代数式求值经典题型(含详细答案)

合集下载

初一数学代数式求值

初一数学代数式求值

初一数学代数式求值题的详细解析:1. 题目:已知x = 1 ,求2x + 3 的值。

解析:把x = 1 代入式子,得到2×1 + 3 = 5 。

2. 题目:若y = -2 ,求3y²- 4 的值。

解析:将y = -2 代入,3×(-2)²- 4 = 8 。

3. 题目:当a = 5 时,求6a - 1 的值。

解析:把a = 5 代入,6×5 - 1 = 29 。

4. 题目:已知b = 4 ,求7b + 2 的值。

解析:因为b = 4 ,所以7×4 + 2 = 30 。

5. 题目:若c = 0 ,求8c - 5 的值。

解析:由于c = 0 ,所以8×0 - 5 = -5 。

6. 题目:当d = -3 时,求5d + 7 的值。

解析:把d = -3 代入,5×(-3) + 7 = -8 。

7. 题目:已知e = 2 ,求9e - 6 的值。

解析:将e = 2 代入,9×2 - 6 = 12 。

8. 题目:若f = -1 ,求10f + 8 的值。

解析:把f = -1 代入,10×(-1) + 8 = -2 。

9. 题目:当g = 3 时,求4g - 9 的值。

解析:把g = 3 代入,4×3 - 9 = 3 。

10. 题目:已知h = 5 ,求6h - 10 的值。

解析:因为h = 5 ,所以6×5 - 10 = 20 。

11. 题目:若i = 0 ,求7i - 3 的值。

解析:由于i = 0 ,所以7×0 - 3 = -3 。

12. 题目:当j = -2 时,求8j + 5 的值。

解析:把j = -2 代入,8×(-2) + 5 = -11 。

13. 题目:已知k = 1 ,求5k - 7 的值。

解析:将k = 1 代入,5×1 - 7 = -2 。

14. 题目:若l = -3 ,求6l + 4 的值。

初中数学竞赛代数专题讲义之代数式求值含例题习题及详解

初中数学竞赛代数专题讲义之代数式求值含例题习题及详解

代数式求值由数与字母经有限次代数运算(加、减、乘、除、乘方、开方)所组成的表达式叫做代数式。

已知一个代数式,把式中的字母用给定数值代替后,运算所得结果叫做在字母取给定数值时代数式的值。

一、专题知识1.基本公式(1)立方和公式:2233()()a b a ab b a b +-+=+(2)立方差公式:2233()()a b a ab b a b-++=-(3)完全立方和:33223()33a b a a b ab b +=+++(4)完全立方差:33223()33a b a a b ab b -=-+-2.基本结论(1)33322()33a b a b a b ab +=+--(2)33322()33a b a b a b ab -=-+-(3)22()()4a b a b ab-=+-二、经典例题例题1已知y z x z x yx y z+++==求代数式y z x +的值。

【解】(1)0x y z ++≠,由等比性质得2()2x y z y zx y z x+++==++;(2)0x y z ++=,则y z x +=-,所以1y zx+=-。

例题2已知234100x y +-=,求代数式y x x y xy y x x 65034203152223--++++的值。

【解】32221532043506x x y xy y x x y++++--322222215205034103410105(3410)(3410)(3410)1010x xy x x y y y x y x x y y x y x y =+-++-++-+=+-++-++-+=例题3实数,,a b c满足条件:231224a b ab -=+=-,求代数式2a b c ++的值。

【解】22222442318224a b a ab b ab c ab ⎧-=⇒-+=⎪⎨+=-⇒+=-⎪⎩两式相加得,()2220a b ++=只有2=0a b +且0c =,所以20a b c ++=。

代数式求值经典题型(含详细答案)

代数式求值经典题型(含详细答案)

代数式求值经典题型【编著】黄勇权经典题型:1、x+x 1=3,求代数式x2-2x 1的值。

2、已知a+b=3ab ,求代数式b 1a 1+的值。

3、已知x 2-5x+1=0,求代数式x 1x +的值。

4、已知x-y=3,求代数式(x+1)2-2x+y(y-2x )的值。

5、已知x-y=2,xy=3,求代数式x 2-x y6+y2的值。

6、已知y x =2,则x y-x 的值是多少?7、若2y 1x 1=+,求代数式:3y x y -3x y 3x y -x ++的值。

8、已知5-x =4y-4-y 2,则代数式2x-3+4y的值是多少?9、化简求值,12x x 1-x 2++÷)(1x 21+-,其中x=13-10、x 2-4x+1=0,求代数式:x 2+2x 1的值。

