大学基础教育《大学物理(一)》期末考试试题 含答案
大学物理学孙厚谦答案

大学物理学孙厚谦答案【篇一:普通物理12章习题解】t>12.1 如图所示,ab长度为0.1m,位于a电子具有大小为v0?10?107m/s的初速度。
试问:(1)磁感应强度的大小和方向应如何才能使电子从a运动到b;(2)电子从a运动到b需要多长时间????解:右。
根据f??e??b?的右手方向规则b的方向应该内(在纸平面)。
?为了电子向右偏转电子上作用的落论磁力的方向在a点应向结果电子在这种磁场中圆周运动根据牛顿第二定律(落仑磁力提供向心力)即e?ob?m?o212.1习题rb?m?oe?1.6?10?19c er1r?ab?0.05m2?m?9.1?10?31kg9.1?10?31?10?107?b??1.14?10?2t ?191.6?10?0.05(2) tab1?t t是周期 212.1习题?b?t?2?r?o?tab??r3.14?0.05??1.57?10?19s 7?o10?10?2答:(1)b?1.14?10t 方向 ?(2)tab?1.57?10s12.2 有一质子,质量是0.5g,带电荷为2.5?10c。
此质子有6?10m/s的水平初速,要使它维持在水平方向运动,问应加最小磁场的大小与方向如何?解:?84?9先分析该质点上所受力的情况该质点没有其他场的作用下只有重力作用,质点平抛运动,所以质点上方向向上的大小为mg的一个力作用才能保证该质点作水平方向运动。
此题中我们用加一磁场来产生落论兹力提供该需要的的力。
???f?q??b?考虑f的方向向上,的方向必须纸平面上向内?如图所示mg0.5?10?3?9.8q?b?mg?b???q?2.5?10?8?6?10?4习题12.212.3 如图所示,实线为载有电流i的导线。
导线由三部分组成,ab 部分为1/4圆周,圆心为o,半径为a,导线其余部分为伸向无限远的直线,求o点的磁感应.强度b。
解:设直导线部分ca和bd产生的磁感应强度b1和b2,而1圆周导线ab产生的磁感应强度为 4?(方向纸平?oib1?4?a面上向上)b2??(方向纸平面上向上) 4?a圆周导线产生的磁感应强度为b??oi2r1圆周导线产生的磁感应强度为 4习题12.4b3b3?1?oi?oi?? ?(方向纸平面上向上) 42a8a????b0?b1?b2?b3b0?b1?b2?b3??oi?oi?oi?oi???(4??) ?(向纸平面上向上)4?a4?a8a8?a12.4 三根平行长直导线处在一个平面内,1,2和2,3之间距离都是3cm,其上电流i1?i2及i3??(i1?i2),方向如图所示。
大学物理试题(上 含答案)

2002级大学物理上 (A ) 试题答案及评分参考二、填空(2‘x 20 = 40’)1、(1)0011a t n += (m/s 2) , (2)2(m/s 2);2、(3)t mkev v -=0 , (4)t m ke v mka --=0;3、(5)gR v 22=, (6)R gT R h -=32224π;4、(7)lg3 , (8)ιg 321; 5、(9)⎪⎭⎫⎝⎛-=32cos ππt T A x , (10)2'T T =; 6、(11)⎪⎭⎫⎝⎛+=22cos 20ππt y (m ), (12)⎪⎭⎫ ⎝⎛+-=2)10(2cos 2ππx t y (m ); 7、(13)1000m/s ; (14)2500m/s (或705-707m/s ) 8、(15)高斯定理,0ε∑⎰=⋅qs d E s,(16)环流定理,0=⋅⎰Ll d E ;9、(17)27R (或30.8J.mol -1.K -1); (18)2ln RT ;10、(19)013ερr ; (20)2033r R ερ。
二、(12‘)(1) 如图示。
-4‘(2) 121ab 1lnQ Q V V vRT == (1)-2‘432cd 2lnQ Q V V vRT == (2)-2‘43112212ln ln11V V T V V T Q Q -=-=卡η (3)-2‘b -c 和d -a 两个绝热过程,则142111132121----==γγγγV T V T V T V T ——>4312V V V V = (4)-2‘代入(3)式得:121T T -=卡η 三、(12‘)(1) 由高斯定理可得:B A R r R r Q E <≤=,4r 20πε)(; -3‘ (2) )11(44020BA R R BAAB R R Q dr rQd E V U BA-==⋅==⎰⎰πεπει ;-3‘(3) )(40A B B A AB R R R R U Q C -⋅==πε ; -3‘ (4) ==AB QU W 21)11(802BA R R Q -πε; -3‘四、(12‘) (1)20204x 4xdx dq dE πελπε==① -3‘)11(44020la a x dx dE E la ap +-===⎰⎰+πελπελ ② -3‘(2)x dx dq dU 004x4πελπε==③ -3‘al a x dx dU U la ap +===⎰⎰+ln 4400πελπελ ④ -3‘五、(12‘)(1))](T 2cos[1u xt A y -=π -4‘ (2) ])(2cos[2ππ-+=ux t T A y -4‘(3)反射端为波节点,相邻两波节间距λ/2;而λ=uT所以波节点为:2)12(,,23,,2,0uTn uT uT uT x +----= 。
大学物理第6章(题库)含答案

06章一、填空题 (一)易(基础题)1、热力学第二定律的微观实质可以理解为:在孤立系统内部所发生的不可逆过程,总是沿着熵 增大 的方向进行。
2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了____功热转换__________的过程是不可逆的,而克劳修斯表述指出了___热传导_______的过程是不可逆的.3.一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 减少 (填增加或减少),E 2—E 1= -380 J 。
4.一定量的理想气体在等温膨胀过程中,内能 不变 ,吸收的热量全部用于对外界做功 。
5.一定量的某种理想气体在某个热力学过程中,对外做功120J ,气体的内能增量为280J ,则气体从外界吸收热量为 400 J 。
6、在孤立系统内部所发生的过程,总是由热力学概率 小 的宏观状态向热力学概率 大 的宏观状态进行。
7、一定量的单原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充1、一定量的双原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充2、一定量的理想气体在等温膨胀过程中,吸收的热量为500J 。
理想气体做功为 500 J 。
补充3、一定量的理想气体在等温压缩过程中,放出的热量为300J ,理想气体做功为 -300 J 。
8、要使一热力学系统的内能增加,可以通过 做功 或 热传递 两种方式,或者两种方式兼用来完成。
9、一定量的气体由热源吸收热量526610J ⋅⨯,内能增加541810J ⋅⨯,则气体对外作 功______J.10、工作在7℃和27℃之间的卡诺致冷机的致冷系数为 14 ,工作 在7℃和27℃之间的卡诺热机的循环效率为 6.67% 。
(二)中(一般综合题)1、2mol 单原子分子理想气体,经一等容过程后,温度从200K 上升到500K,则气体吸收的热量为_37.4810⨯____J.2、气体经历如图2所示的一个循环过程,在这个循环中,外界传给气体的净热量是 90J 。
2010-2011《大学物理4-1》考试试题(含答案)

2010—2011学年第二学期考试试卷大学物理4-1注意事项:1. 请考生按要求在试卷装订线内填写姓名、学号和年级专业。
2. 请仔细阅读各种题目的回答要求,在规定的位置填写答案。
3. 不要在试卷上乱写乱画,不要在装订线内填写无关的内容。
4. 满分100分,考试时间为120分钟。
