不等式易错点归纳总结

不等式易错点归纳总结
不等式易错点归纳总结

2011高考数学概念方法题型易误点技巧总结(六)

不等式

1、不等式的性质:

(1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减;

(2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若

0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则

a b c d

>); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n

n

a b >或n n a b >;(4)若0ab >,

a b >,则

11a b <;若0ab <,a b >,则11

a b

>。 如(1)对于实数c b a ,,中,给出下列命题:

①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若;

④b a b a 1

1,0<<<则若; ⑤b

a

a b b a ><<则若,0;

⑥b a b a ><<则若,0; ⑦b

c b

a c a

b a

c ->->>>则若,0; ⑧11

,

a b a b

>>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤);

(3)已知c b a >>,且,0=++c b a 则

a c 的取值范围是______(答:12,2?

?-- ??

?) 2. 不等式大小比较的常用方法:

(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果; (2)作商(常用于分数指数幂的代数式); (3)分析法; (4)平方法;

(5)分子(或分母)有理化;

(6)利用函数的单调性; (7)寻找中间量或放缩法 ;

(8)图象法。其中比较法(作差、作商)是最基本的方法。

如 (1)设0,10>≠>t a a 且,比较

21log log 21+t t a a 和的大小(答:当1a >时,11log log 22a a t t +≤(1t =时取等号);当01a <<时,11

log log 22

a a t t +≥(1t =时取等号));

(2)设2a >,1

2

p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >);

(3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或4

3

x >时,1+3log x >

2log 2x ;当413x <<时,1+3log x <2log 2x ;当4

3

x =时,1+3log x =2log 2x )

3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这

17字方针。

如(1)下列命题中正确的是A 、1y x x =+的最小值是2 B 、223

2x y x +=+的最小值是 2 C 、

423(0)y x x x =-->的最大值是243- D 、4

23(0)y x x x

=-->的最小值是243-(答:C );

(2)若21x y +=,则24x

y

+的最小值是______(答:22); (3)正数,x y 满足21x y +=,则y

x 1

1+的最小值为______(答:322+); 4.常用不等式有: (1)

2222211

a b a b ab a b

++≥≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,2

2

2

a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则

b b m

a a m

+<+(糖水的浓度问题)。 如如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

5、证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。).

常用的放缩技巧有:

211111111(1)(1)1n n n n n n n n n

-=<<=-++--

111

11121k k k k k k k k k

+-=

<<=-+++-+

如(1)已知c b a >>,求证:2

22222ca bc ab a c c b b a ++>++ ;

(2) 已知R c b a ∈,,,求证:)(222222c b a abc a c c b b a ++≥++; (3)已知,,,a b x y R +∈,且

11,x y a b >>,求证:x y x a y b

>++; (4)若a 、b 、c 是不全相等的正数,求证:lg lg lg lg lg lg 222

a b b c c a

a b c +++++>++; (5)已知R c b a ∈,,,求证:22

22

a b b c +

22()c a abc a b c +≥++;

(6)若*

n N ∈,求证:2(1)1(1)n n ++-+<

21n n +-;

(7)已知||||a b ≠,求证:

||||||||

||||a b a b a b a b -+≤-+;

(8)求证:22

2

111

1223n +

+++

<。 6.简单的一元高次不等式的解法: 标根法:其步骤是:

(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;

(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;

(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。 如(1)解不等式2(1)(2)0x x -+≥。(答:{|1x x ≥或2}x =-);

(2)不等式2(2)230x x x ---≥的解集是____(答:{|3x x ≥或1}x =-);

(3)设函数()f x 、()g x 的定义域都是R ,且()0f x ≥的解集为{|12}x x ≤<,()0g x ≥的解集为?,则不等式()()0f x g x >的解集为______(答:(,1)

[2,)-∞+∞);

(4)要使满足关于x 的不等式0922

<+-a x x (解集非空)的每一个x 的值至少满足不等式

08603422<+-<+-x x x x 和中的一个,则实数a 的取值范围是______.(答:81

[7,

)8

) 7.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。

如(1)解不等式

25123

x

x x -<---(答:(1,1)(2,3)-);

