(完整版)初中数学动点问题归纳
初中数学动点问题思路方法大汇总(上)

初中数学动点最值思路方法(上)所谓“动点问题”是指图形中有一个或多个动点,在线段、射线或者弧线上运动的一类开放性题目,而解决这类题的关键是动中取静,让动点定下来,灵活地运用相关数学知识解决问题.在变化中找到不变的性质是解决数“动点”问题的基本思路.数学压轴题正逐步转向数形结合、动态几何、动手操作、实验探究等方向,加强了对几何图形运动变化的考核,从变化的角度来研究三角形、四边形、函数图象等,通过“对称”“翻折”“平移”“旋转”等研究手段和方法来探究图形性质及变化.让学生经历探索的过程,培养学生分析问题、解决问题的能力,把运动观点、方程思想、数形结合思想、分类思想、转化思想有机地结合起来.目录一、利用“垂线段最短”解决最值问题 (2)二、利用“三点共线”解决最值问题 (11)三、利用“轴对称变换”解决最值问题 (21)四、利用“旋转变换”解决最值问题 (28)五、“二次函数的最值性质”解决最值问题 (42)六、等腰三角形的存在性动点问题 (55)七、直角三角形的存在性动点问题 (72)一、利用“垂线段最短”解决最值问题【典型例题1】难度★★【思路分析】利用“垂线段最短”,线段PE的最小值即过E做AB的垂线段的长度.本题条件告诉了线段长度和比值,因此我们可以利用性质求最值的过程列方程求解(方程思想),同学们要好好领悟和掌握.【答案解析】解:说明:此题还可用等面积法求解,同学们可自己尝试。
【典型例题2】难度★★【思路分析】AP与直线y=-x+4垂直时,线段AP最短.本题同学们要熟练掌握含有45º角的直角三角形的三边的比例性质(下图中的AM=PM=MN).【答案解析】【典型例题3】难度★★★【解题思路】【答案解析】【典型例题4】难度★★★【答案解析】【典型例题5】难度★★★【解题思路】【答案解析】【典型例题6】难度★★★【思路分析】因为点D是动点,A是定点.所以线段AD是变化的,圆的大小也随AD变化,而弦EF是由圆0和△ABC确定的,所以当圆0的直径最小时,线段EF的最小值也就确定了.AD何时最短?【答案解析】解:【典型例题7】难度★★★【答案解析】【典型例题8】难度★★★【答案解析】【典型例题9】难度★★★【答案解析】【典型例题10】难度★★★【答案解析】二、利用“三点共线”解决最值问题【典型例题1】难度★★★【思路分析】点A、C分别在x轴、y轴上,当点A在z轴运动时,点C随之在y轴上运动,线段OB的长度随之发生变化,因此需要寻找与点O、点B有关的不变的量.仔细观察,我们可以发现在运动过程中,点O在到AC的中点的距离不变,点B到AC的中点的距离也不变,然后求解即可.【答案解析】解:【典型例题2】难度★★★★【答案解析】解:【规律总结】在本例题中,主要涉及到三角形三边关系、直角三角形斜边上的中线、勾股定理、正方形的性质等多个知识点为如何求一条线段最短提供了一个新的思路一一建立三角形,利用两边之和大于第三边的性质,再次强调三点共线时线段取最值.【典型例题3】难度★★★【思路分析】四边形PQFE的周长=PE+EF+FQ+PQ,其中PQ为定值,所以周长的最小值就是求PE+EF+FQ的最小值.那么三条线段和的最小值如何求呢?利用作图构造兰条线段共线,来求得和的最小值.连接AC,延长DA至M,使AM=AP,延长DC到N,使CN=CQ,则当E、F是MN和AB、BC的交点时,四边形PQFE周长最小,则PE+EF+FQ的最小值是MN的长.【答案解析】解:【典型例题4】难度★★★★【思路分析】【答案解析】解:【典型例题5】难度★★★【思路分析】【答案解析】解:【典型例题6】难度★★【答案解析】【典型例题7】难度★★【答案解析】【典型例题8】难度★★★【答案解析】【典型例题9】难度★★★★【答案解析】解:【典型例题10】难度★★★★【答案解析】解:【扩展】三、利用“轴对称变换”解决最值问题【典型例题1】难度★★【思路分析】利用轴对称的性质解决一动点到两定点距离和最小的问题,辅助线方法是作某一定点的对称点(本题做C点的对称点,与A连接确定点D),熟练运用此方法是本例题和变式的主要目的,同时运用到勾股定理、三角函数等相关知识.本题做C点的对称点【答案解析】解:【典型例题2】难度★★★【思路分析】本题是轴对称一一最短路线问题在坐标系中的应用.一个动点到两个定点距离和最小的问题,首先要明确对称轴是什么,然后根据轴对称作出最短路线,即可得出△ABC的周长最小时C点的坐标.【答案解析】解:【典型例题3】难度★★★【思路分析】本题是一定点到两动点距离和最小的问题那么应该用到了轴对称一一最短路线问题这部分知识,将两个变量线段通过作图转化到同一条线段上.