§9.2圆的方程及直线与圆、圆与圆的位置关系

合集下载

2024年高考数学一轮总复习讲义 第三讲 圆的方程 直线与圆的位置关系

2024年高考数学一轮总复习讲义  第三讲 圆的方程 直线与圆的位置关系

[解析] 依题意,过切点(1,1)的圆的半径所在直线方程为 y-1=-1(x-1), 2
x+y-1=0,
x=-1,
即 x+2y-3=0,由
解得
因此所求圆的圆心为(-
x+2y-3=0,
y=2,
1,2),半径 r= -1-12+2-12= 5,所以所求圆的方程为(x+1)2+(y-2)2
=5.
名师点拨:求圆的方程的两种方法
3.常见圆的方程的设法
标准方程的设法
一般方程的设法
圆心在原点 过原点
x2+y2=r2 (x-a)2+(y-b)2=a2+b2
x2+y2-r2=0 x2+y2+Dx+Ey=0
圆心在 x 轴上
(x-a)2+y2=r2
x2+y2+Dx+F=0
圆心在 y 轴上
x2+(y-b)2=r2
x2+y2+Ey+F=0
x-4 3
2+
33
y-7 3
2=65;
9
过(-1,1),(4,0),(4,2)的圆的方程为 x2+y2-16xLeabharlann 2y-16=0,即x-8 5
2
5
5
+(y-1)2=169. 25
3.(2024·湖北武汉部分学校调研)圆心在直线 x+y-1=0 上且与直线 2x-y
-1=0 相切于点(1,1)的圆的方程是 (x+1)2+(y-2)2=5 .
[解析] 设圆心坐标为 C(a,0), ∵点 A(-1,1)和 B(1,3)在圆 C 上, ∴|CA|=|CB|, 即 a+12+1= a-12+9,解得 a=2, ∴圆心为 C(2,0), 半径|CA|= 2+12+1= 10, ∴圆 C 的方程为(x-2)2+y2=10. 3.(选择性必修 1P98T2(1))以点(2,-1)为圆心且与直线 3x-4y+5=0 相切 的圆的方程为( C ) A.(x-2)2+(y+1)2=3 B.(x+2)2+(y-1)2=3 C.(x-2)2+(y+1)2=9 D.(x+2)2+(y-1)2=9 [解析] 因为圆心(2,-1)到直线 3x-4y+5=0 的距离 d=|6+4+5|=3,所