(2)关于x 的不等式0>-b ax 的解集为),1(+∞,则关于x 的不等式

02

>-+x b

ax 的解集为

____________(答:),2()1,(+∞--∞ ).

8.绝对值不等式的解法:

(1)分段讨论法(最后结果应取各段的并集):如解不等式|2

1

|2|432|+-≥-x x (答:x R ∈); (2)利用绝对值的定义;

(3)数形结合;如解不等式|||1|3x x +->(答:(,1)

(2,)-∞-+∞)

(4)两边平方:如若不等式|32||2|x x a +≥+对x R ∈恒成立,则实数a 的取值范围为______。(答:

4

{}3

) 9、含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。

注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集.

如(1)若2log 13a

<,则a 的取值范围是__________(答:1a >或203

a <<); (2)解不等式

2

()1

ax x a R ax >∈-(答:0a =时,{|x 0}x <;0a >时,1{|x x a >或0}x <;0a <时,1

{|

0}x x a

<<或0}x <) 提醒:

(1)解不等式是求不等式的解集,最后务必有集合的形式表示;

(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。 如关于x 的不等式0>-b ax 的解集为)1,(-∞,则不等式02

>+-b

ax x 的解集为__________(答:(-

1,2))

10.含绝对值不等式的性质:

a b 、同号或有0?||||||a b a b +=+≥||||||||a b a b -=-; a b 、异号或有0?||||||a b a b -=+≥||||||||a b a b -=+.

如设2()13f x x x =-+,实数a 满足||1x a -<,求证:|()()|2(||1)f x f a a -<+

11.不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)

1).恒成立问题

若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <

如(1)设实数,x y 满足22

(1)1x y +-=,当0x y c ++≥时,c 的取值范围是______(答:

)

21,?-+∞?

); (2)不等式a x x >-+-34对一切实数x 恒成立,求实数a 的取值范围_____(答:1a <); (3)若不等式)1(122->-x m x 对满足2≤m 的所有m 都成立,则x 的取值范围_____(答:

712-,312

+)); (4)若不等式n

a n n

1)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是_____(答:

3[2,)2

-);

(5)若不等式2

2210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.(答:

12

m >-

) 2). 能成立问题

若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.

如已知不等式a x x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围______(答:

1a >)

3). 恰成立问题

若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ; 若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D .

高考数学易错点总结精编版

高考数学易错点总结公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

高考数学易错点总结 收集整理了数学的一些易考易错点,帮助复习到现阶段的你做一次集中排查。 在看这些易错点之前,先说一下这些易错点的具体使用步骤与方法。 下面已列出高考数学易考易错知识点,请认真逐条阅读,每读一条,请在脑海中寻找该点对应的知识及相应题型。 第1 步 如以下第一条:指数、对数函数的限制条件你注意了吗(真数大于零,底数大于零且不等于1)它们的函数值分布情况是如何的当我们看完这一条后,脑中应该想到指、对函数的标准方程,对应的图像,可以的话在草稿纸上写一写、画一画!再想一想这类问题常考题型:如给出几个函数在一个图中的图像,判断字母a,b,c,d的大小等。 第2 步 逐条去看列出的易错点,将自己不清楚和确实自己易错的点记录下来。 第3 步 去寻一本专题复习书,仔细查看你记录下的易错点对应的知识,给出的例题怎样避开这些错误的,标注、总结、自我强调。 第4 步 再去寻一本专题练习的书(上面那本专题复习书上也许就有哦),实战检验一下你是否真正掌握了这些易错点。 ↓ · 高考数学易考易错点·

