 。
⑶222MNDMBN的值不变,值为1。理由如下: 在图2的AG上截取AH=AN,连DH、MH,∵AB=AD AN=AH,由⑵知∠BAN=∠DAH,∴△ABN≌△ADH,∴BN=DH ,∠ADH=∠ABN=450,∴∠HDM=9,∴HM2=HD2+MD2 ,由⑵知∠NAM=∠HAM=450,又AN=AH AM=AM,∴△AMN≌△AMH,∴MN=MH ,∴MN2=DM2+BN2,即