一元二次方程的解法PPT课件

合集下载

一元二次方程的解法-公式法课件

一元二次方程的解法-公式法课件

元二次方程有两个相等 的实数根。
学习交流PPT
10
随堂 2.用公式法解下列方程: 练习
(3)x2 2x 1 0
解:2a , b Nhomakorabea2, c 1 2
b2 4ac 2 2 0
(4)4x2-3x+2=0 解: a 4,b 3, c 2 b2 4ac 9 32 23 0
x ( 2) 0 2 0 方程没有实数根.
(2)x2-(m+1)x+m=0.
解:b 2 4 a c (m 1 )2 4 1 m
m 22m 14m (m 1)2 ≥0
∴当m-1=0时, 方程有两个相等的实数根;
当m-1≠0时, 方程有两个不相等的实数根;
学习交流PPT
6
根的判别式问题
2、根据方程根的情况,确定待定系数的取值范围.
用公式法解一元二次方 程的一般步骤:
(a≠0, b2-4ac≥0)
例1.用公式法解方程2x2+5x-3=0
解: a=2, b=5, c= -3,

∴ b2-4ac=52-4×2×(-3)=49 ②
1、把方程化成一般形式。 并写出a,b,c的值。
2、求出b2-4ac的值。
3、代入求根公式 :
∴x=
=
= 即 x1= - 3 , x2=
由4m 17 0, 得m 17 . 4
当m 17 时,b2 4ac 0, 4
则原方程有两个相等的学习实交流P数PT 解.
14
思考题
2、关于x的一元二次方程ax2+bx+c=0 (a≠0)。 当a,b, c 满足什么条件时,方程的两根为互为相反数?
解 :a 0,当b2 4ac 0时,方程的根为:

一元二次方程的解法公式法-最全资料PPT

一元二次方程的解法公式法-最全资料PPT
解:去括号,化简为一般式:
3x27x80
这里 a3 、 b =-7 、 c =8 b24ac( 7) 2438
4996-470
方程没有实数解。
随堂 练习 用公式法解下列方程:
(1)2x2-9x+8=0;
(2)9x2+6x+1=0;
(3)16x2+8x=3.
思考题
1、 m取什么值时,方程 x2+(2m+1)x+m2-4=0 有两个相等的实数解

解:去括号,化简Байду номын сангаас一般式:
1、 m取什么值时,方程 x2+(2m+1)x+m2-4=0有两个相等的实数解
2用、配求方出法解一般形式的的值一,元二次方程
b b 4ac 解思:考去 题括号,化简为一般式:
2
用把配方方 程法两解边一都般除形以式的一元二次方程
2(、2求)出 9x2+6x+1=0; 的值,
2
b b 4ac 1、 m取什么值时,方程 x2+(2m+1)x+m2-4=0有两个相等的实数解
即 x (1)2x2-9x+8=0;
2a 解:去括号,化简为一般式:
2a
特别提醒 一元二次方程的
求根公式
b b2 4ac x
2a
x b b2 4ac 2a
例 1 解方程: x27x180
解: 这里 a 1b 7c 1 8
4、写出方程的解:
x

1
x
2
x b b2 4ac 2a
例 2 解方程: x232 3x
解: 化简为一般式:x22 3x30 这里 a1、 b=-23、 c=3

一元二次方程的解法-公式法》PPT课件

一元二次方程的解法-公式法》PPT课件
解:化简为一般形式:x 2 3 x 3 0
2
a 1、 b -2 3、 c 3 2 2 b 4ac ( 2 3 ) 4 1 3 0
(- 2 3 ) 0 2 3 x 3 21 2 ∴ x1 x2 3
结论:当b2-4ac=0时,一元二次方程有两 个相等 的实数根.
一个直角三角形三边的长为三个连续偶数, 求这个三角形的三边长.
解 : 设这三个连续偶数中间的一个为x, 根据题意得
x x 2 x 2 .
2 2 2
即x 8x 0.
2
B
解这个方程 ,得
x1 8, x2 0(不合题意 , 舍去).
x 2 6, x 2 10.
用公式法解下列方程:
1、x2 +2x =5
2、 6t2 -5 =13t
例4
解方程:
x2 3 2 3 x
解: 原方程化为:x 2 2 3 x 3 0
a 1 ,b 2 3,c 3
b 4ac 2 3 4 1 3 0
2


