几类特殊N阶行列式的计算
行列式的计算

n 阶行列式的计算n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。
下面介绍几种常用的方法,并举例说明。
1.利用行列式定义直接计算 例1 计算行列式001002001000000n D n n=-解 D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---= .该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故 (1)(2)2(1)!.n n n D n --=-2.利用行列式的性质计算例2 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由ijji aa =-知ii ii a a =-,即0,1,2,,ii a i n ==故行列式D n 可表示为1213112232132331230000n n n nnnn a a a a a a D a a a a a a -=-----由行列式的性质A A '=1213112232132331230000n n n n nn n a a a a a a D a a a a a a -----=-12131122321323312300(1)00n n n n nnn a a a a a a a a a a a a -=------(1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。
因此化三角形是行列式计算中的一个重要方法。
例3 计算n 阶行列式a b b b ba b b D bbabb b b a=解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得(1)(1)(1)(1)a n b b b b a n b a b b D a n bbaba nb b b a+-+-=+-+-11[(1)]11b b b a b b a n b babb b a =+-100[(1)]000bbb a b a n b a b a b-=+---1[(1)]()n a n b a b -=+--4.降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。
几类特殊N阶行列式的计算概要

目录1 引言 (2)2 文献综述 (2)2.1 国内研究现状 (2)2.2 国内研究现状评价 (3)2.3 提出问题 (3)3 预备知识 (3)3.1 N阶行列式的定义 (3)3.2 行列式的性质 (4)3.3 行列式的行(列)展开和拉普拉斯定理 (4)3.3.1 行列式按一行(列)展开 (4)3.3.2 拉普拉斯定理 (5)4 几类特殊N阶行列式的计算 (5)4.1 三角形行列式的计算 (6)4.2 两条线型行列式的计算 (7)4.3 箭形行列式的计算 (8)4.4 三对角行列式的计算 (8)4.5 Hessenberg型行列式的计算 (10)4.6 行(列)和相等的行列式的计算 (11)4.7 相邻行(列)元素差1的行列式的计算 (12)4.8 范德蒙型行列式的计算 (13)5 结论 (15)5.1 主要发现 (15)5.2 启示 (15)5.3 局限性 (15)5.4 努力方向 (15)参考文献 (16)1 引言行列式是代数学中的一个重要内容,在数学理论上有十分重要的地位.早在17世纪和18世纪初,行列式就在解线性方程组中出现.1772年法国数学家范德蒙(1735-1796)首先把行列式作为专门理论独立于线性方程之外研究.到了19世纪,是行列式理论形成和发展的重要时期,19世纪中叶出现了行列式的大量定理.因此,到19世纪末行列式基本面貌已经勾画清楚.行列式的计算是高等代数的重要内容之一,也是理工科线性代数的重要内容之一,同时也是学习中的一个难点.在数学和现实中有着广泛的应用,懂得如何计算行列式尤为重要.对于阶数较低的行列式,一般可直接利用行列式的定义和性质计算出结果.对于一般的N阶行列式,特别是当N较大时,直接用定义计算行列式往往是困难和繁琐的,因此研究行列式的计算方法则显得十分必要.通常需灵活运用一些计算技巧和方法,使计算大大简化,从而得出结果.本文归纳了几类特殊N阶行列式的计算方法,从这几类特殊的N阶行列式的计算中,可以总结出归纳出一些行列式的计算方法,只要将这些方法与传统方法结合起来,就可以基本上解决n阶行列式的计算问题.本文先阐述行列式的定义及其基本性质,然后介绍了几类特殊行列式的计算方法,并结合了相关例题讨论了行列式的求解方法.2 文献综述2.1 国内研究现状现查阅到的文献资料中,大部分只是简单的介绍了行列式的定义、行列式的性质、行列式按行(列)展开、克拉默法则等.其中[1]、[3]介绍了行列式的定义、性质、行列式按行(列)展开,[2]、[4]介绍了利用行列式的性质计算行列式,[4]、[8]直接介绍行列式的计算,主要讲解了行列式的计算在Matlab上的实现,[7]、[9]、[10]介绍了行列式的简单计算和行列式的常用计算方法,[11]、[12]、[13]同样也是介绍了行列式的性质、定义和克拉默法则,[14]在行列式的定义、性质、按行(列)展开克拉默法则等方面介绍得比较完整,[15]-[18]系统介绍了行列式计算中和各种方法,如定义法、降阶法、升降法、拆开法、目标行列式法、乘积法、化三角开法、消去法、加边法、归纳法、递推法、特征值法等行列式的计算方法.2.2 国内研究现状评价现查阅到的参考资料、文献中,在行列式的计算方面已经做到相当不错的成绩,特别是在用行列式的定义和性质去计算高阶行列式方面,而对于一些特殊行列式的计算还有所欠缺.2.3 提出问题行列式是高等代数课程里基本而重要的内容之一,而在一些特殊行列式的计算上还有所欠缺,本文将从几类特殊N 阶行列式的计算方面入手,对特殊N 阶行列式的计算归纳总结出一些固定的计算方法,以便在今后的计算中较为方便、快速,以便达到事半功倍的效果.3 预备知识为了更好的计算行列式,我们先要对行列式的一些性质有一些了解.下面我们来回顾一下行列式的定义和相关的行列式的性质.可参见文献资料[1].3.1 N 阶行列式的定义 由一个n 行n 列的正方形数表⎪⎪⎪⎭⎫ ⎝⎛=nn n n a a a a A 1111(称为n 阵方阵)按以下规则确定的数称为n 阶行列式,记为D,或A ,或det A,det ()n ij a ,即D=det ()n ij a =⎪⎪⎪⎭⎫ ⎝⎛=nn n n a a a a A 1111其中为n 个数,1,2,n 的一个排列,为此排列的逆序数.而符号表示对所有的n 无排列求和,共有n!项.3.2 行列式的性质行列式的计算是一个重要的问题,也是一个麻烦的问题.当N 较小时,可以由定义去计算行列式的值,但当N 较大时,按定义去计算就很困难了.因此,行列式的性质在行列式中的地位就非常特别要了,我们通常总是利用行列式的性质,把一个复杂的行列式化成简单的,易算的行列式,最终计算出结果.