阴离子型聚合PPT课件

合集下载

离子聚合和配位聚合课件

离子聚合和配位聚合课件
高功能性聚合物
通过离子聚合和配位聚合的方法, 合成出具有特殊功能性的聚合物, 如导电聚合物、荧光聚合物等。
绿色合成路径的研究
无毒引发剂
研究无毒、环保的引发剂, 替代传统的有毒引发剂, 降低对环境的污染。
高效催化剂
研究高效、环保的催化剂, 替代传统的有毒催化剂, 降低对环境的污染。
循环利用
研究聚合物的循环利用技 术,实现聚合物的环保处 理和再利用,降低对环境 的污染。
配位聚合可以通过选择不同的 催化剂和聚合条件,实现对聚 合物分子链结构和性能的精细 调控。
配位聚合可以应用于合成高性 能纤维、功能性膜材料、液晶 材料等领域,具有广泛的应用 前景。
03
离子聚合与配位聚合的 比
聚合方式的比 较
离子聚合
通过正负离子之间的相互作用形 成聚合物链,聚合过程中无金属 催化剂参与。
配位聚合的实际应用
高性能聚合物制备
配位聚合可以合成高性能聚合物,如聚酰胺、聚酯等,用于制造 纤维、塑料和复合材料等。
高分子功能材料
通过配位聚合可以制备具有特殊功能的高分子材料,如导电聚合物、 光敏聚合物等,用于传感器、光电转换器件等领域。
高分子药物
配位聚合可以合成具有特定结构和药理性能的高分子药物,用于治 疗癌症、心血管等疾病。
配位聚合
通过过渡金属催化剂与配体形成 活性中心,再与单体进行配位反 应形成聚合物链。
聚合产物的比较
离子聚合
聚合物分子量分布较窄,但可能存在 支链和交联结构。
配位聚合
聚合物分子量分布较宽,但聚合物结 构规整,结晶度高。
应用领域的比较
离子聚合
主要用于合成橡胶、热塑性弹性体等材料。
配位聚合
广泛应用于合成纤维、塑料、涂料等领域。

第一二章活性自由基聚合阴离子聚合详解演示文稿

第一二章活性自由基聚合阴离子聚合详解演示文稿
第三十九页,共92页。
举例:
第四十页,共92页。
可逆加成-断裂链转移可控自由基聚合
1998年,Rizzardo在第37届国际高分子会议上作了“Tailored Polymers by
Free
Radical processes”提出了RAFT.
RAFT (Reversible Addition-Fragmentation Transfer)聚合:在AIBN等引
(1)反应机理
与光引发iniferter有本质不同 光引发iniferter:C-S键的光降解产生一个高活性的碳自由基与一个低 活性的硫自由基,高活性的碳自由基引发单体聚合,增长的活性链与 低活性的硫自由基反应而终止。
N,N-二乙基二硫代氨基
甲酸苄酯(BDC)
RAFT与TEMPO均源于经典引发剂的热分解。 RAFT关键是自由基向链转移剂分子中C=S的可逆加成,断裂S-R形
活性聚合的基本概念 引发反应速度远远大于增长反应速度, 而且不存在
链转移和链终止的聚合反应称为活性聚合。
第五页,共92页。
活性聚合的特征
➢定义:不存在链转移和链终止的聚合称为活性聚合。 ➢特征:
(1)聚合产物的数均聚合度等于消耗掉的单体浓度与引 发剂的初始浓度之比
Xn = [M]0×Conversion / [I]0
控自由基聚合。
第三十七页,共92页。
.
第三十八页,共92页。
TEMPO体系 •温度高,速度慢,达到高转化率所需时间较长。 •主要用于苯乙烯类单体的活性聚合,对MMA等极性单 体不适用。
在该体系中加入少量酸性物质,可加速反应的聚合速率。
近年来发现一系列酰化试剂如乙酰丙酮、乙酸酐丙二酸乙二酯等可改善苯乙烯聚合速率。