1.指数、对数函数的限制条件你注意了吗(真数大于零,底数大于零且不等于1)它们的函数值分布情况是如何的 2.利用换元法证明或求解时,是否注意“新元”的范围变化是否保证等价转化 3.利用放缩法证明或求解时,是否注意放缩的尺度及方向的统一? 4.图像变换的时候是否清楚任何变换都是对“变量本身”进行的? 5.对于集合,你是否清楚集合中的元素(数、点、符号、图形等)是什么及元素的特性(确定性、互异性、无序性)在集合运算时是否注意空集和全集 6.命题的否定(只否结论)与否命题(条件、结论全否)的区别你知道吗? 7.求一个函数或其反函数的解析式的时候你标明函数的定义域了吗? 8.映射的概念你了解吗对于映射f:A→B,是否注意到集合A中元素的任意性和集合B中与它对应元素的唯一性(B中可有多余元素) 9.根据定义证明函数的单调性时的一般步骤是什么(取值规定大小、作差化连乘积、判断符号下结论) 10.判断一个函数的奇偶性时是否注意到定义域关于原点对称这个必要非充分条件了? 11.“三个二次”的关系你清楚吗(二次函数的图像与轴的交点的横坐标即二次方程的根;不等式的解集为二次函数图像上方或下方的点的横坐标的集合)含有参数的二次型你是否注意对二次项系数、对称轴、定义域、判别式、根的大小等的讨论 12.数列也是一种特殊的函数你忽视了吗是否能利用数列性质解题

高中不等式知识点总结

1.不等式的解法 (1)同解不等式((1)f x g x ()()>与f x F x g x F x ()()()()+>+同解; (2)m f x g x >>0,()()与mf x mg x ()()>同解, m f x g x <>0,()()与mf x mg x ()()<同解; (3) f x g x () () >0与f x g x g x ()()(()?>≠00同解); 2.一元一次不等式 ax b a a a >?>=≠()或ax bx c a 200++<≠?()分a >0 及a <0情况分别解之,还要注意?=-b ac 2 4的三种情况,即?>0或 ?=0或?<0,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0??? ?≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)?()()()11当时,a f x g x >>; ()()()201当时,<<?(1)当a >1时, g x f x g x ()()()>>?? ???0;(2)当01<在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚 线以表示区域不包括边界直线。当我们在坐标系中画不等式

数列中的常见错误

数列中的易错问题分析 11,1 12,22n n S n n n S S n k b -=?==≥?-≥?=+n n n n n+1n n n+1 n n n+1n n 一、数列基础知识上的常见错误在数列概念考察上常见题型有: (1)已知a 与S 的关系,求通项a ,a 注意分清与两种情况的讨论。 ()形如a -a =f(n)的递推数列可用迭代法或累加法,求通项a a 形如 =f(n)的递推数列可用累乘法,求通项a a 形如a a 的递推数列可构造等差或等比数列求通项a (一) 概念理解错误 例题1:两个数列 {}n a 与{}n b 的前n 项和分别为,n n S T ,且 :(513):(45)n n S T n n =++,则1010:a b =( ) 易错警示:(513),(45)n n S n k T n k =+=+则 115,4n n n n n n a S S k b T T k --=-==-= 所以1010:a b =4:3,故选C , 从:(513):(45)n n S T n n =++可知,比值:n S (513)n +=n T :(45)n +随着项数 n 的变化而变化,不能设为常数k ,这里忽略了项数n 的可变性而致错。 解析:设(513),(45)n n S n nk T n nk =+=+,则 1(108)n n n a S S n k -=-=+ 1(81)n n n b T T n k -=-=+,其中2n ≥ :n n a b ∴=(108):(81)n n ++ 所以1010:a b =4:3,故选D 。 例题2:已知等差数列{}n a 的前m 项,前2m 项,前3m 项的和分别为23,,m m m S S S , 若230,90m m S S ==,求3m S 。 易错警示:由{}n a 为等差数列,得出23,,m m m S S S 为等差数列的结论是错误的。 解析:设数列的公差为d ,则 123......m m S a a a a =++++ 212312...........m m m m S a a a a a a +=+++++++

易错点02 方程(组)与不等式(组)-备战2021年中考数学一轮复习易错题(原卷版)

易错点02 方程(组)与不等式(组)1.一次方程(组)及其应用 2.分式方程及其应用 3.一元二次方程及其应用 4.一次不等式(组)及其应用 01各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。 1.解方程组:. 1.已知关于x的方程+m+x=3有一个实数根是x=1,试求m的值. 2.已知方程组与有相同的解,求m和n值. 【解析】两个方程组的解相同,也就是有一组x、y的值是这四个方程的公共解,当然也是其中任意两个方程的公共解,所以可以把原来的方程组打乱,重新组合起来求解.【答案】解:由已知可得, 解得, 把代入剩下的两个方程组成的方程组, 得,