【答案解析】解:【典型例题4】难度★★★【答案解析】解:【典型例题5】难度★★★★【答案解析】解:【典型例题1】难度★★【思路分析】构造包含所求线段的兰角形,通过三边关系求解;解直角三角形求出AB、BC,再求出CD,连接CG,根据直角三角形斜边上的中线等于斜边的一半求出CG,然后根据三角形的任意两边之和大于第三边判断出DC有最大值再代人数据进行计算即可得【答案解析】解:四、利用“旋转变换”解决最值问题【典型例题1】难度★★【思路分析】构造包含所求线段的兰角形,通过三边关系求解;解直角三角形求出AB、BC,再求出CD,连接CG,根据直角三角形斜边上的中线等于斜边的一半求出CG,然后根据三角形的任意两边之和大于第三边判断出DC有最大值再代人数据进行计算即可得【答案解析】解:【典型例题2】难度★★★【思路分析】本题利用旋转等边三角形的性质,全等三角形的判定与性质解直角三角形、直角三角形斜边上的中线等于斜边的一半,通过运用旋转和作辅助线构,造特殊图形,利用垂线段最短的性质求得最小值.【答案解析】解:【典型例题3】难度★★★【思路分析】通过证一组三角形全等来证明BE和AD的数量关系及位置关系.思考问题中要考虑点E在旋转过程中的运动轨迹通过构图发现BE的最大和最小值.【答案解析】解:【典型例题4】难度★★★★【答案解析】解:【典型例题5】难度★★★★【答案解析】解:【典型例题6】难度★★★★【思路分析】【答案解析】解:【典型例题7】难度★★★★【思路分析】【答案解析】解:【典型例题8】难度★★★★【答案解析】【典型例题9】难度★★★★【答案解析】五、“二次函数的最值性质”解决最值问题【典型例题1】难度★★★【解题思路】【答案解析】【典型例题2】难度★★★【解题思路】【答案解析】【典型例题3】难度★★★【解题思路】【典型例题4】难度★★★【解题思路】【答案解析】【典型例题5】难度★★★【答案解析】【典型例题6】难度★★★★【解题思路】【答案解析】【典型例题7】难度★★★【答案解析】【典型例题8】难度★★★★【解题思路】。
七年级数学动点问题知识点

七年级数学动点问题知识点数学中的动点问题是数学中常见的类型。
这类问题的特点是有一个或多个运动的“点”,并且需要根据这些点的运动轨迹来求解问题。
在初中数学中,学生通常会学习到直线运动、圆周运动和两点之间的相对运动等知识。
下面将对这些知识点进行具体的讲解。
1. 直线运动直线运动是动点问题中最基本的一种。
在直线运动中,动点随着时间的推移,沿着一定的直线方向进行移动。
对于一个匀速直线运动的动点,我们可以通过公式 s = vt 来求解。
其中,s 表示位移,v 表示速度,t 表示时间。
例如,一辆时速为 60 公里/小时的汽车从 A 地出发,向 B 地驶去,经过 2 小时后到达 B 地。
则这辆汽车的位移 s = vt = 60 * 2 = 120 公里。
对于存在加速度或减速度的直线运动,我们则需要通过加速度来求解。
对于匀加速直线运动的动点,我们可以通过公式 s = vt +1/2at^2 来求解。
其中,s 表示位移,v 表示初速度,t 表示时间,a 表示加速度。
例如,一个起始速度为 0 m/s,加速度为 5 m/s^2 的物体,经过3 秒后的位移为 s = vt + 1/2at^2 = 0 * 3 + 1/2 * 5 * 3^2 = 22.5m。
2. 圆周运动圆周运动也是动点问题中较为常见的一种。
在圆周运动中,动点会绕着圆心进行运动,通常会涉及到角度的概念。
对于一个匀速圆周运动的动点,我们可以通过公式s = rθ 来求解。
其中,s 表示弧长,r 表示半径,θ 表示圆心角的大小(弧度制)例如,半径为 5cm 的圆周上,一个匀速运动的动点在 3 秒钟内绕圈一周,求其位移。
由于一周为2π rad,那么圆心角大小为θ = 2π。
则动点的位移 s = rθ = 5 * 2π = 10π ≈ 31.4cm。
对于存在变速的圆周运动,我们需要通过变速率来求解。
对于一个圆周运动的动点,它的速度通常都是变化的,而其加速度方向则指向圆心。
最全初中数学几何动点问题专题分类归纳汇总

最全初中数学几何动点问题专题分类归纳汇总近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题.最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴).我们知道“对称、平移、旋转” 是三种保形变换。
通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。
数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。
(1)去伪存真。
刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。
(2)科学选择。
捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。
(3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。
初中数学动点问题归类及解题技巧

初中数学动点问题归类及解题技巧