专业 学号 姓名_________________一、选择题(共30分,每小题3分)1.一质点运动方程为)(4sin 34cos 3SI j t i t r --=,则[ ](A)质点作抛物线运动.(B)质点作圆周运动. (C)质点运动速度不变. (D)质点运动加速度不变.知识点:速度 加速度 类型:B 答案:B2.质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率) [ ](A )dt dv(B) R v 2(C)R v dt dv 2+ (D)2/1242⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R v dt dv知识点:曲线运动 类型:A答案:D3.竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的角速度ω至少应为[ ] (A )Rgμ (B )g μ(C )R g μ(D )Rg知识点:牛顿定律及应用 类型: A 答案:C4.有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀, B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B , 则[ ] (A) J A >J B . (B) J A <J B . (C) J A =J B .(D) 不能确定J A 、J B 哪个大. 知识点:转动惯量 类型:B 类 答案:C5.关于高斯定理0ε∑⎰⎰=⋅=Φise qs d E,下列说法中正确的是[ ](1)高斯面上的电场强度只与面内的电荷有关,与面外的电荷无关(2)高斯面上的电场强度与面内和面外的电荷都有关系(3)通过高斯面的电通量只与面内的电荷有关,与面外的电荷无关(4)若正电荷在高斯面之内,则通过高斯面的电通量为正;若正电荷在高斯面之外,则通过高斯面的电通量为负 (A )(1)和(4)正确 (B )(2)和(3)正确 (C )(1)和(3)正确 (D )(2)和(4)正确 知识点: 高斯定理 类型:A 答案:B6.一导体放在静电场中,当达到静电平衡时[ ] (A )整个导体都是等势体 (B )导体表面是等势面(C )导体表面处电场强度的方向都与导体表面垂直 (D )以上均正确知识点:静电平衡 类型:A 答案: D7.磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(D)哪一条曲线表示B -x 的关系?[ ] 知识点:安培环路定理 类型:B 答案:B8.关于磁场的下列讨论中,正确的是 [ ] (A )一电流元在空间任意一点都能激发磁场1(B )磁场中的安培环路定理的数学表达式为⎰∑=⋅Ln ii I S d B μ(C )磁场对处于场中的任何电荷都施以磁力的作用 (D )以上三种说法都不正确 知识点:磁场概念 类型:A 答案:A9.长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将 [ ](A) 绕I 2旋转. (B) 向左运动. (C) 向右运动. (D) 向上运动. (E) 不动.知识点:安培力 类型:A 答案C10.感生电场是[ ] (A )由电荷激发,是无源场(B )由变化的磁场激发,是有源场 (C ) 由变化的磁场激发,是无源场 (D ) 由电荷激发,是有源场。
大学物理-习岗编教材作业参考答案(考试很有用的,老师基本上都是出这些类似的题)

高等教育出版社习岗主编《大学基础物理学》部分练习题参考答案练习题1-2 某人的一条腿骨长0.4m ,横截面积平均为5×10-4m 2,用此骨支撑整个体重(相当于500N 的力),其长度缩短为多少?占原长的百分之几(骨的杨氏模量按1×1010N ·m -2)? 解:物体内部某截面上的应力可以表示为f Sσ∆∆=,在拉升应变中,应力与相关的应变成正比,即l El σ∆= 则10405000.00010.01%110510l f l E S ∆∆∆-====⨯⨯⨯ 500.01%410()l l m ∆-=⨯=⨯练习题1-7 液滴法是测定液体表面张力系数的一种简易方法。
将质量为m 的待测液体吸入移液管,然后让液体缓缓从移液管下端滴出。
可以证明mg ndγπ=其中,n 为移液管中液体全部滴尽时的总滴数,d 为移液管从从管口下落时断口的直径。
请证明这个关系。
解:作用在每个液体上的表面张力为f d γπ=⨯,而每个液滴受到的重力为mg W n=当液滴将要下落时,满足0W f -=得mgndγπ=练习题1-9 假定树木的木质部导管为均匀的圆柱形导管,树液完全依靠毛细现象在导管内上升,接触角为45○,树液的表面张力系数225.010N m γ--=⨯ 。
问要使树液达到树木的顶部,高为20m 的树木所需木质部导管的最大半径为多少?解:02R p p Rγ-=- ……(2分)0R p p gh ρ-=……(3分)cos rRϕ=2cos r ghγϕρ=27325102/23.610()1.0109.820m --⨯⨯==⨯⨯⨯⨯练习题1-12 欲用内径为1cm 的细水管将地面上内径为2cm 的粗水管的水引到5m 高的楼上。
已知粗水管中水压为4×105Pa ,流速为4m/s 。
若忽略水的粘滞性,问楼上细水管中的流速和压强分别为多少?解:由连续性原理有v 1S 1=v 2S 2而41222121==r r S S … 得s m v v /1644412=⨯== 又由伯努力方程有:222212112121gh v P gh v P ρρρρ++=++… 得)(103.22121512112222Pa gh v P gh v P ⨯=+++--=ρρρρ练习题1-18 动物主动脉的横截面积为3cm 3,血液的粘滞系数为33.510Pa s -⨯ ,血液密度为331.510kg m -⨯ 。
大学物理习题集加答案解析

大学物理习题集(一)大学物理教研室2010年3月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量G=×1011N·m2·kg2重力加速度g=s2阿伏伽德罗常量N A=×1023mol1摩尔气体常量R=·mol1·K1玻耳兹曼常量k=×1023J·K1斯特藩玻尔兹曼常量= ×10-8 W·m2·K4标准大气压1atm=×105Pa真空中光速c=×108m/s基本电荷e=×1019C电子静质量m e=×1031kg质子静质量m n=×1027kg中子静质量m p=×1027kg真空介电常量0= ×1012 F/m真空磁导率0=4×107H/m=×106H/m普朗克常量h = ×1034 J·s维恩常量b=×103m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A) 试验电荷是电量极小的正电荷;(B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 0 r3),以下说法正确的是(A) r→0时, E→∞;(B) r→0时,q不能作为点电荷,公式不适用;(C) r→0时,q仍是点电荷,但公式无意义;(D) r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B) 一个正点电荷和一个负点电荷组成的系统;(C) 两个等量异号电荷组成的系统;(D) 一个正电荷和一个负电荷组成的系统.(E) 两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f , 其电场强度的大小为f / q0 , 以下说法正确的是(A) E正比于f;(B) E反比于q0;(C) E正比于f 且反比于q0;(D) 电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷q2的作用力为f12,当放入第三个电荷Q后,以下说法正确的是(A) f12的大小不变,但方向改变, q1所受的总电场力不变;(B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化;(D) f12的大小、方向均发生改变, q1受的总电场力也发生了变化.