解得m=﹣1,n=﹣4. 3.已知,关于x、y二元一次方程组的解满足方程2x﹣y=13,求a的值. 4.若方程=x﹣2m有一个根x=1,求m的值及方程的其他的根. 02运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。 1.解不等式≥,并在数轴上表示解集. 2.解不等式组:并把它的解集在数轴上表示出来. 3.解不等式组,并把解集在数轴上表示出来. 4.解不等式组 请结合题意填空,完成本题的答案.

(1)解不等式①,得; (2)解不等式②,得; (3)把不等式①和②的解集在数轴上表示出来: (4)原不等式组的解集为. 03关于一元二次方程的取值范围的题目易忽视二次项系数不为0。 1.已知:关于x的一元二次方程x2﹣2x+m﹣1=0有两个不相等的实数根.(1)求m的取值范围; (2)如果m为非负整数,且该方程的根都是整数,求m的值. 2.已知m是方程x2﹣x﹣2=0的一个实数根,求代数式(m2﹣m)(m﹣+1)的值. 3.已知关于x的一元二次方程(m+2)x2+2x+m2﹣4=0有一个解是0,求m的值及方程的另一根. 4.已知关于x的方程5x2﹣kx﹣10=0的一个根为﹣5,求它的另一个根及k的值. 04关于一元一次不等式组有解、无解的条件易忽视

数列知识点及常用解题方法归纳总结

数列知识点及常用解题方法归纳总结 一、 等差数列的定义与性质 () 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ?=+2 ()()前项和n S a a n na n n d n n = +=+ -112 12 {}性质:是等差数列a n ()若,则;1m n p q a a a a m n p q +=++=+ {}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232-- ()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则 ;421 21 a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52 a S an bn a b n n n ?=+ 0的二次函数) {}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2 项,即: 当,,解不等式组可得达到最大值时的值。a d a a S n n n n 11 000 0><≥≤?? ?+ 当,,由可得达到最小值时的值。a d a a S n n n n 11000 <>≤≥?? ?+ {}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123 (由,∴a a a a a n n n n n ++=?==----12113331 ()又·,∴S a a a a 3132 22 33113 = +===

必修五-不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间 三、均值不等式

1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2112a b a b +≥+(当 a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结: ①分式不等式的解法:先移项通分标准化,则 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠? ②无理不等式:转化为有理不等式求解 ()0()0()()f x g x f x g x ?≥????≥?? ?>? 定义域 ???<≥?????>≥≥?>0 )(0)()] ([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ??? ??<≥≥?<2 )] ([)(0 )(0 )()()(x g x f x g x f x g x f

高中数学】高中数学18个易错知识点e

【高中数学】高中数学18个易错知识点汇总,看完拿高分! Part 1 集合与简单逻辑 01易错点:遗忘空集致误 错因分析:由于空集是任意非空集合的真子集,因此,对于集合B,就有B=?,B≠?两种情况,在解题中如果思维不够缜密就有可能忽视了B=?这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或解题不全面。 02易错点:忽视集合元素的三性致误 错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围,再具体解决问题。 03易错点:四种命题的结构不明致误 错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A 则┐B”,逆否命题是“若┐B则┐A”。这里面有两组等价的命题,即“原命题和逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。

04易错点:充分必要条件颠倒致误 错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。 05易错点:逻辑联结词理解不准致误 错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p∨q真<=>p真或q真,p∨q假<=>p假且q 假(概括为一真即真);p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括为一假即假) Part 2 函数与导数 06易错点:求函数的定义域时忽视细节致误 错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。 在求一般函数定义域时要注意下面几点: (1)分母不为0; (2)偶次被开放式非负; (3)真数大于0;