【答案】1、x+x 1 =3,求代数式:x 2-2x 1的值。

解:x2-2x 1=(x+x 1)(x-x 1)=(x+x 1)2x1-x )( =(x+x 1)22x 12x +-=(x+x 1)4x12x 22-++ =(x+x 1)4x 1x 2-+)(将x+x 1=3代入式中=3×432-=352、已知a+b=3ab ,求代数式:b 1a 1+的值。

解:b 1a 1+=ab b a +将a+b=3ab 代入式中=3 3、已知x2-5x+1=0,求代数式:x1x +的值。

解:因x 2-5x+1=0,等式两边同时除以x则有:x 0x 1x x 5x x 2=+-化简得:x-5+x 1=0把-5移到等号的右边,得:x1x +=54、已知x-y=3,求代数式:(x+1)2-2x+y (y-2x)的值。

解:(x+1)2-2x+y(y-2x)去括号,展开得=x2+2x+1-2x+y2-2xy合并同类项,+2x与-2x抵消=x2+1+y2-2xy把+1移到最后,22此三项结合=(x2-2xy+y2)+1=(x-y)2+1将x-y=3合代入式中=(3)2+1=3+1=45、已知x-y=2,xy=3,求代数式x 2-x y6+y2的值。

代数式化简求值专项训练及答案

代数式化简求值专项训练及答案

代数式化简求值专项训练1.先化简,再求值:(1))1)(2(2)3(3)2)(1(-+++---x x x x x x ,其中31=x .(2) (a +b )(a -b )+(a +b )2-a (2a +b ),其中a =23,b =-112。

(3)22(3)(3)(5)(5)a b a b a b a b -++-+-,其中2a =-,1b =-.2.已知312=-y x ,2=xy ,求 43342y x y x -的值。

3.若x 、y 互为相反数,且4)1()2(22=+-+y x ,求x 、y 的值4.已知22==+ab b a ,,求32232121ab b a b a ++的值.5.已知x 2+x -1=0,求x 3+2x 2+3的值.6.已知:222450a b a b ++-+=,求2243a b +-的值.7.已知等腰△ABC 的两边长,a b 满足:222448160a ab b a -+-+=,求△ABC 的周长?8.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.9、已知x 、y 都是正整数,且3722+=y x ,求x 、y 的值。

