神经网络模型压缩方法综述

神经网络模型压缩方法综述
神经网络模型压缩方法综述

基于人工神经网络预测探究文献综述

基于人工神经网络的预测研究文献综述专业:电子信息工程班级:08级2班作者:刘铭指导老师:熊朝松 引言 随着多媒体和网络技术的飞速发展及广泛应用,人工神经网络已被广泛运用于各种领域,而它的预测功能也在不断被人挖掘着。人工神经网络是一种旨在模仿人脑结构及其功能的信息处理系统。现代计算机构成单元的速度是人脑中神经元速度的几百万倍,对于那些特征明确,推理或运算规则清楚地可编程问题,可以高速有效地求解,在数值运算和逻辑运算方面的精确与高速极大地拓展了人脑的能力,从而在信息处理和控制决策等方面为人们提供了实现智能化和自动化的先进手段。但由于现有计算机是按照冯·诺依曼原理,基于程序存取进行工作的,历经半个多世纪的发展,其结构模式与运行机制仍然没有跳出传统的逻辑运算规则,因而在很多方面的功能还远不能达到认得智能水平。随着现代信息科学与技术的飞速发展,这方面的问题日趋尖锐,促使科学和技术专家们寻找解决问题的新出路。当人们的思想转向研究大自然造就的精妙的人脑结构模式和信息处理机制时,推动了脑科学的深入发展以及人工神经网络和闹模型的研究。随着对生物闹的深入了解,人工神经网络获得长足发展。在经历了漫长的初创期和低潮期后,人工神经网络终于以其不容忽视的潜力与活力进入了发展高潮。这么多年来,它的结构与功能逐步改善,运行机制渐趋成熟,应用领域日益扩大,在解决各行各业的难题中显示出巨大的潜力,取得了丰硕的成果。通过运用人工神经网络建模,可以进行预测事物的发展,节省了实际要求证结果所需的研究时间。 正是由于人工神经网络是一门新兴的学科,它在理论、模型、算法、应用和时限等方面都还有很多空白点需要努力探索、研究、开拓和开发。因此,许多国家的政府和企业都投入了大量的资金,组织大量的科学和技术专家对人工神经网络的广泛问题立项研究。从人工神经网络的模拟程序和专用芯片的不断推出、论文的大量发表以及各种应用的报道可以看到,在这个领域里一个百家争鸣的局面已经形成。 为了能深入认识人工神经网络的预测功能,大量收集和阅读相关资料是非常必要的。搜集的资料范围主要是大量介绍人工神经网路,以及认识和熟悉了其中重要的BP网络。参考的著作有:马锐的《人工神经网络原理》,胡守仁、余少波的《神经网络导论》以及一些相关论文,董军和胡上序的《混沌神经网络研究进展和展望》,朱大奇的《人工神经网络研究现状及其展望》和宋桂荣的《改进BP算法在故障诊断中的应用》,这些

基于小波和神经网络的图像压缩方法

收稿日期:2009-12-20 作者简介:罗忠亮(1973-),男,湖南桂阳人,韶关学院计算机科学学院讲师,博士研究生,主要从事图像处理及生物特征识别的研究. 韶关学院学报·自然科学Journal of Shaoguan University ·Natural Science 2010年3月 第31卷第3期基于小波和神经网络的图像压缩方法 罗忠亮 (韶关学院计算机科学学院,广东韶关512005) 摘要:针对图像压缩中压缩率与图像质量的折衷问题,综合利用小波变换和神经网络各自的优点,采用小波和神经网络的方法进行图像压缩.该算法先对图像进行小波分解,保留低频系数,然后将高频系数输入训练的网络进行矢量量化编码达到压缩的目的,最后根据保留的低频系数和还原的高频系数重构图像. 关键词:图像压缩;小波变换;神经网络;峰值信噪比 中图分类号:TP301文献标识码:A 文章编号:1007-5348(2010)03-0025-04 随着多媒体业务和通信技术的不断发展,数字图像中所包含的数据量日益庞大,如何让这些庞大的数据在网络中方便、快捷地传输,这对图像信息的存储和传输技术提出了挑战,而图像数据压缩技术是解决这个问题的关键[1-4].通过图像冗余数据的减少可达到图像压缩的目的,在保证图像质量的条件下实现图像压缩.由于小波具有良好的时频局部特性和变焦特性并且能很好地体现人眼的视觉特性,而神经网络具有自学习、自适应性、强鲁棒性、高度并行处理能力和推广能力[5,6].把小波和神经网络结合起来进行图像压缩一直是人们关注的问题.图像经过小波变换后分解为高频子带和低频子带,其中低频分量集中了信号的主要信息,高频部分表现为信号的细节信息.由于人的生理特性决定对细节信息的不敏感,故利用小波可以实现信号压缩的同时尽大可能地保留信号的主要成分[6].采用小波变换和神经网络的方法进行图像压缩,实验证明比单纯BP 神经网络或小波变换有较高的信噪比和压缩率. 1神经网络模型 1985年,Ackley 和Hinton 等人首次把多层前馈神经网络模型用于数据压缩变换.上世纪80年代中后期,神经网络的研究取得很大进展,涉及的应用领域非常广泛. BP 网络可直接提供数据压缩能力.利用多层前馈网络的模式变换能力实现数据变换的基本思想[2]:把一组输入模式通过少量的隐含层单元映射到一组输出模式,并使输出模式尽可能等于输入模式.当隐含层的单元数比输入模式数少时,就意味着隐含层能更有效地表现输入模式,并把这种表现传送到输出层. 用于图像压缩的神经网络包括输入层、隐含层和输出层,隐含层的节点上小于输入节点数,输入节点数与输出节点数相同.学习时,图像数据既送到输入层,又送到输出层作为教师信号,所使用的学习算法为算法网络训练好后,输入层到隐含层为网络的编码过程,对图像数据进行线性或非线性变换,从隐含层到输出层为网络的解码过程,对经过压缩后的变换系数进行线性或非线性变换,恢复图像的原始数据. 用于学习的图像有N ×N 个像素点,各像素灰度值被量化为m 比特(共2m 个可能的取值).2m 个灰度值按线性关系转化成0~1之间的数值作为网络的输入和期望输出(教师模式).网络随机地抽取各n ×n 图像块作为学习模式,用BP 算法学习.通过调整网络中神经元间的连接权值,使训练集图像的重建误差E=f-g 的均值达到最小.训练好的网络隐含层神经元矢量(经量化)便是数据压缩的结果,而输出神经元矢量便是Mar.2010Vol.31No.3