在行列式的诸多性质中,以下几条是最基本的,其他性质都可以通过它们推导出来.该部分性质可参见文献[14].性质1 行与列互换,行列式不变.性质2 某行(列)的公因子可以提到行列式符号外.性质 3 如果某行(列)的所有元素都可以写成两项之和,则该行列式可以写成两个行列式之和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)元素与原行列式相同.性质4 两行(列)的对应元素相同,行列式的值为零. 性质5 两行(列)对应元素成比例,行列式的值为零. 性质6 某行(列)的倍数加到另一行(列),行列式的值不变. 性质7 交换两行(列)的位置,行列式的值反号.3.3 行列式的行(列)展开和拉普拉斯定理行列式按行(列)展开的定理是行列式的一条非常重要的性质,是行列式常用计算方法的重要依据,特别是在行列式降阶的过程中,将行列式按行(列)展开,是计算行列式的一种行之有效的方法之一,可参见文献[7]. 3.3.1 行列式按一行(列)展开(1)在N 阶行列式的中,将元素ij a 所在的第i 行第j 列的元素划去后剩下的元素按照原来位置次序构成的n-1阶行列式,称为元素ij a 的余子式,记为ij M ,即111,11,111,11,11,11,1,11,11,1,1,1,j j n i i j i j i n ij i i j i j ii n n n j n j inna a a a a a a a M a a a a a a a a -+----+-++-+++-+=, 而(1)i j ij ij A M +=-称为元素ij a 的代数余子式.(2) 行列式的值等于它的某一行(列)的各元素与其对应的代数余子式乘积之和,即111112211122(1,2,,)(1,2,,)ni i i i in in n nnj j j j nj nj a a D a A a A a A i n a a a A a A a A j n ==+++==+++=(3)n 阶行列式中某一行(列)的每个元素与另一行(列)相应元素的代数余子式乘积之和等于零. 3.3.2 拉普拉斯定理拉普拉斯定理可以看成是行列式按行(列)展开公式的推广,在行列式的计算中也是一个不可或缺的定理之一,下面将该定理陈述如下:拉普拉斯定理 任意取定n 阶行列式D 的某k 行(列)(1≤k<n ),由这k 行(列)元素所组成的一切k 阶子式与它们的代数余子式的乘积的和等于行列式D.4 几类特殊N 阶行列式的计算除了较简单的行列式可以用定义直接计算和少数几类行列式可利用行列式性质直接计算外,一般行列式计算的主要方法是利用行列式的性质做恒等变形化简,使行列式中出现较多的零元素,然后直接上(下)三角行列式或利用行列式按行展开定理降阶.在化简时,必须根据行列式的特点和元素的规律性,运用适当的步骤来进行,所以研究行列式的规律性是重要的.下面是对一些典型行列式的计算方法的探究,并举例说明其求解方法和技巧.4.1 三角形行列式的计算在行列式的计算中,有一类特殊的行列式是除主对角线以外的元素全为零的行列式,我们称为对角行列式或三角行列式,该行列式的计算是很有规律的,也即(1)上(下)三角行列式等于其主对角线上元素的乘积,即a. (2)次三角行列式的值等于添加适当正、负号的对角线元素的乘积,即. (3) 分块三角行列式可化为低级行列式的乘积,即.4.2两条线型行列式的计算在行列式的计算中,遇见两条线型的行列的情况很多,对于形如,,的两条线型行列式,我们的计算方法是先展开看看该行列式能否可以降阶,化为三角或次三角行列式,由三角行列式的计算性质算出该类行列式.例1 计算n 阶行列式1211n n n nna b a b D a b b a --=.分析:本题中所给的行列式,我们先观察一下行列式的元素间的规律,显然,这是一个两条线型的行列式,根据行列式的性质,把行列式按第一行或第一列展开得到两个三角行列式,由三角行列式的性质即可算出该行列式. 解: 按第1列展开得22122111111(1)nn n n n nn n a b b a b D a b a b a a b +----=+-11212(1)n n n a a a b b b +=+-总结:由该题的分析与解答过程,易得出解两条线型行列式的规律:按某一(列)展开,化简为三角行列式或次三角行列式,再根据三角行列式的计算方法求出所给的行列式.4.3 箭形行列式的计算在平时所遇见的行列式中,有许多形如,的箭形行列式, 这类行列式不易下手,得想办法化简,从行列式的相关性质和定理上入手.这样的行列式成箭形,只要我们把一边消去就能转化为三角或次三角行列式,从而就能用相关三角行列式的计算性质去计算该类行列式了.例2 计算n+1阶行列式01121111001001n na a D a a +=12(0)n a a a ≠ 分析:题中所给的n+1阶行列式,显然是一个箭形行列式,对于这样的行列式,得相办法变为三角或次三角行列式,把每一列的ia 1倍加到第一列即可得到一个三角行列式,本题即可算出. 解:把每一列的(ia 1-)加到第一列,得)1(101∑∏==-=ni ii n i a a a 总结:对于箭形行列式的计算,可以直接利用行列式性质化为三角或次三角行列式来计算,即利用对角元素或次对角元素将一条边消为零.4.4 三对角行列式的计算对于形如的三对角行列式,. 计算就比较复杂一点了,因为这样的行列式要想办法消去主对角线外的两条线上的元素,这样一来计算量上就比较大了,但是在展开的过程中,我们易发现,在展开的过程中会得到一个递推公式,从代数方面的角度出发,就能解出这样的行列式.例3 计算n 阶“三对角”行列式D n =00100010001αβαβαβαβαβαβ++++分析:把该行列式展开,我们会发现,逐渐展开后得到一个递推公式,根据递推公式的特点,应用相关的代数方法,即可求出行列式的值. 解: 把行列式展开,得到D n1=按c 展开()αβ+D 1-n —(1)000010001n αβαβαβαβ-++1=按r 展开()αβ+D 1-n -αβD 2-n即有递推关系式D n =()αβ+D 1-n -αβD 2-n (n ≥3)故 1n n D D α--=12()n n D D βα--- 递推得到1n n D D α--=12()n n D D βα---=223()n n D D βα---= =221()n D D βα--而1()D αβ=+,2D =β+α1αββ+α=22ααββ++, 代入得1n n n D D αβ--=1n n n D D αβ-=+由递推公式得1n n n D D αβ-=+=12()n n n D ααββ--++=α2D 2-n +1n n αββ-+==n α+1n αβ-+ +1n n αββ-+=时=,当时,当--βαβα1)α(n αβαβ111≠⎪⎩⎪⎨⎧++++n n n总结:对于三对角线行列式的计算,可直接展开得到两项的递推关系21--+=n n n D D D βα,然后根据递推关系的特点采用相应的一些代数方法去求解出行列式.4.5 Hessenberg 型行列式的计算对于形如,的行列式,我们叫做Hessenberg 型行列式,这类行列式类似于箭形行列式,但差别又有一定的差别.