北师大版九年级下册数学:复习题(1)
北师大版初中数学九年级下册知识讲解,巩固练习(教学资料,补习资料):第19讲《圆》全章复习与巩固(提高)

《圆》全章复习与巩固—知识讲解(提高)【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系;探索并了解点与圆、直线与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积;【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的所有点组成的图形.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有 点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A L 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为. (1)直线和⊙O 没有公共点直线和圆相离. (2)直线和⊙O 有唯一公共点直线和⊙O 相切.(3)直线和⊙O 有两个公共点直线和⊙O 相交. 4.切线的判定、性质 (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线. (2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:(1)OA=OB=OC定在三角形内部(1)(2)OABAC心在三角形内部2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的有关概念及性质1. 如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,∠AOB=45°,点在数轴上运动,若过点P 且与OA 平行(或重合)的直线与⊙O 有公共点, 设OP=x ,则的取值范围是( ).A .-1≤≤1B .≤≤C .0≤≤ D .>【思路点拨】关键是通过平移,确定直线与圆相切的情况,求出此时OP 的值. 【答案】C ;【解析】如图,平移过P 点的直线到P′,使其与⊙O 相切,设切点为Q ,连接OQ ,P x x x 2x 2x 2由切线的性质,得∠OQP′=90°,∵OA∥P′Q,∴∠OP′Q=∠AOB=45°,∴△OQP′为等腰直角三角形,在Rt△OQP′中,OQ=1,OP′=2,∴当过点P且与OB平行的直线与⊙O有公共点时,0≤OP≤,当点P在x轴负半轴即点P向左侧移动时,结果相同.故答案为:0≤OP≤2.【总结升华】本题考查了直线与圆的位置关系问题.举一反三:【变式】如图,已知⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若2.如图所示,已知在⊙O 中,AB 是⊙O 的直径,弦CG⊥AB 于D ,F 是⊙O 上的点,且,BF 交CG 于点E ,求证:CE =BE .【思路点拨】主要用垂径定理及其推论进行证明. 【答案与解析】证法一:如图(1),连接BC ,∵ AB 是⊙O 的直径,弦CG ⊥AB ,∴ . ∵ ,∴ .∴ ∠C =∠CBE .∴ CE =BE .证法二:如图(2),作ON ⊥BF ,垂足为N ,连接OE .∵ AB 是⊙O 的直径,且AB ⊥CG ,∴ . ∵ ,∴ .∴ BF =CG ,ON =OD . »»CFCB =»»CBGB =»»CFBC =»»CF GB =»»CBBG =»»CBCF =»»»CF BC BG ==∵ ∠ONE =∠ODE =90°,OE =OE ,ON =OD , ∴ △ONE ≌△ODE ,∴ NE =DE . ∵ ,, ∴ BN =CD ,∴ BN-EN =CD-ED ,∴ BE =CE .证法三:如图(3),连接OC 交BF 于点N .∵ ,∴ OC ⊥BF . ∵ AB 是⊙O 的直径,CG ⊥AB ,∵ ,.∴ ,. ∵ OC =OB ,∴ OC-ON =OB-OD ,即CN =BD . 又∠CNE =∠BDE =90°,∠CEN =∠BED , ∴ △CNE ≌△BDE ,∴ CE =BE .【总结升华】在平时多进行一题多解、一题多证、一题多变的练习,这样不但能提高分析问题的能力,而且还是沟通知识体系、学习知识,使用知识的好方法.举一反三:【变式】如图所示,在⊙O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( )A .19B .16C .18D .20【答案】如图,延长AO 交BC 于点D,过O 作OE ⊥BC 于E.则三角形ABD 为等边三角形,DA=AB=BD=12,OD=AD-AO=4在Rt △ODE 中,∠ODE=60°,∠DOE=30°,则DE=OD=2,BE=BD-DE=10 OE 垂直平分BC ,BC=2BE=20. 故选D类型三、与圆有关的位置关系12BN BF =12CD CG =»»CFBC =»»BGBC =»»»CF BG BC ==»»BF CG =ON OD=123.一个长方体的香烟盒里,装满大小均匀的20支香烟.打开烟盒的顶盖后,二十支香烟排列成三行,如图(1)所示.经测量,一支香烟的直径约为0.75cm ,长约为8.4cm. (1)试计算烟盒顶盖ABCD 的面积(本小题计算结果不取近似值);(2)制作这样一个烟盒至少需要多少面积的纸张(不计重叠粘合的部分,计算结果精确到,取)0.1cm 3173..【答案与解析】 (1)如图(2),作O 1E ⊥O 2O 3()332844AB cm ∴=⨯+=∴四边形ABCD 的面积是:(2)制作一个烟盒至少需要纸张:.【总结升华】四边形ABCD中,AD长为7支香烟的直径之和,易求;求AB长,只要计算出如图(2)中的O1E长即可.类型四、圆中有关的计算4.(2019•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.【答案与解析】解:如图,连接OD,⊙CD是⊙O切线,⊙OD⊙CD,⊙OA=CD=2,OA=OD,⊙OD=CD=2,⊙⊙OCD为等腰直角三角形,⊙⊙DOC=⊙C=45°,⊙S阴影=S⊙OCD﹣S扇OBD=﹣=4﹣π;(2)证明:如图,连接AD,⊙AB是⊙O直径,⊙⊙ADB=⊙ADM=90°,又⊙=,⊙ED=BD,⊙MAD=⊙BAD,在⊙AMD和⊙ABD中,,⊙⊙AMD⊙⊙ABD,⊙DM=BD,⊙DE=DM.【点评】本题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法.举一反三:【变式】(2019•贵阳)如图,⊙O是⊙ABC的外接圆,AB是⊙O的直径,FO⊙AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,⊙B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【答案】解:(1)⊙OF⊙AB,⊙⊙BOF=90°,⊙⊙B=30°,FO=2,⊙OB=6,AB=2OB=12,又⊙AB为⊙O的直径,⊙⊙ACB=90°,⊙AC=AB=6;(2)⊙由(1)可知,AB=12,⊙AO=6,即AC=AO,在Rt⊙ACF和Rt⊙AOF中,⊙Rt⊙ACF⊙Rt⊙AOF,⊙⊙FAO=⊙FAC=30°,⊙⊙DOB=60°,过点D作DG⊙AB于点G,⊙OD=6,⊙DG=3,⊙S⊙ACF+S⊙OFD=S⊙AOD=×6×3=9,即阴影部分的面积是9.类型五、圆与其他知识的综合运用5.»ABC D BC DB DC DA+=如图,△是等边三角形,是上任一点,求证:.【思路点拨】由已知条件,等边△ABC可得60°角,根据圆的性质,可得∠ADB=60°,利用截长补短的方法可得一个新的等边三角形,再证两个三角形全等,从而转移线段DC.【答案与解析】延长DB至点E,使BE=DC,连结AE∵△ABC是等边三角形∴∠ACB=∠ABC=60°,AB=AC∴∠ADB=∠ACB=60°∵四边形ABDC是圆内接四边形∴∠ABE=∠ACD在△AEB和△ADC中,∴△AEB≌△ADC∴AE=AD∵∠ADB=60°∴△AED是等边三角形∴AD=DE=DB+BE∵BE=DC∴DB+DC=DA.【总结升华】本例也可以用其他方法证明.如:(1)延长DC至F,使CF=BD,连结AF,再证△ACF≌△ABD,得出AD=DF,从而DB+CD=DA.(2)在DA上截取DG=DC,连结CG,再证△BDC≌△AGC,得出BD=AG,从而DB+CD=DA.6.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是().A. 3πB. 6πC. 5πD. 4π【答案】B;【解析】阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:=6π故选B.【总结升华】根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.即可求解.举一反三:【变式】某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为( ).A. B.72 C.36 D.72【答案】本题解法很多,如两个小半圆面积和减去两个弓形面积等.但经过认真观察等腰直角三角形其对称性可知,阴影部分的面积由两个小半圆面积与三角形面积的和减去大半圆面积便可求得,所以由已知得直角边为,小半圆半径为(cm),因此阴影部分面积为.故选C.《圆》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.如图所示,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于( ).A.70° B.64° C.62° D.51°2.已知⊙O半径为3,M为直线AB上一点,若MO=3,则直线AB与⊙O的位置关系为()A.相切 B.相交 C.相切或相离 D.相切或相交3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm24.如图,四边形ABCD是⊙O的内接四边形,若∠B=110°,则∠ADE的度数为()A.55° B.70° C.90° D.110°5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸 B.13寸 C.25寸D.26寸6.在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线(和两圆都相切的直线)有( )A.1条B.2条C.3条D.4条7.(2019•贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.38.如图所示,AB、AC与⊙O分别相切于B、C两点,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是( ).A.65° B.115° C.65°或115° D.130°或50°二、填空题9.如图,在⊙O中,半径OA垂直弦于点D.若∠ACB=33°,则∠OBC的大小为度.10.如图所示,EB、EC是⊙O是两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A的度数是________________.11.在Rt△ABC中,∠BAC=30°,斜边AB=2,动点P在AB边上,动点Q在AC边上,且∠CPQ=90°,则线段CQ长的最小值= .12.(2019•巴彦淖尔)如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是.13.两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______ ________.14.已知正方形ABCD,截去四个角成一正八边形,则这个正八边形EFGHIJLK的边长为____ ____,面积为_____ ___.15.如图(1)(2)…(m)是边长均大于2的三角形、四边形、……、凸n边形,分别以它们的各顶点为圆心,以l为半径画弧与两邻边相交,得到3条弧,4条弧,……(1)图(1)中3条弧的弧长的和为___ _____,图(2)中4条弧的弧长的和为_____ ___;(2)求图(m)中n条弧的弧长的和为____ ____(用n表示).16.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.三、解答题17. 如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD.18.(2019•南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.【答案与解析】一、选择题1.【答案】B;【解析】由AB为⊙O的切线,则AB⊥OD.又BD=OB,则AB垂直平分OD,AO=AD,∠DAB=∠BAO.由AB、AC为⊙O的切线,则∠CAO=∠BAO=∠DAB.所以,∠DAB=13∠DAC=26°.∠ADO=90°-26°=64°.本题涉及切线性质定理、切线长定理、垂直平分线的性质、等腰三角形的性质等.2.【答案】D;3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.∵矩形ABCD中,AB=2BC,AB=8cm,∴ AD=BC=4cm,∠DAF=90°,,,又AF=AD=4cm,∴,∴.4.【答案】D;【解析】∵四边形ABCD是⊙O的内接四边形,∴∠ADC+∠B=180°,∵∠ADC+∠ADE=180°,∴∠ADE=∠B.∵∠B=110°,∴∠ADE=110°.5.【答案】D;【解析】因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,知(寸),在Rt△AOE中,,即,解得OA=13,进而求得CD=26(寸).6.【答案】C.【解析】本题借助图形来解答比较直观.要判断两圆公切线的条数,则必须先确定两圆的位置关系,因此必须求出两圆的圆心距,根据题中条件,在Rt△AOB中,OA=4,OB=3,所以AB=5,而两圆半径为和,且,即两圆的圆心距等于两圆的半径之和,所以两圆相外切,共有3条公切线.7.【答案】B.【解析】设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选B.8.【答案】C;【解析】连接OC、OB,则∠BOC=360°-90°-90°-50°=130°.点P在优弧上时,∠BPC =∠BOC=65°;点P在劣弧上时,∠BPC=180°-65°=115°.主要应用了切线的性质定理、圆周角定理和多边形内角和定理.二、填空题9.【答案】24.10.【答案】99°;【解析】由EB=EC,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°,在⊙O中,∠BCD与∠A互补,所以∠A=180°-81°=99°.11.【答案】83.12【解析】以CQ 为直径作⊙O,当⊙O 与AB 边相切动点P 时,CQ 最短,∴OP⊥AB,∵∠B=90°,∠A=30°,∴∠POA=60°,∵OP=OQ,∴△POQ 为等边三角形,∴∠POQ=60°,∴∠APQ=30°,∴设PQ=OQ=AP=OC=r ,3r=AC=ABsin 30︒=4,∴CQ=83,∴CQ 的最小值为83.12.