二.填空题1.如图所示,一电荷线密度为的无限长带电直线垂直通过图面上的A点,一电荷为Q的均匀球体,其球心为O点,ΔAOP是边长为a的等边三角形,为了使P点处场强方向垂直于OP, 则和Q的数量关系式为,且与Q为号电荷(填同号或异号) .2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q ,测得它所受力的大小为f1;将其撤走,改放一个等量的点电荷q,测得电场力的大小为f2 ,则A点电场强度E的大小满足的关系式为.3.一半径为R的带有一缺口的细圆环, 缺口宽度为d (d<<R)环上均匀带正电, 总电量为q ,如图所示, 则圆心O处的场强大小E = ,场强方向为.三.计算题1.一“无限长”均匀带电的半圆柱面,半径为R, 设半圆柱面沿轴线单位长度上的电量为,如图所示.试求轴线上一点的电场强度.2.一带电细线弯成半径为R的半圆形, 电荷线密度为= 0 sin, 式中0为一常数, 为半径R与X 轴所成的夹角, 如图所示,试求环心O处的电场强度.练习二电场强度(续)电通量一.选择题1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小;(B)电荷电量小,受的电场力可能大;(C)电场为零的点,任何点电荷在此受的电场力为零;(D)电荷在某点受的电场力与该点电场方向一致.2.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E处处不等;(B) 球面上的电场强度矢量E处处相等,故球面上的电场是匀强电场;(C) 球面上的电场强度矢量E的方向一定指向球心;(D) 球面上的电场强度矢量E的方向一定沿半径垂直球面向外.3.关于电场线,以下说法正确的是(A) 电场线上各点的电场强度大小相等;(B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行;(A) 开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合;(D) 在无电荷的电场空间,电场线可以相交.4.如图,一半球面的底面园所在的平面与均强电场E的夹角为30°,球面的半径为R,球面的法线向外,则通过此半球面的电通量为(A)R2E/2 .(B) R2E/2.(C) R2E.(D) R2E.5.真空中有AB两板,相距为d ,板面积为S(S>>d2),分别带+q和q,在忽略边缘效应的情况下,两板间的相互作用力的大小为(A)q2/(40d2 ) .(B) q2/(0 S) .(C) 2q2/(0 S).(D) q2/(20 S) .二.填空题1.真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+ 和,点P1和P2与两带电线共面,其位置如图所示,取向右为坐标X正向,则= ,= .2.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度, 可将园盘分成无数个同心的细园环, 园环宽度为d r,半径为r,此面元的面积d S= ,带电量为d q = ,此细园环在中心轴线上距圆心x的一点产生的电场强度E = .3.如图所示,均匀电场E中有一袋形曲面,袋口边缘线在一平面S内,边缘线所围面积为S0,袋形曲面的面积为S ,法线向外,电场与S面的夹角为,则通过袋形曲面的电通量为.三.计算题1.一带电细棒弯曲线半径为R的半圆形,带电均匀,总电量为Q,求圆心处的电场强度E.2.真空中有一半径为R的圆平面,在通过圆心O与平面垂直的轴线上一点P处,有一电量为q 的点电荷,O、P间距离为h ,试求通过该圆平面的电通量.练习三高斯定理一.选择题1.如果对某一闭合曲面的电通量为=0,以下说法正确的是(A) S面上的E必定为零;(B) S面内的电荷必定为零;(C) 空间电荷的代数和为零;(D) S面内电荷的代数和为零.2.如果对某一闭合曲面的电通量0,以下说法正确的是(A) S面上所有点的E必定不为零;(B) S面上有些点的E可能为零;(C) 空间电荷的代数和一定不为零;(D) 空间所有地方的电场强度一定不为零.3.关于高斯定理的理解有下面几种说法,其中正确的是(A) 如高斯面上E处处为零,则该面内必无电荷;(B) 如高斯面内无电荷,则高斯面上E处处为零;(C) 如高斯面上E处处不为零,则高斯面内必有电荷;(D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E) 高斯定理仅适用于具有高度对称的电场.4.图示为一轴对称性静电场的E~r关系曲线,请指出该电场是由哪种带电体产生的(E表示电场强度的大小, r表示离对称轴的距离)(A) “无限长”均匀带电直线;(B) 半径为R的“无限长”均匀带电圆柱体;(C) 半径为R的“无限长”均匀带电圆柱面;(D) 半径为R的有限长均匀带电圆柱面.5.如图所示,一个带电量为q 的点电荷位于立方体的A角上,则通过侧面a b c d 的电场强度通量等于:(A) q / 240.(B) q / 120.(C) q / 6 0 .(D) q / 480.二.填空题1.两块“无限大”的均匀带电平行平板,其电荷面密度分别为( 0)及2 ,如图所示,试写出各区域的电场强度EⅠ区E的大小,方向;Ⅱ区E的大小,方向;Ⅲ区E的大小,方向.2.如图所示,真空中两个正点电荷,带电量都为Q,相距2R,若以其中一点电荷所在处O点为中心,以R为半径作高斯球面S,则通过该球面的电场强度通量= ;若以r0表示高斯面外法线方向的单位矢量,则高斯面上a、b 两点的电场强度的矢量式分别为,.3.点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量= ,式中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和答:是.三.计算题1.厚度为d的无限大均匀带电平板,带电体密度为,试用高斯定理求带电平板内外的电场强度.2.半径为R的一球体内均匀分布着电荷体密度为的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O′ , 两球心间距离= d, 如图所示, 求:(1) 在球形空腔内,球心O处的电场强度E0;(2) 在球体内P点处的电场强度E.设O、O、P三点在同一直径上,且= d .练习四静电场的环路定理电势一.选择题1.真空中某静电场区域的电力线是疏密均匀方向相同的平行直线,则在该区域内电场强度E和电位U是(A) 都是常量.(B) 都不是常量.(C) E是常量, U不是常量.(D) U是常量, E不是常量.2.电量Q均匀分布在半径为R的球面上,坐标原点位于球心处,现从球面与X轴交点处挖去面元S, 并把它移至无穷远处(如图,若选无穷远为零电势参考点,且将S移走后球面上的电荷分布不变,则此球心O点的场强E0与电位U0分别为(注:i为单位矢量)(A)-i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(B) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(C) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(D) -i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].3.以下说法中正确的是(A) 沿着电力线移动负电荷,负电荷的电势能是增加的;(B) 场强弱的地方电位一定低,电位高的地方场强一定强;(C) 等势面上各点的场强大小一定相等;(D) 初速度为零的点电荷, 仅在电场力作用下,总是从高电位处向低电位运动;(E) 场强处处相同的电场中,各点的电位也处处相同.4.如图,在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为(A) .(B) .(C) .(D) .5.