高分子化学第五章

高分子化学第五章

是紧靠活性中心的引发剂碎片,与活性中心 所带电荷相反,称反离子或抗衡离子。
B
A B
是阳离子聚合的引发剂,其中 A 为引发剂 的活性中心
5.2.2 阳离子聚合的单体与催化剂 1. 具有推电子基的烯类单体原则上可进行阳离 子聚合
5.2.2 阳离子聚合的单体与催化剂
1. 1 α-烯烃
乙烯(Ethylene): 无侧基,C=C电子云密度低,对质子亲和力小,难以 阳离子聚合。 丙烯(Propylene)、丁烯(Butylene): 烷基供电性弱,生成的二级碳阳离子较活泼,易发生 重排等副反应,生成更稳定的三级碳阳离子。
5.2.3 阳离子聚合的机理
HMnM
kt (CR)
Mn+1 +
H (CR)
2、链终止:
(1)与反离子加成终止(反离子有足够的亲
CH3 CH 3 C + BF3OH CH3 + CH2 CH3 C CH3 CH3 CH3 C + CH3
CH2
BF 3OH CH3 C
+
-
CH3 CH3 C CH 2 CH3 M CH3 CH3 C CH2 CH3
CH3 C + BF 3OH CH3 CH 3 C CH 3
n
* CH2
-
CH3
CH3 CH2 C CH3 97% r1 =2.5 3% r2=0.4 CH2 CH3 C CH3 98.5% 1.5% n
* 2 CH
CH3 + CH2 C CH CH2
-100℃
CHCl3溶剂
AlCl3 +H2O引发
CH3 C CH CH2 m
5.2.1 研究现况
3、

阴离子聚合反应

阴离子聚合反应

阴离子聚合时,活性中心的反应能力大小的规律和自由基 聚合有类似之处:即活泼的单体形成的阴离子不活泼,而不活泼 的单体形成的阴离子活泼。
4.3
阴离子聚合
⒉ 链增长反应 活性单体继续与单体加成则反应。 ⑴ 单阴离子活性中心的链增长反应
C4H9 CH2 CHLi + n CH2 CH C4H9[ CH2 CH ]nCH2 CH Li
4.3
阴离子聚合
在阴离子聚合体系中,不管是活性单体,还是阴离子活性增长 链,都是以离子对的形式存在,并且离子对一直存在至链终止。 一、 阴离子聚合的单体 具有共轭取代基、强的和较强的吸电子取代基的烯类单体 和某些环状化合物都可以进行阴离子聚合,如
CH2 CH
CH2 CH CH CH2 CH2
CH3 C COOCH 3
S OH
O
C O C O O O C O
C
O
O O C
O
C
O O
C
O
C O
图 4.4 星型聚合物的结构示意图(2)
作业:⒊
4.3


阴离子聚合
五、 阴离子聚合动力学 ⒈ 阴离子聚合的复杂性 在阴离子聚合体系中,阴离子活性增长链以离子对的形式存
在:
M A 紧密离子对
M A 松对
M + A
• ⒉ 阴离子聚合动力学方程 在阴离子聚合体系中,聚合反应的速率可由链增长反应速率
CH2 CHLi +
CH2 CH CH CH Li C
CH2 CH2 +
CH2
CH CH
4.3
阴离子聚合
③ 加入特殊的添加剂,使阴离子活性增长链终止 加入环氧乙烷,再加入醇,制备端羟基聚合物