【答案】①②④;【解析】连接AD ,AB 是直径,则AD⊥BC,又∵△ABC 是等腰三角形,故点D 是BC 的中点,即BD=CD ,故②正确; ∵AD 是∠BAC 的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC﹣∠BAD=45°=2∠CAD,故④正确; ∵∠EBC=22.5°,2EC≠BE,AE=BE ,∴AE≠2CE,③不正确; ∵AE=BE,BE 是直角边,BC 是斜边,肯定不等,故⑤错误. 综上所述,正确的结论是:①②④.13.【答案】7或3;【解析】两圆有三种位置关系:相交、相切(外切、内切)和相离(外离、内含).两圆内切时,圆心距,题中一圆半径为5,而d=2,所以有,解得r=7或r=3,即另一圆半径为7或3.14.【答案】; ;【解析】正方形ABCD 外接圆的直径就是它的对角线,由此求得正方形边长为a .如图所示,设正八边形的边长为x .在Rt △AEL 中,LE =x ,AE =AL,∴ ,,即正八边形的边长为..1)a 22)a 2x 22x x a ⨯+=1)x a =1)a 2222241)]2)AEL S S S a x a a a =-=-=-=△正方形正八边形15.【答案】(1)π; 2π; (2)(n-2)π;【解析】∵ n 边形内角和为(n-2)180°,前n 条弧的弧长的和为个以某定点为圆心,以1为半径的圆周长,∴ n 条弧的弧长的和为. 本题还有其他解法,比如:设各个扇形的圆心角依次为,,…,, 则,∴ n 条弧长的和为.16.【答案】4.【解析】解:过点O 作OC⊥AB 于C ,交⊙O 于D 、E 两点,连结OA 、OB 、DA 、DB 、EA 、EB ,如图, ∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB 为等腰直角三角形,∴AB=OA=2,∵S 四边形MANB =S △MAB +S △NAB ,∴当M 点到AB 的距离最大,△MAB 的面积最大;当N 点到AB 的距离最大时,△NAB 的面积最大,即M 点运动到D 点,N 点运动到E 点,此时四边形MANB 面积的最大值=S 四边形DAEB =S △DAB +S △EAB =AB•CD+AB•CE=AB (CD+CE )=AB•DE=×2×4=4.(2)1801(2)3602n n -=-121(2)(2)2n n ππ⨯⨯-=-1α2αn α12(2)180n n ααα+++=-…°1212111()180180180180n n απαπαππααα⨯+⨯++⨯=+++……(2)180(2)180n n ππ=-⨯=-三、解答题17.【答案与解析】(1)连结OF∵FH 是⊙O 的切线 ∴OF⊥FH ∵FH∥BC ,∴OF 垂直平分BC∴ ∴AF 平分∠BAC .(2)由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2 ∴∠1+∠4=∠2+∠3 ∴∠1+∠4=∠5+∠3 ∠FDB =∠FBD ∴BF =FD.18.【答案与解析】 证明:(1)∵四边形ABCD 是⊙O 的内接四边形, ∴∠A+∠BCD=180°, ∵∠DCE+∠BCD=180°, ∴∠A=∠DCE, ∵DC=DE,∴∠DCE=∠AEB, ∴∠A=∠AEB;(2)∵∠A=∠AEB, ∴△ABE 是等腰三角形, ∵EO⊥CD, ∴CF=DF,∴EO 是CD 的垂直平分线, ∴ED=EC, ∵DC=DE, ∴DC=DE=EC,∴△DCE 是等边三角形,»»BFFC∴∠AEB=60°,∴△ABE 是等边三角形.19.【答案与解析】解:∵公共弦AB =120r R a 6624222212060603=-⎛⎝ ⎫⎭⎪=-=.20. 【答案与解析】 (1)如选命题①. 证明:在图(1)中,∵ ∠BON =60°,∴ ∠1+∠2=60°. ∵ ∠3+∠2=60°,∴ ∠1=∠3. 又∵ BC =CA ,∠BCM =∠CAN =60°, ∴ △BCM ≌△CAN ,∴ BM =CM . 如选命题②.证明:在图(2)中,∵ ∠BON =90°,∴ ∠1+∠2=90°. ∵ ∠3+∠2=90°,∴ ∠1=∠3. 又∵ BC =CD ,∠BCM =∠CDN =90°, ∴ △BCM ≌△CDN ,∴ BM =CN . 如选命题③.证明:在图(3)中,∵ ∠BON =108°,∴ ∠1+∠2=108°. ∵ ∠2+∠3=108°,∴ ∠1=∠3.又∵ BC =CD ,∠BCM =∠CDN =108°, ∴ △BCM ≌△CDN ,∴ BM =CN . (2)①答:当∠BON =时结论BM =CN 成立.②答:当∠BON =108°时.BM =CN 还成立. 证明:如图(4),连接BD 、CE 在△BCD 和△CDE 中,∵ BC =CD ,∠BCD =∠CDE =108°,CD =DE , ∴ △BCD ≌△CDE .∴ BD =CE ,∠BDC =∠CED ,∠DBC =∠ECD . ∵ ∠CDE =∠DEN =108°, ∴ ∠BDM =∠CEM .∵ ∠OBC+∠OCB =108°,∠OCB+∠OCD =108°. ∴ ∠MBC =∠NCD .又∵ ∠DBC =∠ECD =36°, ∴ ∠DBM =∠ECM . ∴ △BDM ≌△CEN , ∴ BM =CN .(2)180n n°。
2022-2023学年北师大版九年级数学下册《1-6利用三角函数测高》填空专项练习题(附答案)

2022-2023学年北师大版九年级数学下册《1.6利用三角函数测高》填空专项练习题(附答案)1.喜迎二十大,“龙舟故里”赛龙舟.丹丹在汨罗江国际龙舟竞渡中心广场点P处观看200米直道竞速赛.如图所示,赛道AB为东西方向,赛道起点A位于点P的北偏西30°方向上,终点B位于点P的北偏东60°方向上,AB=200米,则点P到赛道AB的距离约为米(结果保留整数,参考数据:≈1.732).2.如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,2小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是海里.(结果保留根号)3.如图,码头A在码头B的正东方向,它们之间的距离为10海里.一货船由码头A出发,沿北偏东45°方向航行到达小岛C处,此时测得码头B在南偏西60°方向,那么码头A 与小岛C的距离是海里(结果保留根号).4.如图,海中有一个小岛A,一艘轮船由西向东航行,在点B处测得小岛A在它的北偏东60°方向上,航行12海里到达点C处,测得小岛A在它的北偏东30°方向上,那么小岛A到航线BC的距离等于海里.5.如图,城中有一高层建筑物A,一辆汽车在一条东西方向的笔直公路上由西向东行驶,在点B处测得建筑物A位于它的东北方向,此时汽车与建筑物相距2公里,继续行驶至点D处,测得建筑物A在它的北偏西60°方向,此时汽车与建筑物距离AD为公里.6.如图,已知公路l上A,B两点之间的距离为20米,点B在C的南偏西30°的方向上,A在C的南偏西60°方向上,则点C到公路l的距离为米.7.如图,上午9时,一艘船从小岛A出发,以12海里/小时的速度向正北方向航行,10时40分到达小岛B处,若从灯塔C处分别测得小岛A、B在南偏东34°、68°方向,则小岛B处到灯塔C的距离是海里.8.如图所示,海面上有一座小岛A,一艘船在B处观测A位于西南方向20km处,该船向正西方向行驶2小时至C处,此时观测A位于南偏东60°,则船行驶的路程约为.(结果保留整数,≈1.41,≈1.73,≈2.45)9.一艘轮船以15千米时的速度向正东方向航行,到达A点时测得小岛C在点A北偏东60°方向;继续航行一小时到达B点,这时测得小岛C在点B的东北方向;再继续航行小时,轮船刚好到达小岛C的正南方向.10.如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P 的距离为海里(结果保留根号).11.如图,海中有一个小岛A.一艘轮船由西向东航行,在B点测得小岛A在北偏东60°方向上;航行12nmile到达C点,这时测得小岛A在北偏东30°方向上.小岛A到航线BC的距离是nmile(≈1.73,结果用四舍五入法精确到0.1).12.如图,甲,乙两艘船同时从港口A出发,甲船沿北偏东45°的方向前进,乙船沿北偏东75°方向以每小时30海里的速度前进,两船航行两小时分别到达B,C处,此时测得甲船在乙船的正西方向,则甲船每小时行驶海里.13.如图,在一次夏令营活动中,小明从营地A出发,沿北偏东53°方向走了400m到达B 点,然后再沿北偏西37°方向走了300m到达目的地C.此时A,C两点之间的距离为m.14.如图,为测量一段笔直自西向东的河流的河面宽度,小雅同学在南岸B处测得对岸A 处一棵柳树位于北偏东60°方向,她沿着河岸向东步行60米后到达C处,此时测得柳树位于北偏东30°方向,则河面的宽度是米.15.一艘轮船在小岛A的北偏东60°方向距小岛60海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为海里/小时.16.某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走70m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为m.(参考数据:tan37°≈,tan53°≈)17.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB的长)为km.18.如图,一个机器人从A地沿着西南方向先前进了4米到达B地,观察到原点O地在它的南偏东60°的方向上,则A、O两地的距离等于米.19.如图,一艘货轮以40海里/小时的速度在海面上航行,当它行驶到A处时,发现它的东北方向有一灯塔B,货轮继续向北航行30分钟后到达C点,发现灯塔B在它北偏东75°方向,则此时货轮与灯塔B的距离为海里.(结果精确到0.1海里,参考数据:≈1.414,≈1.732)20.如图,某海监船以30海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为海里.21.如图,某天然气公司的主输气管道从A市的北偏东60°方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市北偏东30°方向,测绘员沿主输气管道步行2000米到达C处,测得小区M位于C的北偏西60°方向.当在主输气管道AC上寻找支管道连接点N,使到该小区M铺设的管道最短时,AN的长为米.22.如图,为了测量河宽CD,先在A处测得对岸C点在其北偏东30°方向,然后沿河岸直行100米到点B,在B点测得对岸C点在其北偏西45°方向,则河宽CD是米.(结果保留根号)23.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,则B,C两地的距离千米.24.如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A、C两港之间的距离为km.参考答案1.解:过点P作PC⊥AB,垂足为C,设PC=x米,在Rt△APC中,∠APC=30°,∴AC=PC•tan30°=x(米),在Rt△CBP中,∠CPB=60°,∴BC=CP•tan60°=x(米),∵AB=200米,∴AC+BC=200,∴x+x=200,∴x=50≈87,∴PC=87米,∴点P到赛道AB的距离约为87米,故答案为:87.2.解:作BD⊥AC于点D.∵∠CBA=25°+50°=75°,∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∴∠ABD=90°﹣∠DAB=30°,∴∠CBD=∠CBA﹣∠ABD=75°﹣30°=45°.在Rt△ABD中,∠CAB=60°,AB=2×20=40,BD=AB•sin∠CAB=40•sin60°=40×=20.在Rt△BCD中,∠CBD=45°,cos C=,∴∠C=90﹣∠CBD=45°,则BC=BD=20(海里).故答案为:20.3.解:过C作CD⊥BA于D,如图:则∠CDB=90°,由题意得:∠BCD=60°,∠CAD=90°﹣45°=45°,∴△ACD是等腰直角三角形,∴CD=AD,AC=CD,设CD=AD=x海里,则AC=x海里,在Rt△BCD中,tan∠BCD==tan60°=,∴BD=CD=x(海里),∵BD=AD+AB,∴x=x+10,解得:x=5+5,∴x=×(5+5)=5+5,即AC=(5+5)海里,故答案为:(5+5).4.解:过点A作AE⊥BC交BC的延长线于点E,由题意得:BC=12海里,∠ABC=90°﹣60°=30°,∠ACE=90°﹣30°=60°,∴∠BAC=∠ACE﹣∠ABC=30°,∴∠BAC=∠ABC,∴AC=BC=12海里,在Rt△ACE中,sin∠ACE=,∴AE=AC•sin∠ACE=12×=6(海里),即小岛A到航线BC的距离是6海里,故答案为:6.5.解:如图,过点A作AC⊥BD于点C,根据题意可知,∠BAC=∠ABC=45°,∠ADC=30°,AB=2公里,在Rt△ABC中,AC=BC=AB•sin45°=2×=(公里),在Rt△ACD中,∠ADC=30°,∴AD=2AC=2(公里),即此时汽车与建筑物距离AD为2公里.故答案为:2.6.解:如图,过点C作CD⊥公路l于点D,则∠ADC=90°,∠BCD=30°,∠ACD=60°,AB=20米,∴∠ACB=∠ACD﹣∠BCD=60°﹣30°=30°,∠CAD=90°﹣∠ACD=90°﹣60°=30°,∴∠ACB=∠CAD,∴BC=AB=20米,在Rt△BCD中,cos∠BCD=,∴CD=BC•cos∠BCD=20×=10(米),故答案为:10.7.解:连接AB幷延长,如图,由题意得:AB=12×=20(海里),∵从灯塔C处分别测得小岛A、B在南偏东34°、68°方向,∴∠CAB=34°,∠ACB=68°﹣34°=34°,∴∠CAB=∠ACB,∴BC=AB=20海里,即小岛B处到灯塔C的距离是20海里,故答案为:20.8.解:作AD⊥BC于D,则∠ABD=90°﹣45°=45°,∠ACD=90°﹣60°=30°,∴BD=AD=AB=10,CD=AD=10,∴BC=BD+CD=10+10≈39(km);故答案为:39km.9.解:如图,由题意得,AB=15千米,∠EAC=60°,∠FBC=45°,过点C作CD⊥AB交AB的延长线于点D,∵∠EAC=60°,∠FBC=45°,∴∠CAD=90°﹣60°=30°,∠CBD=90°﹣45°=45°,设CD=x千米,则AD=(x+15)千米,在Rt△ACD中,∵∠CAD=30°,∴AD=CD,即15+x=x,解得x=(千米),即CD=BD=千米,需要的时间为:÷15=(时),答:再继续航行小时,轮船刚好到达小岛C的正南方向.10.解:过P作PC⊥AB于C,如图所示:由题意得:∠APC=30°,∠BPC=45°,P A=50海里,在Rt△APC中,cos∠APC=,∴PC=P A•cos∠APC=50×=25(海里),在Rt△PCB中,cos∠BPC=,∴PB===25(海里),故答案为:25.11.