中南大学有限元习题与答案

合集下载

有限元复习题及答案

有限元复习题及答案

1.弹性力学和材料力学在研究对象上的区别?材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件;弹性力学除了研究杆状构件外,还研究板、壳、块,甚至是三维物体等,研究对象要广泛得多。

2.理想弹性体的五点假设?连续性假设,完全弹性假设,均匀性假设,各向同性假定,小位移和小变形的假定。

3.什么叫轴对称问题,采用什么坐标系分析?为什么?工程实际中,对于一些几何形状、载荷以及约束条件都对称于某一轴线的轴对称体,其体内所有的位移、应变和应力也都对称于此轴线,这类问题称为轴对称问题。

通常采用圆柱坐标系r、θ、z分析。

这是因为,当弹性体的对称轴为z轴时,所有的应力分量、应变分量和位移分量都将只是r和z的函数,而与无θ关。

4.梁单元和杆单元的区别?杆单元只能承受拉压荷载,梁单元那么可以承受拉压弯扭荷载。

具体的说,杆单元其实就是理论力学常说的二力杆,它只能在结点受载荷,且只有结点上的荷载合力通过其轴线时,杆件才有可能平衡,像均布荷载、中部集中荷载等是无法承当的,通常用于网架、桁架的分析;而梁单元那么根本上适用于各种情况〔除了楼板之类〕,且经过适当的处理〔如释放自由度、耦合等〕,梁单元也可以当作杆单元使用。

5.薄板弯曲问题与平面应力问题的区别?平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是垂直于板面的力的作用,板将变成有弯有扭的曲面。

平面应力问题有三个独立的应力分量和三个独立的应变分量,薄板弯曲问题每个结点有三个自由度,但是只有一个是独立的其余两个可以被它表示。

6.有限单元法结构刚度矩阵的特点?对称性,奇异性,主对角元恒正,稀疏性,非零元素呈带状分布。

7.有限单元法的收敛性准那么?完备性要求,协调性要求。

完备性要求:如果出现在泛函中场函数的最高阶导数是m阶,那么有限元解收敛的条件之一是单元内场函数的试探函数至少是m次完全多项式,或者说试探函数中必须包括本身和直至m阶导数为常数的项,单元的插值函数满足上述要求时,我们称单元是完备的。

有限元习题及答案ppt课件

有限元习题及答案ppt课件

病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程

有限元试题及答案

有限元试题及答案

有限元试题及答案一、选择题1. 有限元方法是一种用于求解工程和物理问题的数值技术,其核心思想是将连续域划分为有限数量的离散子域。

以下哪项不是有限元方法的特点?A. 网格划分B. 边界条件处理C. 局部近似D. 整体求解答案:D2. 在有限元分析中,以下哪项不是网格划分的常见类型?A. 三角形网格B. 四边形网格C. 六边形网格D. 圆形网格答案:D3. 对于线性弹性问题,以下哪种元素类型不适用于有限元分析?A. 线性三角形元素B. 二次三角形元素C. 线性四边形元素D. 三次四边形元素答案:D二、填空题1. 在有限元分析中,单元刚度矩阵的计算通常涉及到单元的_________。

答案:形状函数2. 有限元方法中,边界条件可以分为_________和_________。

答案:Dirichlet边界条件;Neumann边界条件3. 有限元软件通常采用_________方法来求解大型稀疏方程组。

答案:迭代三、简答题1. 简述有限元方法的基本步骤。

答案:有限元方法的基本步骤包括:- 定义问题的几何域和边界条件。

- 将几何域划分为有限数量的小单元。

- 为每个单元定义形状函数。

- 计算单元刚度矩阵和载荷向量。

- 组装全局刚度矩阵和载荷向量。

- 施加边界条件。

- 求解线性方程组,得到节点位移。

- 计算单元应力和应变。

2. 为什么在有限元分析中需要进行网格划分?答案:网格划分是有限元分析中的一个重要步骤,因为它允许将连续的几何域离散化,使得问题可以被数值方法求解。

通过网格划分,可以: - 简化复杂几何形状的分析。

- 适应不同的材料属性和边界条件。

- 提供足够的细节以捕捉应力和位移的局部变化。

- 减少计算复杂度,提高求解效率。

四、计算题1. 假设有一个平面应力问题,已知材料的弹性模量E=210GPa,泊松比ν=0.3。

请计算一个边长为10mm的正方形单元在单轴拉伸下的单元刚度矩阵。

答案:单元刚度矩阵\[ K \]可以通过以下公式计算:\[K = \frac{E}{(1-\nu^2)} \int_{\Omega} \left[ B^T B \right] d\Omega\]其中,\( B \)是应变-位移矩阵,\( \Omega \)是单元的面积。