活性阴离子聚合

活性阴离子聚合

05 活性阴离子聚合的挑战与 前景
聚合反应控制问题
聚合度与分子量分布
活性阴离子聚合的聚合度与分子量分布调控是一个挑战,需要精 确控制反应条件以获得窄分子量分布的高分子量聚合物。
动力学研究
深入理解活性阴离子聚合的动力学机制,有助于更好地控制聚合过 程,实现聚合反应的可预测性和可重复性。
聚合机理
进一步揭示活性阴离子聚合的微观机理,有助于发现新的聚合方法, 提高聚合产物的性能。
物理方法
利用物理手段如光、热、 电等诱导原料转化为目标 单体,具有操作简便和条 件温和的优势。
03 活性阴离子聚合催化剂
催化剂种类
有机金属催化剂
如锂、钠、钾等碱金属催化剂 ,是常见的活性阴离子聚合催
化剂。
烷基锂盐
如丁基锂、苯基锂等,是常用 的引发剂和催化剂。
金属茂化合物பைடு நூலகம்
如二茂铁、二茂钴等,具有较 高的活性和选择性。
生物医学领域应用
生物医用高分子材料
活性阴离子聚合可以用于制备生物医用高分子材料,如医用塑料、生物降解高分 子、组织工程支架等。这些高分子材料具有良好的生物相容性和功能性能,可用 于医疗器械、药物载体、组织工程等领域。
高分子药物合成
通过活性阴离子聚合,可以合成具有特定结构和性质的高分子药物,如高分子前 药、高分子免疫佐剂等。这些高分子药物具有靶向性、长效性、低毒副作用等优 点,在肿瘤治疗、免疫治疗等领域具有广阔的应用前景。
其他过渡金属催化剂
如钛、锆、铪等过渡金属化合 物,也可以用于活性阴离子聚
合。
催化剂选择标准
活性
选择性
催化剂的活性是选择的首要标准,高活性 的催化剂可以降低聚合温度和缩短聚合时 间。

第二章离子型聚合反应配位聚合反应及开环聚合反应

第二章离子型聚合反应配位聚合反应及开环聚合反应

第二章 离子型聚合反应、配位聚合反应及开环聚合反应第一节 概述高聚物的形成反应,按反应机理不同分类连锁聚合反应−−−−−→−依活性种不同分y 自由基型聚合反应、离子型聚合反应、 配位聚合反应。

两大类逐步聚合反应−−−−−−→−依参加反应的单体分缩聚反应、开环逐步聚合反应、 逐步加聚反应1.离子型聚合反应是在阴离子或阳离子引发剂作用下,使单体分子活化为带正电荷或带负电荷的活性离子,再与单体连锁聚合形成高聚物的化学反应。

根据链增长活性中心所带电荷的不同,离子型聚合可以分为:阳离子聚合 阴离子聚合 配位离子型聚合.2.特征:(1)对单体的选择性高。

(2)链引发活化能低,聚合速率快(低温下进行聚合反应)。

(3)离子型聚合反应活性中心是离子(C +、C—)(4)引发剂为亲核、亲电试剂,且引发剂自始自终对聚合有影响。

(5)不能双基偶合终止,只能通过与杂质或人为加入的终止剂(水、醇、酸、胺等)链转移进行单基终止反应.注:(1)配位聚合反应也是离子型聚合反应的一种.所用的引发剂具有特殊的定位作用,形成的活性中心为配位阴离子,单体采用定向吸附、定向插入而已。