对于这类行列式可直接展开得到递推公式,也可以利用行列式性质化简并降阶.例4 计算N 阶行列式分析:对于该行列式,将每一列都加到第N 列,能化为三角行列式,即可算出该行列式.解:将第1,2,…,n-1列加到第n 列,得总结:对于Hessenberg型行列式的计算,可直接展开得到递推公式,根据递推公式的特点从代数方面即可算出,也可利用行列式性质化简并降阶,利用三角行列式或次三角行列式的性质计算.4.6 行(列)和相等的行列式的计算在平时的行列式计算中,行(列)和相等的行列式不在少数,也是行列式计算中的一个难点.对于这样的行列式,我们就可以很好的去利用它的这个行(列)和相等的特点了,把每一行(列)都加到一行(列),再提出公因式,这样就能出现大量的零或1的行列式,从而利用行列式的相关性质就能算出该类行列式了.例5 计算行列式.分析:因为第行(例)的和都相等,所以把每一列都加到第一列利用行列式的性质提出公因式,把每一行都减去第一行即可行到三角行列式,根据三角行列式的性质即可算出该行列式.解: 把每一列都加到第一列提出公因式得总结:对于各行(列)这和相等的行列式,将其各列(或行)加到第1列(或行)或第N 列(或行),然后再利用行列式的性质,化为三(或次三角)行列式,根据行列式的性质计算出行列式的值.4.7 相邻行(列)元素差1的行列式的计算计算完行(列)和相等的行列式,现在来看一下行(列)元素差1的行列式的计算.同样,这样的行列式他们的行(列)元素差1,我们可以利用它的这一特点,每一行(列)递减,得到大量元素是1的行列式,进一步运用行列式的性质就能很好的解出这类行列式了.例6 计算元素满足j i a ij -=的N 阶行列式n D . 分析: 根据题设写出N 阶行列式这是相邻两行(列)元素差1的行列式,用前行减去后行可出现大量元素为1或-1的行列式,进一步化为三角行列式,即可算出该行列式. 解:前行(列)减去后行(列),得=总结:以数字1,2,…,n 为(大部分)元素,且相邻两行(列)元素差1的N 阶行列式可以如下计算:自第1行(列)开始,前行(列)减去后行(列);或自第N 行(列)开始,后行(列)减去前行(列),即可出现大量元素为1或-1的行列式,再进一步化简即出现大量的零元素.对于相邻两行(列)元素相差倍数K 的行列式,采用前行(列)减去后行(列)的-K 倍,或后行(列)减去前行(列)得-K 倍的步骤,即可使行列式中出现大量的零元素.4.8 范德蒙型行列式的计算范德蒙行列式具有逐行元素方幂递增的特点,在行列式的计算中,如果有这样特点的行列式或类似的行列式,我们就可以想办法与范德蒙行列式联系起来,利用行列式的计算方法去计算了.首先,先来回顾一下范德蒙行列式的一些定义和性质.可参见文献[17]. 范德蒙行列式122221212221211112111()nnn i j j i nn n n nn n n nx x x x x x D x x x x x x x x ≤<≤------==-∏即等于这N 个数的所有可能的差的乘积.例7 计算行列式12222122221212111n nn n n n n n n n nx x x x x x D x x x x x x ---=(1) 分析:和范德蒙行列式相比较,发现本行列式缺少n-2次幂行,所以我们能补成范德蒙行列式,利用范德蒙行列式就能求出了.解:比较范德蒙行列式,缺少2n -次幂行,所以应补之.于是考察1n +阶范德蒙行列式122222121111121211111()nnn n n n nn n n nnn x x x x x x x x f x x x x x x x x x ----+=(2)121()()()()n i j j i nx x x x x x x x ≤<≤=----∏视x 文字,一方面,由(1)知n D 是行列式()f x 中元素1n x -的余子式.1n n M +,即:1,1,1,1(1)n n n n n n n n n D M A A +++++==-=-于是将()f x 按其第1n +列展开可得()f x 中1n x -的系数为n D -.另一方面,从()f x 的表达式(2)及根与系数的关系知,()f x 中1n x -的系数为:121()().n i j j i nx x x x x ≤<≤-+++-∏所以 121()()n n i j j i nD x x x x x ≤<≤-=-+++-∏所以 121()()n n ijj i nD x x x x x ≤<≤=+++-∏总结: 范德蒙行列式具有逐行元素方幂递增的特点,因此遇到具有逐行(或列)元素言幂递增或递减的范德蒙行列式时,可以考虑将其转化为范德蒙行列式并利用相应的结果求值.5 结论5.1 主要发现行列式的计算是高等代数和线性代数里面的一个重难点之一,在平时的考式计算中,灵活多变,有较大的难度,特别是对于特殊N阶行列式的计算,这类行列式的计算技巧性非常大,在我们掌握这些技巧和计算方法之前,对于这些行列式的计算有相当大的难度.5.2 启示和意义在行列式的计算中,特别是对于特殊N阶行列式的计算,有一定的技巧性.从特殊到一般,能把各种特殊行列式的计算技巧融会贯通,领悟渗透,那么在将来的行列式计算中将会取得事半功倍的效果. 特别是学生在平时的学习中,应熟悉行列式的一些计算方法,达到举一反三.掌握了这几类特殊行列式的计算方法,并将其融会贯通后,那么行列式的计算问题将能够迎刃而解,尤其在计算N阶行列式时,能做到思路清晰,计算上快速,准确.5.3 局限性本文只介绍了几类特殊N阶行列式的计算方法与技巧,对于一般普通行列式的计算还有待补充和完善,特别对于像行列式这样题型多变的计算部分更需进一步的探讨与研究.5.4 努力方向行列式的计算方法多种多样,而行列式也是变化繁多,并不是短时间内学习就可以掌握的,需要长时间的积累探讨,除了本文介绍的这几类特殊N阶行列式外,对于一般普通的行列式的计算也应该归纳总结出相关的计算方法与技巧.参考文献[1] 陈治中.线性代数[M].北京:科学出出版社,2009:6-23.[2] 邵建峰、刘彬. 线性代数[M].北京:化学工业出版社,2007:1-18.[3] 张翠莲. 线性代数[M].北京:中国水利水电出版社,2007:4-16.[4] 李小刚.线性代数能及其应用[M].北京:科学出出版社,2006:37-61.[5] 郭立焕、汤琴芳. 线性代数[M]. 北京:科学技术文献出版社,1988:1-32.[6] 俞正光、王飞燕. 线性代数[M]. 北京:清华大学出版社,2005;1-26.[7] 郑素文.线性代数与应用名师导学[M]. 北京: 中国水利水电出版社,2004:1-45.[8] 刘剑平、施劲松.线性代数[M].上海:华东理工大学出版社,2011:35-53.[9] 贾兰香、张建华.线性代数[M].天津:南开大学生出版社,2004:1-42.[10] 居余马.线性代数[M]. 北京:清华大学出版社,2002:1-32..