10、若182++ax x 能分解成两个因式的积,求整数a 的值?代数式典型例题30题参考答案:1.解:在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有1,a,a+b,,x2y+xy2,共5个.故选C2.解:题中的代数式有:﹣x+1,π+3,共3个.故选C.3.解:①1x分数不能为假分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c不能出现除号;⑤,书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②④共3个.故选:C4.解:“负x的平方”记作(﹣x)2;“x的3倍”记作3x;“y与的积”记作y.故选B5.解:A、x是代数式,0也是代数式,故选项错误;B、表示a与b的积的代数式为ab,故选项错误;C、正确;D、意义是:a与b的和除y的商,故选项错误.故选C6.解:答案不唯一,如买一支钢笔5元,买x支钢笔共5x元7.解:(1)(x+2)2可以解释为正方形的边长为x+2,则它的面积为(x+2)2;(2)某商品的价格为n元.则80%n可以解释为这件商品打八折后的价格.故答案为:(1)正方形的边长为x+2,则它的面积为(x+2)2;(2)这件商品打八折后的价格8.解:根据题意得此三位数=2×100+x=200+x9.解:两位数x放在一个三位数y的右边相当于y扩大了100倍,那么这个五位数为(100y+x)10.解:这m+n个数的平均数=.故答案为:.11.解:小华第一天读了全书的,还剩下(1﹣)n=n;第二天读了剩下的,即(1﹣)n×=n.则未读完的页数是n12.解:(1)∵a﹣b=3,∴3a﹣3b=3,5﹣4a+4b=5﹣4(a﹣b)=5﹣4=1;(2)∵x+5y﹣2=0,∴x+5y=2,∴2x+3+10y=2(x+5y)+3=2×2+3=7;(3)∵3x2﹣6x+8=0,∴x2﹣2x=﹣,∴x2﹣2x+8=﹣+8=.故答案为:(1)3,1;(2)7;(3)13.解:因为a,b互为倒数,c,d互为相反数,所以ab=1,c+d=0,所以3c+3d﹣9ab=3(c+d)﹣9ab=0﹣9=﹣9,故答案为:﹣914.解:由题意知:﹣a﹣b=5所以a+b=﹣5;则当x=1时,ax3+bx=a+b=﹣515.解:开放题,答案无数个,只要所写同类项,所含字母相同且相同字母的指数也相同即可,同类项与字母的顺序无关.如5x3y,12x3y,20x3y.故答案为:5x3y,12x3y,20x3y16.解:由同类项的定义可知m=2,n=3,代入(﹣n)m,结果为9.答:(﹣n)m值是917.解:两个单项式的和是单项式,则它们是同类项,则2m+3=4,m=;n=3.则(4m﹣n)n=(4×﹣3)3=﹣1.答:(4m﹣n)n=﹣118.解:x5y n与﹣3x2m+1y3n﹣2是同类项,2m+1=5,n=3n﹣2,m=2,n=1,m+n=2+1=3,故答案为:319.解:(1)∵其余三面留出宽都是x米的小路,∴由图可以看出:菜地的长为18﹣2x米,宽为10﹣x米;(2)由(1)知:菜地的长为18﹣2x米,宽为10﹣x米,所以菜地的面积为S=(18﹣2x)•(10﹣x);(3)由(2)得菜地的面积为:S=(18﹣2x)•(10﹣x),当x=1时,S=(18﹣2)(10﹣1)=144m2.故答案分别为:(1)18﹣2x,10﹣x;(2)(18﹣2x)(10﹣x);(3)144m220.解:∵﹣3x4+m y与x4y3n是同类项,∴4+m=4,3n=1,∴m=0,n=,∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣121.解:∵多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,即m﹣2=0,∴m=2;∴2n+4=0,∴n=﹣2,把m、n的值代入n m中,得原式=422.解:∵6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,∴5﹣2R=0,解得R=2.523.解:原式=x2+(﹣2k+6)xy﹣3y2﹣y,∵不含x,y的乘积项,∴x,y的乘积项的系数为0,∴﹣2k+6=0,∴2k=6,∴k=3.∴当k=3时,已知多项式不含x,y的乘积项24.(1)﹣3(2s﹣5)+6s=﹣6s+15+6s=15;(2)3x﹣[5x﹣(x﹣4)]=3x﹣[5x﹣x+4]=3x﹣5x+x﹣4=﹣x+4;(3)6a2﹣4ab﹣4(2a2+ab)=6a2﹣4ab﹣8a2﹣2ab=﹣2a2﹣6ab;(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣2425.(1)x+[﹣x﹣2(x﹣2y)]=x﹣x﹣2x+4y=﹣2x+4y;(2)原式=a﹣a﹣﹣+b2=;(3)2a﹣(5a﹣3b)+3(2a﹣b)=2a﹣5a+3b+6a﹣3b=3a;(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]},=﹣3{9(2x+x2)+9(x﹣x2)+9},=﹣27(2x+x2)﹣27(x﹣x2)﹣27,=﹣54x﹣27x2﹣27x+27x2﹣27,=﹣81x﹣2726.解:(1)﹣;(2)原式=1﹣+﹣++…+﹣=1﹣= 27.解:(1)∵第n个数是(﹣1)n,∴第7个,第8个,第9个数分别是﹣,,﹣.(2),最后与0越来越接近28.解:通过图案观察可知,当n=1时,点的个数是12=1;当n=2时,点的个数是22=4;当n=3时,点的个数是32=9;当n=4时,点的个数是42=16,…∴第n个正方形点阵中有n2个点,∴第n个正方形点阵中的规律是=n2.29.解:根据图案可知,(1)第4个图案火柴有3×4+1=13;第6个图案中火柴有3×6+1=19;(2)当n=1时,火柴的根数是3×1+1=4;当n=2时,火柴的根数是3×2+1=7;当n=3时,火柴的根数是3×3+1=10;所以第n个图形中火柴有3n+1.(3)当n=2008时,3n+1=3×2008+1=602530.解:(1)在第1个图中,共有白色瓷砖1×(1+1)=2块,(2)在第2个图中,共有白色瓷砖2×(2+1)=6块,(3)在第3个图中,共有白色瓷砖3×(3+1)=12块,(4)在第10个图中,共有白色瓷砖10×(10+1)=110块,(5)在第n个图中,共有白色瓷砖n(n+1)块。

代数式求值经典题型(含详细答案)

代数式求值经典题型(含详细答案)