Hopfield神经网络综述

题目:Hopfield神经网络综述 一、概述: 1.什么是人工神经网络(Artificial Neural Network,ANN) 人工神经网络是一个并行和分布式的信息处理网络结构,该网络结构一般由许多个神经元组成,每个神经元有一个单一的输出,它可以连接到很多其他的神经元,其输入有多个连接通路,每个连接通路对应一个连接权系数。 人工神经网络系统是以工程技术手段来模拟人脑神经元(包括细胞体,树突,轴突)网络的结构与特征的系统。利用人工神经元可以构成各种不同拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。主要从两个方面进行模拟:一是结构和实现机理;二是从功能上加以模拟。 根据神经网络的主要连接型式而言,目前已有数十种不同的神经网络模型,其中前馈型网络和反馈型网络是两种典型的结构模型。 1)反馈神经网络(Recurrent Network) 反馈神经网络,又称自联想记忆网络,其目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。反馈神经网络是一种将输出经过一步时移再接入到输入层的神经网络系统。 反馈网络能够表现出非线性动力学系统的动态特性。它所具有的主要特性为以下两点:(1).网络系统具有若干个稳定状态。当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态; (2).系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。 反馈网络是一种动态网络,它需要工作一段时间才能达到稳定。该网络主要用于联想记忆和优化计算。在这种网络中,每个神经元同时将自身的输出信号作为输入信号反馈给其他神经元,它需要工作一段时间才能达到稳定。 2.Hopfiel d神经网络 Hopfield网络是神经网络发展历史上的一个重要的里程碑。由美国加州理工学院物理学家J.J.Hopfield 教授于1982年提出,是一种单层反馈神经网络。Hopfiel d神经网络是反馈网络中最简单且应用广泛的模型,它具有联想记忆的功能。 Hopfield神经网络模型是一种循环神经网络,从输出到输入有反馈连接。在输入的激励下,会产生不断的状态变化。 反馈网络有稳定的,也有不稳定的,如何判别其稳定性也是需要确定的。对于一个Hopfield 网络来说,关键是在于确定它在稳定条件下的权系数。 下图中,第0层是输入,不是神经元;第二层是神经元。

网络仿真技术文献综述

成绩:

网络仿真文献综述 摘要:网络仿真技术是一种通过建立网络设备和网络链路的统计模型, 并模拟网络流量的传输, 从而获取网络设计或优化所需要的网络性能数据的仿真技术。网络仿真技术以其独有的方法能够为网络的规划设计提供客观、可靠的定量依据,缩短网络建设周期,提高网络建设中决策的科学性,降低网络建设的投资风险。 网络仿真技术是一种通过建立网络设备和网络链路的统计模型, 并模拟网络流量的传输, 从而获取网络设计或优化所需要的网络性能数据的仿真技术。由于仿真不是基于数学计算, 而是基于统计模型,因此,统计复用的随机性被精确地再现。 关键词:网络仿真;统计模型;仿真技术