解:过点A作AE⊥BC交BC的延长线于点E,由题意得,∠BAE=60°,∠CAE=30°,∴∠ABC=30°,∠ACE=60°,∴∠BAC=∠ACE﹣∠ABC=30°,∴∠BAC=∠ABC,∴AC=BC=12nmile,在Rt△ACE中,sin∠ACE=,∴AE=AC•sin∠ACE=6≈10.4(nmile),故小岛A到航线BC的距离是10.4nmile,故答案为10.4.12.解:设甲船每小时行驶x海里,则AB=2x海里,如图,作BD⊥AC于点D,在AC上取点E,使BE=CE,根据题意可知:∠BAD=30°,∠C=15°,∴∠BED=30°,∴AD=DE=x,CE=BE=AB=2x,∴AD+DE+CE=60,即x+x+2x=60,解得x=15(﹣1)(海里).答:甲船每小时行驶15(﹣1)海里.故答案为:15(﹣1).13.解:如图,由题意得:AB=400m,BC=300m,∠CBD=37°,∠BAF=53°,AF∥DE,∴∠ABE=∠BAF=53°,∴∠ABC=180°﹣∠CBD﹣∠ABE=180°﹣37°﹣53°=90°,∴AC===500(m),即A,C两点之间的距离为500m,故答案为:500.14.解:如图,过A作AD⊥BC于D,由题意可知:BC=60米,∠ABD=30°,∠ACD=60°,∴∠BAC=∠ACD﹣∠ABC=30°,∴∠ABC=∠BAC,∴BC=AC=60(米).在Rt△ACD中,AD=AC•sin60°=60×=30(米).即这条河的宽度为30米,故答案为:30.15.解:如图所示:设该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=60海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°﹣60°=30°,∴AQ=AB=30,BQ=AQ=30,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=30,∴BC=30+30=3x,解得:x=10+10(海里/时).即该船行驶的速度为(10+10)海里/时;故答案为:10+10.16.解:如图,过C作CE⊥BA于E.设EC=xm,BE=ym,在Rt△ECB中,tan53°=≈,即≈①,在Rt△AEC中,tan37°=≈,即≈②,由①②得:x=120,y=90,∴EC=120m,BE=90m,∴AE=70+90=160(m),∴AC===200(m),故答案为:200.17.解:如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OA sin∠AOD=4×sin30°=4×=2(km),OD=OA cos∠AOD=4×cos30°=4×=2(km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=2+2(km),故答案为:(2+2).18.解:如图,过点B作BC⊥OA于C,在Rt△ABC中,AB=4米,∠BAC=45°,∴AC=BC=AB=4(米).在Rt△OBC中,∠OBC=90°﹣60°=30°,∴OC=BC=(米),∴AO=AC+CO=(4+)米,故答案为:(4+).19.解:如图,过点C作CD⊥AB于点D,则∠CDA=∠CDB=90°,∵货轮以40海里/小时的速度在海面上航行,向北航行30分钟后到达C点,∴AC=40×=20(海里),∵∠A=45°,∠BCE=75°,∴∠B=∠BCE﹣∠A=30°,∵CD=AC sin45°=20×=10(海里),∴BC=2CD=20≈28.3(海里),即此时货轮与灯塔B的距离约为28.3海里,故答案为:28.3.20.解:在Rt△P AB中,∠APB=30°,∴PB=2AB,由题意得BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2P A,∵P A=AB•tan60°,AB=30×1=30(海里),∴PC=2×30×=60(海里),故答案为:60.21.解:如图,过C作东西方向线的平行线交过A的南北方向线AE于B,过M作MN⊥AC交于N点,则MN最短,∵∠EAC=60°,∠EAM=30°,∴∠CAM=30°,∴∠AMN=60°,又∵C处看M点为北偏西60°,∴∠FCM=60°,∴∠MCB=30°,∵∠EAC=60°,∴∠CAD=30°,∴∠BCA=30°,∴∠MCA=∠MCB+∠BCA=60°,∴∠AMC=90°,∠MAC=30°,∴MC=AC=1000,∠CMN=30°,∴NC=MC=500,∵AC=2000米,∴AN=AC﹣NC=2000﹣500=1500(米),即该小区M铺设的管道最短时,AN的长为1500米,故答案为:1500.22.解:设CD=x米,由题意得:CD⊥AB,∠ACD=30°,∠BCD=45°,∴∠ADC=∠BDC=90°,∴AD=CD=x米,BD=CD=x米,∵AD+BD=AB=100米,∴x+x=100,解得:x=150﹣50,即河宽CD是(150﹣50)米,故答案为:(150﹣50).23.解:过B作BD⊥AC于点D.在Rt△ABD中,∠BAD=60°,AB=4,sin∠BAD=,∴BD=AB•sin∠BAD=4×=2(千米),在Rt△BCD中,∠CBD=45°,∴∠C=90°﹣∠CBD=90°﹣45°=45°,∴∠CBD=∠C,∴CD=BD=2千米,∴BC2=BD2+CD2=(2)2+(2)2=24,∴BC=2(千米).答:B,C两地的距离是2千米,故答案为:2.24.解:如图,过B作BE⊥AC于E,过C作CF∥AD,则CF∥AD∥BG,∠AEB=∠CEB=90°,∴∠ACF=∠CAD=20°,∠BCF=∠CBG=40°,∴∠ACB=20°+40°=60°,由题意得,∠CAB=65°﹣20°=45°,AB=30km,在Rt△ABE中,∵∠ABE=45°,∴△ABE是等腰直角三角形,∵AB=30km,∴AE=BE=AB=15(km),在Rt△CBE中,∵∠ACB=60°,tan∠ACB=,∴CE===5(km),∴AC=AE+CE=(15+5)km,∴A,C两港之间的距离为(15+5)km,故答案为:(15+5).。
北师大版数学九年级下册-实际问题与二次函数——面积、利润问题课时对应练习(Word版含答案)

第11课时实际问题与二次函数——面积、利润问题1.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2C.64m2D.66m22.某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该景点关闭.经跟踪测算,该景点一年中的利润W(万元)与月份x之间满足二次函数W=﹣x2+16x﹣48,则该景点一年中处于关闭状态有()月.A.5B.6C.7D.83.已知一个直角三角形两直角边之和为20cm,则这个直角三角形的最大面积为()A.25cm2B.50cm2C.100cm2D.不确定6.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,则将每件的销售价定为元时,可获得最大利润.5.(2019•天门)矩形的周长等于40,则此矩形面积的最大值是_____.6.如图,用总长度为12米的不锈钢材料设计成如图所示的外观为矩形的框架,所有横档和竖档分别与AD、AB平行,则矩形框架ABCD的最大面积为_____m2.7.(2019•丹东)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?8.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x 的取值范围.9.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y (单位:万元)与销售量x (单位:辆)之间分别满足:y 1=﹣x 2+10x ,y 2=2x ,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为( ) A .30万元B .40万元C .45万元D .46万元10.如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A .√3cm 2B .32√3cm 2C .92√3cm 2D .272√3cm 211.(2018•武汉)飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是y =60t −32t 2.在飞机着陆滑行中,最后4s 滑行的距离是 _____ m . 12.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27m ,则能建成的饲养室面积最大为 75 m 2.13.(2016•扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大,a 的取值范围应为 _____ .14.(2017•常德)如图,正方形EFGH 的顶点在边长为2的正方形的边上.若设AE =x ,正方形EFGH 的面积为y ,则y 与x 的函数关系为 __________ .15.(2019•盘锦)2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.月份x…3456…售价y1/元…12141618…(1)求y1与x之间的函数关系式.(2)求y2与x之间的函数关系式.(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?16.某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:时间t/天1361036…日销售量m/件9490847624…未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=0.25t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式y2=﹣0.5+40(21≤t≤40且t为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品,就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,请直接写出a 的取值范围.17.已知抛物线y =12x 2+mx ﹣2m ﹣2(m ≥0)与x 轴交于A 、B 两点,点A 在点B 的左边,与y 轴交于点C(1)当m =1时,求点A 和点B 的坐标(2)抛物线上有一点D (﹣1,n ),若△ACD 的面积为5,求m 的值 (3)P 为抛物线上A 、B 之间一点(不包括A 、B ),PM ⊥x 轴于点M ,求AM⋅BM PM的值.【参考答案】1.C . 2.A . 3.B . 4.65. 5.100. 6.4.7.(1)由题意得:y =80+20×60−x10∴函数的关系式为:y =﹣2x +200 (30≤x ≤60) (2)由题意得:(x ﹣30)(﹣2x +200)﹣450=1800 解得x 1=55,x 2=75(不符合题意,舍去)答:当销售单价为55元时,销售这种童装每月可获利1800元. (3)设每月获得的利润为w 元,由题意得: w =(x ﹣30)(﹣2x +200)﹣450 =﹣2(x ﹣65)2+2000 ∵﹣2<0∴当x ≤65时,w 随x 的增大而增大 ∵30≤x ≤60∴当x =60时,w 最大=﹣2(60﹣65)2+2000=1950答:当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元. 8.(1)根据题意得:(30﹣2x )x =72, 解得:x =3,x =12, ∵30﹣2x ≤18, ∴x =12;(2)设苗圃园的面积为y,∴y=x(30﹣2x)=﹣2x2+30x,∵a=﹣2<0,∴苗圃园的面积y有最大值,∴当x=152时,即平行于墙的一边长15>8米,y最大=112.5平方米;∵6≤x≤11,∴当x=11时,y最小=88平方米;(3)由题意得:﹣2x2+30x≥100,∵30﹣2x≤18,解得:6≤x≤10.9.D.10.C.提示:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,{AO=AOOD=OK,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=√3x,∴DE=6﹣2√3x,∴纸盒侧面积=3x(6﹣2√3x)=﹣6√3x2+18x,=﹣6√3(x−√32)2+9√32,∴当x=√32时,纸盒侧面积最大为9√32.11.24. 12.75.13.0<a <6.提示:设未来30天每天获得的利润为y , y =(110﹣40﹣t )(20+4t )﹣(20+4t )a 化简,得y =﹣4t 2+(260﹣4a )t +1400﹣20a每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大, ∴−260−4a2×(−4)>29.5解得,a <6, 又∵a >0,14.y =2x 2﹣4x +4.提示:如图所示:∵四边形ABCD 是边长为2的正方形, ∴∠A =∠B =90°,AB =2. ∴∠1+∠2=90°, ∵四边形EFGH 为正方形, ∴∠HEF =90°,EH =EF . ∴∠1+∠3=90°, ∴∠2=∠3,在△AHE 与△BEF 中, ∵{∠A =∠B∠2=∠3EH =FE,∴△AHE ≌△BEF (AAS ), ∴AE =BF =x ,AH =BE =2﹣x , 在Rt △AHE 中,由勾股定理得:EH 2=AE 2+AH 2=x 2+(2﹣x )2=2x 2﹣4x +4; 即y =2x 2﹣4x +4(0<x <2)。
北师大版数学九年级上下册全册复习课件(PPT共235张)

数学·新课标(BS)
上册第一章复习 ┃ 考点攻略
方法技巧 正方形是一种特殊的四边形,它里面隐含着许多线段之间的
关系或角之间的关系,我们要充分利用正方形的特性,结合
图形大胆地探索、归纳、验证即可使问题获解.
数学·新课标(BS)
上册第一章复习 ┃ 试卷讲练
特殊平行四边形属于对八年级平行四边形内容的深化与提高, 并进一步培养学生的逻辑推理能力,在中考中既可以作为单独 考查意图 知识点考查,也可以综合其他知识点考查,其中菱形、矩形、 正方形是考查重点. 菱形 知识与 技能 矩形 正方形 综合 思想方法 亮点 1,4,9,11,12,18 2,5,8,13,14,15,17 3,6,10,20,22,23 7,16,19,21,24 从特殊到一般 23题以动点为载体,结合图形变换,考查对于图形的分析能力 及逻辑推理能力.
如图 S1-3,将矩形ABCD 沿直线AE 折叠,顶点D恰好落
在BC边上的F点处.已知CE=3 cm,AB=8 cm,求图中阴影部分 的面积.
[解析] 要求阴影部分的面积,由于阴 影部分由两个直角三角形构成,所以只要
根据勾股定理求出直角三角形的直角边即 可.
数学·新课标(BS)
上册第一章复习 ┃ 考点攻略
CE=2,点P在BD上,求PE与PC的长度和的最小值.
数学·新课标(BS)
上册第一章复习 ┃ 考点攻略 [解析] 连接AP,AE ,由正方形关于对角线对称将 PC转移到
PA,要求PE与PC和的最小值即求 PE与PA和的最小值,易知当P在 AE上时,PA+PE最小.
解:连接AP,AE,如图S1-5.