代数式求值经典题型(含详细答案)1、已知x+y=3,求代数式x²-xy的值。

解:将x+y=3代入式中,得x²-xy=x²-(3-x)x=2x²-3x,再将x+y=3代入式中,得x=3-y,代入原式中,得2(3-y)²-3(3-y),化简得-6y+15,所以代数式x²-xy的值为15-6y。

2、已知a+b=3ab,求代数式a+b的值。

解:将a+b=3ab代入式中,得a+b=3(a+b)ab,移项得3ab(a+b)-a-b=0,因式分解得(3ab-1)(a+b)=0,因为a+b≠0,所以3ab=1,代入a+b=3ab中,得a+b=3/3=1.4、已知2x-y=6,x²+y²=13,求代数式x-y的值。

解:将2x-y=6代入式中,得y=2x-6,代入x²+y²=13中,得x²+(2x-6)²=13,化简得5x²-24x+25=0,解得x=1或5,代入y=2x-6中,得y=-4或4,所以x-y的值为5或-3.6、已知y/x=2,则x的值是多少?解:将y/x=2代入式中,得y=2x,代入x-y=6中,得x-2x=6,解得x=-6,所x的值是-6.7、已知x-3xy+y/xy=27,求代数式3x-xy+3y的值。

解:将x-3xy+y/xy=27代入式中,得xy²-3xy+y=27xy,移项得xy²-3xy+y-27xy=0,化简得y(x-3)(y-9)=0,因为y≠0,所以x=3或y=9,代入3x-xy+3y中,得3(3)-3(3)(2)+3(9)=12,所以代数式3x-xy+3y的值为12.8、已知x-5=4y-4-y,则代数式2+4的值是多少?解:将x-5=4y-4-y代入式中,得x=3y-1,代入2+4中,得2+4=2+(3y-1)+4=3y+5,所以代数式2+4的值为3y+5.9、化简求值:(2x+2)/(2x+1)÷(x-3)/(x+1),其中x≠-1,-1/2.解:将(2x+2)/(2x+1)÷(x-3)/(x+1)化简得(2x+2)/(2x+1)×(x+1)/(x-3),分子分母同时约分,得(x+1)/(2x-3),将x=-1/2代入式中,得-1,所以代数式的值为-1.10、x-4x²+1=0,求代数式x的值。

代数式求值(习题及答案)

代数式求值(习题及答案)

代数式求值(习题)➢ 例题示范例1:若23a b -=,则代数式2(2)422000b a a b --++的值是_______.思路分析观察已知,发现字母a ,b 的值无法确定,所以考虑整体代入.对比已知及所求,把2a -b 当作一个整体,对所求式子进行变形.原式=2(2)2(2)2000a b a b ---+最后整体代入,化简➢ 巩固练习1. 关于x 的代数式222(28)4(21)x x kx x x ⎡⎤+---+⎣⎦,当k 为何值时,代数式的值是常数?2. 若关于x 的代数式2214(45)64x mx x x mx mx ⎛⎫+---+- ⎪⎝⎭的值与x 无关,求代数式2223(21)363m m m m ⎡⎤-+-+⎢⎥⎣⎦的值. 3. 若232a b a b -=+,则代数式2(2)15(2)22a b a b a b a b-+-+-+的值是_______. 4. 若代数式2346x x -+的值是9,则代数式2463x x -+的值是___________. 5. 若2x y =,则代数式45x y x y-+的值是___________. 6. 已知当5x =时,代数式25ax bx +-的值是10,则当5x =时,代数式25ax bx ++的值是____________.7. 已知当3x =-时,代数式535ax bx cx ++-的值是7,则当3x =时,代数式535ax bx cx ++-的值是__________.8. 若m 表示一个两位数, n 表示一个两位数,把m 放在n 的右边,则这个四位数可用代数式表示为_____________.9. 若a 表示一个一位数,b 表示一个两位数,c 表示一个三位数,把c 放在a的左边,b 放在a 的右边,组成一个六位数,则这个六位数可用代数式表示为__________________.➢ 思考小结1. 已知3240x x --=,则代数式3361x x -++的值是_______.通过本讲的学习,小明的做法:①把含有字母的项“32x x -”作为整体,则324x x -=;②在所求的代数式中找整体,对比系数解决:小刚的做法:①把最高次项“3x ”作为整体,则324x x =+;②在所求的代数式中找整体,对比系数解决:小聪的做法:①把“324x x --”作为整体;②在所求的代数式中找整体,对比系数解决:对比小明、小刚、小聪的做法,我们发现无论把“32x x -”, “3x ”还是“324x x --”作为整体,代入,目标都是把所求的代数式降次,这种转化的思想是“高次降次”.【参考答案】➢巩固练习1.当k=6时,代数式的值为常数2.m=-1,原式=-m-3,当m=-1时,原式=-23.114.75.16.207.-178.100n+m9. 1 000c+100a+b➢思考小结-11。