不等式的易错点以与典型例题

不等式的易错点以及典型例题 1.同向不等式能相减,相除吗? 2.不等式的解集的规书写格式是什么?(一般要写成集合的表达式) 3.分式不等式 ()() ()0≠>a a x g x f 的一般解题思路是什么?(移项通分,分子分母分解因式,x 的系数变为正值,奇穿偶回) 4.解指数对数不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零.) 5.含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论) 6.利用重要不等式ab b a 2≥+ 以及变式2 2??? ??+≤b a ab 等求函数的最值时, 你是否注意到a ,b +∈R (或a ,b 非负),且“等号成立”时的条件,积ab 或和a +b 其中之一应是定值?(一正二定三相等) 7. ) R b , (a , b a 2ab 2222+∈+≥≥+≥+ab b a b a (当且仅当c b a ==时,取等号); a 、b 、c ∈R ,ca bc ab c b a ++≥++222(当且仅当c b a ==时,取等号); 8.在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底1 0<a )讨论完之后,要写出:综上所述,原不等式的解集是……. 9.解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.” 10.对于不等式恒成立问题,常用的处理方式?(转化为最值问题) 11.在解决有关线性规划应用问题时,有以下几个步骤:先找约束条件,作出可行域,明确目标函数,其中关键就是要搞清目标函数的几何意义,找可行域时要注意把直线方程中的y 的系数变为正值。如:求2<5a-2b<4,-3<3a+b<3求a+b 的取值围,但也可以不用线性规划。 11.不等式易错典型例题

平面向量知识点易错点归纳定稿版

平面向量知识点易错点 归纳精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

§5.1 平面向量的概念及线性运算1.向量的有关概念 2.向量的线性运算

减法求a与b的相反 向量-b的和的 运算叫做a与b 的差 三角形法则 a-b=a+(-b) 数乘求实数λ与向量 a的积的运算 (1)|λa|=|λ||a|;(2)当λ>0时, λa的方向与a的方向相同;当 λ<0时,λa的方向与a的方向相 反;当λ=0时,λa=0 λ(μa)=(λμ)a; (λ+μ)a=λa+ μa;λ(a+b)= λa+λb 3.共线向量定理 向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa. 方法与技巧 1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”. 2.可以运用向量共线证明线段平行或三点共线.如AB→∥CD→且AB与CD不共线,则AB∥CD;若AB→∥BC→,则A、B、C三点共线. 失误与防范 1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性. 2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误. §5.2 平面向量基本定理及坐标表示 1.平面向量基本定理

如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2. 其中,不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算 (1)向量加法、减法、数乘及向量的模 设a=(x1,y1),b=(x2,y2),则 a+b=(x +x2,y1+y2),a-b=(x1-x2,y1-y2), 1 λa=(λx ,λy1),|a|=x21+y21. 1 (2)向量坐标的求法 ①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A(x1,y1),B(x2,y2),则AB→=(x2-x1,y2-y1),|AB→|=x2-x12+y2-y12. 3.平面向量共线的坐标表示 设a=(x1,y1),b=(x2,y2),其中b≠0.a∥b x1y2-x2y1=0. 方法与技巧 1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.平面向量共线的坐标表示 (1)两向量平行的充要条件 若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是a=λb,这与x1y2-x2y1=0在本质上是没有差异的,只是形式上不同.

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

等比数列高考重点题型及易错点提醒 百度文库

一、等比数列选择题 1.已知数列{}n a 的首项11a =,前n 项的和为n S ,且满足() * 122n n a S n N ++=∈,则满 足 2100111 1000 10 n n S S 的n 的最大值为( ). A .7 B .8 C .9 D .10 2.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12 B .18 C .24 D .32 3.在等比数列{}n a 中,11a =,427a =,则352a a +=( ) A .45 B .54 C .99 D .81 4.已知各项均为正数的等比数列{}n a 的前4项和为30,且53134a a a =+,则3a =( ) A .2 B .4 C .8 D .16 5.等比数列{}n a 的各项均为正数,且101010113a a =.则313232020log log log a a a +++= ( ) A .3 B .505 C .1010 D .2020 6.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件 11a >,66771 1, 01 a a a a -><-,则下列结论正确的是( ) A .681a a > B .01q << C .n S 的最大值为7S D .n T 的最大值为7T 7.在数列{}n a 中,12a =,对任意的,m n N * ∈,m n m n a a a +=?,若 1262n a a a ++???+=,则n =( ) A .3 B .4 C .5 D .6 8.已知等比数列{}n a 的前5项积为32,112a <<,则35 124 a a a ++的取值范围为( ) A .73, 2?? ???? B .()3,+∞ C .73, 2? ? ??? D .[ )3,+∞ 9.公比为(0)q q >的等比数列{}n a 中,1349,27a a a ==,则1a q +=( ) A .1 B .2 C .3 D .4 10.正项等比数列{}n a 满足:241a a =,313S =,则其公比是( ) A . 14 B .1 C . 12 D . 13