上册第一章复习 ┃ 知识归类 8.中点四边形
中点四边形就是连接四边形各边中点所得的四边形,我们 可以得到下面的结论:
九年级下册数学课本答案北师大版

九年级下册数学课本答案北师大版【篇一:北师大版数学九年级下册教材目录】书)第一章直角三角形的边角关系1.从梯子的倾斜程度谈起2.30o,45o,60o角的三角函数值3.三角函数的有关计算4.船有触礁的危险吗回顾与思考复习题第二章二次函数1.二次函数所描述的关系2.结识抛物线3.刹车距离与二次函数4.二次函数的图象5.用三种方式表示二次函数6.何时获得最大利润7.最大面积是多少8.二次函数与一元二次方程回顾与思考复习题课题学习拱桥设计第三章圆1.车轮为什么做成圆形2.圆的对称性3.圆周角和圆心角的关系4.确定圆的条件5.直线和圆的位置关系6.圆和圆的位置关系7.弧长及扇形的面积8.圆锥的侧面积回顾与思考复习题课题学习设计庶阳棚第四章统计与概率1.50年的变化2.哪种方式更合算3.游戏公平吗回顾与思考复习题课题学习媒体中的数学总复习【篇二:最新北师大版九年级数学下册单元测试题全套及答案】p class=txt>本文档含本书3章的单元测试题,同时含期中,期末试题,共5套试题第一章检测题(时间:100分钟满分:120分)一、精心选一选(每小题3分,共30分)1.把△abc三边的长度都扩大为原来的3倍,则锐角a的正弦函数值( a ) 11 222318131213a.4 b.2513134433a.- b. c. d.-5554,第5题图) ,第6题图),第7题图)5.小强和小明去测量一座古塔的高度(如图),他们在离古塔60 m的a处,用测角仪器6.如图,bd是菱形abcd的对角线,ce⊥ab于点e,交bd于点f,且点e是ab中点,则tan∠bfe的值是( d )13b.2 c. d.3 233 b.2 c.3 3+28.如图,要在宽为22米的九洲大道ab两边安装路灯,路灯的灯臂cd长为2米,且a.(11-22)米 b.(113-22)米 c.(11-23)米 d.3-4)米,第8题图),第9题图),第10题图)a.2-3 b.2+3 c.+1 d.-13a.(2,23) b.(,2-3)23c.(2,4-3) d.(4-3)2二、细心填一填(每小题3分,共24分)?sina-12.在△abc中,∠a,∠b的度数满足:?__.22214.如果方程x2-4x+3=0的两个根分别是rt△abc的两条边,△abc最小角是∠a,那么tana的值为.15.如图,cd是rt△abc斜边上的高,ac=4,bc=3,则cos∠bcd的值是,第15题图),第16题图),第17题图)=9,bc=12,则cosc=____.,第18题图)16.如图,△abc中,de是bc的垂直平分线,de交ac于点e,连接be,若be.(结果保留根号)418.如图,点d在△abc的边bc上,∠c+∠bad=∠dac,tan∠badad=765,cd=13,则线段ac的长为.三、用心做一做(共66分)-14=5 2(2)如果tan∠bcd=求cd的长.3cd3由勾股定理得k2+(3k)2=12,解得k1=10103,k2=-(不合题意,舍去),∴cd 101010ef.解:连接ae,在rt△abe中,已知ab=3,be=3,∴aeab+be=3.又be333(m) 23≈1.732)3≈1.732)23203,∴ce=cf+fd+de=15+3+2=17+3≈51.64≈51.6 cm 2结果可保留根号)(1)求两渔船m,n之间的距离;(结果精确到1米)解:(1)在rt△pen中,en=pe=30米.在rt△pem中,me==【篇三:北师大版九年级下数学课本目录(最新版)】txt>2011 2012年印刷内容一样 2007年5月第4版 206页。
2024-2025学年北师大版九年级数学下册《2.2二次函数的图象与性质》同步练习题(附答案)

2024-2025学年北师大版九年级数学下册《2.2二次函数的图象与性质》同步练习题(附答案)一.选择题1.与抛物线y=﹣x2+1的顶点相同、形状相同且开口方向相反的抛物线所对应的函数表达式为()A.y=﹣x2B.y=x2﹣1C.y=﹣x2﹣1D.y=x2+12.若b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四图之一所示,根据图象分析,则a的值等于()A.﹣1B.1C.D.3.已知函数y=2mx2+(1﹣4m)x+2m﹣1,下列结论错误的是()A.当m=0时,y随x的增大而增大B.当m=时,函数图象的顶点坐标是(,﹣)C.当m=﹣1时,若x<,则y随x的增大而减小D.无论m取何值,函数图象都经过同一个点4.二次函数y=ax2+bx+c图象如图所示,则一次函数y=bx+c的大致图象是()A.B.C.D.5.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0)(2)顶点是(1,﹣2)(3)在x轴上截得的线段的长度是2(4)c=3a正确的个数()A.4个B.3个C.2个D.1个6.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A.当m=﹣3时,函数图象的顶点坐标是()B.当m>0时,函数图象截x轴所得的线段长度大于C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x时,y随x的增大而减小7.二次函数y=ax2+bx+c的x与y的部分对应值如下表:x﹣3﹣2﹣101y3m7n7则当x=3时,y的值是()A.3B.m C.7D.n8.已知函数y=ax2+bx+c(a≠0)的图象如图,下列5个结论,其中正确的结论有()①abc<0②3a+c>0③4a+2b+c<0④2a+b=0⑤b2>4acA.2B.3C.4D.59.若A(﹣4,y1),B(﹣1,y2),C(2,y3)为二次函数y=﹣(x+2)2+3的图象上的三点,则y1,y2,y3的关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3 10.如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值()A.﹣3和5B.﹣4和5C.﹣4和﹣3D.﹣1和5二.填空题11.在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.请问:若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16<y′≤16,则实数a的取值范围是.12.若函数y=(m2﹣m)x是二次函数,则m=.13.若y=(m2+m)x m2﹣2m﹣1﹣x+3是关于x的二次函数,则m=.14.二次函数y=﹣3(x﹣2)2+1顶点坐标.15.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)16.抛物线y=2x2+8x+5的顶点坐标为.17.把函数y=﹣x2﹣4x﹣5配方得,它的开口方向,顶点坐标是,对称轴是,当x=时,函数y有最值为.18.抛物线的顶点为(2,﹣3),与y轴交于点(0,﹣7),则该抛物线的解析式为.19.关于x的二次函数y=ax2+a2的最大值为4,则a的值为;三.解答题20.已知函数y=(m2﹣m)x2+(m﹣1)x+2﹣2m.(1)若这个函数是二次函数,求m的取值范围.(2)若这个函数是一次函数,求m的值.(3)这个函数可能是正比例函数吗?为什么?21.当m=时,是关于x的二次函数.22.已知二次函数y1=ax2+bx+1(a>0),一次函数y2=x.(Ⅰ)若二次函数y1的图象与一次函数y2的图象只有一个交点,求a与b之间的关系;(Ⅱ)在(Ⅰ)的条件下,y1的图象与y2图象的交点为P,且点P的横坐标是2,若将y2向上平移t个单位,与y1交于两点Q,R,△PQR面积为2,求t;(Ⅲ)二次函数y1图象与一次函数y2图象有两个交点(x1,y1)(x2,y2),且满足x1<2<x2<4,此时设函数y1的对称轴为x=m,求m的范围.23.已知二次函数y=x2+4x+3.(1)用配方法将二次函数的表达式化为y=a(x﹣h)2+k的形式;(2)在平面直角坐标系xOy中,画出这个二次函数的图象;(3)根据(2)中的图象,写出一条该二次函数的性质.参考答案一.选择题1.解:与抛物线y=﹣x2+1顶点相同,形状也相同,而开口方向相反的抛物线,即与抛物线y=﹣x2+1只有二次项系数不同.即y=x2+1,故选:D.2.解:因为前两个图象的对称轴是y轴,所以﹣=0,又因为a≠0,所以b=0,与b>0矛盾;第三个图的对称轴﹣<0,a>0,则b>0,正确;第四个图的对称轴﹣<0,a<0,则b<0,故与b>0矛盾.由于第三个图过原点,所以将(0,0)代入解析式,得:a2﹣1=0,解得a=±1,由于开口向上,a=1.故选:B.3.解:当m=0时,y=x﹣1,则y随x的增大而增大,故选项A正确,当m=时,y=x2﹣x=(x﹣)2﹣,则函数图象的顶点坐标是(,﹣),故选项B正确,当m=﹣1时,y=﹣2x2+5x﹣3=﹣2(x﹣)2,则当x<,则y随x的增大而增大,故选项C错误,∵y=2mx2+(1﹣4m)x+2m﹣1=2mx2+x﹣4mx+2m﹣1=(2mx2﹣4mx+2m)+(x﹣1)=2m(x﹣1)2+(x﹣1)=(x﹣1)[2m(x﹣1)+1],∴函数y=2mx2+(1﹣4m)x+2m﹣1,无论m取何值,函数图象都经过同一个点(1,0),故选项D正确,故选:C.4.解:∵二次函数的图象开口向下,∴a<0,∵对称轴x=﹣<0,∴b<0,∵函数图象经过原点,∴c=0,∴一次函数y=bx+c在坐标系中的大致图象是经过原点且从左往右下降的直线,故选:D.5.解:(1)因为图象过点(1,0),且对称轴是直线x=2,另一个对称点为(3,0),正确;(2)顶点的横坐标应为对称轴,本题的顶点坐标与已知对称轴矛盾,错误;(3)抛物线与x轴两交点为(1,0),(3,0),故在x轴上截得的线段长是2,正确;(4)图象过点(1,0),且对称轴是直线x=﹣=2时,则b=﹣4a,即a﹣4a+c=0,即可得出c=3a,正确.正确个数为3.故选:B.6.解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣)2+,顶点坐标是(,);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣﹣,|x2﹣x1|=+>,所以当m>0时,函数图象截x轴所得的线段长度大于,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0即对任意m,函数图象都经过点(1,0),函数图象经过x轴上一个定点此结论正确.D、当m<0时,y=2mx2+(1﹣m)x+(﹣1﹣m)是一个开口向下的抛物线,其对称轴是:直线x=,在对称轴的右边y随x的增大而减小.因为当m<0时,=﹣>,即对称轴在x=右边,因此函数在x=右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选:D.7.解:设二次函数的解析式为y=ax2+bx+c,∵当x=﹣1或1时,y=7,∴抛物线的对称轴为x=0,由抛物线的对称性可知x=﹣3与x=3对称,∴当x=3时,y=3.故选:A.8.解:①由抛物线的对称轴可知:>0,∴ab<0,∵抛物线与y轴的交点可知:c>0,∴abc<0,故①正确;②∵=1,∴b=﹣2a,∴由图可知x=﹣1,y<0,∴y=a﹣b+c=a+2a+c=3a+c<0,故②错误;③由(﹣1,0)关于直线x=1对称点为(3,0),(0,0)关于直线x=1对称点为(2,0),∴x=2,y>0,∴y=4a+2b+c>0,故③错误;④由②可知:2a+b=0,故④正确⑤由图象可知:Δ>0,∴b2﹣4ac>0,故⑤正确;故选:B.9.解:二次函数y=﹣(x+2)2+3的图象的开口向下(因为a=﹣1<0),对称轴是直线x =﹣2,所以在对称轴的右侧,y随x的增大而减小,点A关于对称轴对称的点的坐标为(0,y1),∵﹣1<0<2,∴y3<y1<y2,故选:C.10.解:∵二次函数y=(x+1)2﹣4,对称轴是:x=﹣1∵a=1>0,∴x>﹣1时,y随x的增大而增大,x<﹣1时,y随x的增大而减小,由图象可知:在﹣2≤x≤2内,x=2时,y有最大值,y=(2+1)2﹣4=5,x=﹣1时y有最小值,是﹣4,故选:B.二.填空题11.解:依题意,y=﹣x2+16图象上的点P的“可控变点”必在函数y′=的图象上(如图),当x=﹣5时,y=25﹣16=9,当y=9时,x2=7,∵x>0,∴x=∵﹣16≤y′≤16,当y′=16,代入y′=,得:x=4,当y=﹣16,代入上式得:x=4,若a<4,则y取不到﹣16;当a>4,则y取值超过范围;故≤a<4.12.解:由题意,得m2+m=2且m2﹣m≠0,解得m=﹣2.故答案为:﹣2.13.解:由题意,得m2﹣2m﹣1=2,且m2+m≠0,解得m=3,故答案为:3.14.解:二次函数y=﹣3(x﹣2)2+1图象的顶点坐标是(2,1).故答案为:(2,1).15.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a416.解:∵y=2x2+8x+5=2(x+2)2﹣3,∴该抛物线的顶点坐标为(﹣2,﹣3),故答案为:(﹣2,﹣3).17.解:y=﹣x2﹣4x﹣5=﹣(x2+4x+5)=﹣(x+2)2﹣1.∵a=﹣1<0,∴开口向下,顶点坐标(﹣2,﹣1),对称轴为直线x=﹣2.当x=﹣2时,函数y有最大值为﹣1,故答案为:y=﹣(x+2)2﹣1,下,(﹣2,﹣1),直线x=﹣2,﹣2,大,﹣1.18.解:∵抛物线的顶点为(2,﹣3),∴设这个二次函数的解析式y=a(x﹣2)2﹣3,∵抛物线与y轴交于点(0,﹣7),∴﹣7=4a﹣3,解得:a=﹣1,则这个二次函数的解析式y=﹣(x﹣2)2﹣3.故答案为y=﹣(x﹣2)2﹣319.解:∵关于x的二次函数y=ax2+a2的最大值为4,∴a<0,且a2=4,∴a<0且a=±2,∴a=﹣2.故答案为﹣2.三.解答题20.解:(1)函数y=(m2﹣m)x2+(m﹣1)x+2﹣2m,若这个函数是二次函数,则m2﹣m≠0,解得:m≠0且m≠1;(2)若这个函数是一次函数,则m2﹣m=0,m﹣1≠0,解得m=0;(3)这个函数不可能是正比例函数,∵当此函数是一次函数时,m=0,而此时2﹣2m≠0.21.解:根据二次函数的定义:m2+m=2,解得:m=﹣2或1,又m+2≠0,m≠﹣2,故m=1.故答案为:1.22.解:(1)若二次函数y1的图象与一次函数y2的图象只有一个交点,即:ax2+bx+1=x,△=(b﹣1)2﹣4a=0,解得:b2﹣2b+1=4a,…①答:a与b之间的关系是b2﹣2b+1=4a;(2)图象如上图所示,若将y2向上平移t个单位后所在直线为PR所在直线为y=x+t,将P点坐标(2,2)代入二次函数方程得:4a+2b+1=2…②联立方程①②解得:b=0,a=,点Q、R的坐标由方程③和二次函数联立得:x2﹣x+1﹣t=0,则:|x Q﹣x P|=4,S△PQR=•|x Q﹣x P|•PH=2,解得:t=1,答:t=1;(3)若二次函数y1的图象与一次函数y2的图象有两个交点(x1,0)(x2,0),且满足x1<2<x2<4则ax2+(b﹣1)x+1=0有两不同实根x1,x2,且x1<2<x2<4,a>0故x=2时ax2+(b﹣1)x+1<0,x=4时ax2+(b﹣1)x+1>0,,②﹣3×①得:4a﹣2b>0,∵a>0,故m=﹣>﹣1,∴m>﹣1,解得:m>﹣1;答:m的范围为m>﹣1.23.解:(1)y=x2+4x+3=x2+4x+22﹣22+3=(x+2)2﹣1;(2)列表:x…﹣4﹣3﹣2﹣10…y…30﹣103…如图,(3)当x<﹣2时,y随x的增大而减小,当x>﹣2时,y随x的增大而增大.。
九年级数学下册第四章统计与概率阶段专题复习习题课件北师大版
【解析】(1)设去B地的人数为x,
则由题意有:
x 解得40:%x, =40.
30 x 20 10
∴去B地的人数为40人.