数学竞赛中的代数式求值经典问题

数学竞赛中的代数式求值经典问题题型一、代数式恒等变形 1.若abc=1,则111a b cab a bc b ca c ++++++++的值是( )A .1.B .0.C .-1.D .-2. 解析:abc=1,则a ,b ,c 均不为0.选A .2.若x 3+y 3=1000,且x 2y-xy 2=-496,则(x 3-y 3)+(4xy 2-2x 2y)-2(xy 2-y 3)=______.解析:由于x 3+y 3=1000,且x 2y-xy 2=-496,因此要把(x 3-y 3)+(4xy 2-2x 2y)-2(xy 2-y 3)分组、凑项表示为含x 3+y 3及x 2y-xy 2的形式,以便代入求值,为此有(x 3-y 3)+(4xy 2-2x 2y)-2(xy 2-y 3)=x 3+y 3+2xy 2-2x 2y=(x 3+y 3)-2(x 2y-xy 2)=1000-2(-496)=19923.若m +n -p =0,则⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛n m p p m n p n m 111111---+-的值等于______. 解析:3-,111111()()()()()()111 3m n p n p m p m n m m n n n pn p m p m n m p n p m nn n m m p p-+--+=-+---=-+--+=---=-提示:4.若x-y=2,x 2+y 2=4,则x1992+y1992的值是 ( )A .4B .19922C .21992D .41992解析:由x-y=2 ①平方得x 2-2xy+y 2=4 ②又已知x 2+y 2=4③所以x ,y 中至少有一个为0,但x 2+y 2=4.因此,x ,y 中只能有一个为0,另一个为2或-2.无论哪种情况,都有x1992+y1992=01992+(±2)1992=21992,选C .5.在等式y=ax 2+bx+c 中,当x=1时,y=-2,当x=-1时,y=20,则ab+bc+9b 2=______. 解析:以x=1,y=-2代入y=a 2+bx+c 得a+b+c=-2 ① 以x=-1,y=20代入y=ax 2+bx+c 得a-b+c=20 ② ①-②,2b=-22,所以b=-11.因此a+c=9.于是 ab+bc+9b 2=b(a+c)+9b 2=(-11)×(9)+9×112=990.6.已知a +b =-3,a 2b +ab 2=-30,则a 2-ab +b 2+11=____50______.7.已知aa 1+=-2,则441a a +=2;441a a -=0.8.如果m -m1=-3,那么m 3-31m =____________.解析:36-,提示:32232211111()(1)()[()3](3)[(3)3]36m m m m m m m m m m-=-++=--+=-⨯-+= 9.三个互不相等的有理数,既可表示为1,a+b,a 的形式,又可表示为0,ba,b, 的形式,则a1992+b1993=________.解析:由于三个互不相等的有理数,既可表示为1,下,只能是b=1.于是a=-1.所以,a 1992+b 1993=(-1)1992+(1)1993=1+1=2.10.如图6,D 点在Rt △ABC 的直角边上BC 上,且BD=2,DC=3,若AB=m ,AD=n ,那么22m n -=.解析:勾股定理:m 2=BC 2+AC 2=52+AC 2n 2=DC 2+AC 2=32+AC 2可得:m2- n 2=1611.已知ax+by=7,ax2+by2=49,ax3+by3=133,ax4+by4=406,试求1995(x+y)+6xy-172(a+b )的值.分析:已知ax+by=7,ax2+by2=49,ax3+by3=133,ax4+by4=406.形式很对称,很容易诱使你将ax+by=7两边平方,再减去ax2+by2=49,…想利用乘法公式算出xy,但一试发现此路不通.由于受所作某些训练题型模式的影响,很多同学仍企图走此路,以致最后陷入死胡同.事实上,ax+by平方后必出现a2x2与b2y2,而ax2+by2中,a,b都不是平方,这一特点已经表明利用乘法公式去消项的方法很难走通.应及时转向,通过一项一项表示,往一起凑这个最基本的方式去做.解:显然ax2=49-by2,by2=49-ax2ax3=49x-bxy2,by3=49y-ax2y相加得133=ax3+by3=49(x+y)-xy(ax+by)即49(x+y)-7xy=1337(x+y)-xy=19 ①同理ax3=133-by3,by3=133-ax3ax4=133x-bxy3,by4=133y-ax3y相加得406=ax4+by4=133(x+y)-xy(ax2+by2)即133(x+y)-49xy=40619(x+y)-7xy=58 ②由①、②联立,设x+y=u,xy=v得7u-v=1919u-7v=58,解得u=2.5,v=-1.5即x+y=2.5,xy=-1.5由ax=7-by,by=7-ax得ax2=7x-bxy,by2=7y-axy相加得49=ax2+by2=7(x+y)-xy(a+b)所以 1.5(a+b)=49-7×2.5∴a+b=21此时即可求得=4987.5-9-178.5=4800说明:本题虽然所用知识单元块均在初一学过,但解此题需要考生有较强的应变能力与观察综合能力,并且计算也要很细心,因此本题属于对学生数学素质综合检查的题目.本题改编自下面的问题“已知ax+by=8,ax 2+by 2=22,ax 3+by 3=62,ax 4+by 4=178,试求1995(x+y)+6xy 之值”.有兴趣的读者不防解一解看.答案是10011.再想一想,满足题设条件的a 与b 两数之和a+b 等于多少?你能独立地求出a+b 之值吗?(答a+b=3)题型二、多项式的带余除法1.设m 2+m -1=0,则m 3+2m 2+1997=______. 解析:原式=m 3+m 2-m +m 2+m -1+1998=m (m 2+m -1)+(m 2+m -1)+1998 =(m 2+m -1)(m +1)+1998 由于m 2+m -1=0,∴ 原式=1998. 2.如果x 2+x -1=0,则x 3+2x 2+3=4.3.若=+++=-+1855,013232x x x x x 则____20______4.如果223x x +=,那么432781315x x x x ++-+=_____18_____。