初一数学-不等式易错题、难题集合--不等式性质应用

学生姓名陈 年级初一 授课时间2012.6 .2 教师姓名刘 课时 2 不等式易错题、难题集合 (注意:运用不等式的性质是解题的关键! ! ! ! ! !不等式的性质切记! !!!!!!!) -,选择题 1.下列不等式一定成立的是() A.5a >4a B.X +2 v X +3 C. — a >— 2a D.- a 2. 右一a >a ,贝U a 必为() A.正整数B .负整数C .正数D .负数 3. 若a > b ,则下列不等式一定成立的是( ) b a A . <1 B. >1 C.-a>-b D.a-b>0 a b 4. 若a — b v 0,则下列各式中一定正确的是( ) a <0 D . b A. a >b B . ab>0 C —a >— b 5.如果b A.- a 那么 1 1 b 6. 若果 x-y>x,x+y>y A.00,y<0 D.x<0,y>0 a b 2 2ab 的值是( B .负数 C .等于零 D.不能确定 ,则下列不等式成立的( 10.不等式ax v b 的解集是 11.若不等式组 A. n 8 B. 12.不等式组 A. m 4 13.已知关于 x v -,那么a 的取值范围是() a > 0 D 、 n 有解,那么 8 C. 2 x n 8 6 的解集是 n 的取值范围是( D. 4,那么m 的取值范围是 X 的不等式组 2X a 2b 的解集为3 x 5,则 1 -的值为。 a 1 -C 2 14. 已知函数y=mx+2x — 2,要使函数值y 随自变量x 的增大而增大, A. m>— 2 B . m>— 2 C . m<— 2 D . m<— 2 15. 要使函数y =(2 m- 3)x +(3n +1)的图象经过x 、y 轴的正半轴,则 A. -2 B .-4 则m 的取值范围是() m 与n 的取值应为 ()

数列知识点总结及题型归纳---含答案(新)

数列 一、等差数列 题型一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。 例:等差数列12-=n a n ,=--1n n a a 题型二、等差数列的通项公式:1(1)n a a n d =+-; 例:1.2. 3.题型三 a ,A 例:1) A .2.A . 题型四(1(2(3(4题型五1122 n n 221(),(2 为常数B A Bn An S n +=?{}n a 是等差数列 ) 递推公式:2 )(2)()1(1n a a n a a S m n m n n --+=+=

例:1.如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )35 2.设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( ) A .13 B .35 C .49 D . 63 3.已知{}n a 数列是等差数列,1010=a ,其前10项的和7010=S ,则其公差d 等于( ) 12 -- ..B A C.1 D.2 4.5. ) 6.7.8. 9. 1011n 项和,求T n 12. 13.在等差数列{}n a 中,(1)已知812148,168,S S a d ==求和;(2)已知658810,5,a S a S ==求和; (3)已知3151740,a a S +=求

高中不等式知识点总结(2020年九月整理).doc

1 1.不等式的解法 (1)同解不等式((1)与同解; (2)与同解,与同解; (3)与同解); 2.一元一次不等式 情况分别解之。 3.一元二次不等式 或分及情况分别解之,还要注意的三种情况,即或或,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0????≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚线以表示区域不包括边界直线。当我们在坐标系中画不等式 0Ax By C ++≥所表示的平面区域时,此区域应包括边界直线,则把 直线画成实线。 说明:由于直线0Ax By C ++=同侧的所有点的坐标(,)x y 代入 Ax By C ++,得到实数符号都相同,所以只需在直线某一侧取一个特 殊点00(,)x y ,从00Ax By C ++的正负即可判断0Ax By C ++>表示直