[11] 詹耀华.线性代数[M]. 北京:中国金融出版社,2007:1-17.[12] 宋光艾、刘玉凤、姚光同、陈卫星.高等代数[M]. 北京:清华大学出版社,2012:1-15.[13] 蓝以中.高等代数简明教程[M]. 北京:北京大学出版社,2002:147-203.[14] 北京大学数学系几何与代数教研室代数小组.高等代数[M]. 北京:高等教育出版社,2003三版:50-89.[15] 张新功.行列式的计算方法探讨[J].重庆师范大学学报,2011,第28卷第4期:88-92.[16] 古家虹.关于行列式的计算方法[J].广西大学学报,2005,第30卷增刊:174-176.[17] 李红珍.行列式的计算方法与研究[J].河南科技报,2013:212.[18] 贾冠军.行列式计算方法研究[J].菏泽师专学报,1999,第21卷第2期:61-65.曲靖师范学院本科生毕业论文论文题目: 几类特殊N阶行列式的计算作者、学号:周松2009111209学院、年级:数学与信息科学学院2009级学科、专业:数学数学与应用数学指导教师:程毕陶完成日期:2013年5月20日曲靖师范学院教务处曲靖师范学院本论文(设计)经答辩小组全体成员审查,确认符合曲靖师范学院本科(学士学位)毕业论文(设计)质量要求。
行列式的计算方法

计算n 阶行列式的若干方法举例1.利用行列式的性质计算例: 一个n 阶行列式nij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称行列式, 证明:奇数阶反对称行列式为零.证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==故行列式D n 可表示为1213112232132331230000n nn n nnn a a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112232132331230000n n n n nnna a a a a a D a a a a a a -----=- 12131122321323312300(1)00n n n n nnn a a a a a a a a a a a a -=------(1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.2.化为三角形行列式例2 计算n 阶行列式1231231231231111n n n na a a a a a a a D a a a a a a a a ++=++.解 这个行列式每一列的元素,除了主对角线上的外,都是相同的,且各列的结构相似,因此n 列之和全同.将第2,3,…,n 列都加到第一列上,就可以提出公因子且使第一列的元素全是1.[][]()()()()()()1223231223231223231122323211 12,,2,,1111111111111111 1n n n n n n nn n i n i n n nn i i i i i ni n a a a a a a a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a a a a a ==+-==++++++++++⎛⎫+++++=++ ⎪⎝⎭++++++⎛⎫+ ⎪⎝⎭∑∑3110100111 .00100001n n n i i i i a a a ==⎛⎫=+=+ ⎪⎝⎭∑∑例3 计算n 阶行列式ab b bba b b D bbab b b b a=解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得(1)(1)(1)(1)a n b b b ba nb a b bD a n bbab a n b b b a+-+-=+-+-11[(1)]11b b ba b b a n b b a b b b a =+-100[(1)]000bbb a b a n b a b a b-=+---1[(1)]()n a n b a b -=+--例4:浙江大学2004年攻读硕士研究生入学考试试题第一大题第2小题(重庆大学2004年攻读硕士研究生入学考试试题第三大题第1小题)的解答中需要计算如下行列式的值:12312341345121221n n n n D n n n -=--[分析]显然若直接化为三角形行列式,计算很繁,所以我们要充分利用行列式的性质。
n阶行列式的计算方法

目录摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1定义法 (1)2利用行列式的性质 (2)3化三角形行列式 (3)4行列式按一行(列)展开 (4)5 升阶法 (5)6 递推法 (6)7 范德蒙德行列式 (7)8 拉普拉斯定理 (7)9 析因法 (8)小结 (10)参考文献 (11)n阶行列式的计算方法学生姓名:孙中文学号:20120401217数学与计算机科学系数学与应用数学专业指导老师:王改霞职称:讲师摘要:行列式是高等代数中最基本也是最重要的内容之一,是高等代数学习中的一个难点.本文主要探讨一般n阶行列式的计算方法和一些特殊的行列式求值方法.如:化三角形法、拉普拉斯定理法、升阶法等.总结了每种方法的行列式特征.关键词:行列式;定义;计算方法Abstract: Determinant is one of higher algebra the most fundamental and important content, is a difficult point in Higher Algebra Learning. This paper mainly discusses the general order determinant of calculation method and some special determinant evaluation method. Such as: triangle method, method of Laplace theorem, ascending order method. This paper summarizes the determinant of the characteristics of each method.Keywords: Determinant ;Definition ;Calculation method引言行列式是高等代数的一个非常重要的内容,同时它也是非常复杂的.它的计算方法多种多样.在我们本科学习中只解决了一些基本的有规律的行列式.当遇到低阶行列式时,我们可以根据行列式的性质及其定义便能计算得出结果.