但所得产物具有立构规整性好、物理性能优异的特点。

(2)开环聚合多数属于离子型聚合反应。

但究竟是阴离子型还是阳离子型取决于引发剂的类型。

合成具有醚键高聚物的主要是采用开环聚合。

第二节 阳离子聚合反应阳离子聚合反应:是在阳离子引发剂作用下,使单体分子活化为带正电荷的活性离子,再与单体连锁聚合形成高聚物的化学反应.一、单体与引发剂 1。

单体(1)具有强推电子取代基的烯烃类单体(异丁烯、乙烯基醚) (2)具有共轭效应的单体(苯乙烯、丁二烯、异戊二烯) (3)含氧、氮、硫杂原子的不饱和化合物和环状化合物(甲醛、四氢呋喃、3,3-双氯甲基丁氧环、环戊二烯、环氧乙烷、环硫乙烷及环酰胺)等.(4)碳阳离子的稳定性与结构有关,稳定顺序为:叔碳阳离子>仲碳阳离子>伯碳阳离子,相应的烯烃单体活性顺序与之相反.(5)碳阳离子主要化学性质是:溶剂效应、重排、结合 2.引发剂-—“亲电试剂" (1)含氢酸(质子酸)H+A -+ CH 2=C → CH 3-C+A -如:H 2SO 4、HClO 4、CCl 3COOH 等 (2)Lewis 酸CH 3 CH 3CH 3 CH 3L ewi s酸是Frie del-Craft s催化剂中的各种金属卤化物,是电子接受体。

聚合反应聚合物的化学反应PPT课件

聚合反应聚合物的化学反应PPT课件

ν
kp
[M]
2(fkd k t )1/2 [I]1/2
第27页/共119页
二、自由基共聚 合
共聚合:由两种或两种以上单体共同参加的聚合反应。 自由基共聚合:使用自由基作为聚合的引发剂时的共聚 反应
特点:聚合物组成与单体配料组成不同;聚合先后期 生成的产物组成不同。
意义:最重要的聚合物改性技术;增加品种,扩大 应用范围,扩大合成聚合物的原料范围
聚体等低聚物,随后这些低聚物间进行反应,分子量随 反应时间逐步增加。 • 3、在逐步聚合全过程中,体系由单体和分子量递增的 一系列中间产物所组成。 • 4、绝大多数的缩聚反应属逐步聚合反应。
第9页/共119页
一、自由基聚合反应
(一)自由基的产生与活性
物理作用:加热、光照、辐射 化学作用: 引发剂引发单体
第28页/共119页
• 说明: 共聚合反应多用于连锁聚合,对于两种单体发生的缩聚反应则不采用“共聚合”这 一术语
第29页/共119页
三、离子型聚合及开环聚合
(一)离子型聚合---链增长活性中心为离子的
聚合反应。 离子聚合特点(和自由基聚合比较)
根本区别在于聚合活性种不同 离子聚合的活性种是带电荷的离子:碳阳
第22页/共119页
2、链增长
放热反应,聚合热约 8.4×10kJ/mol
链增长反应的两个特征:
E ≈ 21 ~ 33.5kJ/mol
i. 链增长反应的活化能较低,反应速率很大 ii.只存在单体和聚合物两种组分
第23页/共119页
3、链终止—链自由基失去活性形成稳定聚合物分子的反应。
偶合终止 歧化终止
第18页/共119页
2 ) 油溶性氧化—还原体系 • 氧化剂:氢过氧化物、过氧化二烷基、过氧化 二酰基等 • 还原剂:叔胺、环烷酸盐、硫醇、有机金属化 合物等

离子聚合和配位(聚丙烯)