一电量为q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示,现将一试验电荷从A点分别移动到B、C、D各点,则(A) 从A到B,电场力作功最大.(B) 从A到各点,电场力作功相等.(C) 从A到D,电场力作功最大.(D) 从A到C,电场力作功最大.二.填空题1.电量分别为q1 , q2 , q3的三个点电荷分别位于同一圆周的三个点上,如图所示,设无穷远处为电势零点,圆半径为R, 则b点处的电势U = .2.如图,在场强为E的均匀电场中,A、B两点距离为d, AB连线方向与E方向一致, 从A点经任意路径到B点的场强线积分= .3.如图所示,BCD是以O点为圆心, 以R为半径的半圆弧, 在A点有一电量为+q的点电荷, O点有一电量为–q的点电荷, 线段= R, 现将一单位正电荷从B点沿半圆弧轨道BCD移到D点,则电场力所作的功为.三.计算题1.电量q均匀分布在长为2 l的细杆上, 求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点) .2.一均匀带电的球层, 其电荷体密度为, 球层内表面半径为R1 , 外表面半径为R2 ,设无穷远处为电势零点, 求空腔内任一点的电势.练习五场强与电势的关系静电场中的导体一.选择题1.以下说法中正确的是(A) 电场强度相等的地方电势一定相等;(B) 电势梯度绝对值大的地方场强的绝对值也一定大;(C) 带正电的导体上电势一定为正;(D) 电势为零的导体一定不带电2.以下说法中正确的是(A) 场强大的地方电位一定高;(B) 带负电的物体电位一定为负;(C) 场强相等处电势梯度不一定相等;(D) 场强为零处电位不一定为零.3. 如图,真空中有一点电荷Q及空心金属球壳A, A处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是(A) E M≠0, E N=0 ,Q在M处产生电场,而在N处不产生电场;(B) E M =0, E N≠0 ,Q在M处不产生电场,而在N处产生电场;(C) E M =E N =0 ,Q在M、N处都不产生电场;(D) E M≠0,E N≠0,Q在M、N处都产生电场;(E) E M =E N =0 ,Q在M、N处都产生电场.4.如图,原先不带电的金属球壳的球心处放一点电荷q1, 球外放一点电荷q2,设q2、金属内表面的电荷、外表面的电荷对q1的作用力分别为F1、F2、F3 , q1受的总电场力为F, 则(A) F1=F2=F3=F=0.(B) F1= q1 q2 / ( 4 0d2 ) ,F2 = 0 , F3 = 0, F=F1 .(C) F1= q1 q2 / ( 4 0d2 ) , F2 = 0,F3 = q1 q2 / ( 4 0d2 ) (即与F1反向), F=0 .(D) F1= q1 q2 / ( 4 0d2 ) ,F2 与F3的合力与F1等值反向,F=0 .(E) F1= q1 q2 / ( 4 0d2 ) , F2= q1 q2 / ( 4 0d2 ) (即与F1反向), F3 = 0, F=0 .5.如图,一导体球壳A,同心地罩在一接地导体B上,今给A球带负电Q, 则B球(A)带正电.(B) 带负电.(C) 不带电.(D) 上面带正电,下面带负电.二.填空题1.一偶极矩为P的电偶极子放在电场强度为E的均匀外电场中, P与E的夹角为角,在此电偶极子绕过其中心且垂直于P与E组成平面的轴沿角增加的方向转过180°的过程中,电场力作功为A = .2.若静电场的某个立体区域电势等于恒量, 则该区域的电场强度分布是;若电势随空间坐标作线性变化, 则该区域的场强分布是.3.一“无限长”均匀带电直线,电荷线密度为,在它的电场作用下,一质量为m,带电量为q 的质点以直线为轴线作匀速圆周运动,该质点的速率v = .三.计算题1.如图所示,三个“无限长”的同轴导体圆柱面A、B和C,半径分别为R A、R B、R C,圆柱面B上带电荷,A和C 都接地,求B的内表面上电荷线密度1,和外表面上电荷线密度之比值1/2.22.已知某静电场的电势函数U=-+ ln x(SI) ,求点(4,3,0)处的电场强度各分量值.练习六静电场中的导体(续)静电场中的电介质一.选择题1.一孤立的带正电的导体球壳有一小孔,一直导线AB穿过小孔与球壳内壁的B点接触,且与外壁绝缘,如图、D分别在导体球壳的内外表面上,A、C、D三点处的面电荷密度分别为A、C、D , 电势分别为U A、U C、U D ,其附近的电场强度分别为E A、E C、E D , 则:(A) A>D ,C = 0 , E A> E D , E C = 0 , U A = U C = U D .(B) A>D ,C = 0 , E A> E D , E C = 0 , U A > U C = U D .(C) A=C ,D≠0 , E A= E C=0, E D ≠0 , U A = U C =0 , U D≠0.(D) D>0 ,C <0 ,A<0 , E D沿法线向外, E C沿法线指向C ,E A平行AB指向外,U B >U C > U A .2.如图,一接地导体球外有一点电荷Q,Q距球心为2R,则导体球上的感应电荷为(A)0.(B) Q.(C) +Q/2.(D) –Q/2.3.导体A接地方式如图,导体B带电为+Q,则导体A(A) 带正电.(B) 带负电.(C) 不带电.(D) 左边带正电,右边带负电.4.半径不等的两金属球A、B ,R A = 2R B ,A球带正电Q ,B球带负电2Q,今用导线将两球联接起来,则(A) 两球各自带电量不变.(B) 两球的带电量相等.(C) 两球的电位相等.(D) A球电位比B球高.5. 如图,真空中有一点电荷q , 旁边有一半径为R的球形带电导体,q距球心为d ( d > R ) 球体旁附近有一点P ,P在q与球心的连线上,P点附近导体的面电荷密度为.以下关于P点电场强度大小的答案中,正确的是(A) / (20 ) + q /[40 ( d-R )2 ];(B) / (20 )-q /[40 ( d-R )2 ];(C) / 0 + q /[40 ( d-R )2 ];(D)/ 0-q /[40 ( d-R )2 ];(E)/ 0;(F) 以上答案全不对.二.填空题1.如图,一平行板电容器, 极板面积为S,,相距为d,若B板接地,,且保持A板的电势U A=U0不变,,如图, 把一块面积相同的带电量为Q的导体薄板C平行地插入两板中间, 则导体薄板C的电势U C = .2.地球表面附近的电场强度约为100N/C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面的电荷面密度= , 地面电荷是电荷(填正或负).3.如图所示,两块很大的导体平板平行放置,面积都是S,有一定厚度,带电量分别为Q1和Q2,如不计边缘效应,则A、B、C、D四个表面上的电荷面密度分别为、、、.三.计算题1.半径分别为r1 = cm 和r2 = cm 的两个球形导体, 各带电量q = ×108C, 两球心相距很远, 若用细导线将两球连接起来, 并设无限远处为电势零点,求: (1)两球分别带有的电量;(2)各球的电势.2.如图,长为2l的均匀带电直线,电荷线密度为,在其下方有一导体球,球心在直线的中垂线上,距直线为d,d大于导体球的半径R,(1)用电势叠加原理求导体球的电势;(2)把导体球接地后再断开,求导体球上的感应电量.练习七静电场中的电介质(续)电容静电场的能量一.选择题1.极化强度P是量度介质极化程度的物理量, 有一关系式为P = 0(r1)E , 电位移矢量公式为D = 0E + P ,则(A) 二公式适用于任何介质.(B) 二公式只适用于各向同性电介质.(C) 二公式只适用于各向同性且均匀的电介质.(D) 前者适用于各向同性电介质, 后者适用于任何电介质.2.电极化强度P(A) 只与外电场有关.(B) 只与极化电荷产生的电场有关.(C) 与外场和极化电荷产生的电场都有关.(D) 只与介质本身的性质有关系,与电场无关.3.