初中数学的动点问题是学习者必须掌握的重要知识,其中的解题技巧也非常重要。
因此,本文将对初中数学动点问题的归类及解题技巧进行介绍,以便学习者更好地掌握此类问题。
一、初中数学动点问题的归类
1、一元一次动点问题:即求出给定点之间的距离,或求出给定点的坐标,或求出给
定点斜率等问题。
2、一元二次动点问题:即求出两个给定点之间的距离,或求出两个给定点的切线方程,或求出两个给定点的中点等问题。
3、多元一次动点问题:即求出多个给定点之间的最短距离,或求出多个给定点的重
心坐标,或求出多个给定点的平均值等问题。
二、初中数学动点问题的解题技巧
1、分解法:首先要分解出给定问题,将复杂的问题分解成简单的子问题,从而更容
易解决。
2、组合法:将多个给定点组合在一起,归纳出新的特征,从而更容易解决问题。
3、等价法:将某个问题转换成其他等价的问题,以求出更容易解决的问题。
以上就是关于初中数学动点问题的归类及解题技巧的介绍。
学习者可以根据上述知识,通过分解法、组合法和等价法等方法,更好地掌握动点问题的解题技巧,从而更快更准确
地解决此类问题。
初中数学动点问题(北师大版)

初中数学动点问题(北师大版)1. 引言初中数学动点问题是数学中经常出现的一个考点,它涉及到点在平面内移动的问题。
通过解决这类问题,可以帮助学生理解和掌握坐标系、图形变换等数学概念。
本文将重点介绍北师大版初中数学教材中关于动点问题的内容。
2. 动点问题的基本概念动点问题是指一个点在平面内以一定的规律进行移动的情况。
这个点可以在平面内的不同位置上,可以沿直线、曲线等路径运动。
学生需要根据提供的条件,确定点的运动轨迹、速度、方向等。
解决动点问题需要运用坐标系、直线方程、参数方程等知识。
3. 动点问题的解决方法解决动点问题的方法有多种,下面介绍几种常见的方法:- 使用坐标系:通过建立合适的坐标系,将点的位置用坐标表示,便于进行计算和分析。
- 利用直线方程:当点在直线上运动时,可以通过直线方程来确定点的位置,进而求解相关问题。
- 应用参数方程:对于复杂的轨迹,可以使用参数方程来描述点的位置,通过确定参数值来求解问题。
- 运用速度概念:当点的位置随时间变化时,可以利用速度概念来描述点的运动,并解决相关问题。
4. 例题分析下面通过例题来具体说明解决动点问题的步骤和方法。
例题:一条船以每小时12公里的速度顺水航行,沿江下游行驶,下游距离为96公里。
一条狗站在江边,见船过去需0.5小时,它就跳入江中追船,每小时游5公里。
试问,狗游完全程需要多少时间?一条船以每小时12公里的速度顺水航行,沿江下游行驶,下游距离为96公里。
一条狗站在江边,见船过去需0.5小时,它就跳入江中追船,每小时游5公里。
试问,狗游完全程需要多少时间?解答:首先,设狗追船的时间为$t$小时,则船运动的时间为$t+0.5$小时。
根据题意可得:船的位移 = 船的速度 ×船的时间狗的位移 = 狗的速度 ×狗的时间根据题目中给出的数据,可列出方程组:$$12 \times (t+0.5) = 96$$$$5 \times t = 96$$解方程可得:$t=\frac{192}{17}$因此,狗游完全程需要$\frac{192}{17}$小时。
初一数轴动点问题的方法归纳

初一数轴动点问题的方法归纳一、引言初一数轴动点问题是初中数学中的一个重要知识点,通过解决这类问题,可以帮助学生理解数轴上点的运动规律,培养其空间思维能力和解决实际问题的能力。
本文将从问题的分析、解题思路和方法归纳三个方面,介绍初一数轴动点问题的解法。
二、问题的分析在初一数轴动点问题中,通常给定初始位置和一个或多个移动规则,要求确定点在数轴上移动后的位置。
问题的关键在于找到移动规则与初始位置的关系,从而确定点的最终位置。
三、解题思路解决初一数轴动点问题的思路主要分为以下几步:1. 确定初始位置:根据题目给出的信息,确定点的初始位置。
初始位置可以是一个确定的点,也可以是一个范围。
2. 分析移动规则:仔细阅读题目,理解移动规则。
移动规则可以是简单的加减法运算,也可以是根据条件进行判断并作出相应的移动。
3. 确定移动次数:根据题目要求,确定点需要移动的次数。
移动次数可以是确定的,也可以是根据条件进行判断。
4. 进行移动操作:根据移动规则和移动次数,进行相应的移动操作。
根据移动操作的类型不同,可以分为直接移动、相对移动和条件移动等。
5. 确定最终位置:根据移动操作后点的位置确定最终位置。
最终位置可以是一个确定的点,也可以是一个范围。
四、方法归纳根据上述解题思路,我们可以总结出以下几种常见的方法来解决初一数轴动点问题:1. 列表法:将初始位置和移动规则按照一定的规律列成表格,根据移动次数逐步计算出点的位置。
这种方法适用于移动规则比较简单的情况。
2. 递推法:根据初始位置和移动规则,通过递推的方式计算出点的位置。
递推法适用于移动规则具有递推性质的情况。
3. 条件法:根据移动规则中的条件,判断点的移动方式,并计算出最终位置。
