完整版)高等数学测试题及答案

合集下载

高等数学试题及参考答案

高等数学试题及参考答案

高等数学试题及参考答案一、选择题(每题4分,共20分)1. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = \sin(x) \)D. \( f(x) = \cos(x) \)答案:B2. 计算极限 \(\lim_{x \to 0} \frac{\sin(x)}{x}\) 的值。

A. 0B. 1C. 2D. \(\infty\)答案:B3. 以下哪个级数是收敛的?A. \(\sum_{n=1}^{\infty} \frac{1}{n^2}\)B. \(\sum_{n=1}^{\infty} \frac{1}{n}\)C. \(\sum_{n=1}^{\infty} \frac{1}{2^n}\)D. \(\sum_{n=1}^{\infty} \frac{1}{n^3}\)答案:A4. 函数 \(y = e^x\) 的导数是?A. \(e^x\)B. \(-e^x\)C. \(\ln(e)\)D. \(\frac{1}{e^x}\)答案:A5. 计算定积分 \(\int_0^1 x^2 dx\) 的值。

A. \(\frac{1}{3}\)B. \(\frac{1}{2}\)C. \(\frac{1}{4}\)D. \(\frac{1}{6}\)答案:A二、填空题(每题6分,共30分)1. 函数 \(y = \ln(x)\) 的反函数是 \(y = \boxed{e^x}\)。

2. 函数 \(y = x^2 + 2x + 1\) 的最小值是 \(\boxed{0}\)。

3. 函数 \(y = \sin(x)\) 的周期是 \(\boxed{2\pi}\)。

4. 函数 \(y = \frac{1}{x}\) 的不定积分是 \(\boxed{\ln|x| + C}\)。

5. 函数 \(y = \cos(x)\) 的导数是 \(\boxed{-\sin(x)}\)。

高等数学考试题库及答案

高等数学考试题库及答案

高等数学考试题库及答案一、选择题(每题3分,共30分)1. 函数y=x^2+2x+1的导数是:A. 2x+2B. 2x+1C. 2xD. 2答案:A2. 以下哪个选项是无穷小量:A. 0B. 1C. ∞D. ∃答案:A3. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. -1D. ∞答案:B4. 以下哪个函数是奇函数:A. y=x^2B. y=x^3C. y=xD. y=1/x答案:B5. 积分∫(0 to 1) x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 3/2答案:A6. 以下哪个选项是二阶导数:A. dy/dxB. d^2y/dx^2C. d^2y/dxD. d^3y/dx^3答案:B7. 函数y=e^x的不定积分是:A. e^xB. e^x + CC. ln(x) + CD. x^2 + C答案:B8. 以下哪个选项是二重积分:A. ∫∫f(x,y) dxdyB. ∫f(x) dxC. ∫∫f(x) dxD. ∫f(x,y) dydx答案:A9. 以下哪个选项是泰勒级数展开:A. Σ(-1)^n x^(2n)B. Σ(-1)^n x^nC. Σx^n / n!D. Σx^(2n+1) / (2n+1)!答案:C10. 以下哪个选项是定积分的性质:A. ∫(a to b) f(x) dx = ∫(a to b) g(x) dxB. ∫(a to b) f(x) dx = -∫(b to a) f(x) dxC. ∫(a to b) f(x) dx = ∫(a to c) f(x) dx + ∫(c to b) f(x) dxD. ∫(a to b) f(x) dx = ∫(a to b) f(-x) dx答案:C二、填空题(每题2分,共20分)1. 函数y=x^3的导数是________。

答案:3x^22. 极限lim(x→∞) (1/x)等于________。

(完整word版)高等数学试题及答案

(完整word版)高等数学试题及答案

高学试题及答案选择题(本大题共40小题,每小题2。

5分,共100分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( B )....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()02lim1cos t t xx e e dtx-→+-=-⎰( A )A .0B .1C .-1D .∞3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( A ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( C )A 。

不连续 B.连续但左、右导数不存在 C.连续但不可导 D 。

可导 5.设C +⎰2-x xf(x)dx=e,则f(x)=( D )2222-x -x -x -x A.xe B.-xe C.2e D.-2e6. 设⎰⎰+=Ddxdy y x I )(22,其中D 由222a y x =+所围成,则I =( B )。

(A )40220a rdr a d aπθπ=⎰⎰(B )4022021a rdr r d aπθπ=⋅⎰⎰(C)3022032a dr r d aπθπ=⎰⎰(D ) 402202a adr a d aπθπ=⋅⎰⎰7。

若L 是上半椭圆⎩⎨⎧==,sin ,cos t b y t a x 取顺时针方向,则⎰-Lxdy ydx 的值为( C ).(A )0 (B )ab 2π(C )ab π (D )ab π8。

设a 为非零常数,则当( B )时,级数∑∞=1n n r a收敛 . (A) ||||a r > (B) ||||a r > (C ) 1||≤r (D )1||>r9. 0lim =∞→n n u 是级数∑∞=1n nu收敛的( D )条件。

(完整word版)高等数学测试及答案(第四章)

(完整word版)高等数学测试及答案(第四章)