1.前言 目前,数据网络的规划和设计一般采用的是经验、试验及计算等传统的网络设计方法。不过,当网络规模越来越大、网元类型不断增多、网络拓扑日趋复杂、网络流量纷繁交织时,以经验为主的网络设计方法的弊端就越来越显现出来了。网络规划设计者相对来说缺乏大型网络的设计经验,因此在设计过程中主观的成分更加突出。 数学计算和估算方法对于大型复杂网络的应用往往是非常困难的,得到的结果的可信性也是比较低的,特别是对于包交换、统计复用的数据网络,情况更是如此。因此,随着网络的不断扩充,越来越需要一种新的网络规划和设计手段来提高网络设计的客观性和设计结果的可靠性,降低网络建设的投资风险。网络仿真技术正是在这种需求拉动下应运而生的。网络仿真技术以其独有的方法能够为网络的规划设计提供客观、可靠的定量依据,缩短网络建设周期,提高网络建设中决策的科学性,降低网络建设的投资风险。 网络仿真技术是一种通过建立网络设备和网络链路的统计模型, 并模拟网络流量的传输, 从而获取网络设计或优化所需要的网络性能数据的仿真技术。由于仿真不是基于数学计算, 而是基于统计模型,因此,统计复用的随机性被精确地再现。它以其独有的方法为网络的规划设计提供客观、可靠的定量依据,缩短网络建设周期,提高网络建设中决策的科学性,降低网络建设的投资风险。 2.网络仿真软件比较分析 网络仿真软件通过在计算机上建立一个虚拟的网络平台,来实现真实网络环境的模拟,网络技术开发人员在这个平台上不仅能对网络通信、网络设备、协议、以及网络应用进行设计研究,还能对网络的性能进行分析和评价。另外,仿真软件所提供的仿真运行和结果分析功能使开发人员能快速、直观的得到网络性能参数,为优化设计或做出决策提供更便捷、有效的手段。因此运用网络仿真软件对网络协议、算法等进行仿真已经成为计算机网络通信研究中必不可少的一部分。 2.1 OPNET仿真软件介绍

最新神经网络最新发展综述汇编

神经网络最新发展综述 学校:上海海事大学 专业:物流工程 姓名:周巧珍 学号:201530210155

神经网络最新发展综述 摘要:作为联接主义智能实现的典范,神经网络采用广泛互联的结构与有效的学习机制来模拟人脑信息处理的过程,是人工智能发展中的重要方法,也是当前类脑智能研究中的有效工具。目前,模拟人脑复杂的层次化认知特点的深度学习成为类脑智能中的一个重要研究方向。通过增加网络层数所构造的“深层神经网络”使机器能够获得“抽象概念”能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究的一个新高潮。本文分8个方面综述了其当前研究进展以及存在的问题,展望了未来神经网络的发展方向。 关键词: 类脑智能;神经网络;深度学习;大数据 Abstract: As a typical realization of connectionism intelligence, neural network, which tries to mimic the information processing patterns in the human brain by adopting broadly interconnected structures and effective learning mechanisms, is an important branch of artificial intelligence and also a useful tool in the research on brain-like intelligence at present. Currently, as a way to imitate the complex hierarchical cognition characteristic of human brain, deep learning brings an important trend for brain-like intelligence. With the increasing number of layers, deep neural network entitles machines the capability to capture “abstract concepts” and it has achieved great success in various fields, leading a new and advanced trend in neural network research. This paper summarizes the latest progress in eight applications and existing problems considering neural network and points out its possible future directions. Key words : artificial intelligence; neural network; deep learning; big data 1 引言 实现人工智能是人类长期以来一直追求的梦想。虽然计算机技术在过去几十年里取得了长足的发展,但是实现真正意义上的机器智能至今仍然困难重重。伴随着神经解剖学的发展,观测大脑微观结构的技术手段日益丰富,人类对大脑组织的形态、结构与活动的认识越来越深入,人脑信息处理的奥秘也正在被逐步揭示。如何借助神经科学、脑科学与认知科学的研究成果,研究大脑信息表征、转换机理和学习规则,建立模拟大脑信息处理过程的智能计算模型,最终使机器掌握人类的认知规律,是“类脑智能”的研究目标。 类脑智能是涉及计算科学、认知科学、神经科学与脑科学的交叉前沿方向。类脑智能的