但对于一些阶数较大的n阶行列式来说,用定义法就行不通了,本文根据各行列式的特征总结了一些对应方法.1定义法n阶行列式计算的定义:n D =nnn n nn a a a a a a a a a 212222111211=∑-nn n j j j nj j j j j j a a a 21212121)()1(τ在这里∑nj j j ...21表示对所有n 级排列求和.n j j j 21是,, 3,2,1n 的一个排列,当n j j j 21是偶排列时,()()n j j j 211-((τ是正号;当n j j j 21是奇排列时,()()n j j j 211-((τ是负号.n nj j j a a a 2121是D 中取自不同行不同列的n 个元素的乘积. 例1 计算行列式004003002001000这是一个四级行列式,在展开式中应该有4!=24项.但是由于出现很多的零,所以不等于零的项数就大大减少了.展开式中项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只需考虑41=j 的那些项;同理,只需考虑1,2,3432===j j j 这些列指标的项.这就是说,行列式中不为零的项只有41322314a a a a 这一项,而()64321=τ,这一项前面的符号应该是正的.所以2443210004003002001000=⋅⋅⋅=2利用行列式的性质总结行列式的性质,可分为以下四类(1) 使行列式的值不变的有两条性质:行列式的行与列互换;把一行的倍数加到另一行上.(2) 使行列式的值为零的有三条性质:两行对应的元素相同;行列式中有一行为零;两行成比例; (3) 使行列式的值反号的有一条性质:把行列式中两行的位置互换.(4) 其他性质:某行的公因子可以提取到行列式符号外; 这些性质和行列式的计算定义构成了行列式计算的基本构架 例2 计算下面n 阶行列式的值nn n n nnn b a b a b a b a b a b a b a b a b a D +++++++++=212221212111解 当n =1时111b a D +=. 当n =2时,()()1221221221112b b a a b a b a b a b a D --=++++=.当3≥n 时,011112121212111=------+++=a a a a a a a a a a a a b a b a b a D n n n nn3化三角形行列式化三角形行列式关键在于如何把行列式转化为上(下)三角形行列式,在这里我们引入行阶梯型矩阵的定义,有了矩阵这一工具转换变得很简单.矩阵和行列式是相辅相成的但是又是两种不同的概念. (1)三角行列式的值与其对角线上元素的乘积相等.nn nnn n nnn n a a a a a a a a a a a a a a a22112122211122211211==(2)同理,次三角行列式的值等于添加适当的正、负号的次对角线元素的乘积.()()11,21211,121,2111,22111,1111n n n n n nnn n n nn nn n nn a a a a a a a a a a a a a a a-------==例3计算下面n +1阶行列式的值na a a a D 01001011112101n =+,其中()n i a i ,,2,10 =≠解 ∏∑∑===+⎪⎪⎭⎫⎝⎛-=-=nj ni i j nni in a a a a a a a a D 11021101111114 行列式按一行(列)展开在使用这一计算方法时要引入余子式和代数余子式的概念.在n 阶行列式中,把元素ij a 所在的第i 行与第j 列去掉,然后将剩下的()21+n 个元素按照之前的排列方法构成1-n 级的行列式nnj n j n n ni j i j i i n i j i j i i n j j a a a a a a a a a a a a a a a a1,1,1,11,11-,11,1,11,1-1-,1-1,1-11,11,111+-+++++-++-—称为元素ij a 的余子式,记为ij M .当()ij ji ij M A +-=1时,称ij A 为元素ij a 代数余子式.只有这两个概念是不够的,还要了解下面这条行列式的值的定理:行列式的值等于它的某一行(列)的各元素与其对应的代数余子式乘积之和,即(),,2,122111111n i A a A a A a a a a a D in in i i i i nnn n=+++==(),,,2,12211n j A a A a A a nj nj nj j j j j =+++=例4 计算下面行列式53241-4-00132-025271021-35 解 05320041-4-00132-025271021-35()53241-4-0132-021-3521-52+=53241-4-132-52-⋅=66027-0132-10-=()()6627-2-10-⨯=()1080-12-42-20=⨯=这里第一步是按第5列展开,然后再按第一列展开,这样就归结到一个三级行列式的计算. 5 升阶法某些行列式直接计算比较麻烦,这时将原行列式增加一行(例),并确保在增加的基础上仍能保持原行列式的值不变,此时此行列式的计算便变得十分简便.这种计算行列式的方法叫做升阶法也叫加边法.例5证明⎪⎪⎭⎫ ⎝⎛+=++++∑=ni i n na a a a a a a a 1213211111111111111111111111证明 将左边的行列式加一行一列,得1+n 级行列式左边nn a a a a ++++=-111111110111101111011111121nn a a a a 0100010001000111111121----=-⎪⎪⎭⎫⎝⎛+=+=∑∑==n i i nni i a a a a a a a 1212111100000000011111 加边后的行列式的值不一定等于原行列式的值,不过两者之间存在一个关系.例如原行列式n D ,n D 行列式的值直接不容易求解,但很容易得到加边后的行列式1+n D 的值,两者之间存在C BD AD n n =++1的关系,我们可以根据这个关系求出行列式n D 的值.这个方法也是适用于升阶法的. 6 递推法递推法计算行列式是将已知行列式按行(列)展开成较低阶的同类型行列式(注:同类型行列式是指阶数不同但结构相同的行列式),找出n D 与1-n D 或n D 与1-n D 、2-n D (其中n D 、1-n D 、2-n D 的结构相同)的递推关系,然后利用这个关系得到行列式的值.