离子聚合和配位(聚丙烯)
极性溶剂中:链增长活性中心与抗衡阳离子表现为溶剂分 离离子对或自由离子,两者之间的相互作用较弱,单体与链 增长活性中心加成时,主要受立体因素影响而采取立体阻碍 最小的方式加成,有利于得到间同立构产物:
HX CC
HH
CH2
C
H
间同立构高分子
非极性溶剂中:链增长活性中心与抗衡阳离子表现为紧 密离子对,相互间作用较强,单体与链增长活性中心加 成是主要受这种相互作用的影响,有利于获得全同立构 高分子。以烷基锂引发的甲基丙烯酸甲酯的阴离子聚合 为例,一般认为其机理如下:
于阴离子的进攻,另一方面,形成的碳阴离子活性中心由于
取代基的共轭效应而稳定,因而易阴离子聚合:
H2C CH X
降低电子云密度,易 与富电性活性种结合
H R CH 2 C
X
分散负电性,稳定活性中心
H2C CH X: -NO2, -CN, -COOR, -Ph, -CH=CH2 X
但对于一些同时具有给电子p-π共轭效应的吸电子取代基单 体,由于p-π给电子共轭效应减弱了吸电子诱导效应对双键 电子云密度的降低程度,因而不易受阴离子的进攻,不易 阴离子聚合。如:
Ziegler-Natta催化剂的乙烯的配位聚合则可在低(中)压 条件下进行,不易向高分子链转移,得到的是线形高分子,分 子链之间堆砌较紧密,密度大,常称高密度聚乙烯(HDPE)。
紧密离子对
溶剂分离离子对 自由离子
离解程度增加
反应活性增加
阴 离 子 聚 合 单体
阴离子聚合单体必须含有能使链增长活性 中心稳定化的吸电子基团,主要包括带吸电子 取代基的乙烯基单体、一些羰基化合物、异氰 酸酯类和一些杂环化合物。
(1)带吸电子取代基的乙烯基单体
一方面,吸电子性能能使双基上电子云密度降低,有利
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)干法脱气
含20%的嵌段共聚物胶液,首先进入以蒸气夹套加热,并在 装有搅拌装置的卧式浓缩器中,浓缩至聚合物含量约26%, 然后进入双辊脱气箱。该箱分为上下两室,当共聚物胶液落 到热辊上后.即均匀地分布在整个辊上,从而在脱气箱上室 中初步脱除溶剂,而在下室的工作辊上彻底脱气。
(2)湿法脱气 来自聚合段的胶液,加入热水进行凝聚。 凝聚胶粒经振动筛除去水份, 挤压脱水机和挤压膨胀机等机械干燥装置脱水干燥。 干燥后的胶粒经振动提升机提升到包装机,称重包装.
10.3.5 星型SBS的生产
2.原料、配方及生产工艺
工艺流程
将环己烷、苯乙烯、丁二烯分别用有机锂溶液滴定,合 格后的苯乙烯和环己烷先送入聚合釜中,
待苯乙烯反应完毕后再加入丁二烯与环已烷,制成二嵌 段活性种,
合成的两嵌段聚合物通过强化混合器与偶联剂混合进入 偶联釜.
制成的星型多臂SBS或线型三嵌段物送去脱气干燥后处 理。
10.3 丁苯嵌段共聚物SBS
10.3.1 ( SDS)热塑性弹性体简介 热塑性弹性体是指“在常温产显示橡胶的弹性,高温下又能 够塑化成型的材料”。
10.3.2线型SBS的生产工艺路线
用阴离子嵌段共聚来制备加有以下几种方法. 1.采用单官能团引发剂的三步加料法
三步加料法虽然能够制备质量较好的SBS,但由于单 体分批加入步骤较多,引入有害杂质的机会也较多。
在丁二烯加入以前,将聚合釜的温度降至35℃,并控制丁二烯 的加料速度以确保釜温不超过60℃。此段聚合温度一般维持在 50—70℃的范围。
当丁二烯转化率达到90%以上时,将剩下的另一半量的苯乙烯 加入。为了促使单体全部转化,聚合釜的温度可以提高至70— 80℃,并维持1h.
5.SBS的脱气
SBS的脱气段实际上只需脱除溶剂。 SBS的脱气可采用SBS胶液的干法脱气和湿法脱气两种方式:
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
35
