数值分析思考题8

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析思考题8

1、 简述一般插值型求积公式的积分原理。Newton-Cotes 求积公式

为什么没有Gauss 型求积公式代数精度高?

给定一组节点a ≤x0

a ,作为积分I 的近似值,构造求积公式I n = A k f (x k )n k =0,系数A k = l k

(x )dx b

a ,l k (x)为插值基函数。余项为R[f]= [f x −L n (x )]dx

b a

。如果求积公式为插值型,对于不超过n 的

多项式f(x),其余项R[f]等于0,这是求积公式至少具有n 次代数精度。 高斯型求积公式的节点是经过适当选取的,具有2n+1次代数精度,因此精度也比Newton-Cotes 求积公式的n 次(n 为偶数则为n+1)次代数精度高。

2、 梯形法与两个节点的Gauss 型方法哪个更精确?证明Simpson

方法的代数精度为3。

两个节点的Gauss 型方法更加精确。 Simpson 公式:S =

b−a 6

f a +4

a +

b 2

+f b

将f(x)=x 3代入得到S=I,因此具有三次代数精度。 将f(x)=x 4

代入得到S=

b−a 6

a 4

+4

a +

b 2

4+b 4 ,

通常情况下S 不等于I ,因此不具有四次代数精度。

3、确定下列数值积分公式中的参数,使它有尽可能高的代数精度。 (1)101()()(0)()h

h f x dx A f h A f A f h --≈-++⎰;

A -1=A 1=1

6, A 0=2

3

(2)1234()()()'()'()b

a f x dx w f a w f

b w f a w f b ≈+++⎰。 w 1=w 2=1

2

w 3=w 4=1

6

3、 分别用复化梯形公式、复化Simpson 公式计算1

1x

x

e dx e

+⎰的数值积分,误差不超过310- 精确值为0.620115.

复化梯形公式:T n =ℎ

2[f 0 +2 f (x k )n−1

k =0+f (1)]

取h=(b-a)/2得,T n =0.618994 取h=(b-a)/4得,T n =0.619836

取h=(b-a)/8得,T n =0.620045, 满足精度要求。 复化Simpson 公式:

S n =ℎ

6

[f 0 +4 f x k +12

+n−1k =02 f x k +n−1

k =0f (1)] 取h=(b-a)/2得,T n =0.620116,满足精度要求。 4、 分别用Romberg 算法和Gauss 型求积公式计算4

1

1

dx x

⎰的数值积分。 Romberg 算法:

求得近似值T

3

(0)=1.388525.

Gauss型:令x=3

2t+5

2

,得到原式=2

3t+5

dt

1

−1

≈5

9

f −15

5

+

8 9f0+5

9

f(15

5

)

相关文档
最新文档