这种方法适用于移动规则具有条件判断的情况。
4. 图形法:将数轴和点的移动过程绘制成图形,通过观察图形来确定点的最终位置。
这种方法适用于移动规则复杂或移动次数较多的情况。
五、举例说明为了更好地理解上述方法,我们举一个具体的例子来说明:例题:小明从数轴上的位置0出发,每次可以向左或向右移动1个单位,当移动次数为偶数时向右移动,移动次数为奇数时向左移动。
初中数学动点问题总结
初二动点问题1.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB 边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为直角梯形?分析:(1)四边形PQCD为平行四边形时PD=CQ.(2)四边形PQCD为等腰梯形时QC-PD=2CE.(3)四边形PQCD为直角梯形时QC-PD=EC.所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.解答:解:(1)∵四边形PQCD平行为四边形∴PD=CQ∴24-t=3t解得:t=6即当t=6时,四边形PQCD平行为四边形.(2)过D作DE⊥BC于E则四边形ABED为矩形∴BE=AD=24cm∴EC=BC-BE=2cm∵四边形PQCD为等腰梯形∴QC-PD=2CE即3t-(24-t)=4解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形.(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形.点评:此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.2.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.分析:(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.(3)利用已知条件及正方形的性质解答.解答:解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理,OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE= ∠ACB,同理,∠ACF= ∠ACG,∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用.3.如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A 作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.(1)求NC,MC的长(用t的代数式表示);(2)当t为何值时,四边形PCDQ构成平行四边形;(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;(4)探究:t为何值时,△PMC为等腰三角形.(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM;四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解;(3)可先根据QN平分△ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC 面积的一半,由此可得出是否存在符合条件的t值.(4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论:①当MP=MC时,那么PC=2NC,据此可求出t的值.②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值.③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值.综上所述可得出符合条件的t的值.解答:解:(1)∵AQ=3-t∴CN=4-(3-t)=1+t在Rt△ABC中,AC2=AB2+BC2=32+42∴AC=5在Rt△MNC中,cos∠NCM= = ,CM= .(2)由于四边形PCDQ构成平行四边形∴PC=QD,即4-t=t(3)如果射线QN将△ABC的周长平分,则有:MN+NC=AM+BN+AB即:(1+t)+1+t= (3+4+5)解得:t= (5分)而MN= NC= (1+t)∴S△MNC= (1+t)2= (1+t)2当t= 时,S△MNC=(1+t)2= ≠×4×3∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分.