真空中有一半径为R, 带电量为Q的导体球, 测得距中心O为r 处的A点场强为E A =Q r /(40r3) ,现以A为中心,再放上一个半径为,相对电容率为r的介质球,如图所示,此时下列各公式中正确的是(A) A点的电场强度E A=E A / r;(B) ;(C) =Q/0;(D) 导体球面上的电荷面密度= Q /( 4R2 ).4.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C, 极板间电压V,极板空间(不含插入的导体板)电场强度E以及电场的能量W将(↑表示增大,↓表示减小)(A) C↓,U↑,W↑,E↑.(B) C↑,U↓,W↓,E不变.(C) C↑,U↑,W↑,E↑.(D) C↓,U↓,W↓,E↓.5.如果某带电体电荷分布的体电荷密度增大为原来的2倍,则电场的能量变为原来的(A) 2倍.(B) 1/2倍.(C) 1/4倍.(D) 4倍.二.填空题1.一平行板电容器,充电后断开电源, 然后使两极板间充满相对介电常数为r的各向同性均匀电介质, 此时两极板间的电场强度为原来的倍, 电场能量是原来的倍.2.在相对介电常数r= 4 的各向同性均匀电介质中,与电能密度w e=2×106J/cm3相应的电场强度大小E = .3.一平行板电容器两极板间电压为U,其间充满相对介电常数为r的各向同性均匀电介质,电介质厚度为d , 则电介质中的电场能量密度w = .三.计算题1.一电容器由两个很长的同轴薄圆筒组成,内外圆筒半径分别为R 1=2cm ,R2= 5cm,其间充满相对介电常数为r的各向同性、均匀电介质、电容器接在电压U=32V的电源上(如图所示为其横截面),试求距离轴线R=处的A点的电场强度和A点与外筒间的电势差.2.假想从无限远处陆续移来微电荷使一半径为R的导体球带电.(1) 球上已带电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功(2) 使球上电荷从零开始加到Q的过程中,外力共作多少功练习八恒定电流一.选择题1.两个截面不同、长度相同的用同种材料制成的电阻棒,串联时如图(1)所示,并联时如图(2)所示,该导线的电阻忽略,则其电流密度J与电流I应满足:(A) I1 =I2 J1 = J2 I1 = I2 J1 = J2.(B) I1 =I2 J1 >J2 I1<I2 J1 = J2.(C) I1<I2 J1 = J2 I1 = I2 J1>J2.(D) I1<I2 J1 >J2 I1<I2 J1>J2.2.两个截面相同、长度相同,电阻率不同的电阻棒R1 、R2(1>2)分别串联(如上图)和并联(如下图)在电路中,导线电阻忽略,则(A) I1<I2 J1<J2 I1= I2 J1 = J2.(B)I1 =I2 J1 =J2 I1= I2 J1 = J2.(C)I1=I2 J1 = J2 I1<I2 J1<J2.(D)I1<I2 J1<J2 I1<I2 J1<J2.3.室温下,铜导线内自由电子数密度为n= × 1028个/米3,电流密度的大小J= 2×106安/米2,则电子定向漂移速率为:(A)×10-4米/秒.(B) ×10-2米/秒.(C) ×102米/秒.(D) ×105米/秒.4.在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大,在圆柱与圆筒之间充满电导率为的均匀导电物质,当在圆柱与圆筒上加上一定电压时,在长度为l的一段导体上总的径向电流为I,如图所示,则在柱与筒之间与轴线的距离为r 的点的电场强度为:(A) 2rI/ (l2).(B) I/(2rl).(C) Il/(2r2).(D) I/(2rl).5.在如图所示的电路中,两电源的电动势分别为1、2、,内阻分别为r1、r2,三个负载电阻阻值分别为R1、R2、R,电流分别为I1、I2、I3 ,方向如图,则由A到B的电势增量U B-U A为:(A) 2-1-I1 R1+I2 R2-I3 R .(B) 2+1-I1(R1 + r1)+I2(R2 + r2)-I3 R.(C) 2-1-I1(R1-r1)+I2(R2-r2) .(D) 2-1-I1(R1 + r1)+I2(R2 + r2) .二.填空题1.用一根铝线代替一根铜线接在电路中,若铝线和铜线的长度、电阻都相等,那么当电路与电源接通时铜线和铝线中电流密度之比J1:J2 = .(铜电阻率×106·cm , 铝电阻率×106 · cm , )2.金属中传导电流是由于自由电子沿着与电场E相反方向的定向漂移而形成, 设电子的电量为e , 其平均漂移率为v , 导体中单位体积内的自由电子数为n , 则电流密度的大小J = , J的方向与电场E的方向.3.有一根电阻率为、截面直径为d、长度为L的导线,若将电压U加在该导线的两端,则单位时间内流过导线横截面的自由电子数为;若导线中自由电子数密度为n,则电子平均漂移速率为.(导体中单位体积内的自由电子数为n)三.计算题1.两同心导体球壳,内球、外球半径分别为r a , r b,其间充满电阻率为的绝缘材料,求两球壳之间的电阻.2.在如图所示的电路中,两电源的电动势分别为1=9V和2 =7V,内阻分别为r1 = 3和r2= 1,电阻R=8,求电阻R两端的电位差.练习九磁感应强度洛伦兹力一.选择题1.一个动量为p电子,沿图所示的方向入射并能穿过一个宽度为D、磁感应强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A) =arccos(eBD/p).(B) =arcsin(eBD/p).(C) =arcsin[BD /(ep)].(D) =arccos[BD/(e p)].2.一均匀磁场,其磁感应强度方向垂直于纸面,两带电粒子在该磁场中的运动轨迹如图所示,则(A)两粒子的电荷必然同号.(B) 粒子的电荷可以同号也可以异号.(C) 两粒子的动量大小必然不同.(D) 两粒子的运动周期必然不同.3.一运动电荷q,质量为m,以初速v0进入均匀磁场,若v0与磁场方向的夹角为,则(A)其动能改变,动量不变.(B) 其动能和动量都改变.(C) 其动能不变,动量改变.(D) 其动能、动量都不变.4.两个电子a和b同时由电子枪射出,垂直进入均匀磁场,速率分别为v和2v,经磁场偏转后,它们是(A)a、b同时回到出发点.(B) a、b都不会回到出发点.(C) a先回到出发点.(D) b先回到出发点.5. 如图所示两个比荷(q/m)相同的带导号电荷的粒子,以不同的初速度v1和v2(v1v2)射入匀强磁场B中,设T1、T2分别为两粒子作圆周运动的周期,则以下结论正确的是:(A) T1 = T2,q1和q2都向顺时针方向旋转;(B) T1 = T 2,q1和q2都向逆时针方向旋转(C) T1T2,q1向顺时针方向旋转,q2向逆时针方向旋转;(D) T1 = T2,q1向顺时针方向旋转,q2向逆时针方向旋转;二.填空题1. 一电子在B=2×10-3T的磁场中沿半径为R=2×10-2m、螺距为h=×10-2m的螺旋运动,如图所示,则磁场的方向, 电子速度大小为.2. 磁场中某点处的磁感应强度B=-(T), 一电子以速度v=×106i+×106j (m/s)通过该点,则作用于该电子上的磁场力F= .3.在匀强磁场中,电子以速率v=×105m/s作半径R=的圆周运动.则磁场的磁感应强度的大小B= .三.计算题1.如图所示,一平面塑料圆盘,半径为R ,表面均匀带电,电荷面密度为,假定盘绕其轴线OO以角速度转动,磁场B垂直于轴线OO,求圆盘所受磁力矩的大小。
(完整版)大学物理电磁场练习题含答案