Hopfield神经网络综述

题目: Hopfield神经网络综述 一、概述: 1.什么是人工神经网络(Artificial Neural Network,ANN) 人工神经网络是一个并行和分布式的信息处理网络结构,该网络结构一般由许多个神经元组成,每个神经元有一个单一的输出,它可以连接到很多其他的神经元,其输入有多个连接通路,每个连接通路对应一个连接权系数。 人工神经网络系统是以工程技术手段来模拟人脑神经元(包括细胞体,树突,轴突)网络的结构与特征的系统。利用人工神经元可以构成各种不同拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。主要从两个方面进行模拟:一是结构和实现机理;二是从功能上加以模拟。 根据神经网络的主要连接型式而言,目前已有数十种不同的神经网络模型,其中前馈型网络和反馈型网络是两种典型的结构模型。 1)反馈神经网络(Recurrent Network) 反馈神经网络,又称自联想记忆网络,其目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。反馈神经网络是一种将输出经过一步时移再接入到输入层的神经网络系统。 反馈网络能够表现出非线性动力学系统的动态特性。它所具有的主要特性为以下两点:(1).网络系统具有若干个稳定状态。当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态; (2).系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。 反馈网络是一种动态网络,它需要工作一段时间才能达到稳定。该网络主要用于联想记忆和优化计算。在这种网络中,每个神经元同时将自身的输出信号作为输入信号反馈给其他神经元,它需要工作一段时间才能达到稳定。 2.Hopfield神经网络 Hopfield网络是神经网络发展历史上的一个重要的里程碑。由美国加州理工学院物理学家J.J.Hopfield 教授于1982年提出,是一种单层反馈神经网络。Hopfield神经网络是反馈网络中最简单且应用广泛的模型,它具有联想记忆的功能。 Hopfield神经网络模型是一种循环神经网络,从输出到输入有反馈连接。在输入的激励下,会产生不断的状态变化。 反馈网络有稳定的,也有不稳定的,如何判别其稳定性也是需要确定的。对于一个Hopfield 网络来说,关键是在于确定它在稳定条件下的权系数。 下图中,第0层是输入,不是神经元;第二层是神经元。

多领域建模理论与方法

XXX理工大学 CHANGSHA UNIVERSITY OF TECHNOLOGY&TECHNOLGY 题目:多领域建模理论与方法 学院: XXX 学生: XXX 学号: XXX 指导教师: XXX 2015年7月2日

多领域建模理论和方法 The theories and methods of Multi-domain Modeling Student:XXX Teacher:XXX 摘要 建模理论和方法是推动仿真技术进步和发展的重要因素,也是系统仿真可持续发展的基础[1]文中综述了多领域建模主要采用的四种方法,并重点对基于云制造的多领域建模和仿真进行了叙述,并对其发展进行了展望。 关键词:多领域建模仿真;云制造;展望 Abstract:The theory and method of system model building is not only the key factor to stimulate the development and improvement of simulation technique but also the base of system simulation. This paper analysis four prevails way in Multi-domain Modeling, especially to the Multi-domain Modeling and Simulation in cloud manufacturing environment. We give a detail on its development and future. Keywords: Multi-domain Modeling and simulation; Cloud manufacturing; Future development 一引言 随着科学技术的发展进步和产品的升级需求,对产品提出了更高的要求,使得建模对象的组成更加复杂,涉及到各个学科、进程的复杂性以及设计方法的多元化。这些需求都是以前单领域建模方案无法满足的,因此,必须建立一个建模方式在设计过程中完成对繁杂目标的多领域建模、结构仿真、多元化分析等。 多领域建模是将机械、控制、电子等不同学科领域的模型“组装”成一个更大的模型进行仿真。根据需要的不同,实际建模过程中,可以将模型层层分解。将不同领域的仿真模型“零件”组装成“部件”,“子系统”则是由不同学科下的部件装配而成,与此同时装配完成的不同学科的分子系统还能再装配成为一个全面仿真模型,称之为“系统”,由此可见多领域建模技术在繁杂产品设计过程中具有出众的优势。 本文对多领域建模常用的四种方法:基于各领域商用仿真软件接口的建模方法;基于高层体系结构的建模方法;基于统一建模语言的多领域建模方法和基于云制造环境下多领域建模的方法进行了分析并对基于云制造环境下多领域建模方法进行了展望。