高等数学测试(第四章)一. 选择题(每小题3分,共30分)1. 已知函数2(1)x +为()f x 的一个原函数,则下列函数中( )是()f x 的原函数。

A 21x -B 21x +C 22x x -D 22x x + 2. 若函数ln x x为()f x 的一个原函数,则不定积分()xf x dx '⎰=( ) A 1ln x C x -+ B 1ln x C x ++ C 12ln x C x -+ D 12ln x C x ++ 3. 已知函数()f x 在(,)-∞+∞内可导,且恒有()f x '=0,又有(1)1f -=,则函数()f x =( ) A 1 B -1 C 0 D x4. 若函数()f x 的一个原函数为ln x ,则一阶导数()f x '=( )A 1xB 21x- C ln x D ln x x 5. 若)(x f 的导函数是x sin ,则)(x f 有一个原函数为( )A 1+x sin ;B x sin 1-;C 1+x cos ;D x cos 1-.6. 设F )(x 是)(x f 的一个原函数,则下列各式正确的是(其中常数0>a )( )A .⎰+=c ax F a dx ax f x )(ln 1)(ln 1 B .⎰+=c ax aF dx ax f x)(ln )(ln 1 C .⎰+=c ax F x dx ax f x )(ln 1)(ln 1 D .⎰+=c ax F dx ax f x )(ln )(ln 1 7.()xf x dx ''=⎰ ( )A.()()xf x f x dx '-⎰B. ()()xf x f x C ''-+C.()()xf x f x C '-+D. ()()f x xf x C '-+8.下列式子中正确的是( )A .()()x F x dF =⎰B .()()C x F x dF d +=⎰C .()()dx x f dx x f dx d =⎰D .()()dx x f dx x f d =⎰ 9.若()()x G x F '=',k 为任意常数,则( )A .()()k x F x G =+B .()()k x F x G =-C .()()0=-x F x GD .()()()()'='⎰⎰dx x G dx x F10.若()x f '为连续函数,则()⎰='dx x f 2( ) A .()C x f +2 B .()C x f + C .()C x f +221 D .()C x f +22 二. 填空题(每小题4分,共20分)11.若ln ()x df x dx x =,则()_______f x =. 12.若2[()]2()cos d f x f x xdx =,且(0)1f =,则()______f x =____. 13. 2()____________1()f x dx f x '=+⎰. 14. =⎰dx x x x ___________________. 15. d dx x =⎪⎭⎫ ⎝⎛+211___________________. 三. 计算题16.(5分)计算22(1)dx x x +⎰. 17.(5分)计算 1x dx e +⎰.18.(5分)计算 321x dx x +⎰. 19.(5分)计算dx x x ⎰arctan .20.(5分)计算⎰21.(5分)计算 23x x e dx ⎰.22.(10分)计算 cos ax I e bxdx =⎰.23.(10分)设ln(1)(ln )x f x x +=,求()f x dx ⎰..高等数学测试题(四)不定积分部分一. 选择题 1—5 DCABB 6—10 DCDBC二. 填空题11. 2ln 1()ln 2x f x dx x C x ==+⎰. 12. ()sin 1f x x =+ 13. 22()()arctan ()1()1()f x df x dx f x C f x f x '==+++⎰⎰. 14. C x +815158. 15. C x x +-1. 二. 计算题16.(5分)计算 22(1)dx x x +⎰.【解析】原式=22111()arctan 1dx x C x x x-=--++⎰. 17.(5分)计算 1x dx e +⎰. 【解析】原式=(1)ln(1)1xx x e dx x e C e-=-+++⎰. 18.(5分)计算 321x dx x +⎰. 【解析】原式=22211()ln(1)122x x dx x x C x -=-+++⎰. 19.(5分)计算dx x x ⎰arctan .【解析】原式=dx x x x dx x x x x dx x ⎰⎰⎰⎪⎭⎫ ⎝⎛+-+=⎪⎪⎭⎫ ⎝⎛+-=22222211121arctan 211arctan 21arctan 21 ()C x x x x +-+=arctan arctan 212. 20.(5分)计算⎰【解析】设 t =原式=5253261166(arctan )1t t dt dt t t C C t t t +-==-+=++⎰⎰. 21.(5分)计算23x x e dx ⎰. 【解析】原式=22222222111()()222x x x x x e dx x d e x e e C ==-+⎰⎰. 22.(10分)计算 cos ax I e bxdx =⎰. 【解析】 222221cos sin 1(sin sin )1sin cos 1sin (cos cos )1sin cos ax ax ax ax ax ax ax ax ax ax ax I e bxdx e d bx b e bx a e bxdx ba e bx e d bxb ba e bx e bx a e bxdxb ba a e bx e bx Ib b b===-=+=+-=+-⎰⎰⎰⎰⎰22(sin cos )axe I b bx a bx C a b=+++ 23.(10分)设ln(1)(ln )x f x x+=,求()f x dx ⎰. 【解析】由ln(1)(ln )x f x x+=得ln(1)()x x e f x e +=, 所以ln(1)()ln(1)x x x x e f x dx dx e de e-+==-+⎰⎰⎰ ln(1)1x x x e dx e e +=-++⎰ln(1)1x x x x e e dx e e --+=-++⎰ ln(1)(1)1x x x x e d e e e --++=--+⎰ln(1)ln(1)x x x e e C e-+=--++ ln(1)ln(1)x x xe e x C e +=--+++.。

高等数学考试题库(附答案)

高等数学考试题库(附答案)