(完整版)⼤学物理电磁场练习题含答案前⾯是答案和后⾯是题⽬,⼤家认真对对. 三、稳恒磁场答案1-5 CADBC 6-8 CBC 三、稳恒磁场习题1. 有⼀个圆形回路1及⼀个正⽅形回路2,圆直径和正⽅形的边长相等,⼆者中通有⼤⼩相等的电流,它们在各⾃中⼼产⽣的磁感强度的⼤⼩之⽐B 1 / B 2为 (A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22.[]2.边长为l 的正⽅形线圈中通有电流I ,此线圈在A 点(见图)产⽣的磁感强度B 为(A) l I π420µ. (B) l Iπ220µ.(C)l Iπ02µ. (D) 以上均不对.[]3.通有电流I 的⽆限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的⼤⼩B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .[]4.⽆限长载流空⼼圆柱导体的内外半径分别为a 、b ,电流在导体截⾯上均匀分布,则空间各处的B ?的⼤⼩与场点到圆柱中⼼轴线的距离r 的关系定性地如图所⽰.正确的图是[]5.电流I 由长直导线1沿平⾏bc 边⽅向经a 点流⼊由电阻均匀的导线构成的正三⾓形线框,再由b 点沿垂直ac 边⽅向流出,经长直导线2返回电源(如图).若载流直导线1、2和三⾓形框中的电流在框中⼼O 点产⽣的磁感强度分别⽤1B ?、2B ?和3B表⽰,则O 点的磁感强度⼤⼩(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ??,B 3 = 0.(C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B ?,但B 3≠ 0.[]6.电流由长直导线1沿半径⽅向经a 点流⼊⼀电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆⼼O 三点在同⼀直线上.设直电流1、2及圆环电流分别在O 点产⽣的磁感强度为1B ?、2B ?及3B,则O 点的磁感强度的⼤⼩(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B ?,B 3= 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0. (D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0.[] v7.电流由长直导线1沿切向经a 点流⼊⼀个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆⼼O 在同⼀直线上.设长直载流导线1、2和圆环中的电流分别在O 点产⽣的磁感强度为1B ?、2B ?、3B,则圆⼼处磁感强度的⼤⼩(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ??,B 3 = 0.(C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B ??.[]8.a R r OO ′I在半径为R 的长直⾦属圆柱体内部挖去⼀个半径为r 的长直圆柱体,两柱体轴线平⾏,其间距为a ,如图.今在此导体上通以电流I ,电流在截⾯上均匀分布,则空⼼部分轴线上O ′点的磁感强度的⼤⼩为(A) 2202R a a I ?πµ (B)22202R r a a I -?πµ(C) 22202r R a a I-?πµ (D) )(222220a r Ra a I -πµ []参考解:导体中电流密度)(/22r R I J -π=.设想在导体的挖空部分同时有电流密度为J 和-J 的流向相反的电流.这样,空⼼部分轴线上的磁感强度可以看成是电流密度为J 的实⼼圆柱体在挖空部分轴线上的磁感强度1B ?和占据挖空部分的电流密度-J 的实⼼圆柱在轴线上的磁感强度2B ?的⽮量和.由安培环路定理可以求得02=B , )(222201r R a Ia B -π=µ 所以挖空部分轴线上⼀点的磁感强度的⼤⼩就等于)(22201r R IaB -π=µ 9. πR 2c3分10.221R B π-3分11. 6.67×10-7 T 3分7.20×10-7 A ·m 2 2分12. 减⼩ 2分在2/R x <区域减⼩;在2/R x >区域增⼤.(x 为离圆⼼的距离) 3分13. 0 1分I 0µ- 2分14. 4×10-6 T 2分 5 A 2分15. I0µ 1分 0 2分2I0µ 2分16. 解:①电⼦绕原⼦核运动的向⼼⼒是库仑⼒提供的.即∶ 02202041a m a e v =πε,由此得 002a m e επ=v 2分②电⼦单位时间绕原⼦核的周数即频率000142a m a e a ενππ=π=v 2分由于电⼦的运动所形成的圆电流00214a m a e e i ενππ== 因为电⼦带负电,电流i 的流向与 v ?⽅向相反 2分③i 在圆⼼处产⽣的磁感强度002a i B µ=00202018a m a eεµππ= 其⽅向垂直纸⾯向外 2分17.1 234 R ROI a β2解:将导线分成1、2、3、4四部份,各部分在O 点产⽣的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:4321B B B B B +++= ∵ 1B ?、4B ?均为0,故32B B B ?+= 2分)2(4102R I B µ= ⽅向? 2分 242)sin (sin 401203R I a I B π=-π=µββµ)2/(0R I π=µ ⽅向 ? 2分其中 2/R a =, 2/2)4/sin(sin 2=π=β 2/2)4/sin(sin 1-=π-=β∴ R I R I B π+=2800µµ)141(20π+=R I µ ⽅向 ? 2分 18. 解:电流元1d l I ?在O 点产⽣1d B ?的⽅向为↓(-z ⽅向) 电流元2d l I ?在O 点产⽣2d B ?的⽅向为?(-x ⽅向) 电流元3d l I ?在O 点产⽣3d B ?的⽅向为? (-x ⽅向) 3分kR I i R IB π-+ππ-=4)1(400µµ 2分 19. 解:设x 为假想平⾯⾥⾯的⼀边与对称中⼼轴线距离,++==Rx RRxrl B r l B S B d d d 21Φ, 2分d S = l d r2012R IrB π=µ (导线内) 2分r I B π=202µ (导线外) 2分)(42220x R R Il -π=µΦR R x Il +π+ln20µ 2分令 d Φ / d x = 0,得Φ最⼤时 Rx )15(21-= 2分20. 解:洛伦兹⼒的⼤⼩ B q f v = 1分对质⼦:1211/R m B q v v = 1分对电⼦: 2222/R m B q v v = 1分∵ 21q q = 1分∴ 2121//m m R R = 1分21.解:电⼦在磁场中作半径为)/(eB m R v =的圆周运动. 2分连接⼊射和出射点的线段将是圆周的⼀条弦,如图所⽰.所以⼊射和出射点间的距离为:)/(3360sin 2eB m R R l v ==?= 3分2解:在任⼀根导线上(例如导线2)取⼀线元d l ,该线元距O 点为l .该处的磁感强度为θµsin 20l I B π=2分⽅向垂直于纸⾯向⾥. 1分电流元I d l 受到的磁⼒为 B l I F=d d 2分其⼤⼩θµsin 2d d d 20l lI l IB F π== 2分⽅向垂直于导线2,如图所⽰.该⼒对O 点的⼒矩为 1分θµsin 2d d d 20π==lI F l M 2分任⼀段单位长度导线所受磁⼒对O 点的⼒矩+π==120d sin 2d l l l I M M θµθµsin 220π=I 2分导线2所受⼒矩⽅向垂直图⾯向上,导线1所受⼒矩⽅向与此相反.23. (C) 24. (B)25. 解: ===l NI nI H /200 A/m3分===H H B r µµµ0 1.06 T 2分26. 解: B = Φ /S=2.0×10-2 T 2分===l NI nI H /32 A/m 2分 ==H B /µ 6.25×10-4 T ·m/A 2分=-=1/0µµχm 496 2分9. ⼀磁场的磁感强度为k c j b i a B ?++= (SI),则通过⼀半径为R ,开⼝向z 轴正⽅向的半球壳表⾯的磁通量的⼤⼩为____________Wb .10.在匀强磁场B ?中,取⼀半径为R 的圆,圆⾯的法线n ?与B ?成60°⾓,如图所⽰,则通过以该圆周为边线的如图所⽰的任意曲⾯S 的磁通量==Sm S B ?d Φ_______________________.11. ⼀质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中⼼所产⽣的磁感强度B =__________________,该带电质点轨道运动的磁矩p m =___________________.