神经网络研究的现状

万方数据

万方数据

神经网络研究的现状 刊名: 甘肃科技纵横 英文刊名:SCIENTIFIC & TECHNICAL INFORMATION OF GANSU 年,卷(期):2006,35(4) 本文读者也读过(10条) 1.卢海林.王鑫改进的BP神经网络在单桩竖向承载力预测中的应用[期刊论文]-长江大学学报(自然科学版)2005,2(7) 2.张国栋.彭刚.王钊.朱暾BP神经网络在单桩承载力预测中的应用[期刊论文]-三峡大学学报(自然科学版) 2003,25(1) 3.张永央.陈新朝复合载体夯扩桩单桩竖向极限承载力研究[期刊论文]-资源环境与工程2008,22(z1) 4.王昆明.蒋洪胜.姜千君.WANG Kun-ming.JIANG Hong-sheng.JIANG Qian-jun嵌岩桩竖向承载力预测的遗传BP神经网络模型研究[期刊论文]-山东建筑大学学报2008,23(6) 5.刘世奇.潘冬子.陈静曦.LIU Shi-qi.PAN Dong-zi.Chen Jing-xi小波分析在基桩浅部缺陷检测中的应用[期刊论文]-无损检测2005,27(4) 6.刘曦文.LIU Xi-wen BP神经网络在地基承载力预测中的应用[期刊论文]-山西建筑2010,36(30) 7.蒋洪胜.戚靖骅.万立华.JIANG Hong-sheng.QI Jing-hua.WAN Li-hua基于遗传-BP神经网络预测单桩竖向承载力[期刊论文]-山东建筑工程学院学报2006,21(3) 8.牟粼琳.李卓球.林佳木.MOU Linlin.LI Zhuoqiu.LIN Jiamu低应变桩基检测模拟信号的小波分析系统研究[期刊论文]-武汉理工大学学报(信息与管理工程版)2008,30(3) 9.潘冬子.程升明.唐颖栋.Pan Dongzi.Cheng Shengming.Tang Yingdong小波神经网络在基桩缺陷诊断分析中的应用[期刊论文]-振动、测试与诊断2006,26(3) 10.熊水金基于小波分析的低应变反射波法测桩信号处理中的小波基选取[期刊论文]-内蒙古石油化工2008,34(7)本文链接:https://www.360docs.net/doc/ce10728001.html,/Periodical_gskjzh200604024.aspx

人工神经网络概论

人工神经网络概论 梁飞 (中国矿业大学计算机科学与技术学院信科09-1班,江苏,徐州,221116) 摘要:进入21世纪以来,神经网络近来越来越受到人们的关注,因为神经网络可以很容易的解决具有上百个参数的问题,它为大复杂度问题提供了解决一种相对来说比较有效的简单方法。人工神经网络是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。本文简要介绍了人工神经网络的工作原理、属性、特点和优缺点、网络模型、发展历史及它的应用和发展前景等。 关键词:人工神经网络;人工智能;神经网络;神经系统 1.人工神经网络的简介 人工神经网络(Artificial Neural Networks,简写为 ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。 2.人工神经网络的工作原理 人脑的处理机制极其复杂,从结构上看它是包含有140亿神经细胞的大规模网络。单个神经细胞的工作速度并不高,但它通过超并行处理使得整个系统实现处理的高速性和表现的多样性。 因此,从处理的角度对人脑进行研究,并由此研制出一种象人脑一样能够“思维”的智能计算机和智能处理方法,一直是人工智能追求的目标。 人脑神经系统的基本构造单元是神经细胞,也称神经元。它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括三个主要部分:细胞体、树突和轴突。树突的作用是向四方收集由其他神经细胞传来的信息,轴突的功能是传出从细胞体送来的信息。每个神经细胞所产生和传递的基本信息是兴奋或抑制。在两个神经细胞之间的相互接触点称为突触。从信息的传递过程来看,一个神经细胞的树突,在突触处从其他神经细胞接受信号。这些信号可能是兴奋性的,也可能是抑制性的。所有树突接受到的信号都传到细胞体进行综合处理,如果在一个时间间隔内,某一细胞接受到的兴奋性信号量足够大,以致于使该细胞被激活,而产生一个脉冲信号。这个信号将沿着该细胞的轴突传送出去,并通过突触传给其他神经细胞.神经细胞通过突触的联接形成神经网络。

人工神经网络综述

人工神经网络综述 摘要:人工神经网络是属于人工智能的一个组成部分,它的提出是基于现代神经科学的相关研究,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。首先论述了人工神经网络的发展历程,并介绍了几种常见的模型及应用现状,最后总结了当前存在的问题及发展方向。 关键词:神经网络、分类、应用 0引言 多年以来,科学家们不断从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度探索人脑工作的秘密,希望能制作模拟人脑的人工神经元。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在计算某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。在研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“人工神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。 1人工神经网络概述 1.1人工神经网络的发展 人工神经网络是20世纪80年代以来人工智能领域中兴起的研究热点,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。 1.1.1人工神经网络发展初期 1943年美国科学家家Pitts和MeCulloch从人脑信息处理观点出发,采用数理模型的方法研究了脑细胞的动作和结构及其生物神经元的一些基本生理特性,他们提出了第一个神经计算模型,即神经元的阈值元件模型,简称MP模型,这是人类最早对于人脑功能的模仿。他们主要贡献在于结点的并行计算能力很强,为计算神经行为的某此方面提供了可能性,从而开创了神经网络的研究。1958年Frank Rosenblatt提出了感知模型(Pereeptron),用来进行分类,并首次把神经网络的研究付诸于工程实践。1960年Bernard Widrow等提出自适应线形元件ADACINE网络模型,用于信号处理中的自适应滤波、预测和模型识别。 1.1.2人工神经网络低谷时期