(2)列表:
1
2
3
4
3 (1,3)
(2,3)
(3,3)
(4,3)
2 (1,2)
(2,2)
(3,2)
(4,2)
1 (1,1)
(2,1)
(3,1)
(4,1)
4 (1,4)
频数分布表:
分组 2.0<x≤3.5 3.5<x≤5.0 5.0<x≤6.5 6.5<x≤8.0 8.0<x≤9.5
合计
划记 正正 正正正
频数 11 19
2 50
(1)把上面的频数分布表和频数分布直方图补充完整. (2)从直方图中你能得到什么信息?(写出两条即可) (3)为了鼓励节约用水,要确定一个用水量的标准,超出这个 标准的部分按1.5倍价格收费.若要使60%的家庭收费不受影响, 你觉得家庭月均用水量应该定为多少?为什么?
50
【归纳整合】细读统计图表 ①注重整体阅读.先对材料或图表资料等有一个整体的了解,把 握大体方向.要通过整体阅读,搜索有效信息;②重视数据变化. 数据的变化往往说明了某项问题,而这可能正是这个材料的重 要之处;③注意图表细节.图表中一些细节不能忽视,它往往起 提示作用.如图表下的“注”“数字单位”等.
【解析】选D.∵只有上城区的人口小于40万,∴选项A错误;∵ 萧山区、余杭区的人口超过100万,∴选项B错误;∵上城区的 人口<40万,下城区的人口<60万,∴上城区与下城区的人口 之和小于100万,而江干区的人口=100万,∴上城区的人口 +下城区的人口<江干区的人口,选项C错误;选项D正确.
北师大版九年级下册数学单元测试题全套及答案
北师大版九年级下册数学单元测试题全套及答案(含期中期末试题)第一章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如图,在Rt △ABC 中,CD 是斜边AB 上的高线,∠ACD 的正弦值是23,则ACAB 的值是( B )A.255B.23C.355D.522.在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm ,则BC 的长度为( C )A .6 cmB .7 cmC .8 cmD .9 cm3.在△ABC 中,sin B =cos(90°-∠C )=12,那么△ABC 是( A )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.如图,过点C (-2,5)的直线AB 分别交坐标轴于A (0,2),B 两点,则tan ∠OAB =( B ) A.25B.23C.52D.325.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图所示的图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于点D ,点C 在BD 上,有四位同学分别测量出以下四组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( C )A .1组B .2组C .3组D .4组6.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为线段AB 上一点,且AE ∶EB =4∶1,EF ⊥AC 于F ,连接FB ,则tan ∠CFB 的值等于( C )A.33B.233C.533D .53二、填空题(本大题共6小题,每小题3分,共18分) 7.在Rt △ABC 中 ,∠C =90°,BC =5,AB =12,则tan A =512. 8.(2019·赤峰)如图,一根竖直的木杆在离地面3.1 m 处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__8.1__m __.(参考数据:sin 38°≈0.62,cos 38°≈0.79,tan 38°≈0.78)9.(2019·咸宁) 如图,某校九(1)班数学课外活动小组在河边测量河宽AB (这段河流的两岸平行),他们在点C 测得∠ACB =30°,点D 处测得∠ADB =60°,CD =80 m ,则河宽AB 约为 __69__ m .(结果保留整数,3≈1.73)10.(2019·柳州)在△ABC 中,sin B =13,tan C =22,AB =3,则AC 的长为 3 .11.如图,小明将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB ∶BC =4∶5,则sin ∠DCF 的值为 35.12.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点O ,则tan ∠AOD = 2 .三、(本大题共5小题,每小题6分,共30分)13.计算:sin 30°-(cos 45°-1)0+32tan 2 30°.解:原式=12-1+32×⎝⎛⎭⎫332=12-1+12=0.14.已知Rt △ABC 中,∠C =90°,∠B =60°,a =4,解这个直角三角形.解:∠A =90°-∠B =90°-60°=30°.由tan B =ba,得b =a tan B =4tan 60°=4 3.由cos B=a c ,得c =a cos B =4cos 60°=8.所以∠A =30°,b =43,c =8. 15.已知α为锐角,且tan α是方程x 2+2x -3=0的一个根,求2sin 2α+cos 2α- 3 tan (α+15°)的值.解:解方程x 2+2x -3=0, 得x 1=1,x 2=-3.∵tan α>0,∴tan α=1,∴α=45°,∴2sin 2α+cos 2α-3tan (α+15°)=2sin 245°+cos 245°-3tan 60°=2×⎝⎛⎭⎫222+⎝⎛⎭⎫222-3×3=1+12-3=-32.16.数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°角的三角板的斜边与含30°角的三角板的长直角边相等.于是,小路同学提出一个问题:如图,将一副三角板直角顶点重合后拼放在一起,点B ,C ,E 在同一直线上.若BC =2,求AF 的长.(请你运用所学的数学知识解决这个问题)解:在Rt △ABC 中,BC =2,∠A =30°, ∴AC =BC tan A =2tan 30°=2 3. 由题意,得EF =AC =2 3. 在Rt △EFC 中,∠E =45°, ∴CF =EF·sin 45°=23×22=6, ∴AF =AC -CF =23- 6.17.(2019·通辽)两栋居民楼之间的距离CD =30 m ,楼AC 和BD 均为10层,每层楼高为3 m .上午某时刻,太阳光线GB 与水平面的夹角为30°,此刻楼BD 的影子会遮挡到AC 的第几层?(参考数据:3≈1.7,2≈1.4)解:设太阳光线GB 交AC 于点F ,过F 作FH ⊥BD 于H ,AC =BD =3×10=30 m ,FH =CD =30 m ,∠BFH =∠α=30°,在RtBFH 中,tan ∠BFH =BH FH =BH 30=33,∴BH =30×33=103≈10×1.7=17,∴FC =HD =BD -BH ≈30-17=13,∵133≈4.3,所以在四层的上面,即第五层.答:此刻楼BD 的影子会遮挡到楼AC 的5层.四、(本大题共3小题,每小题8分,共24分)18.(2019·深圳)如图所示,某施工队要测量隧道长度BC ,AD =600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角为45°,再由D 走到E 处测量,DE ∥AC ,ED =500米,测得仰角为53°,求隧道BC 的长.(sin 53°≈45,cos 53°≈ 35,tan 53°≈43)解:在RtABD 中,AB =AD =600(米),作EM ⊥AC 于M ,则AM =DE =500(米),∴BM =100米,在Rt △CEM 中,tan 53°=CM EM =CM 600=43,∴CM =800(米),∴BC =CM -BM =800-100=700(米).答:隧道BC 长为700米.19.(2019·广元)如图,某海监船以60海里/小时的速度从A 处出发沿正西方向巡逻,一可疑船只在A 的西北方向的C 处,海监船航行1.5小时到达B 处时接到报警,需巡查此可疑船只,此时可疑船只仍在B 的北偏西30°方向的C 处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/小时的速度追击,在D 处海监船追到可疑船只,D 在B 的北偏西60°方向.(以下结果保留根号)(1)求B ,C 两处之间的距离;(2)求海监船追到可疑船只所用的时间.解:(1)过点C 作CE ⊥AB 于点E ,在Rt △BCE 中,∵∠BCE =30°,∴BE =BC ×sin ∠BCE =12BC ,CE =BC ×cos ∠BCE =32BC ,在Rt △ACE 中, ∵∠A =45°.∴AE =CE =32BC ,∵AB =60×1.5=90,∴AE -BE =32BC -12BC =90,解得BC =90(3+1).故B ,C 相距(903+90)海里.(2)过点D 作DF ⊥AB 于F ,由(1),得DF =CE =32BC ,∴DF =135+453,在Rt △BDF 中,∠DBF =30°,∴BD =2DF =270+903,∴海监船追到可疑船只所用的时间为(270+903)÷90=(3+3)h.20.已知:如图,在四边形ABCD 中,∠ABC =∠ADC =90°,DE ⊥BC 于E ,连接BD.若tan C =2,BE =3,CE =2,求点B 到CD 的距离.解:过点B 作BF ⊥CD ,垂足为F ,则∠BFC =90°.∵DE ⊥BC ,∴∠DEC =∠DEB =90°,在Rt △DEC 中,∵tan C =2,EC =2,∴DE =4.在Rt △BFC 中,∵tan C =2,∴BF =2FC ,设BF =x ,则FC =12x ,∵BF 2+FC 2=BC 2,∴x 2+(12x)2=(3+2)2,解得x =25,即BF =2 5.答:点B 到CD 的距离是2 5.五、(本大题共2小题,每小题9分,共18分)21.如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上. (1)求证:△ABF ∽△DFE ;(2)若sin ∠DFE =13,求tan ∠EBC 的值.(1)证明:∵∠A =∠D =90°,∠ABF 与∠DFE 都与∠AFB 互余,∴∠ABF =∠DFE ,∴△ABF ∽△DFE ;(2)解:∵sin ∠DFE =DE EF =13,∴设DE =k .则EF =CE =3k ,AB =CD =4k ,∴DF =EF 2-DE 2=22k ,由△ABF ∽△DFE ,得AF DE =AB DF ,即AF k =4k22k ,∴AF =2k ,∴BC =AD =2k +22k =32k ,∴tan ∠EBC =CE BC =3k 32k =22. 22.小明坐于堤边垂钓,如图,河堤AC 的坡角为30°,AC 长332米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离.解:如图,延长OA 交直线BC 于点D ,∵AO 的倾斜角是60°,∴∠ODB =60°.∵∠ACD =30°,∴∠CAD =180°-∠ODB -∠ACD =90°.在Rt △ACD 中,AD =AC·tan ∠ACD =332·33=32(米).∴CD =2AD =3(米). 又∵∠O =60°,∴△BOD 为等边三角形.∴BD=OD=OA+AD=3+32=4.5(米).∴BC=BD-CD=4.5-3=1.5米.答:浮漂B与河堤下端C之间的距离为1.5米.六、(本大题共12分)23.在一次科技活动中,小明进行了模拟雷达扫描实验.表盘是△ABC,其中AB=AC,∠BAC =120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同旋转速度返回AB,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB 处旋转开始计时,旋转1秒,此时光线AP交BC边于点M,BM的长为(203-20) cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时光线AP与BC边的交点在什么位置?若旋转2 030秒,交点又在什么位置?请说明理由.解:(1)如图①,过A点作AD⊥BC,垂足为D.∵∠BAC=120°,AB=AC,∴∠ABC=∠C=30°.令AB=2t cm.在Rt△ABD中,AD=12AB=t,BD=32AB=3t.在Rt AMD中,∵∠AMD=∠ABC+∠BAM=45°,∴MD=AD=t.∵BM=BD-MD.即3t-t=203-20.解得t=20.∴AB=2×20=40 cm.答:AB的长为40 cm.(2)如图②,当光线旋转6秒,设AP交BC于点N,此时∠BAN=15°×6=90°.在Rt△ABN中,BN=ABcos 30°=4032=8033cm.∴光线AP旋转6秒,与BC的交点N距点B8033cm处.如图③,设光线AP旋转2 030秒后光线与BC的交点为Q.由题意可知,光线从边AB开始到第一次回到AB处需8×2=16秒,而2 030=126×16+14,即AP旋转2 030秒与旋转14秒时和BC的交点是同一个点Q.旋转14s的过程是B→C:8s,C→Q:6s,因此CQ=BN=8033cm,∵AB=AC,∠BAC=120°,∴BC=2ABcos 30°=2×40×32=40 3 cm,∴BQ=BC-CQ=403-8033=4033cm.答:光线AP旋转2 030秒后,与BC的交点Q在距点B的4033cm处.第二章检测题(BSD)(考试时间:120分钟满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知抛物线y=x2+ax+b与x轴的交点坐标为(-1,0)和(-3,0),则方程x2+ax+b=0的解是( B )A.x1=1,x2=-3 B.x1=-1,x2=-3C.x=-3 D.x=32.如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=6 cm,动点P从点C开始沿CA以1 cm/s 的速度向A点运动,同时动点Q从点C开始沿CB以2 cm/s的速度向B点运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ的面积y(cm2)与运动时间x(s)之间的函数图象大致是( C )3.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t +1.则下列说法中正确的是( D )A.点火后9 s和点火后13 s的升空高度相同B.点火后24 s火箭落于地面C.点火后10 s的升空高度为139 mD.火箭升空的最大高度为145 m4.若二次函数y=ax2+bx+c(a≠0)经过原点和第一、二、三象限,则(A)A.a>0,b>0,c=0 B.a>0,b<0,c=0C.a<0,b>0,c=0 D.a<0,b<0,c=05.(2019·烟台)已知二次函数y=ax2+bx+c(a≠0)的y与x的部分对应值如下表,下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2; ③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(B)A.2 B.36.(2019·巴中)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②abc<0,③2a+b -c >0,④a +b +c <0.其中正确的是( A )A .①④B .②④C .②③D .①②③④二、填空题(本大题共6小题,每小题3分,共18分)7.已知一条抛物线的开口大小与y =x 2相同但方向相反,且顶点坐标是(2,3),则该抛物线的表达式是 y =-x 2+4x -1 .8.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数表达式是y =60t -32t 2,在飞机着陆滑行中,最后4 s 滑行的距离是 24 m.9.若二次函数y =2x 2-4x -1的图象与x 轴交于A (x 1,0),B (x 2,0)两点,则1x 1+1x 2的值为 -4 .10.如图,已知△OBC 是等腰直角三角形,∠OCB =90°,若点B 的坐标为(4,0),点C 在第一象限,则经过O ,B ,C 三点的抛物线的表达式是 y =-12x 2+2x .11.已知二次函数y =ax 2+2ax +3a 2+3(a ≠0)(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值是__1__.12.