(µ0 =4π×10-7 H ·m -1)12. 载有⼀定电流的圆线圈在周围空间产⽣的磁场与圆线圈半径R 有关,当圆线圈半径增⼤时,(1) 圆线圈中⼼点(即圆⼼)的磁场__________________________.(2) 圆线圈轴线上各点的磁场________如图,平⾏的⽆限长直载流导线A 和B ,电流强度均为I ,垂直纸⾯向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B ?_____________.(2) 磁感强度B ?沿图中环路L 的线积分 =??L l B ??d ______________________.14. ⼀条⽆限长直导线载有10 A 的电流.在离它 0.5 m 远的地⽅它产⽣的磁感强度B 为______________________.⼀条长直载流导线,在离它 1 cm 处产⽣的磁感强度是10-4 T ,它所载的电流为__________________________.两根长直导线通有电流I ,图⽰有三种环路;在每种情况下,??lB ?____________________________________(对环路a ).____________________________________(对环路b ).____________________________________(对环路c ).设氢原⼦基态的电⼦轨道半径为a 0,求由于电⼦的轨道运动(如图)在原⼦核处(圆⼼处)产⽣的磁感强度的⼤⼩和⽅向.17.⼀根⽆限长导线弯成如图形状,设各线段都在同⼀平⾯内(纸⾯内),其中第⼆段是半径为R 的四分之⼀圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.18.z y xR 1 321d l I ?2d l I ?3d l I ?O如图,1、3为半⽆限长直载流导线,它们与半圆形载流导线2相连.导线1在xOy平⾯内,导线2、3在Oyz 平⾯内.试指出电流元1d l I ?、2d l I ?、3d l I ?在O 点产⽣的Bd 的⽅向,并写出此载流导线在O 点总磁感强度(包括⼤⼩与⽅向).19.⼀根半径为R 的长直导线载有电流I ,作⼀宽为R 、长为l 的假想平⾯S ,如图所⽰。
【最新试题库含答案】大学物理实验习题和答案(整理版)_0
大学物理实验习题和答案(整理版):篇一:大学物理实验习题和答案(整理版)第一部分:基本实验基础游标尺、千分尺的读数方法。
答:P46 1.感量与天平灵敏度关系。
天平感量或灵敏度与负载的关系。
答:感量的倒数称为天平的灵敏度。
负载越大,灵敏度越低。
2.物理天平在称衡中,为什么要把横梁放下后才可以增减砝码或移动游码。
答:保护天平的刀口。
1.哪些用途?使用时的注意点?如何使检流计很快停止振荡?答:用途:用于判别电路中两点是否相等或检查电路中有无微弱电流通过。
注意事项:要加限流保护电阻要保护检流计,随时准备松开按键。
很快停止振荡:短路检流计。
量程如何选取?量程与内阻大小关系?答:先估计待测量的大小,选稍大量程试测,再选用合适的量程。
电流表:量程越大,内阻越小。
电压表:内阻不同欧姆档测同一只二极管正向电阻时,读测值差异的原因?答:不同欧姆档,内阻不同,输出电压随负载不同而不同。
二极管是非线性器件,不同欧姆档测,加在二极管上电压不同,读测值有很大差异。
功率输出与电压输出的区别?答:功率输出:能带负载,比如可以给扬声器加信号而发声音。
电压输出:实现电压输出,接上的负载电阻一般要大于7.光学元件光学表面有灰尘,可否用手帕擦试?答:不可以倍率的选择方法。
答:尽量使读数的有效数字位数最大的原则选择合适的倍率。
什么是逐差法,其优点?答:把测量数据分成两组,每组相应的数据分别相减,然后取差值的平均值。
优点:每个数据都起作用,体现多次测量的优点。
1.为何各长度量用不同的量具测?=量程×每伏欧姆数50Ω。
比如不可以从此输出口给扬声器加信号,即带不动负载。
答:遵守误差均分原理。
2.测钢丝直径时,为何在钢丝上、中、下三部位的相互垂直的方向上各测一次直径,而不是在同一部位采样数据?答:钢丝不可能处处均匀。
3.钢丝长度是杨氏模量仪上下两个螺丝夹之间的长度还是上端螺丝夹到挂砝码的砝码钩之间的长度?答:前者4.采用光放大办法测钢丝的微小伸长量时要测望远镜到标尺之间的距离L,请问,L是指平面镜镜面到望远镜旁标尺的距离还是指平面镜镜面到望远镜物镜之间的距离?答:前者5.必须预加砝码使钢丝拉直,你能用什么办法判断需预加几个砝码?答:用图示法。
新版精选2019年《大学物理》实验考试题库200题(含答案)
2019年《大学物理》实验题库200题[含参考答案]一、选择题1.请选出下列说法中的不正确者( )A :当被测量可以进行重复测量时,常用重复测量的方法来减少测量结果的偶然误差。
B :对某一长度进行两次测量,其测量结果为10cm 和10.0cm ,则两次测量结果是一样的。
C :已知测量某电阻结果为:,05.032.85Ω±=R 表明测量电阻的真值位于区间[85.27~85.37]之外的可能性很小。
D :测量结果的三要素是测量量的最佳值(平均值),测量结果的不确定度和单位。
E :单次测量结果不确定度往往用仪器误差Δ仪来表示,而不计ΔA .答案(B )2.用霍尔法测直流磁场的磁感应强度时,霍尔电压的大小: ( )A :与霍尔材料的性质无关;B :与外加磁场的磁感应强度的大小成正比;C :与霍尔片上的工作电流s I 的大小成反比;D :与霍尔片的厚度d 成正比答案:(B )3.测量电阻伏安特性时,用R 表示测量电阻的阻值,V R 表示电压表的内阻,A R 表示电流表的内阻,I I ∆表示内外接转换时电流表的相对变化,VV ∆表示内外接转换时电压表的相对变化,则下列说法正确的是:( )A:当R <<R V ,且R 较R A 大得不多时,宜选用电流表外接;B :当R <<R V ,且R 较R A 大得不多时,宜选用电流表内接;C :当V V I I ∆>∆时宜采用电流表内接; D :当VV I I ∆>∆时宜采用电流表外接。
答案:(BC )4.用霍尔法测直流磁场的磁感应强度时,霍尔电压的大小: ( )I的大小成正比; A:与霍尔片的厚度d成正比; B:与霍尔片上的工作电流sC:与外加磁场的磁感应强度的大小成正比; D:与霍尔材料的性质无关;答案:(ABC)5.关于双臂电桥,下列说法正确的是:()A:双臂电桥有两条比率臂;B:双臂电桥有两条比较臂;C:双臂电桥用于测量低电阻;D:双臂电桥用于测量中值电阻。
大学物理((一)(二)课程描述
车辆工程专业课程描述课程名称:大学物理㈠课程编号:0911xk05课程学分: 3 学时:54前期课程:高等数学课程简介以物理学基础为内容的大学物理课程,是理工科各专业学生一门重要的通识性的必修基础课。
大学物理课程既为学生打好必要的物理基础,又在培养学生科学的世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神、创新意识等方面,具有其他课程不能替代的重要作用。
教学要求1. 使学生对物理学所研究的各种物质运动形式以及它们之间的联系有比较全面和系统的认识;对大学物理课中的基本理论、基本知识能够正确地理解,并且有初步应用的能力。
2. 通过教学环节,培养学生严肃的科学态度和求实的科学作风。
根据本课程的特点,在传授知识的同时加强对学生进行能力培养,如通过对自然现象和演示实验的观察等途径,培养学生从复杂的现象中抽象出带有物理本质的内容和建立物理模型的能力、运用理想模型和适当的数学工具定性分析研究和定量计算问题的能力以及独立获取知识与进行知识更新的能力,联系工程实际应用的能力等。
3. 在理论教学中,要根据学生情况精讲基本内容,有些内容可安排学生自学或讨论,并要安排适当课时的习题课;要充分利用演示实验、录像等形象化教学手段,应尽量发挥计算机多媒体在物理教学中的作用,以提高教学效果。
