电渣重熔冶炼技术
模具钢电渣重熔工艺

模具钢电渣重熔工艺电渣重熔是金属及其合金的一种特殊的冶炼方法,虽然电渣冶金可划分出多种技术方法和应用于不同的领域,但其基本和核心的技术是电渣重熔(Electroslag Remelting,简称ESR)。
电渣重熔的基本原理是:在铜制水冷结晶器中加入固态或液态的炉渣,将自耗电极的端部插入其中。
当自耗电极、炉渣和底水箱通过短网与变压器形成供电回路时,有电流从变压器输出通过液态熔渣。
由于在上述供电回路中熔渣的电阻相对较大,占据了变压器二次电压的大部分压降低,从而在渣池在产生大量的热,使其处于高温的熔融状态,由于渣池的温度远大于金属的熔点,从而使自耗电极的端部逐渐加热熔化,熔化的金属汇聚成液滴,在重力的作用下金属熔滴从电极的端头脱落,穿过渣池进入金属熔池,由于水冷结晶器的强制冷却,液态金属逐渐形成钢锭。
1.电渣重熔的特点电渣重熔属于二次精炼方法,自耗电极是其原料,自耗电极可由其他的冶炼方法获昨,如电弧炉、感应炉、真空感应炉和真空自耗炉等制备。
电渣重熔的目的是在初炼的基础上进一步提纯钢、合金和改善钢锭的结晶组织,从而获得高质量的金属产品,与其他的冶金方法相比,具有以下的特点:①金属的熔化、浇注和凝固在一个较纯净的环境中实现,减少了钢液的污染。
②具有良好的冶金反应的热力学和动力学条件,电渣重熔过程中渣池温度通常在1750℃以上,电极下端至金属熔池中心区域的熔渣温度可达1900℃左右,钢液的过热度可达450℃左右,高温熔池促进了冶金物理化学反应。
良好的动力学条件表面在电渣重熔过程中钢渣能进行充分接触,同时由于电磁力的搅拌作用,不断更新了钢渣打的接触面,强化了冶金反应,促进了有害杂质和非金属夹杂物的去除。
③自上而下的顺序凝固条件保证了重熔金属锭结晶组织均匀致密。
在电渣重熔过程中电极的熔化和熔融金属的结晶是同时进行的。
钢锭上端始终有液态金属溶池和发热的渣池,既保温又有足够的液态金属填充凝固过程中因收缩而产生的缩孔,可以有效的消除一般钢锭的疏松和缩孔,现时金属液中的气体和夹杂物也易于上浮,所以钢锭的组织致密、均匀。
不锈钢电渣重熔技术

= 炉管、叶片、护环、水轮机导叶和叶片
油气开采:超级13Cr、15Cr、双相不锈钢
= 石油化工:高温、耐蚀部件(管道、阀门) = 海洋工程(海水淡化):超级双相不锈钢、超级奥氏体 = 不锈钢
特殊钢先进冶金工艺与装备教育部工程研究中心
Northeastern University
二、电渣重熔的不锈钢品种及 其应用
=
电渣重熔的起源-首个不锈钢电渣锭
的不锈钢主要钢种
马氏体不锈钢 沉淀硬化马氏体不锈钢 超级铁素体不锈钢 奥氏体不锈钢、超级奥氏体不锈钢、高 = 氮奥氏体不锈钢 双相不锈钢、超级双相不锈钢
钢渣接触条件的比较
O
采 充
= =
O L 充
问
O
问 L 充
M N
V V M
R
O
范N
目 -6 M R 活
V
它
目 s R
M
电渣重熔冶金
渣池强烈搅 拌:电动力、 电磁力、自然 对流、气体逸 出和膨胀的推 力
=
= = = = =
非金属夹杂物的去除
电渣熔铸去除钢中非金属夹杂物主要发生在电极熔化末端熔滴 = 形成的过程中 电极熔化末端熔滴形成过程的钢渣接触面积最大,达3219 mm2/ = 克,它是熔滴过程的67 倍,是金属熔池的21000 倍 电极熔化末端熔滴形成的时间较熔滴滴落时间为长,约为1.41 倍 = 电极熔化末端熔滴形成过程是最先和熔渣接触并发生反应部 = 分,钢中原始夹杂物含量最高,无疑可大量去除夹杂 小尺寸的熔滴去除非金属夹杂物效果比大尺寸强。熔滴内大颗 = 粒的非金属夹杂物的减少较小颗粒的为强