例6 计算βααββαβααββααββα+++++=100000010001000n D解 ()βαβααββααβαββα+++-+=-100010000000111n r n D D 展开按()21---+=n n D D αββα所以 ()()[]()12232211D D D D D D D D n n n n n n n αβαββαβα-==-=-=------- n β=即()21-n 1--++=+=n n n n n D D D αβαβαβ()βαβαβααβαβααββ≠--=+++++=++---111221n n nn n n n当βα=时,()n n n D α1+= 7范德蒙德行列式范德蒙德行列式计算公式:()∏≤<≤----=ni j j i n nn n nn a a a a a a a a a a a 1112112222121111例7 计算43214321432143cos 3cos 3cos 3cos 2cos 2cos 2cos 2cos cos cos cos cos 1111a a a a a a a a a a a a D =解4433332231134232221243214cos 3cos 4cos 3cos 4cos 3cos 4cos 3cos 41cos 21cos 21cos 21cos 2cos cos cos cos 1111a a a a a a a a a a a a a a a a D --------=813243r r r r ++=()∏≤≤≤-=4143332313423222124321cos cos 8cos cos cos cos cos cos cos cos cos cos cos cos 1111i j j i a a a a a a a a a a a a a a如果一个行列式的结构符合范德蒙德行列式的结构形式,那么此时我们便可使用此种方法.但在做题中往往会遇到一些行列式它的结构类似于范德蒙德行列式的结构,但并不符合范德蒙德行列式结构的.这通常是一个计算方法的误区.还有一些行列式看起来不符合,但经过一番变形之后便可看出是范德蒙德行列式.所以在做题过程中要注意观察. 8 拉普拉斯定理拉普拉斯定理:设在行列式D 中任意取定了()11-≤≤n k k 个行.将行列式中这k 行元素所构成的所有k 级子式加上它们的代数余子式的乘积等于行列式D .这个定理可以看成是行列式按一行展开公式的推广, 拉普拉斯的四种特殊形式: (1)mm nn mm mnnn B A B C A ⋅=0(2)mm nn mmnm nnB A BC A ⋅=0(3)()mm nn mnmn mm nn B A C B A ⋅-=10 (4)()mm nn mnmmnn nmB A B AC ⋅-=10例8 计算n 阶行列式:αβββββαββββαααααλbb b D n =解 βαααββββααααααλ---=00000b D n()()βαβαβαββββαααααλ----+-=0000000021n b n()()()()2222000021-⨯-⨯---⋅-+-=n n n bn βαβαβαβααλ()()[]()212--⋅---+=n n ab n βαβλλα9 析因法利用多项式函数、多项式根的性质、定理等来计算行列式,这种方法就称为析因法.如果行列式D 中有一些元素是变数x (或某个参变数)的多项式,那么可以将行列式D 当做一个多项式()x f ,然后对行列式施行某些变换,求出()x f 的互素的一次因式,使得()x f 与这些因式的乘积()x g 只相差一个常数因子C ,根据多项式相等的定义,比较()x f 与()x g 的某一项的系数,求出C 的值,便可求得()x Cg D =.例9 用析因法求解如下:解 令 ()ax a aaa a a x a a a a ax x f ---=显然()()()02,02=--=a n f a f (各列之和为0),故()a n x a x 2,2-+-是()x f 的一次因式.又 =dxx df )(ax a a aa a a a x a x a a aa a a x a --+--001000011111100----=+++=--++n n n n nD D D D a a a x a a a a a x同理可得()()()()(),,33322221,1 ----=-=n n D n n n dx x f d D n n dx x f d ()(),31222D n n dxx f d n n -=-- ()()()1111!221D n D n n n dx x f d n n =--=-- 因此()()()(),02222===''='-a f a f a f n 而()()a n a f n !21=-. 即a 2是()x f 的1-n 重根,又因()x f 是x 的n 次多项式, 从而()()()[]a n x a x c x f n 221-+-=-,其中c 是待定系数,由行列式()x f 可以看出n x 的系数为1,故1=c .()()[]a n x a x D n n 221-+-=-析因法有时也叫线性因子分离法.小结以上是n 阶行列式的几种计算方法,在实际运用中不同的n 阶行列式有不一样的求法,因此在解题之前要先判断好行列式的类型,在采用相对应的解题思路.另外虽然n 阶行列式的计算有一定的规律,但也不能生搬硬套,要学会灵活应用,某些题有多种解题方法我们要采用最简单的思路.只有在做题中多总结、归纳才能熟练掌握、运用这几种方法.参考文献[1]北京大学数学系几何与代数研究室代数小组编.高等代数(第三版).[M].高等教育出版社,2003.[2]徐仲,陆全主编.高等代数导数·导学·(北大·第三版).[M].西北工业大学出版社,2006.[3]苑文法,n阶行列式的计算.[N].湖北三峡学院学报,1999.[4]李师正主编,高等代数解题方法与技巧.[M].高等教育出版社,2004.[5]陈林,求n阶行列式的几种计算方法与技巧.[N].SCIENCE INFORMATIA,2007[6]陈黎钦,关于求解行列式的n种特殊的方法.[J].福建商业高等专科学校学报,2007.[7]史昱,关于行列式计算方法的讨论.[J].山东电力高等专科学校学报,2006.[8]田文平,行列式计算的常用方法.[J].工科数学,1994.[9]牛静,抽象行列式的几种计算方法.[N].科技咨询导报,2006.。
行列式的计算方法及一些特殊行列式的计算

~
D
x 一1 … 0
0
一
●
O D= 0
l O
O … 0 1 … 0
一
●
0
O …
_ .
。 2
■■
加
行 列 式 的 计 算 方 法 及 一 些 特 殊 行 列 式 的 计 算
陈 洁
( 湖北 工 业 大 学 理 学 院 , 湖北 武汉 摘
一
4 3 0 0 6 8 )
1 +a
引 I 1
1 l +a 2
● ● ●
0
1 1
● ● ●
递 推 法 是 根 据 行 列 式 的性 质 , 建 立 阶行 列 式 和 阶 行 列 式 的关 系.
4 3
●墨
1 2 3 … n
2
1
0 … 0 l … O
例5 . 计 算 行 列 式
X
O 例7 . 计算D = 3 n
一
要: 行 列 式 的 计 算 是 线 性 代 数 的 基 础 和 重要 内容 之
本 文 通过 一 些 具 体 的 例 子 , 介 绍 了 计 算 行 列 式 的 一般 方 法 7 2 . 一 些特 殊行 列 式 的计 算.
.
例3 . 计算行列式D =
●
1
● ●
关键 词 : 行 列式 降 阶 法 升 阶 法
一
1
1
、
1 . 化为“ 三 角形 ”
I
化为 “ 三角形 ” 是利 用行列式 的性质 , 把 所 求 行 列 式 的 主
对 角 线 下 方 的 元 素 全化 为零 .