(4)①当MP=MC时(如图1)则有:NP=NC即PC=2NC∴4-t=2(1+t)解得:t=②当CM=CP时(如图2)则有:(1+t)=4-t解得:t=③当PM=PC时(如图3)则有:在Rt△MNP中,PM2=MN2+PN2而MN= NC= (1+t)PN=NC-PC=(1+t)-(4-t)=2t-3∴[ (1+t)]2+(2t-3)2=(4-t)2解得:t1= ,t2=-1(舍去)∴当t= ,t= ,t= 时,△PMC为等腰三角形点评:此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法.4.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.分析:以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形的必须条件是点P、N重合且点Q、M不重合,此时AP+ND=AD即2x+x2=20cm,BQ+MC ≠BC即x+3x≠20cm;或者点Q、M重合且点P、N不重合,此时AP+ND≠AD即2x+x2≠20cm,BQ+MC=BC即x+3x=20cm.所以可以根据这两种情况来求解x的值.以P,Q,M,N为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P在点N的左侧时,AP=MC,BQ=ND;当点P在点N的右侧时,AN=MC,BQ=PD.所以可以根据这些条件列出方程关系式.如果以P,Q,M,N为顶点的四边形为等腰梯形,则必须使得AP+ND≠AD即2x+x2≠20cm,BQ+MC≠BC即x+3x≠20cm,AP=ND即2x=x2,BQ=MC即x=3x,x≠0.这些条件不能同时满足,所以不能成为等腰梯形.解答:解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.①当点P与点N重合时,由x2+2x=20,得x1= -1,x2=- -1(舍去).因为BQ+CM=x+3x=4(-1)<20,此时点Q与点M不重合.所以x= -1符合题意.②当点Q与点M重合时,由x+3x=20,得x=5.此时DN=x2=25>20,不符合题意.故点Q与点M不能重合.所以所求x的值为-1.(2)由(1)知,点Q只能在点M的左侧,①当点P在点N的左侧时,由20-(x+3x)=20-(2x+x2),解得x1=0(舍去),x2=2.当x=2时四边形PQMN是平行四边形.②当点P在点N的右侧时,由20-(x+3x)=(2x+x2)-20,解得x1=-10(舍去),x2=4.当x=4时四边形NQMP是平行四边形.所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.由于2x>x,所以点E一定在点P的左侧.若以P,Q,M,N为顶点的四边形是等腰梯形,则点F一定在点N的右侧,且PE=NF,即2x-x=x2-3x.解得x1=0(舍去),x2=4.由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,所以以P,Q,M,N为顶点的四边形不能为等腰梯形.点评:本题考查到三角形、平行四边形、等腰梯形等图形的边的特点.5.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M 从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形MNCD是平行四边形?(2)当t为何值时,四边形MNCD是等腰梯形?分析:(1)根据平行四边形的性质,对边相等,求得t值;(2)根据等腰梯形的性质,下底减去上底等于12,求解即可.解答:解:(1)∵MD∥NC,当MD=NC,即15-t=2t,t=5时,四边形MNCD是平行四边形;(2)作DE⊥BC,垂足为E,则CE=21-15=6,当CN-MD=12时,即2t-(15-t)=12,t=9时,四边形MNCD是等腰梯形点评:考查了等腰梯形和平行四边形的性质,动点问题是中考的重点内容.6.如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P 从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,P、Q分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动时间为t(s).(1)设△BPQ的面积为S,求S与t之间的函数关系;(2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?分析:(1)若过点P作PM⊥BC于M,则四边形PDCM为矩形,得出PM=DC=12,由QB=16-t,可知:s= PM×QB=96-6t;(2)本题应分三种情况进行讨论,①若PQ=BQ,在Rt△PQM中,由PQ2=PM2+MQ2,PQ=QB,将各数据代入,可将时间t求出;②若BP=BQ,在Rt△PMB中,由PB2=BM2+PM2,BP=BQ,将数据代入,可将时间t求出;③若PB=PQ,PB2=PM2+BM2,PB=PQ,将数据代入,可将时间t求出.