金属冶炼中的新技术与新材料

连铸连轧技术
总结词
高效、节能的金属加工技术
详细描述
连铸连轧技术是一种高效、节能的金属加工技术,将铸造和轧制工艺连续进行 ,实现金属材料的连续加工。该技术具有生产效率高、节能降耗、降低生产成 本等优点,广泛应用于钢铁、有色金属等领域。
CHAPTER
新设备在金属冶炼中的应用
真空冶炼设备
真空感应熔炼炉
利用真空条件下,通过感 应加热原理熔炼金属,具 有熔炼温度高、杂质去除 效果好等优点。
真空电弧熔炼炉
通过电弧在真空条件下加 热和熔炼金属,可实现高 熔速、高纯净度熔炼。
真空电子束熔炼炉
利用电子束在真空条件下 对金属进行加热和熔炼, 具有熔炼温度高、纯净度 高、节能环保等优点。
废水处理技术
01
沉淀法
通过添加沉淀剂使废水中的重金 属离子或悬浮物沉降下来,达到 净水的目的。
生物处理法
02
03
高级氧化技术
利用微生物的代谢作用,将废水 中的有机物转化为无害的物质, 达到净水的目的。
通过强氧化剂将废水中的有机物 氧化成无害的物质,达到净水的 目的。
废渣处理技术
压实法
通过压实机将废渣压缩成块,减少体积,便于运输和 处置。
固化法
通过添加固化剂将废渣中的有害物质固定在固化体中 ,减少对环境的危害。
焚烧法
通过高温焚烧将废渣中的有害物质燃烧成无害的物质 ,达到处置的目的。
04
CHAPTER
新工艺在金属冶炼中的应用
2024版电渣重熔技术新进展PPT教案

目录
• 电渣重熔技术概述 • 电渣重熔技术新进展 • 关键设备与工艺优化 • 实验研究及案例分析 • 未来发展趋势与挑战 • 总结与展望
01
电渣重熔技术概述
定义与原理
定义
电渣重熔技术是一种利用电流通过熔渣产生的热量来熔 化金属电极,并在水冷结晶器中凝固成锭的冶金工艺。
数据处理与结果分析
数据收集与整理
收集实验过程中的电压、 电流、温度等关键参数, 以及金属成分、组织等数 据。
数据处理
对收集的数据进行清洗、 整理和分析,提取有用信 息。
结果展示
通过图表、图像等形式展 示实验结果,便于分析和 比较。
案例展示及讨论
案例选择
选择具有代表性的电渣重熔实验 案例,如不同金属材料的重熔、
电渣重熔技术应用领域
介绍了电渣重熔技术在航空航天、能源、化工等领域的应用实例,突显其重要性和广泛应用 前景。
学生自我评价与反思
知识掌握程度
通过本次课程学习,我对电渣重熔技术的基本原理、新进展和应用 领域有了更深入的了解,掌握了相关知识和技能。
学习方法与效果
在学习过程中,我采用了多种学习方法,如阅读文献、听讲座、与 同学讨论等,取得了良好的学习效果。
原理
该技术基于电流的热效应,当电流通过具有高电阻的熔 渣时,产生大量热量使金属电极熔化,熔化的金属液滴 通过熔渣进入结晶器,在水冷作用下凝固成锭。
发展历程及现状
01 20世纪初
电渣重熔技术的起源,最初用于 生产特殊钢。
02 20世纪50年代
该技术得到快速发展,开始应用 于生产大型锻件和铸件。
03 21世纪初至今
03 余热回收技术
利用电渣重熔过程中产生的余热,进行回收利用, 提高能源利用效率。
电渣重熔技术在中国的应用和发展

电渣重熔技术在中国的应用和发展摘要中国电渣冶金起步于1958年。
至今,全国所有特殊钢厂都建立了电渣重熔车间,拥有工业电渣炉86台,年生产能力10万t;产品包括优质合金钢与超级合金243个牌号。