有限元课后习题答案

有限元课后习题答案

有限元课后习题答案1.1有限元法的基本思想和基本步骤是什么首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。

其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。

步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。

1.2有限元法有哪些优点和缺点优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。

缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。

对无限求解域问题没有较好的处理办法。

1.3有限元法在机械工程中有哪些具体的应用静力学分析模态分析动力学分析热应力分析其他分析2.1杆件结构划分单元的原则是什么?1)杆件的交点一定要取为节点2)阶梯形杆截面变化处一定要取为节点3)支撑点和自由端要取为节点4)集中载荷作用处要取为节点5)欲求位移的点要取为节点6)单元长度不要相差太多2.2简述单元刚度矩阵的性质。

单元刚度矩阵是描述单元节点力与节点位移之间关系的矩阵。

2.3有限元法基本方程中每一项的意义是什么?{Q}---整个结构的节点载荷列阵(包括外载荷、约束力);{}---整个结构的节点位移列阵;[K]---结构的整体刚度矩阵,又称总刚度矩阵。

2.4简述整体刚度矩阵的性质和特点。

对称性奇异性稀疏性主对角上的元素恒为正2.5位移边界条件和载荷边界条件的意义是什么由于刚度矩阵的线性相关性不能得到解,从而引入边界条件。

2.6写出平面刚架问题中单元刚度矩阵的坐标变换式2.7推导平面刚架局部坐标系下的单元刚度矩阵。

2.8简述整体坐标的概念。

单元刚度矩阵的坐标变换式把平面刚架的所有单元在局部坐标系X’O’Y’下的单元刚度矩阵变换到一个统一的坐标系xOy下,这个统一的坐标系xOy称为整体坐标系。

有限元试题及答案

有限元试题及答案

有限元试题及答案一、选择题1.有限元分析是一种利用计算机数值方法进行结构分析的方法,下面哪个说法是正确的?A. 有限元分析对结构的约束条件没有要求B. 有限元分析只适用于静力分析C. 有限元分析可以用来研究结构的动力响应D. 有限元分析的计算结果一定是精确的答案:C2.有限元法的基本步骤包括以下几个环节:I. 离散化II. 单元划分III. 节点连接IV. 计算材料性质V. 施加边界条件VI. 构建刚度矩阵和载荷向量VII. 求解节点位移和应力VIII. 后处理与结果分析请问选择项中正确的顺序是:A. IV – I – II – III – V – VI – VII – VIIIB. I – II – III – IV – V – VI – VII – VIIIC. II – III – V – IV – VI – I – VII – VIIID. I – III – II – IV – V – VI – VII – VIII答案:B3.在有限元分析中,单元是指将结构划分为有限个小单元来近似表示结构的方法。

下面哪个选项给出了常用的结构单元类型?A. 三角形单元,四面体单元,六面体单元B. 矩形单元,六面体单元,圆形单元C. 圆形单元,矩形单元,六面体单元D. 四面体单元,矩形单元,三角形单元答案:D二、填空题1.有限元分析中,刚度矩阵的计算需要根据单元的_________和材料的_________计算得到。

答案:几何形状,物理性质2.有限元法最常用的数学插值函数是_________函数。

答案:形函数3.在有限元分析中,自由度是指结构中的每个_________未知量。

答案:位移三、计算题1.给定如图所示的二维结构,使用有限元法进行分析。

假设结构材料为线性弹性材料,其杨氏模量为200 GPa,泊松比为0.3。

结构整体尺寸为5m x 3m,单元尺寸为1m x 1m。

分析载荷为2000 N,施加在结构的中心节点上。

有限元习题及答案

有限元习题及答案

有限元习题及答案一判断题(×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置(√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元(×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型(√)4. 四边形的平面单元尽可能作成接近正方形形状的单元(×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×)6. 用有限元法不可以对运动的物体的结构进行静力分析(√)7. 一般应力变化大的地方单元尺寸要划的小才好(×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度(√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小(√)10一维变带宽存储通常比二维等带宽存储更节省存储量。