1 线哪一侧的平面区域。特别地,当0C ≠时,通常把原点作为此特殊点。 (2)有关概念 引例:设2z x y =+,式中变量,x y 满 足条件43 35251x y x y x -≤-?? +≤??≥? ,求z 的最大值和最 小值。 由题意,变量,x y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些 平面区域的公共区域。由图知,原点(0,0)不在公共区域内,当 0,0x y ==时,20z x y =+=,即点(0,0)在直线0l :20x y +=上, 作一组平行于0l 的直线l :2x y t +=,t R ∈,可知:当l 在0l 的右上方时,直线l 上的点(,)x y 满足20x y +>,即0t >,而且,直线l 往右平移时,t 随之增大。 由图象可知,当直线l 经过点(5,2)A 时,对应的t 最大, 当直线l 经过点(1,1)B 时,对应的t 最小,所以, max 25212z =?+=,min 2113z =?+=。 在上述引例中,不等式组是一组对变量,x y 的约束条件,这组约束条件都是关于,x y 的一次不等式,所以又称 为线性约束条件。2z x y =+是要求最大值或最小值所涉及的变量,x y 的解析式,叫目标函数。又由于2z x y =+是 ,x y 的一次解析式,所以又叫线性目标函数。 一般地,求线性目标函数在线性约束条件下的最大值 或最小值的问题,统称为线性规划问题。满足线性约束条件的解(,)x y 叫做可行解,由所有可行解组成的集合叫做可行域。在上述问题中,可行域就是阴影部分表示的三角形区域。其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。 O y x A C 430x y -+= 1x = 35250x y +-=

数列的概念高考重点题型及易错点提醒 百度文库

一、数列的概念选择题 1.数列{}n a 中,12a =,121n n a a +=-,则10a =( ) A .511 B .513 C .1025 D .1024 2.在数列{}n a 中,11a =,11n n a a n +=++,设数列1n a ?? ? ??? 的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( ) A .()3,+∞ B .[ )3,+∞ C .()2,+∞ D .[)2,+∞ 3.设数列{}n a 的前n 项和为n S 已知( )* 123n n a a n n N ++=+∈且1300n S =,若 23a <,则n 的最大值为( ) A .49 B .50 C .51 D .52 4.已知数列{}n a 满足1n n n a a +-=,则20201a a -=( ) A .20201010? B .20191010? C .20202020? D .20192019? 5.已知数列{} ij a 按如下规律分布(其中i 表示行数,j 表示列数),若2021ij a =,则下列结果正确的是( ) A .13i =,33j = B .19i =,32j = C .32i =,14j = D .33i =,14j = 6.数列23451,,,,,3579 的一个通项公式n a 是( ) A . 21n n + B . 23 n n + C . 23 n n - D . 21 n n -

7.数列{}n a 满足11 1n n a a +=-,12a =,则2a 的值为( ) A .1 B .-1 C . 13 D .13 - 8.数列1,3,6,10,…的一个通项公式是( ) A .()2 1n a n n =-- B .2 1n a n =- C .()12 n n n a += D .() 12 n n n a -= 9. 3 … … ,则 ) A .第8项 B .第9项 C .第10项 D .第11项 10.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a = C .1024是三角形数 D . 123111121 n n a a a a n +++?+=+ 11.已知数列{}n a 的前5项为:12a =,232a =,343 a =,454a =,56 5a =,可归纳得 数列{}n a 的通项公式可能为( ) A .1 += n n a n B .2 1 n n a n += + C .3132 n n a n -=- D .221 n n a n = - 12.已知数列{}n a 的通项公式为()()2 11n n a n =--,则6a =( ) A .35 B .11- C .35- D .11 13.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .174 B .184 C .188 D .160 14.历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用.比如意大利数学家列昂纳多—斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233…即121a a ==,当n ≥3时, 12n n n a a a --=+,此数列在现代物理及化学等领域有着广泛的应用.若此数列的各项依次被 4整除后的余数构成一个新的数列{}n b ,记数列{}n b 的前n 项和为n S ,则20S 的值为( ) A .24 B .26 C .28 D .30 15.已知数列{}n a 满足11a =,12 2 n n a a n n +=+ +,则10a =( )