尖键词电渣冶金重熔熔铸欧美及日本发展电渣冶金均引进前苏联技术,世界上独立发展电渣冶金技术的国家仅有中国与英国。
1965年英国设菲尔德 ------------ 布朗公司将1台7t真空电弧重熔炉改为电渣重熔炉,英国电渣冶金从此揭开序幕。
我国冶金工作者在电渣焊的基础上开发出电渣重熔技术,我国电渣冶金从此诞生。
40年来我国电渣冶金规模不断扩大,技术不断创新。
目前我国所有特殊钢厂都有电渣重熔车间,冶金系统有工业电渣炉86台,年生产能力10万t;小型电渣炉遍及全国,从结晶器消耗推算其年产量约3万t,我国电渣冶金产量在世界上名列前茅。
生产的超级合金及优质合金钢种达243个牌号,技术上处于领先地位。
1发展历程1958年9月冶金部建筑研究院电渣组在应用电渣焊焊接轧机机架时,为消除焊缝热裂缝,采用低碳钢板涂铁合金粉末作自耗电极,进行电渣焊,获得成分均匀的合金钢焊缝,由此受到启示,于1958年12月9日将铁合金粉末涂在碳钢棒上作自耗电极,用高炉风管(铜制)作水冷结晶器,冶炼出合金工具钢。
1959年4月在衡阳冶金机械厂做了生产试点,熔炼了100 kg高速钢锭,除直接冶炼高速钢外,还采用重熔法回收了一批废旧高速钢刀具,成果发表于《焊接》杂志建国10周年专刊上,同期还成功地应用电渣法减少铸钢件冒口。
该成果受到国内冶金界的矢注。
1959年11月北京钢铁学院和冶金部建筑研究院合作,采用电渣重熔法,研制成功航空轴承钢。
I960年初北京钢铁学院设计了150 kg工业性电渣炉,由北京钢厂制造,并在该院投产。
1960年6月冶金部建筑研究院设计了0 • 5 t双电极支臂连续抽锭电渣炉,该设备在重庆特殊钢厂建成,于I960年8月重熔出0 • 51优质合金钢锭,此后冶金部建筑研究院帮助重庆特殊钢厂、大冶钢厂建立电渣车间,开发产品。
电渣重熔工模具钢及电渣熔铸技术

0100708 电渣重熔工模具钢及电渣熔铸技术文章来源:淄博市信息中心33.电渣重熔工模具钢及电渣熔铸技术1.电渣重熔的特点电渣重熔是利用电流通过熔渣时产生的电阻热作为热源进行熔炼的方法。
其目的主要是提纯金属,并获得结晶组织均匀致密的钢锭。
经电渣重熔的钢,纯度高、含硫量低、非金属夹杂物少、钢锭表面光滑、结晶均匀致密、金相组织和化学成分均匀。
电渣钢的铸态机械性能可达到或超过同钢种锻件的指标。
电渣重熔的产品品种多,应用范围广。
其钢种有:碳素钢、合金结构钢、轴承钢、模具钢、高速钢、不锈钢、耐热钢、超高强度钢、高温合金、精密合金、耐蚀合金、电热合金等400多个钢种。
此外,可用电渣法直接熔铸异形铸件,可以铸代锻,简化生产工序,提高金属的利用率。
电渣重熔设备简单,操作方便,不仅能生产钢锭,还可以作为小型炼钢设备冶炼钢水,生产铸钢件,铸铁件。
2.电渣产品及市场分析电渣钢由于其质量好,产品品种多,其产品几乎遍及国民经济的各个部门,如在航空、航天、军工、汽车工业、石油化工、铁路部门、能源工业、轻工业等都有着广泛的应用。
1996年我国钢产量已达到l亿吨,电渣钢将今后若干年内达到1%即100万吨,而我国目前电渣钢不足20万吨,因此,电渣重熔发展前景是很远大的。
以下是东北大学电冶金研究室近年来开发并适合于中小企业的几个电渣产品。
2.1 模具钢为了降低生产成本,提高产品质量和生产效率,提高材料的利用率,国内外制造工业广泛采用各种无切削或少切削工艺,如精密冲裁、精密锻造、压铸、冷挤压、热挤压等以模具压制成型的新工艺代替传统的切削加工工艺。