解答:解:(1)过点P作PM⊥BC于M,则四边形PDCM为矩形.∴PM=DC=12,∵QB=16-t,∴s= •QB•PM= (16-t)×12=96-6t(0≤t≤).(2)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况:①若PQ=BQ,在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得;②若BP=BQ,在Rt△PMB中,PB2=(16-2t)2+122,由PB2=BQ2得(16-2t)2+122=(16-t)2,此方程无解,∴BP≠PQ.③若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122得,t2=16(不合题意,舍去).综上所述,当或时,以B、P、Q为顶点的三角形是等腰三角形.点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.7.直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.分析:(1)分别令y=0,x=0,即可求出A、B的坐标;(2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q由O到A 的时间是8秒,点P的速度是2,从而可求出,当P在线段OB上运动(或0≤t≤3)时,OQ=t,OP=2t,S=t2,当P在线段BA 上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于点D,由相似三角形的性质,得 PD=48-6t5,利用S= 12OQ×PD,即可求出答案;(3)令S= 485,求出t的值,进而求出OD、PD,即可求出P的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M的坐标.解答:解:(1)y=0,x=0,求得A(8,0)B(0,6),(2)∵OA=8,OB=6,∴AB=10.∵点Q由O到A的时间是 81=8(秒),∴点P的速度是 6+108=2(单位长度/秒).当P在线段OB上运动(或O≤t≤3)时,OQ=t,OP=2t,S=t2.当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,如图,做PD⊥OA于点D,由 PDBO=APAB,得PD= 48-6t5.∴S= 12OQ•PD=- 35t2+245t.(3)当S= 485时,∵ 485>12×3×6∴点P在AB上当S= 485时,- 35t2+245t= 485∴t=4∴PD= 48-6×45= 245,AD=16-2×4=8AD= 82-(245)2= 325∴OD=8- 325= 85∴P( 85, 245)M1( 285, 245),M2(- 125, 245),M3( 125,- 245)点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.。
(完整word版)初中数学动点问题解题技巧Du
动点问题解题技巧以运动的看法研究几何图形部分规律的问题,称之为动向几何问题。
动向几何问题充足表现了数学中的“变”与“不变”的和睦一致,其特色是图形中的某些元素(点、线段、角等)或某部分几何图形按必定的规律运动变化,进而又惹起了其余一些元素的数目、地点关系、图形重叠部分的面积或某部分图形等发生变化,可是图形的一些元素数目和关系在运动变化的过程中却相互依存,拥有必定的规律可寻。
所谓“ 动点型问题”是指题设图形中存在一个或多个动点 , 它们在线段、射线或弧线上运动的一类开放性题目,着重对几何图形运动变化能力的观察。
解决这种问题的重点是动中求静 , 灵巧运用相关数学知识解决问题 . 在变化中找到不变的性质是解决数学“动点”研究题的基本思路 , 这也是动向几何数学识题中最中心的数学实质。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,经过“对称、动点的运动”等研究手段和方法,来研究与发现图形性质及图形变化,在解题过程中浸透空间看法和合情推理。
这些压轴题题型众多、题意创新,目的是观察学生的剖析问题、解决问题的能力,内容包含空间看法、应意图识、推理能力等。
从数学思想的层面上讲需要具备以下思想:分类议论思想、数形联合思想、转变思想、函数思想、方程思想。
常有的动点问题一、数轴上的动点问题数轴上的动点问题离不开数轴上两点之间的距离。
为了便于对这种问题的剖析,先明确以下 3 个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右侧的数减去左侧的数的差。