二、填空1.平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是:平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是:垂直于板面的力的作用,板将变成有弯有扭的曲面。

2.平面应力问题与平面应变问题都具有三个独立的应力分量:σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为薄板,后者为长柱体。

3.位移模式需反映刚体位移,反映常变形,满足单元边界上位移连续。

4.单元刚度矩阵的特点有:对称性,奇异性,还可按节点分块。

5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为二维问题处理。

6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。

等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。

7.有限单元法首先求出的解是节点位移,单元应力可由它求得,其计算公式为{}{}[][]e D B σδ=。

(用符号表示即可)8.一个空间块体单元的节点有 3 个节点位移: u ,v ,w9.变形体基本变量有位移应变应力基本方程平衡方程物理方程几何方程10.实现有限元分析标准化和规范化的载体就是单元三选择题1 等参变换是指单元坐标变换和函数插值采用__B___的结点和______的插值函数。

有限元试题及答案

有限元试题及答案

有限元试题及答案一、选择题1. 有限元法是一种数值方法,主要用于求解什么类型的数学问题?A. 线性代数方程B. 微分方程C. 积分方程D. 偏微分方程答案:D2. 在有限元分析中,以下哪项不是网格划分的基本原则?A. 网格应尽量均匀B. 网格应避免交叉C. 网格应尽量小D. 网格应适应几何形状答案:C3. 有限元方法中,单元的局部刚度矩阵可以通过以下哪种方式获得?A. 直接积分B. 矩阵乘法C. 线性插值D. 经验公式答案:A二、填空题1. 有限元方法中,______ 是指将连续的域离散化成有限数量的小单元。

答案:离散化2. 在进行有限元分析时,______ 是指在单元内部使用插值函数来近似求解场变量。

答案:近似3. 有限元法中,______ 是指在单元边界上满足的连续性条件。

答案:边界条件三、简答题1. 简述有限元法的基本步骤。

答案:有限元法的基本步骤包括:(1)定义问题域;(2)离散化问题域,生成网格;(3)为每个单元定义局部坐标系和形状函数;(4)组装全局刚度矩阵和载荷向量;(5)施加边界条件;(6)求解线性代数方程;(7)提取结果并进行后处理。

2. 描述有限元分析中的单元类型有哪些,并简述每种单元的特点。

答案:常见的单元类型包括:(1)一维单元,如杆单元和梁单元,特点是沿一个方向传递力;(2)二维单元,如三角形和四边形单元,特点是在平面内传递力;(3)三维单元,如四面体和六面体单元,特点是在空间内传递力。

每种单元都有其特定的形状函数和刚度矩阵。

四、计算题1. 给定一个简单的一维弹性杆问题,其长度为L,两端固定,中间施加集中力P。

使用有限元法求解该杆的位移和应力分布。

答案:首先,将杆离散化为一个单元。

使用一维杆单元的局部刚度矩阵和形状函数,可以推导出全局刚度矩阵。

然后,施加边界条件,即杆的两端位移为零。

最后,将集中力P转换为等效节点载荷,求解线性代数方程,得到节点位移。

应力可以通过位移和杆的截面特性计算得出。

有限元复习题及答案

有限元复习题及答案

1.两种平面问题的根本概念和根本方程;答:弹性体在满足一定条件时,其变形和应力的分布规律可以用在某一平面内的变形和应力的分布规律来代替,这类问题称为平面问题。

平面问题分为平面应力问题和平面应变问题。

平面应力问题设有张很薄的等厚薄板,只在板边上受到平行于板面并且不沿厚度变化的面力,体力也平行于板面且不沿厚度变化。

由于平板很薄,外力不沿厚度变化,因此在整块板上有:,,剩下平行于XY面的三个应力分量未知。

平面应变问题设有很长的柱体,支承情况不沿长度变化,在柱面上受到平行于横截面而且不沿长度变化的面力,体力也如此分布。

平面问题的根本方程为:平衡方程几何方程物理方程〔弹性力学平面问题的物理方程由广义虎克定律得到〕•平面应力问题的物理方程平面应力问题有•平面应变问题的物理方程平面应变问题有在平面应力问题的物理方程中,将E替换为、替换为,可以得到平面应变问题的物理方程;在平面应变问题的物理方程中,将E替换为、替换为,可以得到平面应力问题的物理方程。