目前家用电器80%和机电工业70%的零部件采用模具加工。
新工艺的发展促使模具工业迅速发展。
80年代,西方发达国家模具工业产值已超过机床工业的产值。
我国模具工业虽然发展很快,1993年年产值约120亿元,但模具仍然供不应求。
1993年进口模具用汇达6.75亿美元。
特另是高质量的模具主要依赖进口。
电渣重熔的特点及发展
电渣重熔的特点及发展多年来电渣冶金工作者做了全面、系统的研究,一致认为电渣重熔设备简单、操作方便、铸锭表面光洁、热塑性好、成材率高、具有很强的竞争力。
电渣重熔以其特殊的工艺过程和熔炼结晶方式具有其它生产工艺所不能替代的优越性,因而得到冶金工作者的广泛重视。
1它的优越性具体概括如下:1.1细化晶粒由于结晶器及水冷底板的强冷却作用,熔炼过程中,晶粒来不及长大,在钢锭内部呈细小均匀分布,起到改善钢锭内部组织的作用。
1.2减少钢中非金属杂质及夹杂在重熔过程中金属液滴是一滴一滴通过一定厚度的熔渣层,与呈镜面的金属液相比,金属液滴的比表面(单位重量占表面积)要大几百倍,增加了钢一渣界面积,熔渣吸附金属中的非金属杂质和夹杂的能力大大增加,同时钢中的杂质在通过渣层的过程中,按分配定律重新分配,使得钢液中杂质的浓度降低,起到渣洗的作用。
1.3改善钢的热加工性能由于电渣重熔后,钢锭晶粒变得细小均匀,钢锭的组织变得致密,钢锭表面光洁,同时钢中杂质减少,在热加工过程中应力集中和裂纹源大大减少,因此锻造过程中易产生的裂纹和开裂可以避免,由此可以提高钢锭的加工成材率。
1.4过程可控性好对产品的化学成分、夹杂物性质及形态、结晶方向、枝晶间距、显微偏析、碳化物颗粒度等均可以不同程度予以控制,可控制参量少,外围检测准确,便于实现微机闭环控制。
1.5减少组织的宏观偏析和微观偏析。
1.6可控制重熔气氛,减少氧、氮、氢的侵人。
1.7改善工具钢和模具钢中碳化物分布。
1.8可以生产超大型钢锭。
从以上可以看出电渣重熔技术在现代工业生产中有着不可取代的重要性。
在现代工业材质生产中,电渣重熔的优点得到了充分的发挥和利用。
2电渣重熔的不足概括如下:(1)灵活性不足。
电渣重熔只能将成分一定的钢材重熔,不能改变钢材的成分。
(2)生产成本高。
电渣重熔过程中,电耗非常大,又由于是二次精炼,大大增加了钢材的生产成本。
(3)氟的污染。
电渣渣料中含较多的CaF会逸出HF、SiF4、SF6等有害气体,危害工人健康,造成环境污染。
电渣重熔
1
电压, /V 电流, /A
滴落频率, 滴 /秒
5.07
熔滴平均质 量,/g
6.90
61
7500
5
15
61
61
7500
7500
6.53
7.01
7.50
7.95
30
61
7500
7.06
11.70
33
西建大 精品课程
4.4.2 自耗电极的熔化
渣池深度与熔滴滴落频率、熔滴直径的关系
U = 0.5 D结 + B
式中:U —工作电压,V; D结—结晶器直径,cm; B— 常数,取27~37 V;
23
西建大 精品课程
4.3.2 电渣重熔工艺参数的选择
(4)冶炼电流
提高冶炼电流,自耗电极埋入深度增大,不利于锭子的轴向结晶。 冶炼电流主要由自耗电极截面积和电流密度确定:
I = A· J
结晶器的高度(H结)以下式确定:
H结=(3~6)D结;
若D结>300mm时,式中H结取下限 自耗电极的直径如取决于 结晶器的直径D结,可按 经验公式确定:
在保证重熔金属质量和安全操作 前提下K值选用大一些为好, 对降低电能消耗、提高生产率及 改善锭质量都有益!