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End 演讲人:XXXXXX 时 间:XX年XX月XX日
(1)合成聚合物的平均分子量可以从简单的化学计量来控制;
(2)适当调节引发与增长反应的动力学,可制得非常窄的分子 量分布分布)的聚合物;
(3)通过把不同的单体依次加入到活性聚合物链中,可以合成 真正的嵌段共聚物;
(4)用适当的试剂进行选择性的终止,可以合成具有功能端基 的聚合物。
为什么说阴离子型聚合结合成高分子工业和分子设计提供了 一种合成控制分子结构的最为精巧有效的方法?
2.采用双官能团引发剂的两段加料法
双官能团引发剂的两段加料法特点
一个特点是它适用于单方向嵌段聚合的体系、即B 嵌段可以引发A共聚,而A嵌段不能引发B。
另一个特点是第二段加入苯乙烯单体时,生成部分 BS的二嵌段共聚物。随选用溶剂的种类不同,链 段链的微观结构也不同。
10.3.3线型SBS的生产工艺
10.2 阴离子聚合体系
用来进行阴离子型聚合的单体, 主要可以分为三种类型: (1)带有氰基、硝基和羧基类吸电子取代基的乙烯基类单体。 (2)具有共轭双键的二烯烃类,如苯乙烯、丁二烯、异戊二 烯。 (3)环状杂原子化合物. 其负电荷能够离域至电负性大于碳的原子上,如环硫化合物、 环院、环酰胺、环硅、硅氧烷环状化合物等。
(1)原料的精制
生产SBS的难点是对杂质敏感,对原料质量要求高。
在三步加料法生产SBS时,经过纯化处理后的溶剂、单体 苯乙烯和丁二烯,须用有机锂溶液滴定。
(2)引发剂的配制 配制过程可示意下分三段进行。
先向聚合釜内加入总量的1/2的苯乙烯,然后加入引发剂溶液。 第一段苯乙烯聚合,在40—50℃下进行,维持反应0.5—1小 时,使单体苯乙烯全部转化为聚合物。
1.原料规格 三步法制SBS的主要原料有苯乙烯、丁二烯、环己烷、已烷、 异戊烷、加氢汽油及引发剂丁基锂等。助剂有分散剂、稳定剂 及微量杂质去除剂等。
主要原料规格为:
2.制取SBS的典型配方及工艺条件
3.三步加料法制取SBS的工艺过程 三步法制备SBS包括四个重要工序, 原材料精制、 三嵌段物的制备、 SBS的脱气 及橡胶的造粒包装 其流程如图11,3。
如图11.8为压力<0.98MPa和相应的聚合温度条件下,丁二 烯和苯乙烯单体转化率—反应时间关系由两组曲线组成。
4.溶剂和极性添加剂
有机Li在非极性溶剂中缔合
当n增大时,引发效率低。 极性溶剂能够破坏缔合离子对,由于有相当的自由阴离子存 在,聚合速度极快。 溶剂和极性溶剂对SBS嵌段链微观结构的影响较大。 —般极性溶剂只作为添加剂,少量地加入烃类溶剂中,加 快聚合反应的进行。
10.1 概述
阴离子聚合的性质: 1、在不同的溶剂中,阴离子增长活性中心可以以不同性 质的活性种存在, 2、同一聚合体系中,可能有多种不同类型的活性中心同 时增长;这对于聚合反应的速度、聚合物的分子量和其微 观结构都具有极大的影响. 3、在许多阴离子型反应体系中,不存在自发的终止反应。
阴离子活性聚合反应的特点:
由溶剂和单体带来的水、氧、二氧化碳、醇、酸、醛、酮等 杂质的允许含量必须降至最低限度。一般含量只有万分之几, 甚至十万分之几。
3.聚合温度和反应时间
聚合温度对于阴离子聚合体系有重要的影响。 升高温度可以加快聚合速度.却对活性聚合物的稳定不利, 得不到单分散性的高聚物。
丁二烯的转化率与温度和时间的关系如图11.7所示。
6.橡胶的造粒和包装
橡胶由脱气箱的料斗进入螺杆挤压机,并用螺杆输送机送至 装有造粒机的另一螺杆挤压机。在喷头出口温度150一l80℃ 下制成粒度为5mmx 5mmx 5mm的颗粒。 空气除去胶粒表面的水份,然后包装入库。
10.3.4 SBS的生产控制因素
1.引发剂 s—丁基锂和n—丁基锂
2.杂质含量
相关文档
最新文档