2弹性力学中的根本物理量和根本方程;答:根本物理量有:空间弹性力学问题共有15个方程,3个平衡方程,6个几何方程,6个物理方程。

其中包括6个应力分量,6个应变分量,3个位移分量。

平面问题共8个方程,2个平衡方程,3个几何方程,3个物理方程,相应3个应力分量,3个应变分量,2个位移分量。

根本方程有:1.平衡方程及应力边界条件:平衡方程:边界条件:2.几何方程及位移边界条件:几何方程:边界条件:3.物理方程:3.有限元中使用的虚功方程。

对于刚体,作用在其上的平衡力系在任意虚位移上的总虚功为0,这就是刚体的平衡条件,或者称为刚体的虚功方程。

对于弹性变形体,其虚位移原理为:在外力作用下处于平衡的弹性体,当给予物体微小的虚位移时,外力的总虚功等于物体的总虚应变能。

设想一处于平衡状态的弹性体发生了任意的虚位移,相应的虚应变为,作用在微元体上的平衡力系有〔X,Y,Z〕和面力。

外力的总虚功为实际的体力和面力在虚位移上所做的功,即:在物体产生微小虚变形过程中,整个弹性体内应力在虚应变上所做的功为总虚应变能,即:其中为弹性体单位体积内的应力在相应的虚应变上做的虚功,由此得到虚功方程:4.节点位移,单元位移及它们的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中南大学有限元习题与答案解应力是某截面上的应力在该处的集度。

应变是指单元体在某一个方向上有一个ΔU的伸长量,其相对变化量就是应变。

表示在x轴的方向上的正应变,其包括正应变和剪应变。

几何方程是表示弹性体内节点的应变分量与位移分量之间的关系,其完整表示如下:物理方程:表示应力和应变关系的方程某一点应力分量与应变分量之间的关系如下:虚位移原理:在弹性有一虚位移情况下,由于作用在每个质点上的力系,在相应的虚位移上虚功总和为零,即为:若弹性体在已知的面力和体力的作用下处于平衡状态,那么使弹性体产生虚位移,所有作用在弹性体上的体力在虚位移上所做的工就等于弹性体所具有的虚位能。

2.2说明弹性体力学中的几个基本假设。

连续性假设:就是假定整个物体的体积都被组成该物体的介质所填满,不存在任何间隙。

完全弹性假设:就是假定物体服从虎克定律。

各向同性假设:就是假定整个物体是由同意材料组成的。

小变形和小位移假设:就是指物体各点的位移都远远小于物体原来的尺寸,并且其应变和转角都小于1。

2.3简述线应变与剪应变的几何含义。

线应变:应变和刚体转动与位移导数的关系,剪应变表示单元体棱边之间夹角的变化。

2.4推到平面应变平衡微分方程。

解:对于单元体而言其平衡方程:在平面中有代入上式的2.5如题图2.1所示,被三个表面隔离出来平面应力状态中的一点,求和的值。

解:x方向上:联立二式得:2.6相对于xyz坐标系,一点的应力如下某表面的外法线方向余弦值为,,求该表面的法相和切向应力。

解:该平面的正应力全应力该平面的切应力2.7一点的应力如下MP求主应力和每一个主应力方向的方向余弦;球该店的最大剪应力。

解:设主平面方向余弦为,由题知将代入得即,。

最大剪应力(1)当时代入式(2.21)(2)当时代入式(2.21)且2.8已知一点P的位移场为,求该点p(1,0,2)的应变分量。

解:p点沿坐标方向的位移分量为u,v,w点p(1,0,2)处线应变为,,剪应变为,,2.9一具有平面应力场的物体,材料参数为E、v。

有如下位移场其中,a、b、c、d是常量。

求讨论位移场的相容性解:因为所以满足相容性条件有广义胡克定律得又则2.10一具有平面应力场的物体,材料性质是E=210GPa,v=0.3.并且有如下位移场当x=0.050m,y=0.020m时,求物体的应力和应变。