最全代数式求值(整体代入三)(人教版)(含答案)

学生做题前请先回答以下问题问题1:整体代入的思考方向:①求值困难,考虑_____________;②化简________________,对比确定________;③整体代入,化简.问题2:当时,代数式的值是 2 015;则当时,计算代数式的值.①根据题意可得,化简得,无法求出p和q的具体值,考虑_____________;②所求是,化简得,对比已知及所求,考虑把________作为整体;③整体代入,化简,最后结果为______.代数式求值(整体代入三)(人教版)一、单选题(共12道,每道8分)1.当x=1时,代数式的值为100,则当x=-1时,这个代数式的值为( )A.-98B.-99C.-100D.98答案:A解题思路:试题难度:三颗星知识点:整体代入2.当x=-3时,代数式的值为7,则当x=3时,这个代数式的值为( )A.-3B.-7C.7D.-17答案:D解题思路:试题难度:三颗星知识点:整体代入3.当x=2时,代数式的值为3,则当x=-2时,代数式的值为( )A.-5B.0C.-3D.-6答案:A解题思路:试题难度:三颗星知识点:整体代入4.当时,代数式的值为6,则当时,代数式的值为( )A.6B.-22C.-14D.-2答案:B解题思路:试题难度:三颗星知识点:整体代入5.当x=1时,代数式的值为3,则当x=-1时,代数式的值为( )A.2B.1C.9D.7答案:C解题思路:试题难度:三颗星知识点:整体代入6.当x=1时,代数式的值为7,则当x=-1时,这个代数式的值为( )A.7B.1C.3D.-7答案:B解题思路:试题难度:三颗星知识点:整体代入7.当x=-1时,代数式的值为5,则当x=1时,代数式的值为( )A.2B.-2C.10D.-10答案:C解题思路:试题难度:三颗星知识点:整体代入8.若,则的值为( )A.1B.-1C.5D.-5答案:D解题思路:试题难度:三颗星知识点:整体代入9.若,则的值为( )A.5B.6C.11D.12答案:A解题思路:试题难度:三颗星知识点:整体代入10.若,则的值为( )A. B.1 C. D.答案:B解题思路:试题难度:三颗星知识点:整体代入11.若,,则代数式的值为( )A.-3B.C.D.答案:C解题思路:试题难度:三颗星知识点:整体代入12.若,,则代数式的值为( )A.11B.4C.9D.6答案:A解题思路:试题难度:三颗星知识点:整体代入是 ‎一 的 ‎性思维训练。