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究 摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。 关键词:BP神经网络、算法分析、应用 1 引言 人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。 人工神经网络最有吸引力的特点就是它的学习能力。因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。 人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。现在分别介绍人工神经元模型及人工神经网络模型。 1.1 人工神经元模型 仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts 在分析总结神经元基本特性的基础上首先提出的MP模型。该模型经过不断改进后,形成现在广泛应用的BP神经元模型。人工神经元模型是由人量处理单元厂泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑的基本特性。一般来说,作为人工神经元模型应具备三个要素: (1)具有一组突触或连接,常用表示神经元i和神经元j之间的连接强度。 w ij (2)具有反映生物神经元时空整合功能的输入信号累加器。

人工神经网络综述

目录 1 人工神经网络算法的工作原理 (3) 2 人工神经网络研究内容 (4) 3 人工神经网络的特点 (5) 4 典型的神经网络结构 (6) 4.1 前馈神经网络模型 (6) 4.1.1 自适应线性神经网络(Adaline) (6) 4.1.1.1网络结构 (6) 4.1.1.2学习算法步骤 (7) 4.1.1.3优缺点 (7) 4.1.2单层感知器 (8) 4.1.2.1网络结构 (8) 4.1.2.2学习算法步骤 (9) 4.1.2.3优缺点 (9) 4.1.3多层感知器和BP算法 (10) 4.1.3.1网络结构: (10) 4.1.3.2 BP算法 (10) 4.1.3.3算法学习规则 (11) 4.1.3.4算法步骤 (11) 4.1.3.5优缺点 (12) 4.2反馈神经网络模型 (13) 4.2.1 Hopfield神经网络 (13) 4.2.1.1网络结构 (13) 4.2.1.2 学习算法 (15) 4.2.1.3 Hopfield网络工作方式 (15) 4.2.1.4 Hopfield网络运行步骤 (15) 4.2.1.5优缺点 (16) 4.2.2海明神经网络(Hamming) (16) 4.2.2.1网络结构 (16) 4.2.2.2学习算法 (17) 4.2.2.3特点 (18) 4.2.3双向联想存储器(BAM) (19) 4.2.3.1 网络结构 (19) 4.2.3.2学习算法 (19) 4.2.3.4优缺点 (21) 5.人工神经网络发展趋势以及待解决的关键问题 (22) 5.1 与小波分析的结合 (22) 5.1.1小波神经网络的应用 (23) 5.1.2待解决的关键技术问题 (23) 5.2混沌神经网络 (23) 5.2.1混沌神经网络的应用 (24) 5.2.2待解决的关键技术问题 (24)

人工智能发展综述

人工智能发展综述 摘要:概要的阐述下人工智能的概念、发展历史、当前研究热点和实际应用以及未来的发展趋势。 关键词:人工智能; 前景; 发展综述 人工智能(Artificial Intelligence)自1956 年正式问世以来的五十年间已经取得了长足的进展,由于其应用的极其广泛性及存在的巨大研究开发潜力, 吸引了越来越多的科技工作者投入人工智能的研究中去。尤其是八十年代以来出现了世界范围的开发新技术的高潮,许多发达国家的高科技计划的重要内容是计算机技术,而尤以人工智能为其基本重要组成部分。人工智能成为国际公认的当代高技术的核心部分之一。 1什么是人工智能 美国斯坦福大学人工智能研究中心尼尔逊教授给人工智能下了这样一个定义:人工智能是关于知识的学科, 是怎样表示知识以及怎样获得知识并使用知识的科学。从人工智能所实现的功能来定义是智能机器所执行的通常与人类智能有关的功能,如判断、推理、证明、识别学习和问题求解等思维活动。这些反映了人工智能学科的基本思想和基本内容, 即人工智能是研究人类智能活动的规律。若是从实用观点来看,人工智能是一门知识工程学:以知识为对象,研究知识的获取、知识的表示方法和知识的使用。 从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。如果仅从技术的角度来看,人工智能要解决的问题是如何使电脑表现智能化,使电脑能更灵活方效地为人类服务。只要电脑能够表现出与人类相似的智能行为,就算是达到了目的,而不在乎在这过程中电脑是依靠某种算法还是真正理解了。人工智能就是计算机科学中涉及研究、设计和应用智能机器的—个分支,人工智能的目标就是研究怎样用电脑来模仿和执行人脑的某些智力功能,并开发相关的技术产品,建立有关的理论。 2 人工智能历史 当然,人工智能的发展也并不是一帆风顺的,人工智能的研究经历了以下几