d极 = K· D结
式中: K—充填比,一般选用0.4~0.6; d极—自耗电极直径,mm; D结—结晶器直径,mm。
结晶器的形状更加复杂,其结构多种多样(下图), 主要有锭模式结晶器、滑动式结晶器和组合式结晶 器三类。
8
西建大 精品课程
4.1.1电渣重熔的主要设备
不 同 类 型 的 结 晶 器
1-3 锭模式结晶器;4-5 滑动式结晶器;6-7 可拆卸式;8 移动式
电渣重熔技术和产品质量控制
历史的回顾
Borys E. Paton院士
Borys I. Medovar院士
29/03/1916-19/03/2000
历史的回顾
B.E. Paton, B.I. Medovar, 1952: first ESR ingot at PWI
历史的回顾
1953年前苏联Г. З. Вопошкевич 在电弧焊焊纵缝过程中发现电弧熄灭,其过程 稳定,焊缝质量优异,由此发现了电渣焊。 1953年后经巴顿电焊研究院历时五年的开发研 究,于1958年5月在米多瓦尔(Б. И. Медовар)院士的领导下,在乌克兰扎 波洛什市德聂泊尔特钢公司建成0.5吨P909型 电渣炉4台,前苏联电渣冶金工业拉开了序 幕。
历史的回顾
(1)产量呈抛物线增长: 年份 1960 1965 1969 1973 1988 2008 产量/万t 3 29 48 80 120 200 (2)锭重呈几何级数增长: 年份 1960 1965 1970 1988 2008 锭重/t 12 30 80 165 204 (3)产品扩大。生产的优质钢及超级合金到1985年近300个 牌号,开始用于生产有色金属(Al、Cu、Ti合金)及贵金 属(Ag合金)
历史的回顾
1959年衡阳冶金机械厂生产了100kg高速钢电渣铸锭, 还采用电渣重熔回收一批废旧高速钢刀具,成果于 1959年10发表在《焊接》杂志建国10周年特刊上,这 一成果受到国内冶金界关注。同期在衡阳冶金机械厂 还试验成功了电渣冒口热封顶。 1959年11月北京钢铁学院朱觉教授率电冶金师生与作 者所在的冶金建筑研究院电渣实验室合作,采用电渣 重熔法研制成功了航空轴承钢。1960年5月冶金部召开 了推广会,朱觉主持会议,李正邦、傅杰等做技术报 告。
电渣重熔新技术的研究现状及发展趋势
电渣重熔新技术的研究现状及发展趋势电渣重熔技术是一种重要的金属再生利用技术,可以有效地回收废旧金属,并在节能减排、资源循环利用方面发挥重要作用。
随着新技术的不断涌现,电渣重熔技术也在不断发展。
本文将从研究现状和未来发展趋势两个方面进行讨论。
一、电渣重熔技术的研究现状1. 传统电渣重熔技术传统电渣重熔技术是指利用电熔炉将金属渣进行加热熔化,使其成为液态金属,然后进行分离纯化的工艺流程。
这种技术在废旧金属回收利用领域已经有着长期的应用历史,主要适用于较为简单的金属合金回收。
传统电渣重熔技术在对复杂金属渣的处理方面存在效率不高、能耗较大、操作成本高等问题。
2. 新型电渣重熔技术随着科技的发展,新型电渣重熔技术不断涌现。
以高温等离子体技术为代表的新型电渣重熔技术,可以通过强电场和高温等离子体作用,实现金属渣的高效分解和还原,从而提高了金属回收率,减少了能耗和废气排放。
利用先进的智能控制系统和传感器技术,结合人工智能和大数据分析等手段,对电渣重熔过程进行精准监控和优化调控,也成为了当前的研究热点。