.《高数》试卷 1(上)一.选择题(将答案代号填入括号内,每题3 分,共 30 分).1.下列各组函数中,是相同的函数的是() .(A ) f xln x2和 g x2ln x(B ) f x| x | 和 g x x22| x |(C ) f x x 和 g x x( D ) f x和 g x1xsin x 42x 02.函数 fxln 1 x在 x 0 处连续,则 a() .ax 0(A )0(B )1(C )1(D )243.曲线 y x ln x 的平行于直线 x y 1 0 的切线方程为() .(A ) y x 1 (B ) y( x 1) ( C ) yln x 1x 1( D ) y x4.设函数f x | x |,则函数在点 x 0 处() .(A )连续且可导 ( B )连续且可微( C )连续不可导 ( D )不连续不可微5.点 x 0 是函数 y x 4的() .(A )驻点但非极值点( B )拐点( C )驻点且是拐点( D )驻点且是极值点6.曲线 y1) .的渐近线情况是(| x |(A )只有水平渐近线 ( B )只有垂直渐近线 ( C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.1 1的结果是() .fxx 2dx(A ) f1 C(B ) f1 C( C ) f1 C(D )f1 Cxxxx8.dx 的结果是() .ex e x(A ) arctan exC ( B ) arctan exC( C ) exexC( D ) ln( exe x)C9.下列定积分为零的是( ) .(A )4arctan x dx ( B ) 4x arcsin x dx (C ) 1exe xdx ( D )1x 2 x sin x dx1x2121 4410 .设f x1) .为连续函数,则 f 2x dx 等于((A )f2 f 0(B)1f 11 f 0(C)1f 2 f 0( D)f 1 f 0 22二.填空题(每题 4 分,共 20 分).f x e 2x 1x0x0 处连续,则 a1x..设函数在a x02.已知曲线 y f x 在 x 2 处的切线的倾斜角为5.,则 f 2x 63. y的垂直渐近线有条.2x14.dx.ln 2 xx 15.2x4 sin x cosx dx.2三.计算(每小题 5 分,共 30分)1.求极限12 xx sin x①limx② limxx2x0x e1x2.求曲线y ln x y 所确定的隐函数的导数y x. 3.求不定积分①xdx②dx a0③ xe x dx 1x 3x2a2四.应用题(每题10 分,共 20 分)1.作出函数y x33x2的图像.2.求曲线y22x 和直线 y x 4 所围图形的面积..《高数》试卷 1 参考答案一.选择题1.B 2.B 3. A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2 2 .33.24.arctanln x c5.23三.计算题1① e2② 12. y xx16y 13. ① 1 ln |x 1| C② ln | x2a2x | C③ exx 1 C2x3四.应用题1.略2. S 18.《高数》试卷 2(上)一. 选择题 (将答案代号填入括号内 ,每题 3 分,共 30 分)1.下列各组函数中 ,是相同函数的是 ().(A)f xx 和 g xx2(B)f xx 21和 y x 1x 1(C)f xx 和 g xx(sin 2 x cos 2x)(D)f xln x 2和 g x2ln xsin 2 x 1x 1x 12.设函数 fx2 x 1,则 limf x() .x2x11 x 1(A) 0(B)1 (C)2(D) 不存在3.设函数 y f x 在点 x 0 处可导,且 fx >0, 曲线则 yf x 在点 x 0 , f x 0处的切线的倾斜角为 {}.(A)0 (B)2(C)锐角(D)钝角4.曲线 y ln x 上某点的切线平行于直线 y2x3 ,则该点坐标是 ().(A)2,ln1(B)2, ln1(C)1,ln 2(D)1 , ln 222225.函数 y x 2e x及图象在 1,2 内是 ().(A) 单调减少且是凸的 (B)单调增加且是凸的(C) 单调减少且是凹的(D) 单调增加且是凹的6.以下结论正确的是 ().(A)若 x0为函数y f x的驻点 ,则x0必为函数y f x的极值点 .(B)函数 y f x导数不存在的点 ,一定不是函数y f x 的极值点.(C)若函数 y f x在 x0处取得极值,且f x0存在 ,则必有f x0=0.(D)若函数 y f x在 x0处连续,则f x一定存在 .17.设函数y f x的一个原函数为x2e x,则f x=()..1111 (A)2x 1 e x(B)2x e x(C)2x 1 e x(D)2xe x8.若(A)f x dx F x c ,则 sin xf cosx dx().F sin x c(B) F sin x c (C) F cosx c (D) F cos x c9.设F1xdx =(). x 为连续函数,则f02(A) f1f0(B)2 f1 f 0(C) 2 f 2f0(D) 2 f1f02 bdx a b 在几何上的表示(10. 定积分).a(A) 线段长b a (B)线段长 a b (C)矩形面积a b1(D) 矩形面积b a1二.填空题 (每题 4分,共 20分)ln1x2x 0, 在x1.设 f x1cos x0 连续,则a=________.a x02.设 y sin 2x ,则 dy_________________ d sin x .3.函数 y x1的水平和垂直渐近线共有 _______条 .21x4.不定积分x ln xdx______________________.5.1x2 sin x1___________.定积分1x 2dx1三.计算题 (每小题 5 分 ,共 30 分)1.求下列极限 :①lim 1 2xx0 1arctanx x② lim2x1x2.求由方程y 1 xe y所确定的隐函数的导数y x.3.求下列不定积分:①tan x sec3xdx②dxa 0③x2e x dx x2a2四.应用题 (每题 10 分,共 20 分)1.作出函数y 1 x3x 的图象.(要求列出表格)32.计算由两条抛物线:y2x, y x2所围成的图形的面积..《高数》试卷 2 参考答案一.选择题: CDCDB CADDD二填空题: 1. -2 2. 2sin x 3.3 4.1x2 ln x 1 x2c 5. 242三. 计算题: 1.2②1 2.y xe y① e y23.① sec3 x c② ln x2a2x c ③x22x 2 e x c3四.应用题: 1.略 2.S 13《高数》试卷3(上)一、填空题 (每小题 3分,共24分)1.函数 y1的定义域为 ________________________. 9x22.设函数 f x sin 4x , x0f x 在 x0处连续 .x, 则当 a=_________时,a,x03. 函数f (x)x21的无穷型间断点为 ________________.23xx24.设 f ( x) 可导,y f ( e x ) ,则 y ____________.5.limx21_________________. 2x2x 5x.6.1 x3sin 2xdx =______________.1x4x217. d x 2e tdt _______________________.dx 08. yyy30 是_______阶微分方程 .二、 求下列极限 (每小题 5 分,共15分)xx1x31 1. lim e;2. lim ;3. lim21.x 0sin xx 3x9x 2x三、求下列导数或微分 (每小题 5 分, 共 15 分)1. yx x, 求 y (0) .2. yecos x, 求 dy .2y ,求 dy .3. 设 xyexdx四、求下列积分 (每小题 5 分, 共15 分)1. 12sin x dx .2.x ln(1x)dx .x3.1e2xdxx t在 t处的切线与法线方程 .