即数轴上两点间的距离=右侧点表示的数—左侧点表示的数。
2.点在数轴上运动时,因为数轴向右的方向为正方向,所以向右运动的速度看作正速度,而向左运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就能够直接获得运动后点的坐标。
即一个点表示的数为 a,向左运动 b 个单位后表示的数为 a—b;向右运动 b 个单位后所表示的数为 a+b。
3.数轴是数形联合的产物,剖析数轴上点的运动要联合图形进行剖析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
初中数学动点问题中最值、最短路径专项
一、基础知识点综述1. 两点之间,线段最短;2. 垂线段最短;3. 若A、B是平面直角坐标系内两定点,P是某直线上一动点,当P、A、B在一条直线上时,|PA-PB|最大,最大值为线段AB的长(如下图所示);4. 最短路径模型(1)单动点模型作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P是x轴上一动点,求PA+PB的最小值的作图.(2)双动点模型P是∠AOB内一点,M、N分别是边OA、OB上动点,求作△PMN周长最小值.作图方法:作已知点P关于动点所在直线OA、OB的对称点P’、P’’,连接P’P’’与动点所在直线的交点M、N即为所求.5. 二次函数的最大(小)值在二次函数的顶点式中,当a>0时,y有最小值k;当ay有最大值k.二、主要的方法归纳利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见经典例题解析)三、经典例题解析例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为解:∵PQ⊥EP,∴∠EPQ=90°,即∠EPB+∠QPC=90°,∵四边形ABCD是正方形,∴∠B=∠C=90°,∠EPB+∠BEP=90°,∴∠BEP=∠QPC,∴△BEP∽△CPQ,此题为“一线三直角模型”,解题方法为相似三角形性质求解,综合利用二次函数的性质求解最值问题。
例2.(2019·自贡)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD=()由图可知:当AD与圆G相切时,BE的长度最小,如下图,此题解题的关键是找到△ABE面积最小时即是AD与D的运动轨迹圆相切的时刻. 进而构造以∠BAD为内角的直角三角形,利用勾股定理求出边长,代入三角函数定义求解。
初中数学动点问题及练习题附参考答案
初中数学动点问题及练习题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
二、应用比例式建立函数解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BB动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A (8,0) B (0,6)2、当0<t <3时,S=t2当3<t <8时,S=3/8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1单位和2个长度单位的速度沿OC 和BO 之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
二、特殊四边形边上动点4、(2009年吉林省)如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠部分....的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题:(1)点P 、Q 从出发到相遇所用时间是 秒;(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒;(3)求y 与x 之间的函数关系式.提示:第(3)问按点Q 到拐点时间B 、C 所有时间分段分类 ; 提醒----- 高相等的两个三角形面积比等于底边的比 。
5、(2009年哈尔滨)如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3-,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H . (1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (0S ≠),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.注意:第(2)问按点P 到拐点B 所用时间分段分类;第(3)问发现∠MBC=90°,∠BCO 与∠ABM 互余,画出点P 运动过程中, ∠MPB=∠ABM 的两种情况,求出t 值。