初中数学代数式求值经典练习题及答案

初中数学代数式求值经典练习题及答案根据已知,求下列代数式的值。

,求代数式x3的值;1、已知已知x>0,且x2=10+2√214的值;2、已知x2 +4x2= 5 ,xy=1,求代数式xx3、已知2x+1·3x= 24,2x·3x+1= 54,求代数式√(x+y)xx的值;4、已知x2= x+1,x2= y+1,且x≠y,求求代数式√x5+x5+5的值;= 4 ,求代数式x7−14x5+x3的值;5、已知x + 1x的的值;6、已知x2= √234x +1 ,求代数式x2 + 1x27、已知(x+y)3-2(x+y)2-3xy(x+y) +3xy +2(x+y) -1= 0,求代数式x+y的值;8、已知13x·9x= 4 ,求代数式1x+ 1x的值;9、已知(x2+2x)(x+y)=60,且x2 +3x+y=19,求代数式 x-y 的值;10、已知x2+2x+4=0,求代数式x4 +1的值。

参考答案1、已知已知x>0,且x2=10+2√214,求代数式x3的值。

解:x2=10+2√214x2=7 +2√21+34x2=(√7)2+ 2√21+ (√3)222x2=(√7 + √32)2因为x>0,所以 x = √7 + √32x3=x2·x= 10+2√214·√7 + √32x3= 10√7 + 10√3 + 14√3 + 6√78x3= 16√7 + 24√38x3= 2√7 +3√3故代数式x3的值是:2√7 +3√3。

2、已知x2 +4x2= 5 ,xy=1,求代数式xx的值。

解:x2 +4x2= 5可将5写为:5×1,所以上式为x2 +4x2= 5 ×1又xy=1,将式中的1用xy代替,则有x2 +4x2= 5xyx2-5xy+ 4x2=0等式两边同时除以x2,得(xy )2-5·xx+ 4 =0(xx -4)(xx-1)=0当xx -4=0 时,xx= 4当xx -1=0 时,xx= 1故代数式x3的值是:4或1。

代数式求值经典题型1-(含详细答案)

初中数学《代数式求值》已知a+b= 2 ,a-b= 3求代数式a(a+2b)+b(2a-b)的值已知a²+a-3=0求代数式13a3+52a2的值已知x - 1x= 2,求代数式x²- 1x²的值已知x - y = 5求代数式(x²- y²)²- 10(x²+y²)的值若x、y互为相反数,求代数式2x²-3x +2 +7xy-3y+5y²的值若x²-2x -2=0,求代数式x4+410x²的值。

已知x(x+y)-y(x+1)=x(x-2)求代数式x²+xy-y²y²+2xy已知x+y= -2求代数式x²+ 2y(x+1)+(y-1)²已知x是最大的负整数,y是绝对值最小的有理数,求代数式3x3+ 2y2x+(2y+3x)²已知x-y=2求代数式x3-6xy-y3已知3x²-x-1 =0,求代数式6x3+7x²-5x-2018题目:已知a-b= -1,b-c=2,求代数式(a+b+c)(a-b-c)(1 - ca)2 的值已知x、y是正数,且x=7y²2x+5y,求代数式4x²-2x+xy +2y-5y²+3 的值已知x+y =3,x²+y²=6求代数式2x²+2x²y+2xy+xy²+y3的值(2)-(1)得:4xy=3-4x²y²,把-4x²y²移到左边4x²y²+4xy=3 两边同时加上1,得:4x²y²+4xy+1=4,即(2xy+1)²=4 ,两边同时开方,2xy+1= ±2因为x、y是正数,那么2xy+1也是正数,所以2xy+1=-2(舍去)故2xy+1=2 ,即xy= 12--------------(3)把(3)代入到(2),得,x²+ 2×12+y²=3 则有:x²+y²=2----(4)已知x2-3x+1=0,求代数式x² - 1 x²已知x、y是正数,且x - y=3,xy= 5,Array求代数式x3+x2y+x2y+y3的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数式求值
经典题型
【编著】黄勇权 经典题型:
1、x+x 1
=3,求代数式
x
2
-2
x 1的值。