位移场是否相容?解:由广义胡克定律,,满足相容性条件2.11对于一个没有任何体积力的圆盘,处于平面应力状态。

其中a,b,c,d,e,f,g,h是常量。

为了使应力满足平衡方程和相容方程,这些常量的约束条件是什么?解:由题意得:,,,代入平衡方程根据广义胡克定律:代入相容方程(2)代入(1)得其中2.13根据弹性力学平面问题的几何方程,证明应变分量满足下列方程,并解释该方程的意义。

证明:弹性力学平面问题的几何方程为:①,②,③,将方程①,②分别对y和x求二阶偏导并相加得:等式右端项,该方程为相容方程中的第一式,其意义为弹性体内任一点都有确定的位移,且同一点不可能有连个不同的位移,应变分量应满足相容方程,否则,变形后的微元体之间有可能出现开裂与重叠。

2.14假设Airy应力函数为,其中为常数,求,并求这些变量间的约束关系。

解:由,对该应力函数求偏导得;对以上两式的偏导可求得:考虑相容性条件,将上式代入可得各常量间的关系如下:2.15对给定的应力矩阵,求最大Tresca和Von.Mises应力。

将VonMises应力和Tresca应力202210进行比较,δ=102022Mpa。

101020δzτxyτxz解:由Tresca准则:δ=δyτyz故有δs=20Mpa,τmax=δs/2=10Mpaδzδ1=(δx+δy)/2=30Mpaδ2=10Mpa由VonMises准则:2δs2=6(τxy2+τyz2+τyz2)解得δs=30Mpa30-15202.16一点出的应力状态由应力矩阵给出,即δ=-15-2510Mpa,若E=70Gpa,γ202240=0.33,求单位体积的应变能。

解:单位体积应变能:υ=1/2E{δx2+δy2+δz2-2u(δxδy+δyδz+δzδz)+2(1+u)(τxy2+τxz2+τyz2)}u=(E-2γ)/2γγ=0.33带入可得:υ=420.75J3.11如图3.11所示的平面三角形单元,厚度t=1cm,弹性模量E=2.0*105mpa,泊松比γ=0.3,试求插值函数矩阵N,应变矩阵B,应力矩阵S,单元刚度矩阵Ke。

解:此三角形单元可得:2△=(10-2)*4=32,故有a1=1/32*(8u1-5u2-16u3)a2=1/32*(4u1-4u2)a3=1/32*(-8u1+8u3)a4=1/32*(56v1-8v2-16v3)a5=1/32*(-4v1+4v2)a6=1/32*(-8v1+8v3)而b1=y2-y3=-4b1=x2-x3=-8b1=y3-y1=4b1=x3-x1=0b1=y1-y2=0b1=x1-x2=8b10b20b30-40400[B]=1/2△*0c10c20c3=1/32*0-8008c1b1c2b2c3b3-840801γ010.30[D]=[E/(1-γ2)]*γ10=[E/0.91]*0.31000(1-γ)/2000.3510.30-0.12500.12500[S]=[D]*[B]={E/0.91}*0.310*0-0.25000.25000.35-0.250.12500.2501.40-1.4-0.700.704-0.6-400[K]①=BT*D*B①*t*△={E/36.4}*-1.4-0.62.41.30.60.7-0.7-41.3-0.6-10.35000.6-1-0.600.700.7-0.35001000.6-1-0.600.350.70-0.7-0.3500.71.40-1.4-0.7[K]②=BT*D*B②*t*△={E/36.4}*0.6004-0.6-41-0.7-1.4-0.62.41.30.6-0.35-1.4-41.33.53.12求下图中所示的三角形的单元插值函数矩阵及应变矩阵,u1=2.0mm,v1=1.2mm,u2=2.4mm,v2=1.2mm,u3=2.1mm,v3=1.4mm,求单元内的应变和应力,求出主应力及方向。