五、 (8 分)求曲线1 cost 2y六、 (8 分 )求由曲线 y x 21, 直线 y 0, x 0 和 x 1 所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分 )求微分方程 y 6 y13 y0的通解.八、 (7 分 )求微分方程 yy e x满足初始条件 y 10的特解 .x《高数》试卷 3 参考答案一. 1. x 32. a 43. x 24. e x f '(e x )5.16.07. 2 xex 28. 二阶2二 .1.原式 = limx1x 0x112. lim6x 3x33.原式 = lim[(1111)2 x] 2e 2x2x三 .1.2.y' 2 12 , y '(0)2(x2)dysin xecos xdx3.两边对 x 求写: yxy ' ex y(1 y ')x ye y xy y四.1.原式 = lim x2cos x C2.原式 = lim(1x)d (x2x 21) lim(1 x) x 2d[lim(1x)]22 x221( x1)dx= x lim(1 x) 11 xdx xlim(1 x)122x221 x22= xlim(1 x) 1 [ xx lim(1x)] C22 23.原式 = 11 2x12 x 1122 0 ed (2 x) 2e 02 (e1) 五. dysin t dy t 1且 t2, y 1dxdx 2.切线: y1 x,即 y x 1 22法线: y1( x ),即 y x 1 022六. S11)dx ( 1x2x) 103 ( x222V1 (x21)2dx12x21)dx0 ( x4( x52 x 2 x) 10 28 53 15r 2 6r13 0r 3 2i七.特征方程 : ye 3 x (C 1 cos2 x C 2 sin 2 x)1dx1dx八. y e x( e x e x dx C )1 [ (x 1e x)C ]x由 y x1 0, C 0x 1 x ye x《高数》试卷 4(上)一、选择题(每小题 3 分)1、函数 y ln(1 x)x 2 的定义域是( ) .A2,1B2,1C 2,1 D2,12、极限 lim e x的值是() .xA 、B 、C 、D 、不存在3、 limsin(x 1) ( ) .x 11 x 21 1A 、 1B 、 0C 、2 D 、24、曲线 y x3x 2 在点 (1,0) 处的切线方程是()A 、 y2( x 1)B 、 y 4( x 1)C 、 y 4x 1D 、 y 3( x 1)5、下列各微分式正确的是( ) .A 、xdx( x 2 )、 cos2xdx d(sin 2x)dBC 、 dx d (5 x)D 、 d (x 2 ) (dx)26、设f (x)dx2 cosxC ,则f ( x) () .2A 、 sinxB 、27、2 ln xdx() .xsinxC 、sinxCD 、2 sinx22 2A 、2 1 ln 2x C B 、 1(2 ln x)2Cx 222.C 、 ln 2ln x C1 ln xCD 、x28、曲线 yx2, x1 , y0 所围成的图形绕 y 轴旋转所得旋转体体积 V() .1x 4dx1 ydyA 、B 、1(1 y)dy1(1 x4)dxC 、D 、1exdx() .9、e x1A 、 ln1 eB 、 ln2 eC 、 ln1 eD 、 ln1 2e223210 、微分方程 yyy 2e2 x的一个特解为() .A 、 y3 e 2x B 、 y3 e x C 、 y2 xe 2x D 、 y2 e 2 x7777二、填空题(每小题 4 分)1、设函数 yxe x,则 y; 3sin mx2 则 m.2、如果 lim,x 02x313、 x 3cos xdx;14、微分方程 y4 y 4 y 0 的通解是.5、函数 f ( x)x2 x 在区间0,4 上的最大值是,最小值是;三、计算题(每小题5 分)1、求极限 lim1 x1 x ;2 、求 y1cot 2x ln sin x 的导数;x 0x23、求函数x 31 4 、求不定积分dx ;y的微分;xx31115、求定积分e ln x dx ;dyx 6、解方程1;edxy 1 x2四、应用题(每小题 10 分)1、求抛物线y x 2与y 2 x 2所围成的平面图形的面积.2、利用导数作出函数y 3x2x3的图象.参考答案.一、 1、C ;2、D ;3、C ;4、B ;5、 C ;6、 B ;7、B ;8、A ;9、A ; 10、D ;二、 1、 (x2)e x;2 、4;3、0 ;4 、 y(C 1 C 2 x)e 2 x; 5、 8,09三、1、1 ;2、cot 3x ;3、6 x 2dx ;4 、 2 x 1 2 ln(1x 1) C ;5、2(21) ; 6 、 y22 1 x2C ;( x 3 1) 2e四、1、 8;32、图略《高数》试卷 5(上)一、选择题(每小题3 分)1 、函数 y2x1 的定义域是() .lg( x 1)A 、2, 1 0,B 、 1,0(0,)C 、 ( 1,0) (0,)D 、( 1, )2 、下列各式中,极限存在的是( ) .A 、lim c o sxB 、 lim arctanxC 、 lim sin xD 、 lim 2xxxxx3 、 lim (x )x() .x1 xA 、 eB 、 e 2C 、 1D 、1e4、曲线 yx ln x 的平行于直线 x y 1 0 的切线方程是() .A 、 yxB 、C 、yx 1D 、 y (ln x 1)( x 1) y ( x 1)5、已知 yxsin 3x ,则 dy() .A、( cos3x3sin 3x)dxB、C、(cos 3x sin 3x) dx D 、6、下列等式成立的是() .(sin 3x3x cos3x) dx (sin 3x x cos3x)dxA、C、x dx1x 1C B 、a x dx a x ln x C11 cosxdx sin x C D 、tan xdx Cx 21.7、计算e sin x sin xcos xdx 的结果中正确的是() .A、e sin x CB、e sin x cos x CC、e sin x sin x CD、e sin x(sin x 1)C8、曲线y x2, x 1, y0 所围成的图形绕x 轴旋转所得旋转体体积V() .1x 4dx B 、1A、ydy001(1y)dy1(1 x 4 )dxC、 D 、009、设 a ﹥,则a22) .a dx(A、a2 B 、a2C、1a20D、1a2244 10 、方程()是一阶线性微分方程 .A、x2y ln y0B、y e x y 0 xC、(1x2 ) y y sin y0D、xy dx ( y26x)dy 0二、填空题(每小题 4 分)1、设f ( x)e x1, x0, lim f ( x);,则有 lim f (x)ax b, x0x 0x 02、设y xe x,则y;3、函数f ( x)ln(1x2 ) 在区间1,2 的最大值是,最小值是;14、x3cos xdx;15、微分方程y 3 y 2 y 0的通解是.三、计算题(每小题 5 分)1、求极限lim (11 x 23) ;x 1x x2 2、求y 1 x2 arccosx 的导数;3、求函数yx的微分;1x24、求不定积分1;dxx 2ln x.5、求定积分eln x dx ;1e6、求方程x2y xy y 满足初始条件y(1) 4 的特解.2四、应用题(每小题10 分)1、求由曲线y 2 x2和直线x y 0 所围成的平面图形的面积.2、利用导数作出函数y x 36x 29x 4的图象.参考答案( B 卷)一、 1、B;2、A;3、D;4、C;5、 B;6、C;7、 D;8、A;9、D;10 、B.二、 1、 2 , b ; 2 、( x2)e x; 3 、ln 5 , 0 ;4、 0 ;5、C1e x C 2 e2x.三、1、1; 2 、x arccosx 1 ; 3 、1dx ;3 1 x2(1 x2 ) 1 x 24、2 2ln x C ;5、2(21) ; 6 、y 2 e e x四、 1、9 ;2、图略21x;2。