2、已知a+b=3ab ,求代数式b 1
a 1+的值。

3、已知
x 2
-5x+1=0,求代数式x 1x +的值。

4、已知x-y=3,求代数式(x+1)
2
-2x+y (y-2x )的
值。

5、已知x-y=2,xy=3,求代数式x 2
-x y
6+y 2
的值。

6、已知y x =2,则x y
-x 的值是多少?
7、若2y 1x 1=+,求代数式:3y x y -3x y
3x y -x ++的值。

8、已知
5-x =4y-4-y
2
,则代数式2x-3
+4y
的值是多少?
9、化简求值,12x x 1-x 2++÷)(1
x 2
1+-,其中x=13-
10、x 2-4x+1=0,求代数式:x 2
+2
x 1的值。

【答案】
1、x+x 1 =3,求代数式:x 2
-2
x 1的值。

解:x
2
-2
x 1
=(x+x 1)(x-x 1

=(x+x 1
)2x 1-x )(
=(x+x 1)2
2
x 12x +-
=(x+x 1)4x 12x 22
-++ =(x+x 1)4x
1x 2
-+)( 将
x+x 1
=3
代入式中
=3×432-
=35
2、已知a+b=3ab ,求代数式:b 1
a 1+的值。

解:b 1
a 1+
=ab b a +
将a+b=3ab 代入式中 =3 3、已知x
2
-5x+1=0,求代数式:x
1
x +的值。

解:因x 2
-5x+1=0, 等式两边同时除以x
则有:x 0
x 1x x 5x x 2=+-
化简得:x-5+x 1
=0
把-5移到等号的右边,得:
x
1
x +=5 4、已知x-y=3,求代数式:(x+1)
2
-2x+y (y-2x )
的值。

解:(x+1)2
-2x+y (y-2x )
去括号,展开得 =x 2
+2x+1-2x+y 2
-2xy 合并同类项,+2x 与-2x 抵消 =x 2
+1+y 2
-2xy
把+1移到最后,
=x
2+y2-2xy+1
此三项结合
=(x2-2xy+y2)+1
=(x-y)2+1
将x-y=3合代入式中
=(3)2+1
=3+1
=4
5、已知x-y=2,xy=3,求代数式x2-x y6+y2的值。

解:因为x-y=2
等号两边同时乘方
即:(x-y)2=(2)2
两边开展:
X2-2xy+y2=2
把xy=3代入上式
X2-2*3+y2=2
X 2+y 2
=2+23-----①
代数式x 2
-x y
6+y
2
=(X 2
+y 2)-x y
6
把xy=3、X
2
+y 2
=2+2
3代入上式
=2+23-3
6
=2+2
3-3
3*22
)( =2+23-23
=2
6、已知y x =2,则x y
-x 的值是多少?
解:因为y x
=2
(等式两边同时取倒数,得到下式)
即有:x y =21
所以x y -x
=1-x y (把x y =21
代入)
=1-21
=21
7、若2y 1x 1=+,求代数式:3y x y -3x y 3x y -x ++的值。

解:因为2y 1
x 1=+
(左边通分,得到下式) 即: X+y=2xy
=x y y x 3x y 3y)x -+-+)((
(把X+y=2xy 代入)
=x y x y 2*3x y 3x y 2--
=xy 5xy -
=51-
8、已知
5-x =4y-4-y
2
,则代数式2x-3
+4y
的值是多少?
解:
5-x =4y-4-y
2
5-x =-(y
2
-4y+4)
5-x =-(y-2)
2
(将等号右边移到等号的左边,得到下式)
5-x +(y-2)
2
=0
几个非负数之和为零,只要当他们分别为零时,等式才成立。

即:
5-x =0,x=5
(y-2)2
=0,y=2 所以:代数式2x-3
+4y
(把x=5,y=2,代入式中) =25-3
+42
=22
+16 =4+16 =20
9、化简求值,12x x 1-x 2++÷)(1
x 2
1+-,其中x=13-
解:12x x 1-x 2++÷)(1
x 2
1+- =21x 1-x )(+÷)(1
x 2
-1x ++
=21x 1-x )(+÷1
x 1
-x + =21x 1-x )(+×1
x 1x -+ =1x 1
+(把x=13-代入式中)
=1131
+- =31
=
33
10、x 2
-4x+1=0,求代数式:x 2
+2
x 1的值。

解:x 2
-4x+1=0
(等式两边同时除以x ,得到下式)
X-4+x 1
=0
(把-4移到等号的右边,得到下式)
X+x 1=4
(等式两边同时乘方,得到下式)
X 2
+2+2x 1=16
1
x2+
=14
2
x。

相关文档
最新文档