NPT型IGBT电热仿真模型参数提取方法综述_徐铭伟

电力自动化设备 Electric Power Automation Equipment Vol.33No.1Jan.2013 第33卷第1期2013年1月 0引言 近年来,绝缘栅双极型晶体管IGBT (Insulated Gate Bipolar Transistor )因其不断改善的电压、电流承受能力和工作频率、功率损耗等性能指标而被广泛应用到机车牵引、开关电源、新能源发电等电能变换和处理领域中[1],因此IGBT 的可靠性受到国内外科研工作者的广泛关注。研究表明,与IGBT 器件结温(T j )相关的热循环过程和器件封装材料热膨胀系数不一致是致其故障的主要诱因[2-3],IGBT 的电热仿真模型可以估计结温的变化情况,从而可用于IGBT 可靠性的评估。国内外对IGBT 的电热仿真模型开展了大量研究工作[4-6],其中基于半导体物理并考虑自热效应(Self -heating )的IGBT A.R.Hefner 器件模型[6] 和反映其封装传热过程的Cauer 网络[7-9]联合组成的IGBT 电热模型准确度较高,并已在Saber 、Pspice 等电路仿真软件中得到应用[10-11],但是,仿真软件有限的器件模型库无法满足仿真需要,同时出于技术保密的缘故,半导体制造商并不会提供建立电热模型需要的模型参数,因此如何建立一种有效并准确的参数提取方法就显得十分必要。 IGBT 电热仿真模型参数同半导体物理、器件以 及封装结构直接相关,无法直接测量,只能通过一定 的技术方法和手段获取。一个有效的参数提取过程是获得有效的电热模型的前提条件;此外,实现模型参数的准确提取对于分析IGBT 的性能、优化驱动电路的设计、指导其应用以及选型都具有重要意义。在参数提取之后,有效性验证也至关重要,可以让使用者合理选择器件的工作范围。由于非穿通(NPT )型 IGBT 目前在工业领域中已获得了广泛而成熟的应 用[12],本文将以其作为参数提取的研究对象。本文从NPT 型IGBT 电热仿真模型的工作原理出发,首先将模型参数分为电参数和热参数两大类。然后对近年来模型参数提取方法的研究情况进行讨论,依据提取手段的不同将文献中出现的IGBT 电参数提取方法归纳为4类:仿真提取[13];经验估计,如利用经验公式[12,14-18]、数据手册[15-16]或者参数典型范围[12];参数隔离[19-27];参数优化,包括直接搜索技术[14]、模拟退火算法[28-29]、变量轮换法[30-32]等。同时归纳Cauer 网络的参数提取可以从IGBT 的封装结构[8-9,33-34]和封装瞬态热阻曲线[7,35-36]2个方向出发,并列表给出了提取电参数和热参数的不同方法之间的优缺点。最后对各种提取方法进行了总结,并讨论了一个模型电参数提取步骤,以增强参数提取工作的有序性和可靠性,这对于提高IGBT 电热仿真模型的应用水平,扩大其使用范围起到了积极的作用。 1IGBT 电热仿真模型及其参数 IGBT 的电热仿真模型是建立在考虑了半导体 自热效应的Hefner 物理模型基础之上,耦合了受结温影响的器件模型及与散热路径相关的动态热模型。在分析器件损耗特性、辅助电力电子设计以及研究因器件老化衰退引起的变换器端口特性等方面, NPT型IGBT电热仿真模型参数提取方法综述 徐铭伟,周雒维,杜 雄,沈 刚,杨 旭 (重庆 大学输配电装备及系统安全与新技术国家重点实验室,重庆400044) 摘要:对NPT 型IGBT 电热仿真模型的工作原理进行了概述,并将模型参数分为电参数(即基于半导体物理的Hefner 器件模型参数)和热参数(即反映器件封装传热的Cauer 网络参数)两大类,然后对近年来模型参数提取方法的研究情况进行讨论。依据提取技术手段的不同将IGBT 电参数提取方法归纳为仿真提取、经验估计、参数隔离和参数优化4类,并从时效性、准确性、复杂性等方面对各种方法进行了比较和评价;从IGBT 的封装结构和封装瞬态热阻曲线2个方向出发讨论了Cauer 网络参数的提取。最后讨论了一个模型电参数的提取步骤。 关键词:绝缘栅双极型晶体管;电热;仿真;模型;参数提取;热网络;电参数;热参数中图分类号:TM 322 文献标识码:A DOI :10.3969/j.issn.1006-6047.2013.01.026 收稿日期:2011-08-09;修回日期:2012-10-19 基金项目:科技部国际合作项目(2010DFA72250);国家自然科学基金资助项目(51077137);输配电装备及系统安全与新技术国家重点实验室重点资助项目(2007DA10512711101);中央高校基本科研业务费资助项目(CDJXS11150022) Project supported by the International Cooperation Project of the Minister of Science and Technology of China (2010DFA -72250),the National Natural Science Foundation of China (51077137),the Key Program in State Key Laboratory of Power Transmission Equipment &System Security and New Tech -nology (2007DA10512711101)and the Fundamental Research Funds for the Central Universities of China (CDJXS11150022)

人工神经网络文献综述.