高等数学考试试卷及答案

高等数学考试试卷及答案
21. ( 单选题 ) 设

(本题 2.0 分)
A、 B、 C、 D、 学生答案:A 标准答案:A 解析: 得分:2
22. ( 单选题 ) 无穷小量是(本题 2.0 分)
A、 比 0 稍大一点的一个数 B、 一个很小很小的数 C、 以 0 为极限的一个变量 D、 数 0 学生答案:C 标准答案:C
解析: 得分:2
学生答案:A,C 标准答案:BC 解析: 得分:0
38. ( 多选题 )
下列微分方程中为一阶线性微分方程是( )。
(本题 4.0 分)
A、 B、 C、 D、 学生答案:A 标准答案:BC 解析: 得分:0
39. ( 多选题 ) 函数
在区间
内二阶可
导, 且
则曲线

区间

(本题 4.0 分)
A、 曲线单调减少 B、 曲线单调增加 C、 曲线既不增、也不减 D、 曲线图形上凹(凹弧) E、 曲线图形下凹(凸弧) 学生答案:A,D 标准答案:AE
C、
D、 学生答案:D 标准答案:A 解析: 得分:0
29. ( 单选题 )
函数
的图形关于( )。
(本题 2.0 分) A、 x 轴(直线 y=0)对称 B、 y 轴(直线 x=0)对称 C、 直线 y=x 对称 D、 原点 对称
学生答案:C 标准答案:B 解析: 得分:0
30. ( 单选题 )
函数 f(x)=ln(x-5)的定义域为( )
5. ( 单选题 ) 设函数 f(x)=(x+1)Cosx,则 f(0)=( ).(本题 2.0 分)
A、 -1 B、 0 C、 1 D、 无定义 学生答案:C 标准答案:C 解析: 得分:2
6. ( 单选题 ) 分)