如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx(a>0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a>0)交于点B.若四边形ABOC 是正方形,则b 的值是 -2 .三、(本大题共5小题,每小题6分,共30分)13.已知当x =2时,抛物线y =a(x -h)2有最大值,此抛物线过点(1,-3),求抛物线的表达式,并指出当x 为何值时,y 随x 的增大而减小.解:当x =2时,有最大值,所以h =2.此抛物线过(1,-3),所以-3=a(1-2)2,解得a =-3.此抛物线的表达式为y =-3(x -2)2.当x >2时,y 随x 的增大而减小.14.已知抛物线y =-3x 2经过平移经过点(0,0)和(1,9),求出平移后抛物线的表达式,并写出它的对称轴和顶点坐标.解:设平移后抛物线的表达式为y =-3x 2+bx +c ,将点(0,0)和(1,9)的坐标代入,得⎩⎨⎧c =0,-3+b +c =9,解得⎩⎪⎨⎪⎧b =12,c =0.∴平移后抛物线的表达式为y =-3x 2+12x.∵y =-3x 2+12x =-3(x -2)2+12,∴对称轴为直线x=2,顶点坐标为(2,12).15.已知抛物线y =-a(x -2)2+3经过点(1,2).(1)求a 的值;(2)若点A(m ,y 1),B(n ,y 2)(m >n >2)都在该抛物线上,试比较y 1与y 2的大小. 解:(1)把(1,2)代入y =-a(x -2)2+3,得2=-a(1-2)2+3,解得a =1;(2)由(1)知原抛物线的表达式为y =-(x -2)2+3,其开口向下,对称轴为直线x =2, ∴当x >2时,y 随x 的增大而减小. ∵m >n >2,∴y 1<y 2.16.如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A ,C 分别在x 轴、y 轴的正半轴上,二次函数y =-23x 2+bx +c 的图象经过B ,C 两点.(1)求该二次函数的表达式;(2)结合函数的图象探索,当y >0时,x 的取值范围.解:(1)由题意可得B(2,2),C(0,2),将B ,C 坐标代入y =-23x 2+bx +c ,解得c =2,b =43,所以二次函数的表达式是y =-23x 2+43x +2.(2)令y =0,解-23x 2+43x +2=0,得x 1=3,x 2=-1,由图象可知:y >0时,x 的取值范围是-1<x <3.17.如图,抛物线y =ax 2+bx -5(a ≠0)与x 轴交于点A(-5,0)和点B(3,0),与y 轴交于点C.(1)求该抛物线的表达式;(2)若点E 为x 轴下方抛物线上的一动点,当S △ABE =S △ABC 时,求点E 的坐标.解:(1)∵抛物线经过A ,B 两点,∴把A(-5,0),B(3,0)代入y =ax 2+bx -5,得⎩⎨⎧25a -5b -5=0,9a +3b -5=0,解得⎩⎨⎧a =13,b =23,∴该抛物线的表达式为y =13x 2+23x -5.(2)∵y =13x 2+23x -5,∴令x =0,则y =-5.∴C 点的坐标为(0,-5),∵S △ABE =S △ABC ,∴点E的纵坐标与点C 的纵坐标相等,即点E 的纵坐标为-5,令13x 2+23x -5=-5,解得x 1=-2,x 2=0(舍去),∴点E 的坐标为(-2,-5).四、(本大题共3小题,每小题8分,共24分) 18.已知二次函数y =x 2-(2m -1)x +m 2-m.(1)求证:此二次函数图象与x 轴必有两个不同的交点;(2)若此二次函数图象与直线y =x -3m +4的一个交点在y 轴上,求m 的值.(1)证明:令y =0,有x 2-(2m -1)x +m 2-m =0,Δ=b 2-4ac =(2m -1)2-4(m 2-m)=1>0,∴结论成立;(2)解:令x =0,代入y =x 2-(2m -1)x +m 2-m 与y =x -3m +4,得m 2-m =-3m +4,∴m =-1+5或-1- 5.19.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看作一点)的路线是抛物线y =-35x 2+3x +1的一部分,如图.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4 m ,在一次表演中人梯到起点A 的水平距离为4 m ,问这次表演是否成功?请说明理由.解:(1)∵y =-35x 2+3x +1=-35⎝⎛⎭⎫x -522+194,∴该演员弹跳高度的最大值为194m ; (2)当x =4时,y =-35×42+3×4+1=3.4,∴这次表演是成功的.20.如图,已知抛物线y =ax 2-4x +c 经过点A(0,-6)和B(3,-9).(1)求出抛物线的表达式;(2)写出抛物线的对称轴及顶点坐标;(3)点P(m ,m)(其中m >0)与点Q 均在抛物线上,且这两点关于抛物线的对称轴对称,求m 的值及点Q 的坐标.解:(1)依题意有⎩⎨⎧a ×02-4×0+c =-6,a ×32-4×3+c =-9,即⎩⎨⎧c =-6,9a -12+c =-3,∴⎩⎪⎨⎪⎧a =1,c =-6.∴抛物线的表达式为y =x 2-4x -6.(2)把y =x 2-4x -6配方得y =(x -2)2-10,∴对称轴为直线x =2,顶点坐标(2,-10).(3)由点P(m ,m)在抛物线上,有m =m 2-4m -6,即m 2-5m -6=0.∴m 1=6或m 2=-1(舍去),∴m =6,∴P 点的坐标为(6,6).∵点P ,Q 均在抛物线上,且关于对称轴x =2对称,∴Q 点的坐标为(-2,6). 五、(本大题共2小题,每小题9分,共18分)21.把抛物线y =12x 2平移得到抛物线m ,抛物线m 经过点A(-6,0)和原点O(0,0),它的顶点为P ,它的对称轴与抛物线y =12x 2交于点Q.(1)求顶点P 的坐标; (2)写出平移过程;(3)求图中阴影部分的面积.解:(1)设抛物线m 的表达式为y =12x 2+bx +c ,把点A(-6,0),原点O(0,0)代入,得b =3,c=0,∴抛物线m 的表达式为y =12x 2+3x =12(x +3)2-92,所以顶点P 的坐标为⎝⎛⎭⎫-3,-92. (2)把抛物线y =12x 2先向左平移3个单位长度,再向下平移92个单位长度即可得到抛物线y =12(x +3)2-92.(3)Q 点横坐标为-3,代入y =12x 2,可得Q ⎝⎛⎭⎫-3,92,图中阴影部分的面积=S △OPQ =12×3×9=272. 22.(2019·南充)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔、一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元. (1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?解:(1)设钢笔、笔记本的单价分别为x ,y 元,根据题意得,⎩⎨⎧2x +3y =38,4x +5y =70,解得:⎩⎪⎨⎪⎧x =10,y =6.答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a 元,购买数量为b 支,支付钢笔和笔记本的总金额为w 元, ①当30≤b ≤50时,a =10-0.1(b -30)=-0.1b +13,w =b(-0.1b +13)+6(100-b)=-0.1b 2+7b +600=-0.1(b -35)2+722.5,∵当b =30时,w =720,当b =50时,w =700, ∴当30≤b ≤50时,700≤w ≤722.5;②当50<b ≤60时,a =8,w =8b +6(100-b)=2b +600,700<w ≤720,∴当30≤b ≤60时,w 的最小值为700元.答:这次奖励一等奖学生50人时,购买的奖品总金额最少,最少为700元.六、(本大题共12分)23.(2019·新疆)如图,抛物线y =ax 2+bx +c 经过A (-1,0),B (4,0),C (0,4)三点. (1)求抛物线的表达式及顶点D 的坐标; (2)将(1)中的抛物线向下平移154个单位长度,再向左平移h (h >0)个单位长度,得到新抛物线.若新抛物线的顶点D ′在△ABC 内,求h 的取值范围;(3)点P 为线段BC 上一动点(点P 不与点B ,C 重合),过点P 作x 轴的垂线交(1)中的抛物线于点Q ,当△PQC 与△ABC 相似时,求△PQC 的面积.题图 答图解:(1)函数表达式为y =a(x +1)(x -4)=a(x 2-3x -4),即-4a =4,解得a =-1,故抛物线的表达式为y =-x 2+3x +4,顶点D(32,254);(2)抛物线向下平移154个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线的顶点D' (32-h ,52),将点A ,C 的坐标代入一次函数表达式并解得直线AC 的表达式为y =4x +4,将点D' 坐标代入直线AC 的表达式得:52=4(32-h)+4,解得h =158,故0<h<158;(3)过点P 作y 轴的平行线交抛物线和x 轴于点Q ,H ,∵OB =OC =4,∴∠PBA =∠OCB =45°=∠QPC ,直线BC 的表达式为y =-x +4,则AB =5,BC =42,AC =17,S ABC =12×5×4=10,设点Q(m ,-m 2+3m +4),点P(m ,-m +4),CP =2m ,PQ =-m 2+3m +4+m -4=-m 2+4m ,①当△CPQ ∽△CBA ,PC BC =PQ AB ,即2m42=-m 2+4m 5,解得m =114,相似比为PC BC =1116,②当△CPQ ∽△ACB ,同理可得相似比为PC AB =12225,利用面积比等于相似比的平方可得S PQC=10×(1116)2=605128或SPQC =10×(12225)2=576125. 第三章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知⊙P 的半径为4,圆心P 的坐标为(1,2),点Q 的坐标为(0,5),则点Q 与⊙P 位置关系是( C )A .点Q 在⊙P 外B .点Q 在⊙P 上C .点Q 在⊙P 内D .不能确定2.如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD 等于( D ) A .20° B .40° C .50° D.80°3.如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD =∠BCD ,则BD ︵的长为( C )A .πB.32πC .2πD .3π4.同一个圆的内接正六边形和外切正六边形的周长之比为( B )A .3∶4B .3∶2C .2∶ 3D .1∶25.如图,AC 是⊙O 的直径,弦BD ⊥AO 于点E ,连接BC ,过点O 作OF ⊥BC 于点F ,若BD =8 cm ,AE =2 cm ,则OF 的长度是( D )A .3 cmB . 6 cmC .2.5 cmD . 5 cm 6.如图,将正方形ABCD 绕点A 按逆时针方向旋转30°,得正方形AB 1C 1D 1,B 1C 1交CD 于点E ,AB =3,则四边形AB 1ED 的内切圆半径为( B )A .3+12B .3-32C .3+13D .3-33二、填空题(本大题共6小题,每小题3分,共18分)7.如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于69° . 8.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得AD =10 cm ,点D 在量角器上的读数为60°,则该直尺的宽度为533 cm . 9.如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与BA 的延长线交于点D ,点E 在BC ︵上(不与点B ,C 重合),连接BE ,CE.若∠D =40°,则∠BEC =115度.10.(2019·内江)如图,在平行四边形ABCD 中,AB<AD ,∠A =150°,CD =4,以CD 为直径的⊙O 交AD 于点E ,则图中阴影部分的面积为2π3+ 3 . 11.如图,P 是反比例函数y =4x (x >0)的图象上一点,以点P 为圆心、1个单位长度为半径作⊙P ,当⊙P 与直线y =3相切时,点P 的坐标为 (1,4)或(2,2) .12.(2019·包头)如图,BD 是⊙O 的直径,A 是⊙O 外一点,点C 在⊙O 上,AC 与⊙O 相切于点C ,∠CAB =90°,若BD =6,AB =4,∠ABC =∠CBD ,则弦BC 的长为.三、(本大题共5小题,每小题6分,共30分)13.如图,⊙O 是△ABC 的外接圆,∠A =45°,BD 是直径,BD =2,连接CD ,求BC 的长.解:在⊙O 中,∵∠A =45°,∴∠D =45°. ∵BD 为⊙O 的直径, ∴∠BCD =90°, ∴BC =BD·sin 45°=2×22= 2. 14.如图,已知CD 平分∠ACB ,DE ∥AC.求证:DE =BC.证明:∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴BD ︵=AD ︵,∵DE ∥AC ,∴∠ACD =∠CDE ,∴AD ︵=CE ︵,∴BD ︵=CE ︵,∴DE ︵=BC ︵,∴DE =BC.15.如图,两个同心圆中,大圆的弦AB ,AC 分别切小圆于点D ,E ,△ABC 的周长为12 cm ,求△ADE 的周长.解:连接OD ,OE.∵AB ,AC 分别切小圆于点D ,E , ∴OD ⊥AB ,OE ⊥AC , ∴AD =DB ,AE =EC , ∴DE 是△ABC 的中位线,∴DE =12BC ,∴C △ADE =12C △ABC =12×12=6 cm .16.如图所示,⊙O 的直径AB 长为6,弦AC 的长为2,∠ACB 的平分线交⊙O 于点D ,求四边形ADBC 的面积.解:∵AB 是⊙O 的直径, ∴∠ACB =∠ADB =90°.在Rt △ABC 中,由勾股定理,得 BC =AB 2-AC 2=62-22=4 2. 又∵CD 平分∠ACB , ∴AD ︵=BD ︵,∴AD =BD.在Rt △ABD 中,由勾股定理,得AD =BD =22AB =22×6=3 2. ∴S 四边形ADBC =S △ABC +S △ABD =42+9,∴四边形ADBC 的面积为42+9.17.如图,点I 是△ABC 的内心,AI 的延长线交BC 于点D ,交△ABC 的外接圆于点E.求证:IE 2=AE·DE.证明:连接BE ,BI.∵I 为△ABC 的内心,∴∠1=∠2,∠3=∠4. 又∵∠6=∠1+∠3,∠IBE =∠4+∠5, ∠5=∠2=∠1,∴∠IBE =∠6,∴IE =BE. ∵∠5=∠1,∠E =∠E ,∴△BED∽△AEB,∴BEDE=AEBE,∴BE2=AE·DE,∴IE2=AE·DE.四、(本大题共3小题,每小题8分,共24分)18.如图,在直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,B,C 两点的坐标分别为(0,b),(1,0).(1)当b=3时,求经过B,C两点的直线的表达式;(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?并求出每种位置关系时b的取值范围.解:(1)直线BC表达式为y=-3x+3.(2)当BC切⊙O′于第二象限时,记切点为点D.易得DC= 5.∵BO=BD=b,∴BC=5-b.12+b2=(5-b)2,得b=25 5.同理当BC切⊙O′于第三象限D1点时,可求得b=-25 5.故当b>255或b<-255时,直线BC与⊙O′相离;当b=255或-255时,直线BC与⊙O′相切;当-255<b<255时,直线BC与⊙O′相交.19.(2018·南充)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.(1)证明:连接OC,BC,∵⊙O的半径为3,PB=2,∴OC=OB=3,OP=OB+PB=5.∵PC=4,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线.(2)解:∵AB是直径,∴∠ACB=90° ,∴∠ACO+∠OCB=90°,∵OC⊥PC,∴∠BCP+∠OCB =90°,∴∠BCP=∠ACO.