圆的方程、直线与圆的位置关系题型归纳学生版

圆的方程、直线与圆的位置关系题型归纳学生版

圆的方程、直线与圆的关系题型归纳一、学法指导与考点梳理1.圆的方程 (1)圆的方程①标准方程:(x -a )2+(y -b )2=r 2,圆心坐标为(a ,b ),半径为r . ②一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心坐标为⎝⎛⎭⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.(2)点与圆的位置关系①几何法:利用点到圆心的距离d 与半径r 的关系判断:d >r ⇔点在圆外,d =r ⇔点在圆上;d <r ⇔点在圆内.②代数法:将点的坐标代入圆的标准(或一般)方程的左边,将所得值与r 2(或0)作比较,大于r 2(或0)时,点在圆外;等于r 2(或0)时,点在圆上;小于r 2(或0)时,点在圆内. 2.直线与圆的位置关系直线l :Ax +By +C =0(A 2+B 2≠0)与圆:(x -a )2+(y -b )2=r 2(r >0)的位置关系如下表.3.圆与圆的位置关系二、重难点题型突破重难点1 圆的方程求圆的标准方程的常用方法包括几何法和待定系数法.(1)由圆的几何性质易得圆心坐标和半径长时,用几何法可以简化运算.对于几何法,常用到圆的以下几何性质:①圆中任意弦的垂直平分线必过圆心;②圆内的任意两条弦的垂直平分线的交点一定是圆心. (2)由于圆的标准方程中含有三个参数a ,b ,r ,运用待定系数法时,必须具备三个独立的条件才能确定圆的方程.这三个参数反映了圆的几何性质,其中圆心(a ,b )是圆的定位条件,半径r 是圆的定形条件.例1.(1)当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0(2)已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( ) A .x 2+⎝⎛⎭⎫y ±332=43B .x 2+⎝⎛⎭⎫y ±332=13C.⎝⎛⎭⎫x ±332+y 2=43D.⎝⎛⎭⎫x ±332+y 2=13【变式训练1】.圆心在曲线y =2x (x >0)上,与直线2x +y +1=0相切,且面积最小的圆的方程为( )A .(x -2)2+(y -1)2=25B .(x -2)2+(y -1)2=5C .(x -1)2+(y -2)2=25D .(x -1)2+(y -2)2=5【变式训练2】.在平面直角坐标系xOy 中,圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切. (1)求圆C 的方程;(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程.重难点2 直线与圆的位置关系 判定直线与圆位置关系的常用方法:(1)几何法:根据圆心到直线的距离d 与圆半径r 的大小关系判断. (2)代数法:根据直线与圆的方程组成的方程组的解的个数判断.(3)直线系法:若动直线过定点P ,则点P 在圆内时,直线与圆相交;当P 在圆上时,直线与圆相切或相交;当P 在圆外时,直线与圆位置关系不确定.例2.(1)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5]【变式训练1】.若直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,则m 的值为( ) A .1 B .-3 C .1或-3D .2【变式训练2】.已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线y =a (x -3)被圆C 截得的弦最短时,直线方程为________.【变式训练3】.在平面直角坐标系中,已知圆在轴上截得线段长为,在轴上截得线段长为(I )求圆心的轨迹方程;(II )若点到直线,求圆的方程. 重难点3 直线、圆方程的综合应用(1)判断或处理直线和圆的位置的问题,一般有两种方法,一是几何法,利用圆的几何性质解题,二是代xOy P x y P P y x P数法,联立圆与直线的方程,利用判别式,根与系数关系来处理,在做题时要用心作图,很多题目要用到数形结合的思想.(2)若,()P x y 是定圆222()()C x a y b r -+-=:上的一动点,则mx ny +和yx这两种形式的最值,一般都有两种求法,分别是几何法和代数法.①几何法.mx ny +的最值:设mx ny t +=,圆心(,)C a b 到直线mx ny t +=的距离为22d m n=+,由d r =即可解得两个t 值,一个为最大值,一个为最小值.y x 的最值:yx即点P 与原点连线的斜率,数形结合可求得斜率的最大值和最小值. ②代数法.mx ny +的最值:设mx ny t +=,与圆的方程联立,化为一元二次方程,由判别式等于0,求得t 的两个值,一个为最大值,一个为最小值.y x 的最值:设yt x=,则y tx =,与圆的方程联立,化为一元二次方程,由判别式等于0,求得t 的两个值,一个为最大值,一个为最小值.例3.(1)已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .2 6B .4 C. 6 D .2(2)著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:(x -a )2+(y -b )2可以转化为平面上点M (x ,y )与点N (a ,b )的距离.结合上述观点,可得f (x )=x 2+4x +20+x 2+2x +10的最小值为________.【变式训练1】.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5). (1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连接OA ,OC ,求△AOC 的面积S .【变式训练2】.在平面直角坐标系xoy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上.(I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.三、课堂定时训练(45分钟)1.(2020黑龙江黑河一中高二期中)已知A (3,-2),B (-5,4),则以AB 为直径的圆的方程是( ) A .(x -1)2+(y +1)2=25 B .(x +1)2+(y -1)2=25 C .(x -1)2+(y +1)2=100 D .(x +1)2+(y -1)2=1002.(2020山东潍坊三中高二期中)已知以点A (2,-3)为圆心,半径长等于5的圆O ,则点M (5,-7)与圆O 的位置关系是( )A .在圆内B .在圆上C .在圆外D .无法判断3.(2020福建莆田一中高二月考)过点()()1,1,1,1A B --,且圆心在直线20x y +-=上的圆的方程是( ) A .()()22314x y -++= B .()()22314x y ++-= C .()()22114x y -+-=D .()()22114x y +++=4.(2020邢台市第八中学高二期末)方程220x y Dx Ey F ++++=表示以(2,3)-为圆心,4为半径的圆,则D,E,F 的值分别为( ) A .4,6,3-B .4,6,3-C .4,6,3--D .4,6,3--5.(2020·全国高二课时练习)直线y=x+1与圆x 2+y 2=1的位置关系为( ) A .相切 B .相交但直线不过圆心 C .直线过圆心 D .相离6.(2020山东泰安实验中学高二期中)0y m -+=与圆22220x y x +--=相切,则实数m 等于( )A 或B .C .-D .-7.(2020全国高二课时练)与圆()22:136C x y -+=同圆心,且面积等于圆C 面积的一半的圆的方程为_________.8.(2020·上海高二课时练习)若圆22(1)(4)5x y -+-=的圆心到直线0x y a -+=的距离为2,则a 的值为_________.9.(2020湖南师大附中高二期中)已知点()()1,2,1,4A B --,求(1)过点A,B 且周长最小的圆的方程; (2)过点A,B 且圆心在直线240x y --=上的圆的方程.10.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方. (1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.。