二、电渣重熔技术的发展趋势1. 资源综合利用未来电渣重熔技术将更加注重资源综合利用,不仅仅局限于金属的回收,还将考虑非金属元素的回收利用。
采用高效分离技术,将金属和非金属进行有效分离,实现资源的最大化回收。
2. 精准智能化控制未来电渣重熔技术将朝着智能化和自动化方向发展,通过引入先进的传感器和智能控制系统,实现对电渣重熔过程的精准监控和模型预测,确保生产过程的稳定性和产品质量的一致性。
3. 节能减排未来电渣重熔技术将致力于进一步降低能耗和减少环境污染。
采用新型高效电熔炉、恒温技术和废气处理技术,减少电渣重熔过程中的能源消耗和废气排放,实现绿色环保生产。
随着科技的不断进步和创新,电渣重熔技术必将迎来更加辉煌的发展。
通过持续深入的研究和不断改进技术手段,电渣重熔技术将为金属再生利用领域注入新的活力,为推动资源循环利用和实现绿色可持续发展做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电渣重熔冶炼技术
电渣重熔冶炼技术是一种先进的冶金技术,其主要应用于金属材料的回收和再利用。
该技术利用电弧加热,将废旧金属材料熔化,通过电渣的作用,将杂质分离出来,得到高纯度的金属材料,从而实现资源的有效利用和环境的保护。
一、电渣重熔冶炼技术的原理
电渣重熔冶炼技术是利用电弧加热将废旧金属材料熔化,通过电渣的作用,将杂质分离出来,得到高纯度的金属材料。
在电渣重熔冶炼过程中,电极和金属材料之间形成的电弧产生高温,将金属材料熔化。
同时,电极和金属材料之间的电流产生电渣,电渣起到了隔离空气和杂质的作用,使金属材料被分离出来,从而得到高纯度的金属材料。
二、电渣重熔冶炼技术的应用
1. 废旧金属材料的回收和再利用
废旧金属材料中含有很多有价值的金属元素,如铁、铜、铝等。
这些金属元素可以通过电渣重熔冶炼技术进行回收和再利用,从而实现资源的有效利用和环境的保护。
2. 金属材料的精炼和纯化
电渣重熔冶炼技术可以将金属材料中的杂质分离出来,得到高纯度的金属材料。
这一过程可以对金属材料进行精炼和纯化,提高其质量和性能。
3. 金属材料的合金化
电渣重熔冶炼技术可以将不同种类的金属材料进行熔合,形成合金材料。
这些合金材料具有更好的性能和应用价值,可以广泛应用于冶金、机械制造、航空航天等领域。
三、电渣重熔冶炼技术的优点
1. 能够回收和再利用废旧金属材料,实现资源的有效利用。
2. 能够精炼和纯化金属材料,提高其质量和性能。
3. 能够将不同种类的金属材料进行熔合,形成合金材料,具有更好的性能和应用价值。
4. 能够实现无污染生产,保护环境。
四、电渣重熔冶炼技术的发展趋势
随着社会经济的快速发展,金属材料的需求量越来越大。
电渣重熔冶炼技术的应用将会越来越广泛,发展前景十分广阔。
未来,电渣重熔冶炼技术将会更加智能化、自动化,实现无人化生产。
同时,电渣重熔冶炼技术将会与其他领域的技术相结合,形成更加高效、环保、节能的新型冶金技术,为人类的发展和进步做出更大的贡献。
总之,电渣重熔冶炼技术是一种先进的冶金技术,通过电弧加热和电渣的作用,能够回收和再利用废旧金属材料,实现资源的有效利用和环境的保护。
未来,电渣重熔冶炼技术将会更加智能化、自动化,为人类的发展和进步做出更大的贡献。