利用OB ⊥AC,再求OP 与AC 夹角正切值.6、(2009年温州)如图,在平面直角坐标系中,点A(3,0),B(33,2),C (0,2).动点D 以每秒1个单位的速度从点0出发沿OC 向终点C 运动,同时动点E 以每秒2个单位的速度从点A 出发沿AB 向终点B 运动.过点E 作EF 上AB ,交BC 于点F ,连结DA 、DF .设运动时间为t 秒. (1)求∠ABC 的度数;(2)当t 为何值时,AB∥DF; (3)设四边形AEFD 的面积为S . ①求S 关于t 的函数关系式;②若一抛物线y=x 2+mx 经过动点E ,当S<23时,求m 的取值范围(写出答案即可).注意:发现特殊性,DE ∥OA7、(07黄冈)已知:如图,在平面直角坐标系中,四边形ABCO 是菱形,且∠AOC=60°,点B 的坐标是(0,83),点P 从点C 开始以每秒1个单位长度的速度在线段CB 上向点B 移动,同时,点Q 从点O 开始以每秒a (1≤a ≤3)个单位长度的速度沿射线OA 方向移动,设(08)t t <≤秒后,直线PQ 交OB 于点D. (1)求∠AOB 的度数及线段OA 的长;(2)求经过A ,B ,C 三点的抛物线的解析式; (3)当43,33a OD ==时,求t 的值及此时直线PQ 的解析式;(4)当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB∆相似?当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆不相似?请给出你的结论,并加以证明. 8、(08黄冈)已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,A B C,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个BACDPOQxyyC 单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒. (1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的27? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;(4)当动点P 在线段AB 上移动时,能否在线段OA 上找到一点Q ,使四边形CQPD 为矩形?请求出此时动点P 的坐标;若不能,请说明理由.9、(09年黄冈市)如图,在平面直角坐标系xoy 中,抛物线21410189y x x =--与x 轴的交点为点A,与y 轴的交点为点B .过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P,Q 移动的时间为t (单位:秒)(1)求A,B,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当0<t <92时,△PQ F 的面积是否总为定值?若是,求出此定值, 若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程. 提示:第(3)问用相似比的代换,得PF=OA (定值)。
第(4)问按哪两边相等分类讨论 ①PQ=PF,②PQ=FQ,③QF=PF. 三、 直线上动点8、(2009年湖南长沙)如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,、(03)C ,,且当4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角ABDCO P x y ABDCO xy (此题备用)形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.提示:第(2)问发现特殊角∠CAB=30°,∠CBA=60° 特殊图形四边形BNPM 为菱形;第(3)问注意到△ABC 为直角三角形后,按直角位置对应分类;先画出与△ABC 相似的△BNQ ,再判断是否在对称轴上。
9、(2009眉山)如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
⑴求该抛物线的解析式;⑵动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标P 。
⑶在抛物线的对称轴上找一点M ,使||AM MC -的值最大,求出点M 的坐标。
提示:第(2)问按直角位置分类讨论后画出图形----①P 为直角顶点AE 为斜边时,以AE 为直径画圆与x 轴交点即为所求点P ,②A 为直角顶点时,过点A 作AE 垂线交x 轴于点P ,③E 为直角顶点时,作法同②;第(3)问,三角形两边之差小于第三边,那么等于第三边时差值最大。