2
( 2 3) 0 2 3 x 3 21 2 x1 x2 3
二、用配方解一元二次方程的步骤是什么? 1.化1:把二次项系数化为1(方程两边都除以二次项系 数); 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数绝对值一半的平方; 4.变形:方程左边分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解.
用配方法解一般形式的一元二次方程
ax bx c 0
2
(a≠0)

1一元二次方程的解法2.公式法PPT课件(沪科版)

1一元二次方程的解法2.公式法PPT课件(沪科版)
四清导航
用公式法解一元二次方程
1.(4 分)用公式法解方程 3x2- 2=12x 时,a,b,c 的值分别是( B )
A.a=3,b= 2,c=12 B.a=3,b=-12,c=- 2
C.a=3,b=12,c=- 2 D.a=3,b=- 2,c=12
2.(4 分)用公式法解方程 3x2+4=12x,下列代入公式正确的是( D )
1.一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b_2_-__4_a_c_≥_时0 ,它
-b± b2-4ac
的根为x=______2_a_____. 2.用公式法解一元二次方程的思路应是:(1)将方程化成一__般__情__势__;(2)
确定_____a_,__b_,__c_______的值;(3)求出_b_2_-__4_a_c_的值;(4)当b_2_-__4_a_c≥__0时, 可直接用求根公式求出它的根.
四清导航
15 (3)(x-1)(x+3)+5=0.
将原方程化为标准形式,得 x2+2x+2=0,a=1,b=2,c=2,b2-4ac=22-4×1×2=- 4<0,∴原方程无实数根 14.错误,b=-7 而不是 b=7,正确的解是 x1=7+611=3,x2= 7-611=-23
四清导航
14.(8 分)判断下列方程的解法有无错误,若有错误,请改正. 解方程:3(x+1)(x-2)=4x 解:方程变形,得 3(x2-x-2)=4x, 即 3x2-7x-6=0.这里 a=3,b=7,c=-6. ∴x=-7± 72+6 4×3×6=-76±11. ∴x1=-3,x2=23.
四清导航
11.当 a≠0 且 b2-4ac≥0 时,下列方程:①ax2+bx+c=0;②ax2-bx+c=0;③ax2+

一元二次方程解法公式法初中数学课件完美版PPT

一元二次方程解法公式法初中数学课件完美版PPT

例 3 解方程:(x-2)(1-3x)=6
解:去括号:x-2-3x2+6x=6 化简为一般式:-3x2+7x-8=0 3x2-7x+8=0 这里 a=3, b= -7, c= 8.
∵b2 - 4ac=(-7)2 - 4×3×8=49 - 96= - 47< 0,
∴原方程没有实数根.
我最棒
,用公式法解下列方程
列方程解应用题的一般步骤: 一审;二设;三列;四解;五验;六答. 用配方法解一元二次方程的一般步骤: 1.化1: 2.移项: 3.配方:; 4.变形: 5.开方: 6.求解: 7.定解:一元二次方程ax2+bx+c=0(a≠0)的求根公式:
x 9 17. 44
x 9 17. 44
5.开方:根据平方根意义, 方程两边开平方;
6.求解:解一元一次方程;
x19417;x29417. 7.定解:写出原方程的解.
心动 不如行动 公式法是这样生产的
你能用配方法解方程 ax2+bx+c=0(a≠0) 吗?
解 xx2x :当 2xba22bbaxba2 ba2x4x2abba2cacac42a.0 4时 20a.,c2b.a2ac方.右5系12程4..3.边.开数化移.两变配合方绝1项边形:方并:对把:开:根:把同方值二方平据常类程一次程方平数;左半项 两;方项分的系边根移解平数都意到因方化加义方式;为上,程,一1的;次右项边;
解:这里 a=1, b= -7, c= -18.
∵b2 - 4ac=(-7)2 - 4×1×(-18)=121﹥0,
x7211217211,
即:x1=9, x2= -2.
动脑筋
x b
b2 4 α c 2α