第4节直线与圆、圆与圆的位置关系课件

第4节直线与圆、圆与圆的位置关系课件

角度2 圆的切线问题
例 2 (1) 过 点 P(2 , 4) 引 圆 C : (x - 1)2 + (y - 1)2 = 1 的 切 线 , 则 切 线 方 程 为
_x_=__2__或__4_x_-__3__y_+__4_=__0__.
解析 当直线的斜率不存在时,直线方程为x=2,此时,圆心到直线的距离 等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y
3.若圆x2+y2=r2(r>0)上恒有4个点到直线l:x-y-2=0的距离为1,则实数r的
取值范围是( A )
A.( 2+1,+∞) C.(0, 2-1)
B.( 2-1, 2+1) D.(0, 2+1)
解析
计算得圆心到直线
l
的距离为
2= 2
2>1,如图.
直线l:x-y-2=0与圆相交,l1,l2与l平行,且与直线l
第八章 平面解析几何
考试要求 1.能根据给定直线、圆的方程判断直线与圆、圆与圆的位置关系. 2.能用直线和圆的方程解决一些简单的数学问题与实际问题.
内容 索引
知识诊断 基础夯实
考点突破 题型剖析
分层训练 巩固提升
知识诊断 基础夯实
ZHISHIZHENDUANJICHUHANGSHI
知识梳理
1.直线与圆的位置关系 设圆 C:(x-a)2+(y-b)2=r2,直线 l:Ax+By+C=0,圆心 C(a,b)到直线 l 的距离为 d,由( Axx+-Bay)+2C+=(0y-b)2=r2,消去 y(或 x),得到关于 x(或 y) 的一元二次方程,其判别式为 Δ.
∴0<m<1和-1<m<0都是直线与圆相交的充分不必要条件.
3.(多选)(202X·新高考Ⅱ卷)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点