不等式易错题分析

不等式易错题分析 Prepared on 24 November 2020

不等式易错题分析 一、解一元二次不等式的易错题 (一)、随意消项致误 例题1:解不等式; 22(44)(43)0x x x x -+-+≥ 错解:原不等式可化为:2(2)(1)(3)0x x x ---≥ 解得2(2)0,(1)(3)0x x x -≥∴--≥ 所以31x x ≥≤或 原不等式的解集为:{}|31x x x ≥≤或 剖析:错误是由于随意消项造成的,事实上,当2(2)0x -=时,原不等式亦成立 正解:原不等式可化为:20x -≠且(1)(3)0(2)0x x x --≥-=或 解得31x x ≥≤或或x=2 所以原不等式的解集为:{}31x x ≥≤x|或或x=2 (二)、函数不清致误 例题2:已知函数22(45)4(1)3y m m x m x =+-+-+的图像都在x 轴的下方,求实数m 的取值范围。 错解:,依题意,对,0x R y ∈>恒成立,于是函数的图像开口方向向上,且图 像与x 轴无交点。故[]2224504(1)43(45)0 m m m m m ?+->???=--+-

正解:当2450m m +-≠时,同上述解答有119m <<, 若2450m m +-=时,则m=1或m=5 若m=1,,则已知函数化为3y =,则对,0x R y ∈>恒成立; 若m=5,则已知函数化为243y x =+,对,0x R y ∈>不恒成立,故此情形舍去。 所以m 的取值范围为119m ≤< (三)、漏端点致误 例题3:已知集合{}{}2|20,|3A x x x B x a a =--≤=<+,且A B φ=,则实数a 的取值范围是____________ 错解:{}{}2|20|12A x x x x x =--≤=-≤≤ 若使A B φ=,需满足231a a >+<-或,解得24a a ><-或,所以实数a 的取值范围是24a a ><-或。 剖析:上面的解法错误原因在于忽视了集合{}|12A x x =-≤≤的两个端点值-1和2,其实当2a =时{}|25B x x =<<,满足A B φ=;当31a +=-时,即4a =-时也满足A B φ=。 正解:{}{}2|20|12A x x x x x =--≤=-≤≤若使A B φ=,需满足231a a ≥+≤-或,解得24a a ≥≤-或,所以实数a 的取值范围是 24a a ≥≤-或。 (四)、条件非充要致误 例题4:若方程2(2)50x m m +-+-=的两根均大于2,求实数m 的取值范围。 错解:设两根为12,x x ,则有题意可得:1212044x x x x ?≥??+>??>?2(2)(5)02454m m m m ?---≥??->??->?

【高考数学一轮复习易错知识点总结】

【高考数学一轮复习易错知识点总结】 一、集合与函数 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。 2.在应用条件时,易A忽略是空集的情况 3.你会用补集的思想解决有关问题吗? 4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件? 5.你知道否命题与命题的否定形式的区别。 6.求解与函数有关的问题易忽略定义域优先的原则。 7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。 8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。 9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。 10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法 11.求函数单调性时,易错误地在多个单调区间之间添加符号和或单调区间不能用集合或不等式表示。 12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。这几种基本应用你掌握了吗? 14.解对数函数问题时,你注意到真数与底数的限制条件了吗? (真数大于零,底数大于零且不等于1)字母底数还需讨论 15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值? 16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。 17.实系数一元二次方程有实数解转化时,你是否注意到:当时,方程有解不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形? 二、不等式 18.利用均值不等式求最值时,你是否注意到:一正;二定;三等。 19.绝对值不等式的解法及其几何意义是什么? 20.解分式不等式应注意什么问题?用根轴法解整式(分式)不等式的注意事项是什么? 21.解含参数不等式的通法是定义域为前提,函数的单调性为基础,分类讨论是关键,注意解完之后要写上:综上,原不等式的解集是。 22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。 23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意同号可倒即a》b》0,a 三、数列 24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗? 25.在已知,求的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目

相关文档
最新文档