一元二次方程的解法ppt课件

一元二次方程的解法ppt课件
的各项系数a、b、c确定的,当 2 -4ac≥0时,它的实数根

公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=

,x
2=1

观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室

解一元二次方程ppt课件


21.2 解一元二次方程

难 ■题型二 利用根的判别式判断三角形的形状
题 型
例 2 已知△ABC 中,a,b,c 分别是∠A,∠B,∠C 的对边,且关于 x
突 的一元二次方程 b(x2-1)-2ax+c(x2+1)=0 有两个相等的实数根.判断
破 △ABC 的形状.
[解析] 根据已知条件得出 Δ=0,将等式变形,利用勾股定理的逆定理
B. 只有一个实数根

C. 有两个不相等的实数根
D. 没有实数根
[解题思路]
原方程
x(x-2)=1
化为一般形式
x2-2x-1=0
确定 a,b,c 的值
a=1,b=-2,c=-1
代入判别式 Δ
b2-4ac=8>0
判断根的情况
[答案] C
有两个不相等的实数根
方法点拨 应用根的判别式时要准确确定 a,b,c 的值,代入时要注意不 要丢掉各项系数的符号.
清 单
(1)x2-4x-3=0; (2)2x2-6x=1; (3)(t+3)(t-1)=12.

[解题思路] 按照下面的顺序进行求解.

[答案] 解:(1)移项,得 x2-4x=3,配方,得 x2-4x+4=3+4,即(x-
2)2=7,开方,得 x-2=±
,所以 x1=2+
,x2=2-

(2)二次项系数化为 1,得 x2-3x= ,配方,得 x2-3x+
21.2 解一元二次方程


21.2.1 配 方 法

单 ■考点一 直接开平方法


原理 根据平方根的意义进行“降次”,转化为一元一次方程求解

《解一元二次方程配方法》PPT课件


1.(3 分)在△ABC 中,∠C=90°,b=3,c=2 3,则∠A=__3_0_°____, ∠B=__6__0_°___.
2.(3 分)(2013·荆州)在△ABC 中,∠A=120°,AB=4,AC=2,
则 sin B 的值是( D )
A.5147 3
B. 5 21
C. 7 21
D. 14
24.2 解一元二次方程
【易错盘点】 【例】用配方法解方程x2-6x-1=0. 【错解】移项,得x2-6x=1;配方,得x2-6x+(-3)2=1,即(x -3)2=1;开平方,得x-3=±1;解得x1=4,x2=2. 【错因分析】在配方时,方程的两边应同时加上一次项系数一半 的平方,而错解只在方程的左边加上一次项系数一半的平方,却忽 略了在方程的右边也应加上相同的数. 【正解】
35°
C.7cos 35°
B.cos735° D.7tan 35°
6.(3 分)如图是教学用直角三角板,边 AC=30 cm,∠C=90°,
tan ∠BAC= 33,则边 BC 的长为( C )
A.30 3 cm C.10 3 cm
B.20 3 cm D.5 3 cm
7.(3 分)如图,AC 是电杆 AB 的一根拉线,测得 BC=6 米,∠ACB
9.(3 分)在 Rt△ABC 中,∠C=90°,且∠A,∠B,∠C 的对边分 别为 a,b,c.
(1)已知 c=6,∠A=60°,则 a=__3__3__,b=__3____;
(2)已知 a=4,∠B=45°,则 b=__4____,c=_4___2__.
10.(4 分)(2013·鞍山)在△ABC 中,∠C=90°,AB=8,cos A=34, 则 BC 的长为__2__7____.