若在单元jm边作用有线性分布面载荷(x轴),求结点的的载荷分量。

解:如图2△=64/3,解得以下参数:a1=19a2=-2a3=6;b1=-3b2=4b3=-1;c1=-1c2=-3c3=4;N1={64/3}*(19-3x-y)N2={64/3}*(-2-3x-3y)N3={64/3}*(6-x+4y)故N=Ni0Nj0Nm00Ni0Nj0Nm101010=010101bi0bj0bm0[B]={1/2△}*0ci0cj0cmcibicjbjcmbm-3040-10={64/3}*0-10-304-1-3-344-11γ0[D]={E/(1-γ2)}*γ1000(1-γ)/21γ0-3040-10单元应力矩阵[S]=[D]*[B]={E/13(1-γ2)}*γ10*0-10-30400(1-γ)/2-1-3-344-121.1-3-u43u-14u2.4单元应力[δ]=[S]*[q]={E/13(1-γ2)}*-3u-14u-3-u4*1.2(u-1)/2(3u-3)/2(3u-3)/22-2u2-2u(u-1)/22.41.43.13解:二维单元在x,y坐标平面内平移到不同位置,单元刚度矩阵相同,在平面矩阵180°时变化,单元作上述变化时,应力矩阵不变化。

(4)如果施加一定载荷,拟定求解步骤。

5、利用线性方程组的数值解法,对结构的有限元方程进行求解,得到所有各结点的位移向量。

最后根据需要求解单元应力。

3.16一长方形薄板如图所示。

其两端受均匀拉伸。

板长12cm,宽4cm,厚1cm。

材料,泊松比。

均匀拉力。

使用有限元法求解板的内应力,并和精确解比较(提示:可利用结构对称性,并用2个三角形单元对结构进行离散)。

3.17验证三角形单元的位移差值函数满足及。

解:平面三角形形函数为:,其中,,分别是行列式2A中的第一行,第二行和第三行各元素的代数余子式。

行列式中,任一行的元素与其相应的代数余子式的乘积之和等于行列式的值,而任一行的元素与其它行对应元素的代数余子式乘积之和为零,故有:当,同时有,同理也有:,即。

3.18推导如图所示的9节点矩形单元的形函数。

解:三维杆单元的形状函数,①在局部坐标系中令节点1,5,2所对应的带入①式得到节点1,5,2仅在x方向上的形函数:②同理可得:由,即节点2,6,3,可得到沿着全局坐标系y轴的形状函数(通过变量轮换),节点1的形函数即x,y方向的乘积:由此可得:同理可整理得:,,,,,,3.19如图所示为一个桁架单元,端点力为[U1,U2],端点位移为[u1,u2],设内部任一点的轴向位移u是坐标x的线性函数:推导其形函数矩阵N。

解:轴向位移u是坐标x的线性函数,,写成向量形式为,设两个节点的坐标为,代入向量形式的位移函数解得:则由位移函数可得形函数为:4.1答:轴对称三角形环单元不是常应变单元,如果弹性体的几何形状、约束条件及载荷都对称于某一轴,则所有的位移应变及应力也是对称于此轴,这样问题称为轴对称。

轴对称三角形环单元与平面常应变单元是不同的,轴对称三角形环单元的应变不是常数矩阵,其应变矩阵B=[BBB],其中B=,(i,j,m)。

应变分量,,都是常量,但环向应变不是常量,它与,,中的r和z有关。

4.2答:轴对称问题中,刚度自由度:环向位移,径向位移,轴向位移。

以三角环单元平均半径、平均高度进行计算的单元刚度矩阵,配合以精确积分所得的等效结点载荷矩阵,计算的结果还是不错的!4.3轴对称问题的两个单元a和b,设材料的弹性模量为E,泊松比为μ=0.15,试手算这两个单元的刚度矩阵。

解:对于单元,由题可知:单元a的截面面积为单元a的刚度矩阵写成分块矩阵形式为:其中子矩阵可写为:所以的刚度矩阵为对于单元,由题可知单元的截面面积为单元的刚度矩阵写成分块矩阵形式为:其中子矩阵可写为:所以单元的刚度矩阵为5.1答:杆件受到纵向(平行于杆轴)载荷的作用,这样杆件的拉压问题;杆件受到横向(垂直于杆轴)载荷的作用,这是梁的弯曲问题。

杆件受到力相似到薄板就有,薄板受到纵向载荷的作用,这是平面应力问题;薄板受到横向载荷的作用,这是薄板的弯曲问题。

薄板的弯曲可以认为是梁弯曲的推广,是双向的弯曲问题,中面法线在变形后保持不伸缩,并且成为弹性曲面的法线,中面在变形后,其线段和面积的投影形状保持不变(小挠度薄板)。

已知中面的挠度,而纵向位移、,主要应力分量,,。

相关文档
最新文档