(完整版)大学高等数学上考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是(). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x =和()g x =(C )()f x x =和()2g x =(D )()||x f x x=和()g x =1 2.函数()()20ln 10x f x x a x ≠⎪=+⎨⎪=⎩在0x =处连续,则a =().(A )0(B )14(C )1(D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为(). (A )1y x =-(B )(1)y x =-+(C )()()ln 11y x x =--(D )y x =4.设函数()||f x x =,则函数在点0x =处().(A )连续且可导(B )连续且可微(C )连续不可导(D )不连续不可微5.点0x =是函数4y x =的().(A )驻点但非极值点(B )拐点(C )驻点且是拐点(D )驻点且是极值点6.曲线1||y x =的渐近线情况是(). (A )只有水平渐近线(B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是().(A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1fC x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x xdxe e -+⎰的结果是().(A )arctan x e C +(B )arctan x e C -+(C )x x e e C --+(D )ln()x x e e C -++9.下列定积分为零的是().(A )424arctan 1x dx x ππ-+⎰(B )44arcsin x x dx ππ-⎰(C )112x xe e dx --+⎰(D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于().(A )()()20f f -(B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f - 二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条.4.()21ln dxx x =+⎰.5.()422sin cos x x x dx ππ-+=⎰.三.计算(每小题5分,共30分)1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '.3.求不定积分①()()13dx x x ++⎰②()0a >③x xe dx -⎰四.应用题(每题10分,共20分) 1.作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一. 选择题1.B2.B3.A4.C5.D6.C7.D8.A9.A10.C二.填空题 1.2- 2.3-3.2 4.arctanln x c + 5.2 三.计算题1①2e ②162.11xy x y '=+-3.①11ln ||23x C x +++②ln ||x C +③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是().(A)()f x x =和()g x =()211x f x x -=-和1y x =+(C)()f x x =和()22(sin cos )g x x x x =+(D)()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=(). (A)0(B)1(C)2(D)不存在3.设函数()y f x =在点0x 处可导,且()f x '>0,曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{}.(A)0(B)2π(C)锐角(D)钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是().(A)12,ln 2⎛⎫ ⎪⎝⎭(B)12,ln 2⎛⎫- ⎪⎝⎭(C)1,ln 22⎛⎫ ⎪⎝⎭(D)1,ln 22⎛⎫- ⎪⎝⎭5.函数2x y x e -=及图象在()1,2内是().(A)单调减少且是凸的(B)单调增加且是凸的(C)单调减少且是凹的(D)单调增加且是凹的6.以下结论正确的是().(A)若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B)函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C)若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0.(D)若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =(). (A)()121xx e -(B)12xx e -(C)()121x x e +(D)12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰().(A)()sin F x c +(B)()sin F x c -+(C)()cos F x c +(D)()cos F x c -+9.设()F x 为连续函数,则102x f dx ⎛⎫' ⎪⎝⎭⎰=().(A)()()10f f -(B)()()210f f -⎡⎤⎣⎦(C)()()220f f -⎡⎤⎣⎦(D)()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分ba dx ⎰()ab <在几何上的表示().(A)线段长b a -(B)线段长a b -(C)矩形面积()1a b -⨯(D)矩形面积()1b a -⨯二.填空题(每题4分,共20分)1.设()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩,在0x =连续,则a =________.2.设2sin y x =,则dy =_________________sin d x .3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5.定积分2121sin 11x x dx x-+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+②arctan 2lim 1x x xπ→+∞-2.求由方程1y y xe =-所确定的隐函数的导数x y '.3.求下列不定积分:①3tan sec x xdx ⎰②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分)1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDBCADDD二填空题:1.-22.2sin x 3.34.2211ln 24x x x c -+ 5.2π三.计算题:1.①2e ②12.2yx e y y '=- 3.①3sec 3xc +②)ln x c +③()222x x x e c -++四.应用题:1.略2.13S =《高数》试卷3(上)一、 填空题(每小题3分,共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩,则当a =_________时,()f x 在0x =处连续.3.函数221()32x f x x x -=-+的无穷型间断点为________________.4.设()f x 可导,()x y f e =,则____________.y '=5.221lim _________________.25x x x x →∞+=+- 6.321421sin 1x xdx x x -+-⎰=______________. 7.20_______________________.x td e dt dx -=⎰ 8.30y y y '''+-=是_______阶微分方程. 二、求下列极限(每小题5分,共15分)1.01lim sin x x e x →-;2.233lim 9x x x →--;3.1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分,共15分)1.2xy x =+,求(0)y '.2.cos x y e =,求dy . 3.设x y xy e +=,求dydx.四、求下列积分(每小题5分,共15分)1.12sin x dx x ⎛⎫+ ⎪⎝⎭⎰.2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+直线0,0y x ==和1x =所围成的平面图形的面积,以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+ 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰ =221lim(1)[lim(1)]222x x x x x C +--+++ 3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰由10,0y x C ==⇒=《高数》试卷4(上)一、选择题(每小题3分)1、函数2)1ln(++-=x x y 的定义域是().A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限x x e ∞→lim 的值是().A 、∞+B 、0C 、∞-D 、不存在3、=--→211)1sin(lim x x x ().A 、1B 、0C 、21-D 、214、曲线23-+=x x y 在点)0,1(处的切线方程是()A 、)1(2-=x yB 、)1(4-=x yC 、14-=x yD 、)1(3-=x y 5、下列各微分式正确的是(). A 、)(2x d xdx =B 、)2(sin 2cos x d xdx = C 、)5(x d dx --=D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)(,则=)(x f ().A 、2sin xB 、2sin x -C 、C x +2sinD 、2sin 2x-7、⎰=+dx xxln 2(). A 、C x x++-22ln 212B 、C x ++2)ln 2(21C 、C x ++ln 2lnD 、C xx++-2ln 1 8、曲线2x y =,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ().A 、⎰14dx x πB 、⎰1ydy πC 、⎰-10)1(dy y πD 、⎰-14)1(dx x π9、⎰=+101dx e e xx(). A 、21lne +B 、22ln e +C 、31ln e +D 、221ln e+ 10、微分方程x e y y y 22=+'+''的一个特解为(). A 、x e y 273=*B 、x e y 73=*C 、x xe y 272=*D 、x e y 272=* 二、 填空题(每小题4分)1、设函数x xe y =,则=''y ;2、如果322sin 3lim0=→x mx x ,则=m .3、=⎰-113cos xdx x ;4、微分方程044=+'+''y y y 的通解是.5、函数x x x f 2)(+=在区间[]4,0上的最大值是,最小值是;三、计算题(每小题5分)1、求极限x x x x --+→11lim;2、求x x y sin ln cot 212+=的导数;3、求函数1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ;6、解方程21xy xdx dy -=; 四、应用题(每小题10分)1、求抛物线2x y =与22x y -=所围成的平面图形的面积.2、利用导数作出函数323x x y -=的图象.参考答案一、1、C ;2、D ;3、C ;4、B ;5、C ;6、B ;7、B ;8、A ;9、A ;10、D ;二、1、x e x )2(+;2、94;3、0;4、x e x C C y 221)(-+=;5、8,0三、1、1;2、x 3cot -;3、dx x x 232)1(6+;4、C x x +++-+)11ln(212;5、)12(2e -;6、C x y =-+2212; 四、1、38;2、图略《高数》试卷5(上)一、选择题(每小题3分)1、函数)1lg(12+++=x x y 的定义域是().A 、()()+∞--,01,2B 、()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是().A 、x x cos lim 0→B 、x x arctan lim ∞→C 、x x sin lim ∞→D 、x x 2lim +∞→3、=+∞→xx xx )1(lim ().A 、eB 、2eC 、1D 、e14、曲线x x y ln =的平行于直线01=+-y x 的切线方程是().A 、x y =B 、)1)(1(ln --=x x yC 、1-=x yD 、)1(+-=x y 5、已知x x y 3sin =,则=dy ().A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是().A 、⎰++=-C x dx x 111αααB 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是().A 、C e x +sinB 、C x e x +cos sin C 、C x e x +sin sinD 、C x e x +-)1(sin sin8、曲线2x y =,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ().A 、⎰104dx x πB 、⎰1ydy πC 、⎰-10)1(dy y πD 、⎰-14)1(dx x π9、设a ﹥0,则=-⎰dx x a a22().A 、2aB 、22a πC 、241a 0D 、241a π 10、方程()是一阶线性微分方程.A 、0ln 2=+'xyy x B 、0=+'y e y xC 、0sin )1(2=-'+y y y xD 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设x xe y =,则=''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是,最小值是;4、=⎰-113cos xdx x ;5、微分方程023=+'-''y y y 的通解是. 三、计算题(每小题5分)1、求极限)2311(lim 21-+--→x x x x ;2、求x x y arccos 12-=的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xx ln 21;5、求定积分⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、 应用题(每小题10分)1、求由曲线22x y -=和直线0=+y x 所围成的平面图形的面积.2、利用导数作出函数49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ;2、A ;3、D ;4、C ;5、B ;6、C ;7、D ;8、A ;9、D ;10、B.二、1、2,b ;2、x e x )2(+;3、5ln ,0;4、0;5、x x e C e C 221+.三、1、31;2、1arccos 12---x x x ;3、dx xx 221)1(1--;4、C x ++ln 22;5、)12(2e -;6、x e x y 122-=; 四、1、29;2、图略。