一元二次方程的解法—公式法ppt课件


k≠0
k≠0
归纳 当一元二次方程二次项系数是字母时,一定要注意二次项 系数不为 0,再根据“Δ”求字母的取值范围.
【变式题】删除限制条件“二次”
若关于 x 的方程 kx2 − 2x −1 = 0 有实数根,则 k 的取值范围是
( A)
A. k≥ −1
B. k≥ −1且 k≠0
C. k < 1
D. k < 1 且 k≠0
第二十一章 一元二次方程
21.2 解一元二次方程
21.2.2 公式法
学习目标
1. 了解求根公式的推导过程;(难点) 2. 掌握用公式法解一元二次方程;(重点) 3. 会用判别式判断一元二次方程的根的情况.
知识回顾
用配方法解一元二次方程的步骤有哪些?
一“化”:将方程化为一般形式,且把二次项系数化为1; 二“移”:将常数项移到方程的右边; 三“配”:方程方左程边两配边成同完时全加平上方一的次形项式系;数一半的平方,将
练一练
不解方程,判断下列方程的根的情况.
(1)3x2+x-1=0;
(2)2x2+6=3x;
方法归纳
判断一元二次方程根的情况的方法:
将方程整理 为一般形式 ax2+bx+c=0
Δ= b2 − 4ac > 0 Δ= b2 − 4ac = 0 Δ= b2 − 4ac < 0
有两个不等的实数根 有两个相等的实数根 没有实数根
Δ= b2-4ac = (− )2-4×2×1 = 0. 方程有两个相等的实数根
x1 = x2
(3) 5x2-3x = x + 1; 解:方程化为 5x2-4x-1 = 0.
±-
a = 5,b = -4,c = -1. Δ= b2-4ac = (-4)2-4×5×(-1) = 36>0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的解法 ---配方法2
创设情境 温故探新
开心练一练 : 1、用直接开平方法解下列方程:
(1) (2)
9x 2 1
静心想一想:
(1) (2)
2
( x 2) 2
2
2、下列方程能用直接开平方法来解吗?
x 4x 4 3
X2+6X+9 = 2
把两题转化成 (x+b)2=a(a≥0)的 形式,再利用开平 方
2
1 移项得: x x 3 2 1 12 12 2 配方得:x 2 x ( 4 ) 3 ( 4 )
2
1 49 即 ( x )2 4 16
开平方得:
x
3 ∴原方程的解为:x1 2 , x2 2
1 7 4 4
反馈练习巩固新知
1、用配方法解下列方程:
(1)x2+8x-15=0 (3)2x2-5x-6=0 (2)x2-5x-6=0
(4) x2+px+q=0(p2-4q> 0)
课堂小结布置作业
小结: 1、配方法: 通过配方,将方程的左边化成一个含未
知数的完全平方式,右边是一个非负常数,运用直接 开平方求出方程的解的方法。 2、用配方法解一元二次方程 ax2+bx+c=0(a≠0) 的步骤: (1)化二次项系数为1 (2)移项 (3)配方 (4)开平方(5)写出方程的解
左边:所填常数等于一次项系数一半的平方.
合作交流探究新知
问题: 要使一块矩形场地的长比宽多6m,并且 面积为16m2, 场地的长和宽应各是多少?
(1)解:设场地宽为X米,则长为(x+6)米,根据题意得:
X(X+6) = 16
整理得:X2+6X-16 = 0
x 6 x 16 0
2
x 6 x 16
2
移项
两边加上32,使左边配成
x 6 x 3 16 3
2 2
x 2bx b 的形式
2 2
2
( x 3) 25
左边写成完全平方形式 2 降次
x 3 5
x 3 5, x 3 5
得 : x 2, x 8
1 2
心动
不如行动
2
x 6x 7 0 2 解: 移项得:x 6 x 7
大胆试一试:
填上适当的数或式,使下列各等式成立. 2 观察(1)(2)看所填的常 (1) x 6 x 32 =( x+ 3)2 数与一次项系数之间 2 有什么关系? (2) x 8 x 4 2 =( x 4)2 2 2 (3) x 4 x 2 =( x 2 )2 p 2 p 2 (4) x px ( ) =( x 2 2
例1: 用配方法解方程
即 ( x 3) 16
2
开平方得: x 3 4
x1 1 , x2 7 ∴原方程的解为:
范例研讨运用新知
例2: 你能用配方法解方程 2 2 x x 6 0 吗?
1 x x 3 0 解: 化二次项系数为1得: 2
相关文档
最新文档