在教学过程中,还要处理好与中学物理的衔接与过渡,一方面要充分利用学生已掌握的物理知识,另一方面要特别注意避免和中学物理不必要的重复。
在与后继有关课程的关系上,考虑到本课程的性质,应着重全面系统地讲授物理学的基本概念、基本规律和分析解决问题的基本方法,不宜过分强调结合专业。
教学内容(一)力学1.质点运动学2.质点动力学3.刚体的运动要求:力学是大学物理教学内容中最基本、最重要的部分,它是学习大学物理其它部分以及许多后继课程所必须具备的基础知识。
教学中要充分利用学生已有的力学基础,避免简单重复;要应用高等数学工具,在新的高度讲授力学概念和规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学基础教育《大学物理(一)》期末考试试题含答案
姓名:______ 班级:______ 学号:______
考试须知:
1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)
1、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为
,开始时杆竖直下垂,如图所示。
现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。
2、气体分子的最可几速率的物理意义是__________________。
3、一条无限长直导线载有10A的电流.在离它 0.5m远的地方它产生的磁感强度B为____________。
一条长直载流导线,在离它1cm处产生的磁感强度是T,它所载的电流为____________。
4、一长为的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。
抬起另一端使棒向上与水平面呈60°,然后无初转速地将棒释放,已知棒对轴的转动惯量为,则
(1) 放手时棒的角加速度为____;(2) 棒转到水平位置时的角加速度为____。
()
5、一质点的加速度和位移的关系为且,则速度的最大值为_______________ 。
6、质量为M的物体A静止于水平面上,它与平面之间的滑动摩擦系数为μ,另一质量为
的小球B以沿水平方向向右的速度与物体A发生完全非弹性碰撞.则碰后它们在水平方向滑过的距离L=__________。
7、两个同振动方向、同频率、振幅均为A的简谐振动合成后振幅仍为A,则两简谐振动的相位差为_______ 。
8、一根长为l,质量为m的均匀细棒在地上竖立着。
如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时细棒的角加速度应为_____。
9、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动角速度应变_____;转动惯量变_____。
10、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:()。
①
②
③
④
试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处。
(1) 变化的磁场一定伴随有电场;__________________
(2) 磁感线是无头无尾的;________________________
(3) 电荷总伴随有电场.__________________________
二、名词解释(共5小题,每题3分,共15分)
1、功能原理:
2、循环过程:
3、介质的极化:
4、波的干涉:
5、光的吸收:
三、选择题(共10小题,每题2分,共20分)
1、如图,在一圆形电流所在的平面内,选一个同心圆形闭合回路()。
(A),且环路上任意一点
(B),且环路上任意一点
(C),且环路上任意一点
(D),且环路上任意一点常量
2、长为的匀质细杆,可绕过其端点的水平轴在竖直平面内自由转动。
如果将细杆置于水平位置,然后让其由静止开始自由下摆,则开始转动瞬间杆的角加速度和细杆转动到竖直位置时的角加速度分别为:()。
A.0;
B.; 0
C.0;
D.;0。
3、把理想气体的状态方程写成恒量时,下列说法中正确的是()。
A. 对一定质量的某种气体,在不同状态下,此恒量不等
B. 对摩尔数相同的不同气体,此恒量相等
C. 对不同质量的同种气体,此恒量相等
D. 以上说法都不对
4、在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是()。
A.通过封闭曲面的电通量仅是面内电荷提供的
B.封闭曲面上各点的场强是面内电荷激发的
C.由高斯定理求得的场强仅由面内电荷所激发的
D.由高斯定理求得的场强是空间所有电荷共同激发的
5、物体A的质量是B的2倍且静止,物体B以一定的动能E与A碰撞后粘在一块并以共同的速度运动, 碰撞后两物体的总动能为()。
A. E
B. E/2
C. E/3
D. 2E/3
6、如图所示,一光滑细杆上端由光滑铰链固定,杆可绕其上端在任意角度的锥面上绕竖直
轴作匀角速度转动。
有一小环套在杆的上端处。
开始使杆在一个锥面上运动起来,而后小环由静止开始沿杆下滑。
在小环下滑过程中,小环、杆和地球系统的机械能以及小环与杆对轴的角动量这两个量中()。
A.机械能、角动量都守恒
B.机械能守恒、角动量不守恒
C.机械不守恒、角动量守恒
D.机械能、角动量都不守恒
7、一质点作简谐振动,周期为T.质点由平衡位置向x轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为()。
A. T /4
B. T /6
C. T /8
D. T /12
8、一个物体沿固定圆弧光滑轨道由静止下滑,在下滑过程中()。
A.它的加速度方向永远指向圆心,其速率保持不变
B.它受到的轨道的作用力的大小不断增加
C.它受到的合外力的大小变化,方向永远指向圆心
D.它受到的合外力的大小不变,其速率不断增加
9、以下四种运动形式中,加速度保持不变的运动是()。
A.抛体运动
B.匀速圆周运动
C.变加速直线运动
D.单摆的运动
10、三个偏振片P1、P2与P3堆叠在一起,P1与P3的偏振化方向相互垂直,P2与P1的偏振化方向间的夹角为,强度为的自然光垂直入射于偏振片P1,并依次透过偏振片P1、P2与P3,若不考虑偏振片的吸收和反射,则通过三个偏振片后的光强为()。
A.
B.
C.
D.
四、解答题(共3小题,每题15分,共45分)
1、如图所示:长为的匀质细杆,质量为可绕过其端点的水平轴在竖直平面内自由转动。
如果将细杆置与水平位置,然后让其由静止开始自由下摆。
求:(1)开始转动的瞬间,细杆的角加速度为多少?(2)细杆转动到竖直位置时角速度为多少?
2、已知质点的运动学方程为:. 式中的单位为米,的单位为秒,求作用于质点的合力的大小。
3、如图所示,均匀直杆质量为m,长为l,初始时棒水平静止。
轴光滑,。
求杆下摆到角时的角速度。
参考答案
一、填空题(共10小题,每题2分,共20分)
1、
2、表示分布在该速率附近单位速率区间内的分子数最多。
3、, 5A
4、7.5 , 15
5、10cm/s
6、
7、3/4π
8、
9、大,小
10、②③①
二、名词解释(共5小题,每题3分,共15分)
1、功能原理:系统所受外力的功和非保守内力的功的总和等于系统机械能的增量。
2、循环过程:系统经历一系列变化后又回到初始状态的整个过程。
简称循环。
3、介质的极化:将有极分子或无极分子放到外电场中,会发现电介质沿方向在两端出现等量异号电荷的现象。
4、波的干涉:两列频率相同,振动方向相同,相位相同或相位差恒定的波的叠加。
5、光的吸收:在光的照射下,原子吸收光而从低能级跃迁到高能级的现象。
三、选择题(共10小题,每题2分,共20分)
1、B
2、B
3、B
4、D
5、C
6、A
7、D
8、B
9、A
10、C
四、解答题(共3小题,每题15分,共45分)
1、解:
(1)开始转动的瞬间
(2)垂直位置时
2、解:
3、解对于杆和地球系统,只有重力做功,故机械能守恒。
①
直杆的转动惯量为OA段和OB段转动惯量的叠加,所以
②
将②代入①,解得。