高等数学考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x =(C )()f x x = 和 ()()2g x x =(D )()||x f x x=和 ()g x =1 2.函数()()sin 420ln 10x x f x x a x ⎧+-≠⎪=+⎨⎪=⎩在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ).(A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ).(A )1f C x ⎛⎫-+ ⎪⎝⎭ (B )1fC x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x ⎛⎫-+ ⎪⎝⎭8.x xdxe e -+⎰的结果是( ).(A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ (D )ln()x x e e C -++ 9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f - 二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条.4.()21ln dxx x =+⎰.5.()422sin cos x x x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分①()()13dxx x ++⎰②()220dx a x a >-⎰③x xe dx -⎰四.应用题(每题10分,共20分)1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积. 《高数》试卷1参考答案 一. 选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2- 2.33-3. 2 4.arctanln x c + 5.2 三.计算题1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++ ②22ln ||x a x C -++ ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }.(A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ).(A) 12,ln 2⎛⎫ ⎪⎝⎭ (B)12,ln 2⎛⎫- ⎪⎝⎭(C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2x y x e -=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的 6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点.(B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121xx e - (B) 12xx e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦(D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分ba dx ⎰()ab <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x-+=+⎰___________. 三.计算题(每小题5分,共30分) 1.求下列极限:①()1lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1y y xe =-所确定的隐函数的导数x y '.3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分)1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()x y f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx. 四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x < 2.4a = 3.2x = 4.'()x x e f e 5.126.07.22x xe -8.二阶二.1.原式=0lim 1x x x→=2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+ 2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+ 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x xe d x e e ==-⎰ 五.sin 1,122dydy t t t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰ 七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰由10,0y x C ==⇒=《高数》试卷4(上)一、 选择题(每小题3分)1、函数 2)1ln(++-=x x y 的定义域是( ). A []1,2- B [)1,2- C (]1,2- D ()1,2-2、极限x x e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx =B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinx B 、 2sin x - C 、 C x +2sin D 、2sin 2x - 7、⎰=+dx xxln 2( ). A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21 C 、 C x ++ln 2ln D 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ).A 、⎰14dx x π B 、⎰1ydy πC 、⎰-10)1(dy y π D 、⎰-14)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 x e y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=* 二、 填空题(每小题4分)1、设函数x xe y =,则 =''y ;2、如果322sin 3lim0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ; 三、计算题(每小题5分)1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=; 四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、x e x )2(+; 2、94; 3、0 ; 4、x e x C C y 221)(-+= ; 5、8,0 三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e- ; 6、C x y =-+2212 ;四、 1、38;2、图略《高数》试卷5(上)一、选择题(每小题3分)1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2YB 、 ()),0(0,1+∞-YC 、),0()0,1(+∞-ID 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、x x 2lim +∞→3、=+∞→xx xx )1(lim ( ).A 、eB 、2eC 、1D 、e14、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ). A 、C e x +sin B 、C x e x +cos sin C 、C x e x +sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ).A 、⎰14dx x π B 、⎰1ydy πC 、⎰-10)1(dy y π D 、⎰-14)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2aB 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x 二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)(φx b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 x xe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x ;5、微分方程 023=+'-''y y y 的通解是 . 三、 计算题(每小题5分)1、求极限 )2311(lim 21-+--→x x x x ; 2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xx ln 21 ;5、求定积分⎰eedx x 1ln ;6、求方程y xy y x =+'2 满足初始条件4)21(=y 的特解.四、 应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、x e x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、x x e C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、29; 2、图略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完整版)高等数学测试题及答案
高等数学测试试题
一、是非题(3’×6=18’)
1、$\lim_{x\to 1}(1-x)=e$。