∵OA=OC,∴∠A=∠ACO,∴∠A=∠BCP,在△PBC和△PCA中,∠BCP=∠A,∠P=∠P,∴△PBC∽△PCA,∴BCAC=PBPC=24=12,∴tan∠CAB=BC AC=12.20.(齐齐哈尔中考)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.又∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∴∠DBC+∠ABD=90°,即∠ABC=90°∴BC是⊙O的切线.(2)解:∵BF=BC=2且∠ADB=90°,∴∠CBD=∠FBD,又∵OE∥BD,∴∠FBD=∠OEB.∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠DBE=∠OBE=13∠ABC=13×90°=30°,∴∠C=60°,∴AB=3BC=23,∴⊙O的半径为3,连接OD,∴阴影部分面积为S扇形OBD-S△OBD=16π×3-34×3=π2-334.五、(本大题共2小题,每小题9分,共18分)21.(2019·安顺)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E 两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:点H为CE的中点;(3)若BC=10,cos C=55,求AE的长.(1)解:DH与⊙O相切.理由:连接OD,AD,∵AB为直径,∴∠ADB=90°,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH为⊙O的切线.(2)证明:连接DE,∵A,B,D,E四点共圆,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∴CD=ED,∵DH⊥CE,∴点H为CE的中点.(3)解:CD=12BC=5,∵cos C=CDAC=55,∴AC=55,∵cos C=CHCD=55,∴CH=5,∴CE=2CH =25,∴AE =AC -CE =3 5.22.如图,在Rt △ABC 与Rt △OCD 中,∠ACB =∠DCO =90°,点O 为AB 的中点.(1)求证:∠B =∠ACD ;(2)已知点E 在AB 上,且BC 2=AB ·BE . ①若tan ∠ACD =34,BC =10,求CE 的长;②试判断CD 与以A 为圆心,AE 为半径的⊙A 的位置关系,并请说明理由.(1)证明:∵∠ACB =∠DCO =90°,∴∠ACB -∠ACO =∠DCO -∠ACO ,即∠ACD =∠OCB ; 又∵点O 是AB 的中点,∴OC =OB , ∴∠OCB =∠B , ∴∠B =∠ACD .(2)解:①∵BC 2=AB ·BE ,∴BC AB =BEBC.∵∠B =∠B ,∴△ABC ∽△CBE ,∴∠ACB =∠CEB =90°. ∵∠ACD =∠B ,∴tan ∠ACD =tan B =34,设BE =4x ,则CE =3x .由勾股定理,可知BE 2+CE 2=BC 2, ∴(4x )2+(3x )2=100,∴解得x =2,∴CE =6.②CD 与⊙A 相切.理由如下: 过点A 作AF ⊥CD 于点F .∵∠CEB =90°,∴∠B +∠ECB =90°. ∵∠ACE +∠ECB =90°,∴∠B =∠ACE .∵∠ACD =∠B ,∴∠ACD =∠ACE ,∴CA 平分∠DCE .∵AF ⊥CD ,AE ⊥CE ,∴AF =AE ,∴直线CD 与⊙A 相切.六、(本大题共12分)23.(2019·荆州)如图AB 是⊙O 的直径,点C 为⊙O 上一点,点P 是半径OB 上一动点(不与O ,B 重合),过点P 作射线l ⊥AB ,分别交弦BC ,BC ︵于D ,E 两点,在射线l 上取点F ,使FC =FD .(1)求证:FC 是⊙O 的切线; (2)当点E 是BC ︵的中点时,①若∠BAC =60°,判断O ,B ,E ,C 为顶点的四边形是什么特殊四边形,并说明理由; ②若tan ∠ABC =34,且AB =20,求DE 的长.(1)证明:连接OC ,∵OB =OC ,∴∠OBC =∠OCB ,∵PF ⊥AB ,∴∠BPD =90°,∴∠OBC +∠BDP =90°,∵FC =FD, ∴∠FCD =∠FDC ,∵∠FDC =∠BDP ,∴∠FCD =∠BDP ,∴∠OCB +∠FCD =90°,∴OC ⊥FC ,FC 是⊙O 的切线.(2)解:连接OC ,OE ,BE ,CE ,OE 与BC 交于H. ①以O ,B ,E ,C 为顶点的四边形是菱形.理由:∵AB 是直径,∴∠ACB =90°,∵∠BAC =60°,∴∠BOC =120°,∵点E 是BC ︵的中点,∴∠BOE =∠COE =60°,∵OB =OE =OC ,∴△BOE ,△COE 均为等边三角形,∴OB =BE =CE =OC ,∴四边形BOCE 是菱形.②∵AC BC =tan ∠ABC =34,设AC =3k ,BC =4k ,k>0.由AC 2+BC 2=AB 2,即(3k)2+(4k)2=202,解得k =4,∴AC =12,BC =16,∵点E 是BC ︵的中心,∴OE ⊥BC ,BH =CH =8,∵S △BOE =12OE·BH =12OB·PE ,即12×10×8=12×10×PE ,∴PE =8,又OP =OE 2-PE 2=6,∴BP =OB -OP =4,∵DP BP =tan ∠ABC =34,∴DP =34BP =3,∴DE =PE -DP =8-3=5.期中检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.对于函数y =-2(x -m)2的图象,下列说法不正确的是( D ) A .开口向下 B .对称轴是x =m C .最大值为0 D .与y 轴不相交 2.在Rt △ABC 中,∠C =90°,AB =6,tan B =33,则Rt △ABC 的面积为( B ) A .9 3B .923C .9D .183.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为( D )A .40海里B .60海里C .203海里D .403海里4.若抛物线y =x 2+ax +b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点 ( B )A .(-3,-6)B .(-3,0)C .(-3,-5)D .(-3,-1)5.如图,在Rt △ABC 中,∠ACB =90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tan A 的值为( A )A .33B . 3C .12D .136.已知抛物线y =ax 2+bx +c 的图象如图所示,则|a -b +c|+|2a +b|等于( D ) A .a +b B .a -2b C .a -b D .3a 二、填空题(本大题共6小题,每小题3分,共18分)7.某种型号的迫击炮发射炮弹时的飞行高度h(m )与飞行时间t(s )的关系满足h =-13t 2+10t ,则经过 30 s ,发射的炮弹落地爆炸.8.在△ABC 中,∠A ,∠B 都是锐角,若⎪⎪⎪⎪sin A -12+⎝⎛⎭⎫cos B -122=0,则∠C = 90° . 9.若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为 0,2或-2 .10.(2019·盐城)在△ABC 中,BC =6+2,∠C =45°,AB =2AC ,则AC 的长为__2__. 11.(2019·宿迁)若∠MAN =60°,△ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当△ABC 是锐角三角形时,BC12.已知抛物线y =23x 2+43x -2与x 轴交于A ,B 两点,与y 轴交于点C .点P 在对称轴上,当△PBC的周长最小时,点P 的坐标是⎝⎛⎭⎫-1,-43. 三、(本大题共5小题,每小题6分,共30分)13.计算:cos 60°-sin 45°+14tan 230°+cos 30°-sin 30°.解:原式=12-22+14×⎝⎛⎭⎫332+32-12=32-22+112. 14.由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中,∠A =30°,tan B =,AC =43,求AB 的长”.这时小明去翻看了标准答案,显示AB =10.你能否帮助小明通过计算说明污渍部分的内容是什么?解:过点C 作CH ⊥AB 于点H ,在Rt △ACH 中,CH =AC ·sin A =43×sin 30°=23,AH =AC ·cos A =43×cos 30°=6, ∴BH =AB -AH =4, ∴tan B =CH BH =32,∴污渍部分的内容是32. 15.(2019·凉山州)已知二次函数y =x 2+x +a 的图象与x 轴交于A (x 1,0),B (x 2,0)两点,且1x 21+1x 22=1,求a 的值.解:函数y =x 2+x +a 的图象与x 轴交于A(x 1,0),B(x 2,0)两点,∴x 1+x 2=-1,x 1·x 2 =a ,∵1x 21+1x 22=x 21+x 22x 21x 22=(x 1+x 2)2-2x 1x 2(x 1x 2)2=1-2a a 2=1,∴a =-1+ 2 或a =-1- 2. 16.在同一平面直角坐标系中,一次函数y =x -4与二次函数y =-x 2+2x +c 图象交于点A (-1,m ).(1)求m ,c 的值;(2)求二次函数图象的对称轴和顶点坐标. 解:(1)∵A 点在一次函数的图象上,∴m =-1-4=-5.∴点A 的坐标为(-1,-5),∵A 点在二次函数图象上,∴-5=-1-2+c ,解得c =-2. (2)由①可知二次函数表达式为y =-x 2+2x -2=-(x -1)2-1,∴二次函数的图象的对称轴为直线x =1,顶点坐标为(1,-1).17.如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者,在消防车上点A 处测得点B 和点C 的仰角分别为45°和65°,点A 距地面2.5米,点B 距地面10.5米,为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数,参考数据:tan 65°≈2.1,sin 65°≈0.9,cos 65°≈0.4,2≈1.4)解:作AH ⊥CN 于点H .在Rt △ABH 中,∵∠BAH =45°,BH =10.5-2.5=8(m), ∴AH =BH =8(m), 在Rt △AHC 中,tan 65°=CH AH, ∴CH =8×2.1≈17(m),∴BC =CH -BH =17-8=9(m).四、(本大题共3小题,每小题8分,共24分)18.如图,直线y =x +2与x 轴交于点A ,与y 轴交于点B ,AB ⊥BC ,且点C 在x 轴上,若抛物线y =ax 2+bx +c 以C 为顶点,且经过点B ,求这条抛物线对应的函数表达式.解:∵直线y =x +2与x 轴交于点A ,与y 轴交于点B , ∴A (-2,0),B (0,2),∴△ABO 为等腰直角三角形.又∵AB ⊥BC ,∴△BCO 也为等腰直角三角形, ∴OC =OB =OA .∴C (2,0),设抛物线对应的函数表达式为y =a (x -2)2, 将点B (0,2)的坐标代入得2=a (0-2)2,解得a =12,∴此抛物线对应的函数表达式为y =12(x -2)2,即y =12x 2-2x +2.19.如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC.(1)求sin B 的值;(2)现需要加装支架DE ,EF ,其中点E 在AB 上,BE =2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.解:(1)∵BD =DC =9,AD =6, ∴AB =92+62=313.∴sin B =AD AB =6313=21313.(2)∵EF ∥AD ,BE =2AE ,∴△BEF ∽△BAD. ∴EF AD =BF BD =BE BA =23,∴EF 6=BF 9=23, ∴EF =4,BF =6,∴DF =3,∴在Rt △DEF 中,DE =42+32=5米.20.为美化校园,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(只围AB ,BC 两边),设AB =x m .(1)若花园的面积为192 m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.解:(1)∵AB =x m ,则BC =(28-x)m ,∴x(28-x)=192,解得x 1=12,x 2=16,∴当花园的面积为192 m 2时,x 的值为12 m 或16 m .(2)由题意可得S=x(28-x)=-x2+28x=-(x-14)2+196,∵在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,28-15=13,∴6≤x≤13,∴当x=13时,S最大=-(13-14)2+196=195,∴花园面积S的最大值为195 m2.五、(本大题共2小题,每小题9分,共18分)21.如图,小河上有一拱桥,拱桥及河道的截面轮廓由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的表达式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=-1128(t-19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?解:(1)抛物线的表达式为y=-364x2+11(-8≤x≤8).(2)令-1128(t-19)2+8=11-5.解得t1=35,t2=3.∴当3≤t≤35时,水面到顶点C的距离不大于5米,需禁止船只通行,禁止船只通行时间为35-3=32小时.答:禁止船只通行时间为32小时.22.(2019·岳阳)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D,B,F在同一水平线上,参考数据:sin 62.3°≈0.89,cos 62.3°≈0.46,tan 62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.解:(1)四边形CDBG,HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt AHE中,tan∠AEH=AHHE,则AH=HE·tan∠AEH≈1.9a,∴AG=AH-GH=1.9a-0.2,在Rt ACG中,∠ACG=45°,∴CG=AG=1.9a-0.2,∴BD=1.9a-0.2,答:小亮与塔底中心。
北师大版九年级数学下册 1.6 三角函数的应用-测高问题(含答案)