直线与圆、圆与圆的位置关系讲义

直线与圆、圆与圆的位置关系讲义

直线与圆、圆与圆的位置关系讲义课前双击巩固1.直线与圆的位置关系设圆O 的半径为r (r>0),圆心到直线l 的距离为d ,则直线与圆的位置关系可用下表表示:位置关系 相离 相切 相交图形量化 方程观点 Δ 0 Δ 0 Δ 0 几何观点d r d r d r2.两圆的位置关系设两圆的半径分别为R ,r (R>r ),两圆圆心间的距离为d ,则两圆的位置关系可用下表表示:位置关系 相离 外切 相交 内切 内含图形量的关系常用结论1.求圆的切线方程,常用两种方法(1)代数法:将直线方程代入圆的方程中,消去一个未知数(x 或y),令一元二次方程的判别式等于0,求出相关参数.(2)几何法:将圆的切线方程设为一般式,根据圆心到直线的距离等于半径,求出相关参数.2.直线被圆截得的弦长的求法(1)几何法:运用弦心距d 、半径r 和弦长的一半构成的直角三角形,计算弦长|AB|=2√r 2-d 2.(2)代数法:设直线y=kx+m 与圆x 2+y 2+Dx+Ey+F=0相交于点M,N,将直线方程代入圆的方程中,消去y,得关于x 的一元二次方程,求出x M +x N 和x M ·x N ,则|MN|=√1+k 2·√(x M +x N )2-4x M ·x N.题组一常识题1.[教材改编]直线y=kx+1与圆x2+y2-2x-3=0的位置关系是.2.[教材改编]以点(2,-1)为圆心且与直线x+y=6相切的圆的方程是.3.[教材改编]圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为.4.[教材改编]直线x-y-5=0被圆x2+y2-4x+4y+6=0所截得的弦的长为.题组二常错题◆索引:忽视分两圆内切与外切两种情形;忽视切线斜率k不存在的情形;求弦所在直线的方程时遗漏一解.5.若圆x2+y2=1与圆(x+4)2+(y-a)2=25相切,则常数a=.6.已知圆C: x2+y2=9,过点P(3,1)作圆C的切线,则切线方程为.且被圆x2+y2=25截得的弦长是8,则该直线的方程7.若直线过点P-3,-32为.课堂考点探究探究点一直线与圆的位置关系1 (1)直线x+ay+1=0与圆x2+(y-1)2=4的位置关系是( )A.相交B.相切C.相离D.不能确定(2)直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的一个充分不必要条件是( )A.0<m<1B.-4<m<0C.m<1D.-3<m<1[总结反思]判断直线与圆的位置关系的常用方法:(1)若易求出圆心到直线的距离,则用几何法,利用d与r的关系判断.(2)若方程中含有参数,或圆心到直线的距离的表达式较复杂,则用代数法,联立方程后利用Δ判断,能用几何法求解的,尽量不用代数法.式题 (1)圆2x 2+2y 2=1与直线xsin θ+y -1=0θ∈R ,θ≠π2+kπ,k ∈Z 的位置关系是 (横线内容从“相交、相切、相离、不确定”中选填).(2)过定点P (-2,0)的直线l 与曲线C :(x-2)2+y 2=4(0≤x ≤3)交于不同的两点,则直线l 的斜率的取值范围是 . 探究点二 圆的切线与弦长问题2 (1) 过点(1,1)的直线l 与圆(x-2)2+(y-3)2=9相交于A ,B 两点,当|AB |=4时,直线l 的方程为 .(2) 已知圆的方程是x 2+y 2=1,则经过上一点M √22,√22的切线方程是 .[总结反思] (1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形.(2)处理圆的切线问题时,一般通过圆心到直线的距离等于半径建立关系式解决问题.若点M (x 0,y 0)在圆x 2+y 2=r 2上,则过点M 的圆的切线方程为x 0x+y 0y=r 2.式题 (1)已知直线l :x+y-2=0和圆C :x 2+y 2-12x-12y+m=0相切,则实数m 的值为 . (2) 设直线y=kx+1与圆x 2+y 2+2x-my=0相交于A ,B 两点,若点A ,B 关于直线l :x+y=0对称,则|AB |= .(3)已知点M 在直线x+y+a=0上,过点M 引圆O :x 2+y 2=2的切线,若切线长的最小值为 2√2,则实数a 的值为 ( )A. ±2√2B.±3C.±4D. ±2√5探究点三 圆与圆的位置关系3 (1) 已知圆C 1:x 2+y 2=4,圆C 2:x 2+y 2+6x-8y+16=0,则圆C 1和圆C 2的位置关系是 ( )A.相离B.外切C.相交D.内切(2)已知经过点P1,32的两个圆C1,C2都与直线l1:y=12x,l2:y=2x相切,则这两圆的圆心距C1C2等于.[总结反思](1)处理两圆的位置关系时多用圆心距与半径的和或差的关系判断,一般不采用代数法.(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.式题(1)已知点O(0,0),M(1,0),且圆C:(x-5)2+(y-4)2=r2(r>0)上至少存在一点P,使得|PO|=√2|PM|,则r的最小值是.(2)设P(x1,y1)是圆O1:x2+y2=9上的点,圆O2的圆心为O2(a,b),半径为1,则(a-x1)2+(b-y1)2=1是圆O1与圆O2相切的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件课时作业一、填空题1.将圆x2+y2-2x-4y+1=0平分的直线是________.2.过两圆x2+y2+3x+2y=0及x2+y2+2x+6y-4=0的交点的直线方程是________.3.已知直线l:y=k(x-1)-3与圆x2+y2=1相切,则直线l的倾斜角为________.4.若圆心在x轴上,半径为5的圆C位于y轴左侧,且被直线x+2y=0截得的弦长为4,则圆C的方程是________.5.若过点P(1,3)作圆O:x2+y2=1的两条切线,切点分别为A和B,则弦长|AB|=________.6.过点(1,1)的直线与圆(x-2)2+(y-3)2=9相交于A,B两点,则|AB|的最小值为________.7.已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线,则________.8.在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于________.9.设直线l截圆x2+y2-2y=0所得弦AB的中点为(-12,32),则直线l的方程为________;|AB|=________.10.设圆C同时满足三个条件:①过原点;②圆心在直线y=x上;③截y轴所得的弦长为4,则圆C 的方程是________.11.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a=________.二、解答题12.一个圆与y轴相切,圆心在直线x-3y=0上,且在直线y=x上截得的弦长为27,求此圆的方程.13.已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程.。