(×)
2、函数$f(x)$在点$x=x_0$处连续,则它在该点处必可导。

(×)
3、函数的极大值一定是它的最大值。

(×)
4、设$G(x)=f(x)$,则$G(x)$为$f(x)$的一个原函数。

(√)
5、定积分$\int_{-1}^1 x\cos x dx=0$.(√)
6、函数$y=x-2$是微分方程$x\frac{dy}{dx}+2y$的解。

(√)
二、选择题(4’×5=20’)
7、函数$f(x)=\sin\frac{1}{x}$是定义域内的()
A、单调函数
B、有界函数
C、无界函数
D、周期函数
答案:C
8、设$y=1+2x$,则$dy$=()
A、$2xdx$
B、$2x\ln2$
C、$2x\ln2dx$
D、$(1+2x\ln2)dx$
答案:A
9、设在区间$[a,b]$上$f'(x)>0$,$f''(x)>0$,则曲线$y=f(x)$在该区间上沿着$x$轴正向
A、上升且为凹弧
B、上升且为凸弧
C、下降且为凹弧
D、下降且为凸弧
答案:B
10、下列等式正确的是()
A、$\int f'(x)dx=f(x)$
B、$\int f(x)dx=f'(x)$
C、$\int f'(x)dx=f(x)+C$
D、$\int f(x)dx=f'(x)+C$
答案:C
11、$P=-\int \cos^2 x dx$,$Q=3\int dx$,$R=\int xdx$,则
int_0^{\frac{\pi}{2}} \sin x dx < \int_0^1 \sin^2 x dx <
\int_0^{\frac{\pi}{2}} \sin 2x dx$
A、$P<Q<R$
B、$Q<P<R$
C、$P<R<Q$
D、$R<Q<P$
答案:D
三、选择题(4’×5=20’)
12.函数$f(x)=\frac{x^2}{3x-3}$的间断点为()
A、3
B、4
C、5
D、6
答案:A
13、设函数$f(x)$在点$x=0$处可导,且$\lim_{h\to 0}\frac{f(-h)-f(0)}{h}=\frac{1}{2}$,则$f'(0)$=()
A、2
B、1
C、-1
D、-2
答案:B
14、设函数$f(x)=x^2\ln x$,则$f''(1)$=()
A、2
B、3
C、4
D、5
答案:B
15、$\frac{d}{dx}\int_0^{\ln(1+x)}\ln(1+t)dt=$
A、$\ln(1+x)$
B、$\ln(1+x^2)$
C、$2x\ln(1+x^2)$
D、$x^2\ln(1+x^2)$
答案:C
16、$\int f'(e^x)e^xdx=$
A、$f(e^x)$
B、$f(e^x)+C$
C、$f'(e^x)$
D、$f'(e^x)+C$
答案:B
四、选择题(7’×6=42’)
17、$\lim_{x\to 2x-2}\frac{x^2+x-6}{x-2x+2}=$
A、5
B、6
C、7
D、8
答案:B
18、函数$y=x^3-3x$的单调减少区间为()
A、$(-\infty,-1)$
B、$(-\infty,1)$
C、$(-1,+\infty)$
D、$[-1,1]$
答案:A
19、已知曲线方程$y=\ln(2+x)$,则点$M(0,\ln2)$处的切线方程为()
A、$y=\frac{x}{2}+\ln2$
B、$y=\frac{x}{2}-\ln2$
C、$y=2x+\ln2$
D、$y=2x-\ln2$
答案:A
B、y=x+1
C、y=x^2+ln2
D、y=x+ln2x
10、函数f(x)=∫lntdt的极值点与极值分别为:
A、x=2,极小值f(2)=1
B、x=1,极小值f(1)=1/2(ln2-1)
C、x=2,极大值f(2)=1
D、x=1,极大值f(1)=1/2(ln2-1)
21、曲线y=4-x^2,x∈[0,4]与x轴,y轴以及x=4所围的平面图形的面积值S=
A、4
B、8
C、16
D、32
22、微分方程dy/dx=ex-2y满足初始条件y(0)=1的特解为:
A、lny=ex-1
B、e2y=2ex-1
C、e2y=ex-1
D、e2y=e2x-1。

相关文档
最新文档