3
关于求解行列式的几种特殊的方法

关于求解行列式的几种特殊的方法行列式是线性代数中一个重要的概念,它在计算机科学、物理学和工程学等领域都有广泛的应用。
在求解行列式的过程中,存在一些特殊的方法,可以帮助我们简化计算和提高效率。
本文将介绍几种常见的特殊方法,包括拉普拉斯展开、三角形展开和行列式性质的运用等。
1.拉普拉斯展开法拉普拉斯展开法是求解行列式的一种基本方法,适用于任意阶的矩阵。
其核心思想是通过分解矩阵,将复杂的行列式转化为多个较小规模的行列式的代数和。
具体步骤如下:1)选择一个行(列)展开,将行(列)按照一些特定的顺序展开。
2)对每一个元素a[i][j],构造一个以该元素为顶点的代数余子式M[i][j],即划去第i行和第j列后剩下的矩阵所构成的行列式。
3)计算每一个代数余子式的值M[i][j],并与对应的元素a[i][j]相乘,得到M[i][j]*a[i][j]。
4)将所有得到的乘积相加,该结果即为原行列式的值。
>例如,对于一个3阶矩阵A,可以选择按照第一行展开,则拉普拉斯展开为:>,A,=a11*M11-a12*M12+a13*M13>其中,M11,M12,M13分别是以元素a11,a12,a13为顶点的代数余子式。
拉普拉斯展开法的优点是适用于任意规模的矩阵,但是对于高阶矩阵来说,计算量较大,效率较低。
2.三角形展开法三角形展开法是求解上三角行列式的一种特殊方法,适用于上三角矩阵,即矩阵的主对角线以下的元素都为0。
该方法通过逐步消元来简化计算,减少了矩阵的规模。
具体步骤如下:1)将上三角矩阵A拆分为一个上三角矩阵B和下三角矩阵C的乘积,即A=BC。
2) 计算上三角矩阵B的主对角线上的元素的乘积,即B =b11*b22*...*bnn。
3)将下三角矩阵C的主对角线上的元素分别除以上一步得到的乘积,得到新的下三角矩阵C'。
4) 计算新的下三角矩阵C'的主对角线上的元素的乘积,即C' =c'11*c'22*...*c'nn。
n阶行列式的计算方法
n阶行列式的计算方法姓名:学号:学院:专业:指导老师:完成时间:n阶行列式的计算方法【摘要】本文主要针对行列式的特点,应用行列式的性质,提供了几种计算行列式的常用方法。
例如:利用行列式定义直接计算法,根据行列式性质化为三角形列式法,按一行(列)展开以及利用已知公式法,数学归纳法与递推法,加边法,利用多项式性质法,拉普拉斯定理的应用。
但这几种方法之间不是相互独立,而是相互联系的.一个行列式可能有几种解法,或者在同一个行列式的计算中将同时用到几种方法以简便计算。
这就要求我们在掌握了行列式的解法之后,灵活运用,找到一种最简便的方法,使复杂问题简单化。
【关键词】n阶行列式行列式的性质数学归纳法递推法加边法ISome methods of an n-order determinant calculation【Abstract】In this paper, considering the characteristics of determinant, it provides several commonly used methods to calculate the determinant by applying the properties of the determinant . For example :The direct method of calculation by using the determinant definition . The method of changing the determinant into a triangular determinant According to the properties of the determinant. The method of expanding the determinant by line (column) .using the known formula , the mathematical induction, recursive Method , adding the edge method, using the properties of polynomial , the application of Laplace theorem. These methods are not independent of each other ,but interrelated. There is probably that a determinant has several solutions, or in the calculation of the same determinant there will be used several methods to calculate simply. This requires us to grasp several solution of the determinant,and to find the easiest ways after, so simplify complex issues .【Key words】n-order determinant the property of the determinantthe mathematical induction adding the edge method目录1引言 (1)2 计算行列式的基础方法 (2)2.1利用行列式的定义来计算 (2)2.2化为三角形法 (3)2.3把各行(或各列)统统加到某一行(或列) (4)2.4逐行(列)处理 (5)3加边法 (6)4 展开 (8)5利用已知行列式公式计算法 (10)(1)三角形公式 (10)(2)范德蒙公式 (10)(3)爪型行列式公式 (11)(4)ab行列式公式 (13)6 数学归纳法 (13)7递推法 (16)8 拆项法 (18)9 利用多项式的性质 (21)10 利用矩阵分块理论 (21)1 乘法公式的应用 (22)2 定理2 (22)3 定理3 (23)11 小结 (25)参考文献 (26)致谢 (26)1引言行列式是研究线性代数的一个重要的工具,在线性方程组、矩阵、二次型中要用到行列式,在数学的其他分支里也常常要用到行列式。
行列式的几种计算方法
行列式的几种计算方法行列式是线性代数中的重要概念,是一种用于描述矩阵特征的数学工具。
在数学和工程领域中,行列式的计算是非常重要的,它与矩阵的性质及相关运算具有密切的关系。
本文将介绍关于行列式的几种计算方法,希望能够帮助读者更好地理解和应用行列式。
一、行列式的定义在了解行列式的计算方法之前,我们首先来了解行列式的定义。
行列式是一个用方括号表示的数学量,它是一个矩阵所代表的线性变换对“面积”或“体积”的伸缩因子。
对于一个n阶方阵A,它的行列式记作det(A),其中n表示方阵的阶数。
行列式的计算方法有很多种,下面我们将介绍其中的几种常见方法。
二、拉普拉斯展开法拉普拉斯展开法是一种常见的行列式计算方法。
在使用拉普拉斯展开法计算行列式时,首先需要选择一个行或列,然后将行列式展开成以该行或列元素为首元素的一系列代数余子式的和。
具体步骤如下:1. 选择一个行或列,我们以第一行为例;2. 对第一行的每个元素,计算它的代数余子式,代数余子式的计算方法是去掉对应行和列的元素后计算得到的行列式;3. 计算每个元素的代数余子式,然后与对应元素相乘再相加,得到最终的行列式值。
对于一个3阶矩阵A```a b cd e fg h i```使用拉普拉斯展开法,选择第一行进行展开,计算行列式的方法如下:```det(A) = a*det(A11) - b*det(A12) + c*det(A13)```其中A11、A12、A13分别为:A11 =```e fh i```A12 =```d fg i```A13 =```d eg h```通过计算A11、A12、A13的行列式值,再按照上述公式计算,即可得到矩阵A的行列式值。
三、性质法行列式的性质法是一种简单而有效的计算方法,它是通过一些行列式的基本性质来简化和计算行列式的值。
行列式的基本性质包括以下几条:1. 对调行或列,行列式变号;2. 行或列成比例,行列式为0;3. 行列式中有两行、两列相同,行列式为0;4. 两行或两列互换,行列式变号;5. 行列式中某一行或列乘以一个数,等于这个数与行列式的乘积。
习题课n阶行列式的计算
0 D5 0 0 a 51
0 0 0 a 52
a 23 0 0 a 53
0 a 34 0 a 54
0 0 a 45 a 55
• 特征题2: 对于所有行(或列)对应元素 相加后相等的行列式,可把所有行(或列) 加到第一行(或第一列),提取公因子后 化简计算. • 例2. x1 m x2 xn
1 xn 2 xn x nn 2 x nn
• 2.
b1 a 2 a3 a1 b2 a3 Dn a1 a 2 a3 a1 a 2 a3
a n 1 a n a n 1 a n bn 1 a n a n 1 bn
• 特征题5. “三对角型”行列式,常直接展开 得到两项的递推关系式,然后变形进行两 次递推或利用数学归纳法进行证明. • 例5. a b ab
1 Dn
a b ab 1 ab ab 1 ab
答 案 : D a a b a b b n
nn 1
n 1n
思考练习
n 1 1 2 n
• 特征题4. “三线型”行列式. 除某一行,某 一列以及对角线(或次对角线)元素非零 歪,其余元素均为0的行列式,主要求法是 化为三角形行列式计算. • 例4: a0 1 1 1
1 Dn 1 1 1
naΒιβλιοθήκη 0 00 a2 00 0 (ai 0) an
1 n 答 案 : (a ) a 0 i i 1a 1 i i
• 1.