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系
2 y + F 2=0
①,圆 C 2: x 2+ y 2+ D 2 x + E
②,若两圆相交,则有一条公共弦,由①-②,得( D 1-
D 2) x +( E 1- E 2) y + F 1- F 2=0
③,方程③表示圆 C 1与 C 2的公共弦
所在直线的方程.
2. 两圆公共弦长的求法
先求出公共弦所在直线的方程,在其中一圆中,由弦心距 d ,半弦长
若| AB |=6,则 r 的值为
5 .

设圆心(0,0)到直线 x - 3 y +8=0的距离为 d ,
则d=
|8 |
=4,
12 +(− 3)2
所以 r 2=
||
2
2
又 r >0,所以 r =5.
+ d 2=32+42=25.
方法总结
1. 求直线与圆相交弦长的常用方法
(1)几何法:用圆的几何性质求解,运用弦心距、半径及弦的一半构成
所以| AB |= (−4 − 0)2 +(0 − 2)2 =2 5 ,即公共弦长为2 5 .
法二:由 x 2+ y 2-2 x +10 y -24=0,得( x -1)2+( y +5)2=50,圆 C 1的
圆心坐标为(1,-5),半径 r =5 2 ,圆心到直线 x -2 y +4=0的距离为
d=
(3)过圆 x 2+ y 2= r 2外一点 P ( x 0, y 0)作圆的两条切线,切点分别为 A ,
B ,则过 A , B 两点的直线方程为 x 0 x + y 0 y = r 2.
◉角度(二) 弦长问题
例2 (1)已知直线 y =2 x 与圆 − 2
则 =(
B )
2+
−2
2 =1交于 A , B 两点,

圆及直线与圆的位置关系

圆及直线与圆的位置关系

(x+
D )2+(y+
2
E 2
)2= D2
E2 4
4F
.
O
rM C
(把1方)程圆x的2 一y般2 方D程x 体 E现y 了F圆方0(程D的2 代E数2 特4点F :0x)2、y2 项系数相
等且(不其为2中)零当,. 半没D2径有+E是x2-yr 项4F.=D0
2时,E2方2 程4(F *,)圆表心示坐点标(是-
则 d r 相离 0 ;
d r 相切 0 ;
d r 相交 0 .
9
二、考点透视 11.两圆位置关系的判定方法 设两圆圆心分别为 O1,O2,半径分别为 r1,r2,O1O2 d
0 d r1 r2 内含 无公切线
O1
O2
O1
O2
d r1 r2 内切 1条公切线
②圆心在点 C(a,b) ,半径为 r 的圆的参数方程是:
x a r cos
y
b
r
sin
(是参数)
在①中消去θα 得 x2+y2=r2,在②中消去θ得
(x-a)2+(y-b)2=r2,
把这两个方程相对于它们各自的参数方程又叫做普通方程.
4
二、考点透视 5.二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示 圆的充要条件: ①A=C≠0,②B=0,③D2+E2-4AF>0. 6. 线段AB为直径的圆的方程:
( D , E ) 圆心, r D 2 E 2 4F .
22
2
8
二、考点透视 10.研究圆与直线的位置关系最常用的方法 ①判别式法; ②考查圆心到直线的距离与半径的大小关系.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档