WIND 一、人工神经网络理论概述 (一人工神经网络基本原理 神经网络 (Artificialneuralnet work , ANN 是由大量的简单神经元组成的非线性系统,每个神经元的结构和功能都比较简单,而大量神经元组合产生的系统行为却非常复杂。人工神经元以不同的方式,通过改变连接方式、神经元的数量和层数,组成不同的人工神经网络模型 (神经网络模型。 人工神经元模型的基本结构如图 1所示。图中X=(x 1, x 2, … x n T ∈ R n 表示神经元的输入信号 (也是其他神经元的输出信号 ; w ij 表示 神经元 i 和神经元 j 之间的连接强度,或称之为权值; θj 为神经元 j 的阀值 (即输入信号强度必须达到的最小值才能产生输出响应 ; y i 是神经元 i 的输出。其表达式为 y i =f( n j =i Σw ij x j +θi 式中, f (

·为传递函数 (或称激活函数 ,表示神经元的输入 -输出关系。 图 1 (二人工神经网络的发展 人工神经网络 (ArtificialNeuralNetwork 是一门崭新的信息处理科学,是用来模拟人脑结构和智能的一个前沿研究领域,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。人工神经网络系统理论的发展历史是不平衡的,自 1943年心理学家 McCulloch 与数学家 Pitts 提出神经元生物学模型 (简称MP-模型以来,至今已有 50多年的历史了。在这 50多年的历史中,它的发展大体上可分为以下几个阶段。 60年代末至 70年代,人工神经网络系统理论的发展处于一个低潮时期。造成这一情况的原因是人工神经网络系统理论的发展出现了本质上的困难,即电子线路交叉极限的困难。这在当时条件下,对神经元的数量 n 的大小受到极大的限制,因此它不可能去完成高度智能化的计算任务。 80年代中期人工神经网络得到了飞速的发展。这一时期,多种模型、算法与应用问题被提出,主要进展如:Boltzmann 机理论的研究, 细胞网络的提出,性能指标的分析等。 90年代以后,人工神经网络系统理论进入了稳健发展时期。现在人工神经网络系统理论的应用研究主要是在模式识别、经济管理、优化控制等方面:与数学、统计中的多个学科分支发生联系。 (三人工神经网络分类 人工神经网络模型发展到今天已有百余种模型,建造的方法也是多种多样,有出自热力学的、数学方法的、模糊以及混沌方法的。其中 BP 网络(BackPropagationNN 是当前应用最为广泛的一种人工神经网络。在人工神经网络的实际应用中, 80%~90%的人工神经网络模型是采用 BP 网络或它的变化形式,它也

基于BP神经网络的图像压缩--神经网络实验报告

一、实验名称 基于BP神经网络的图像压缩 二、实验目的 1.熟悉掌握神经网络知识; 2.学习多层感知器神经网络的设计方法和Matlab实现; 3.进一步了解掌握图像压缩的方式方法,分析仿真图像压缩效果。 三、实验要求 1.学习神经网络的典型结构; 2.了解BP算法基本思想,设计BP神经网络架构; 3.利用BP算法解决图像压缩的质量问题; 4.谈谈实验体会与收获。 四、实验步骤 (一)分析原理,编写程序 本实验主要利用BP神经网络多层前馈的模式变换能力,实现数据编码和压缩。采用输入层、隐含层、输出层三层网络结构。输入层到隐含层为编码过程,对图像进行线性变换,隐含层到输出层为网络解码过程,对经过压缩后的变换系统进行线性反变换,完成图像重构。其主要步骤有以下五步: 1.训练样本构造 基于数值最优化理论的训练算法,采用Levenberg-Marquardt方法,将训练图像的所有像素点作为压缩网络的输入,对图像进行划分。将原始图像分成4×4的互不重叠的像素块,并将每个像素快变形为16×1的列向量,将原始数据转化为16×1024的矩阵。对输入数据进行预处理,像素块矩阵进行尺度变换,即归一化处理。 为了将网络的输入、输出数据限定在[0,1]的区间内,本实验采用均值分布预处理方法。将待处理图像的灰度范围[x min,x max],变换域为[y min,y max],设待处理的像素灰度值为x i,则对于所有过程的映射y i满足公式: y i = xmin max min) min)( max ( -- -x x xi y y +xmin 其主要程序为: P = []; %将原始数据转化为16*1024的矩阵for i = 1:32 for j = 1:32 I2 = I((i-1)*4 + 1:i*4,(j-1)*4 + 1:j*4); i3 = reshape(I2,16,1);

相关文档
最新文档