1 a1 a2 0 1 1 a2 a3 0 1 1 a3 0 0 0 0 0 0 0 0 0 0 0 0
Dn
1 an1 an 1 1 an
• 特征题6.利用范德蒙行列式 例6: 1 1 x1 x2 2 2 x1 x2 Dn
N阶行列式的计算
例4: = = =…
练习:(1) 【160】(2) 【 】
(5)逐行(列)相加(减)(适用于行列式相邻两行相加减后有共同特点时)
例5: =…=0
例6:
= 。
练习: 【 】
(6)拆项计算行列式(适用于行列式中的行(列)元素是两项之和)
例7: = + =
题设行列式正是 ,即y的系数,展开(1)式,得到y的系数为
所以: = 。
7、观察一次因式法
例13:计算 =
解:当 时,第一、第二行对应元素相等,所以 =0,可见 中含有因式, ,当 时,第三、第四行对应元素相等,所以 =0,可见 中含有因式 。
由于 中关于 的最高次数是4,所以
中含 的项是 ,
比较上面两式中 的系数,得 ,故 。
N阶行列式的计算
N阶行列式的计算方法主要有以下几种:
1、直接按定义计算:(适用于行列式中非零元素非常少的情形)
例1:计算 = 解:由定义知 = ,因为 ,所以 的非零项中 只能取2或3,同理,有 = = =0,可推出 只能取2或3,又因为 要求各不相同,故 项中至少有一个必须取零,所以 =0.
练习:用行列式的定义计算下列行列式:【1, , 0, 0】
例14:解方程 =0
解:当 =0,1,2, 时,行列式的两列对应元素相等,行列式的值为0,因此左边行列式可写成 ,
于是原方程变为 ,
所以原方程的解为 。
8、利用数学归纳法进行证明或计算。
例15:证明n阶范德蒙行列式的正确性
+ =0练习:证明 =
3、降阶法:利用行列式按行(列)展开定理进行降阶,这种方法适用于行列式中某一行(列)非零元素较少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几类特殊N阶行列式的计算
在线性代数中,N阶行列式是一个非常重要的概念。
行列式可以看作
是一个矩阵的一种特殊性质,它在很多数学和应用问题中都有广泛的应用。
在这篇文章中,我们将讨论一些特殊的N阶行列式的计算方法。
一、对称行列式
对称行列式是指行列式中的每个元素都关于主对角线镜像对称。
例如,一个3阶对称行列式可以写成如下形式:
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{vmatrix}$$
对称行列式的计算方法有很多,以下是其中几种常用的方法。
1.代数余子式法
代数余子式法是一种常用的计算对称行列式的方法。
首先,我们可以
按照主对角线元素展开行列式,得到:
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{vmatrix}=
a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33}
\end{vmatrix} - a_{12}\begin{vmatrix} a_{12} & a_{23} \\ a_{13}
& a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{12} & a_{22}
\\ a_{13} & a_{23} \end{vmatrix}$$
然后,继续按照代数余子式展开行列式,直到得到一个2阶行列式。
最后,根据2阶行列式的计算公式计算出最终的结果。
2.克拉默法则
克拉默法则是一种利用行列式计算方程组的方法。
对于一个含有N个
未知数和方程的方程组,如果系数矩阵的行列式不为0,那么这个方程组
存在唯一解。
具体计算方法是,将每个未知数的系数矩阵与常数向量构成
一个新的矩阵,然后计算该矩阵的行列式。
行列式就是方程组的解。
克拉
默法则的优点是计算简单,但对于大规模的方程组来说,计算量很大。
二、反对称行列式
反对称行列式是指行或列交换位置后行列式的值取负。
例如,一个3
阶反对称行列式可以写成如下形式:
$$\begin{vmatrix} 0 & a_{12} & a_{13} \\ -a_{12} & 0 & a_{23} \\ -a_{13} & -a_{23} & 0 \end{vmatrix}$$
反对称行列式的计算方法有很多,以下是其中几种常用的方法。
1.余因子法
余因子法是一种常用的计算反对称行列式的方法。
首先,将反对称行
列式表示成元素的因子形式,然后计算其中的因子的行列式。
具体计算方
法是,选取任意一行(或一列),计算去掉这行(或列)后的(N-1)阶子
行列式的行列式值,并乘以该行(或列)的符号(-1)^i+j,其中i为行号,j为列号,最后将所有的乘积相加即可。
2.克拉默法则
与对称行列式类似,克拉默法则也适用于计算反对称行列式。
首先,
将反对称行列式表示成元素的因子形式,然后按照克拉默法则的计算方法
计算行列式的值。
三、准厄米行列式
准厄米行列式是指行列式的共轭转置等于它的相反数。
例如,一个3
阶准厄米行列式可以写成如下形式:
$$\begin{vmatrix} a & b & c \\ \bar{b} & d & e \\ \bar{c} &
\bar{e} & f \end{vmatrix}$$
计算准厄米行列式的方法如下:
1.矩阵直接计算法
准厄米行列式的计算相对较为简单,可以直接计算。
具体计算方法是,将每个元素的共轭转置取负,并按照计算行列式的方法计算该行列式的值。
2.LU分解法
LU分解是一种将矩阵分解成下三角矩阵L和上三角矩阵U的方法。
通过LU分解,可以将准厄米行列式转化为两个三角行列式的乘积形式。
然后,按照三角行列式的计算方法计算最终的结果。
总结起来,特殊的N阶行列式的计算方法包括代数余子式法、克拉默
法则、余因子法、矩阵直接计算法和LU分解法等。
这些方法在实际问题
中有着广泛的应用,能够帮助我们更好地理解和解决行列式相关的问题。
对于更高阶的行列式,计算方法也类似,只是计算过程更为繁琐。
因此,
了解行列式的这些计算方法对于深入学习线性代数和应用数学都是非常重
要的。