北师大版九年级数学下册 1.6 三角函数的应用-测高问题一、单选题1.如图,小明在300米高的楼顶上点A处测得一塔的塔顶D与塔基C的俯角分别为30°和60°,则塔高CD为()A.100米B.1003米C.180米D.200米2.休闲广场的边缘是一个坡度为i=1:2.5的缓坡CD,靠近广场边缘有一架秋千.秋千静止时,底端A到地面的距离AB=0.5m,B到缓坡底端C的距离BC=0.7m.若秋千的长OA=2m,则当秋千摆动到与静止位置成37°时,底端A′到坡面的竖直方向的距离A′E约为()(参考数据:sin37°=0.60,cos37°=0.80,tan37°=0.75)A.0.4m B.0.5m C.0.6m D.0.7m3.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米4.(2017重庆A卷第11题)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米二、填空题5.学校两幢教学楼的高度AB=CD=20m, 两楼间的距离AC=15m,已知太阳光与水平线的夹角30°,则甲楼投在乙楼上的影子的高度为_____m高.(保留根号)6.如图所示,在两建筑物之间有一高为15米的旗杆,从高建筑物的顶端A点经过旗杆顶点恰好看到矮建筑物的底端墙角C点,且俯角a为60°,又从A点测得矮建筑物左上角顶端D点的俯角β为30°,若旗杆底部点G为BC的中点(点B为点A向地面所作垂线的垂足)则矮建筑物的高CD为_____.三、解答题7.如图1,2分别是某款篮球架的实物图与示意图,AB⊥BC于点B,底座BC=1.3米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC.EF⊥EH于点E,已知AH=22米,HF=2米,HE=1米.(1)求篮板底部支架HE与支架AF所成的∠FHE的度数.(2)求篮板底部点E到地面的距离,(精确到0.01米)(参考数据:2≈1.41,3≈1.73)8.如图,王明站在地面B处用测角仪器测得楼顶点E的仰角为45°,楼顶上旗杆顶点F的仰角为55°,已知测角仪器高AB=1.5米,楼高CE=14.5米,求旗杆EF的高度(精确到1米).(供参考数据:sin55°≈0.8,cos55°≈0.57,tan55°≈1.4.)9.图1是一台实物投影仪,图2是它的示意图,折线表示固定支架,垂直水平桌面于点,点为旋转点,可转动,当绕点顺时针旋转时,投影探头始终垂直于水平桌面,经测量: c ,c , c , c .(结果精确到0.1)(1)如图2,,.①填空:_________°;②求投影探头的端点到桌面的距离.(2)如图3,将(1)中的向下旋转,当投影探头的端点到桌面的距离为c 时,求的大小.(参考数据:sin,cos,sin,cos)10.如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为32.3°,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,女生楼在男生楼墙面上的影高为DA.已知CD=42m.求楼间距AB的长度为多少米?(参考数据:sin32.3°=0.53,cos32.3°=0.85,tan32.3°=0.63,sin55.7°=0.83,cos55.7°=0.56,tan55.7°=1.47)11.如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C 处还有一名求救者.在消防车上点A处测得点B和点C的仰角分别是45°和65°,点A距地面2.5米,点B距地面10.5米.为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,2≈1.4)12.如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM的坡比i=1:3,在点C处测得旗杆顶点A的仰角为30°,在点M处测得旗杆顶点A的仰角为60°,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,参考数据:2≈1.41,3=1.73)13.如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m .(1)求∠CAE 的度数;(2)求这棵大树折断前的高度? (结果精确到个位,参考数据:2 1.4≈,3 1.7≈,6 2.4≈).14.随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为 开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测 量人员在瀑布的对面山上 D 点处测得瀑布顶端 A 点的仰角是 30°,测得瀑布底端 B 点的俯角是 10°,AB 与水平面垂直.又在瀑布下的水平面测得 CG=27m , GF=17.6m (注:C 、G 、 F 三点在同一直线上,CF ⊥AB 于点 F ).斜坡 CD=20m , 坡角∠ECD=40°.求瀑布 AB 的高度.(参考数据:3≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)15.如图1,滑动调节式遮阳伞的立柱AC 垂直于地面AB ,P 为立柱上的滑动调节点,伞体的截面示意图为PDE ∆,F 为PD 中点, 2.8AC m =,2PD m =,1CF m =,20DPE ∠=.当点P 位于初始位置0P 时,点D 与C 重合(图2).根据生活经验,当太阳光线与PE 垂直时,遮阳效果最佳.(1)上午10:00时,太阳光线与地面的夹角为65(图3),为使遮阳效果最佳,点P 需从0P 上调多少距离?(结果精确到0.1m )(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P 在(1)的基础上还需上调多少距离?(结果精确到0.1m )(参考数据:sin 700.94≈,cos 700.34≈,tan 70 2.75≈,2 1.41≈,3 1.73≈)16.如图是某路灯在铅垂面内的示意图,灯柱AC 的高为11米,灯杆AB 与灯柱AC 的夹角∠A =120°,路灯采用锥形灯罩,在地面上的照射区域DE 长为18米,从D ,E 两处测得路灯B 的仰角分别为α和β,且tanα=6,tanβ=34,求灯杆AB 的长度.17.如图,校园内有两幢高度相同的教学楼AB ,CD ,大楼的底部B ,D 在同一平面上,两幢楼之间的距离BD 长为24米,小明在点E (B ,E ,D 在一条直线上)处测得教学楼AB 顶部的仰角为45°,然后沿EB 方向前进8米到达点G 处,测得教学楼CD 顶部的仰角为30°.已知小明的两个观测点F ,H 距离地面的高度均为1.6米,求教学楼AB 的高度AB 长.(精确到0.1米)参考值:2≈1.41,3≈1.73.18.如图,在某街道路边有相距10m 、高度相同的两盏路灯(灯杆垂直地面),小明为了测量路灯的高度,在地面A 处测得路灯PQ 的顶端仰角为14°,向前行走25m 到达B 处,在地面测得路灯MN 的顶端仰角为24.3°,已知点A ,B ,Q ,N 在同一条直线上,请你利用所学知识帮助小明求出路灯的高度.(结果精确到0.1m .参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,sin24.3°≈0.41,cos24.3°≈0.91,tan24.3°≈0.45)19.如图,在大楼AB 的正前方有一斜坡CD ,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C 处测得楼顶B 的仰角为60°,在斜坡上的点D 处测得楼顶B 的仰角为45°,其中点A 、C 、E 在同一直线上.(1)求斜坡CD 的高度DE ;(2)求大楼AB 的高度(结果保留根号)20.如图,学校教学楼上悬挂一块长为3m 的标语牌,即3CD m =.数学活动课上,小明和小红要测量标语牌的底部点D 到地面的距离.测角仪支架高 1.2AE BF m ==,小明在E 处测得标语牌底部点D 的仰角为31︒,小红在F 处测得标语牌顶部点C 的仰角为45︒,5=AB m ,依据他们测量的数据能否求出标语牌底部点D 到地面的距离DH 的长?若能,请计算;若不能,请说明理由(图中点A ,B ,C ,D ,E ,F ,H 在同一平面内)(参考数据:tan 310.60︒≈,sin 310.52︒≈,cos310.86)︒≈21.如图,为了测量建筑物AB 的高度,在D 处树立标杆CD ,标杆的高是2m .在DB 上选取观测点E 、F ,从E 测得标杆和建筑物的顶部C 、A 的仰角分别为58、45,从F 测得C 、A 的仰角分别为22、70.求建筑物AB 的高度(精确到0.1m ) .(参考数据:tan 220.40≈,tan 58 1.60≈,tan 70 2.75≈.)22.小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P 处测得古塔顶端M 的仰角为60︒,沿山坡向上走25m 到达D 处,测得古塔顶端M 的仰角为30︒.已知山坡坡度3:4i =,即3tan 4θ=,请你帮助小明计算古塔的高度ME .(结果精确到0.1m ,参考数据:3 1.732≈)23.如图所示,某数学活动小组选定测量小河对岸大树BC 的高度,他们在斜坡上D 处测得大树顶端B 的仰角是30º,朝大树方向下坡走6米到达坡底A 处,在A 处测得大树顶端B 的仰角是48°. 若坡角∠FAE=30°,求大树的高度. (结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)24.为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度AB,他站在距离教学楼底部E处6米远的地面C处,测得宣传牌的底部B的仰角为60,同i=的斜坡从C走到时测得教学楼窗户D处的仰角为30(A、B、D、E在同一直线上).然后,小明沿坡度1:1.5F处,此时DF正好与地面CE平行.(1)求点F到直线CE的距离(结果保留根号);(2)若小明在F处又测得宣传牌顶部A的仰角为45,求宣传牌的高度AB(结果精确到0.1米,2 1.41≈,≈).3 1.7325.某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A 处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度及彩旗的长度;(精确到0.01m)(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m)(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)i 的山坡CF,点C与点B在同一水平面上,CF 26.如图,在岷江的右岸边有一高楼AB,左岸边有一坡度1:2与AB在同一平面内.某数学兴趣小组为了测量楼AB的高度,在坡底C处测得楼顶A的仰角为45,然后沿坡面CF上行了205米到达点D处,此时在D处测得楼顶A的仰角为30,求楼AB的高度.27.(2017四川省达州市)如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ落在斜坡上的影子QN长为25米,落在警示牌上的影子MN长为3米,求信号塔PQ的高.(结果不取近似值)28.如图,小明在教学楼的窗户A处,测量楼前的一棵树CD的高.现测得树顶C处的俯角为45°,树底D处的俯角为60°,楼底到大树的距离BD为10米.请你帮助小明计算树的高度(精确到0.1米).29.(2017湖北省鄂州市)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.30.如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:3=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)参考答案1.D【解析】【分析】构造AD为斜边的直角三角形,利用直角三角形的性质以及相应的三角函数求出CE、DE的长,进而求解即可【详解】解:延长CD交过A的水平线于点E.∵在300m高的峭壁上测得一塔的塔基的俯角为60°.∴BC=3003.易得AE=3003,CE=AB=300.∵在300m高的峭壁上测得一塔的塔顶的俯角分别为30°,且BC=3003.∴DE=100 ∴CD=200.故选:D.本题考查了解直角三角形的应用以及仰角俯角问题,熟练掌握相关概念是解题关键 2.D 【解析】 【分析】延长OA 与BC 交于点B ,延长A 'E ,与BC 的延长线交于点F ,过点A '作A 'H ⊥OB 于点H . 根据三角函数得到AH ,HB ,进而得到CF ,由1=2.5EF CF ,进行计算即可得到答案. 【详解】解:如图,延长OA 与BC 交于点B ,延长A 'E ,与BC 的延长线交于点F ,过点A '作A 'H ⊥OB 于点H .在Rt △OHA '中,=cos370.8OHOA ︒=、,=sin370.6A HOA ︒=、、, ∴OH =0.8OA '=0.8×2=1.6(m ),A 'H =0.6OA '=0.6×2=1.2(m ),∴AH =OA ﹣OH =2﹣1.6=0.4(m ),HB =HA +AB =0.4+0.5=0.9(m ),A 'F =HB =0.9(m ),BF =HA '=1.2m , ∴CF =BF ﹣BC =1.2﹣0.7=0.5(m ), 在Rt △EFC 中, 1=2.5EF CF , EF =25CF =25×0.5=0.2(m ),∴A 'E =A 'F ﹣EF =0.9﹣0.2=0.7(m )【点睛】本题考查三角函数,解题的关键是掌握三角函数的计算及实际应用. 3.A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AM EM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4.A【解析】如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i=140.753 CQBQ==,∴设CQ=4x、BQ=3x,由BQ² +CQ²=BC²可得(4x)²+(3x)²=102,解得:x=2或x=−2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP=11tan tan40DPA=∠︒≈13.1,∴AB=AP−BQ−PQ=13.1−6−2=5.1,故选:A.点睛:此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.5.2053-【解析】【分析】延长MB与CD交于E点,过E作EF垂直于AB与点F,由题意得∠E=∠MBN=30°,在Rt△BEF中,可求出BF,则EC=AF=AB-BF.【详解】如图所示,延长MB与CD交于E点,过E作EF垂直于AB与点F,由题意得∠E=∠MBN=30°,EF=AC=15m,在Rt△BEF中3BF=EF tan E=15=533∠⨯,∴EC=AF=AB-BF=20-53.【点睛】本题考查解直角三角形的应用,正确添加辅助线构造直角三角形是解题的关键.6.20米【解析】【分析】根据点G是BC中点,可判断EG是△ABC的中位线,求出AB,在Rt△ABC和在Rt△AFD中,利用特殊角的三角函数值分别求出BC、DF,继而可求出CD的长度.【详解】解:过点D作DF⊥AF于点F,∵点G是BC中点,EG∥AB,∴EG是△ABC的中位线,∴AB=2EG=30米,在Rt△ABC中,∵∠CAB=30°,∴BC=ABtan∠BAC=30×=10米.在Rt△AFD中,∵AF=BC=10米,∴FD=AF•tanβ=10×=10米,∴CD=AB﹣FD=30﹣10=20米.故答案为:20米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度. 7.(1)45°;(2)2.75米【解析】【分析】(1)由cos∠FHE=HEHF=22可得答案;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,据此知GM=AB,HN=EG,Rt△ABC中,求得AB=BC tan60°=1.33;Rt△ANH中,求得HN=AH sin45°=12;根据EM=EG+GM可得答案.【详解】解:(1)在Rt△EFH中,cos∠FHE=HEHF=12=22,∴∠FHE=45°.答:篮板底部支架HE与支架AF所成的角∠FHE的度数为45°;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,则四边形ABMG和四边形HNGE是矩形,∴GM=AB,HN=EG,在Rt△ABC中,∵tan∠ACB=AB AC,∴AB=BC tan60°=1.3×3=1.33(米),∴GM=AB=1.33(米),在Rt△ANH中,∠F AN=∠FHE=45°,∴HN=AH sin45°=22×22=12(米),∴EM=EG+GM=12+1.33≈2.75(米).答:篮板底部点E到地面的距离大约是2.75米.故答案为:(1)45°;(2)2.75米.【点睛】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.8.5米.【解析】【详解】易知四边形ABCD为矩形,CD=AB=1.5米,∴DE=CE-AB=13.在Rt△ADE中,∵∠EAD=45°,AD=DE=13米,在Rt△ADF中,∠FAD=55°,DF=AD·tan55°=13×1.4=18.2,∴EF=DF-DE=18.2-13=5.2≈5(米).答:旗杆EF的高约为5米.【点睛】本题考查三角函数,解答本题要求考生掌握三角函数的定义,利用三角函数的定义来做题,要会做有关三角函数的题.9.(1)①160°,② c ;(2) 当投影探头的端点到桌面的距离为c 时,为33.2°.【解析】【分析】(1)①过点作,根据平行线的性质解答便可;②过点作于点,解直角三角形求出,进而计算使得结果;(2)过点于点,过点作,与延长线相交于点,过作于点,求出,再解直角三角形求得便可.【详解】解:(1)①过点作,如图1,则,,,,,故答案为:160;②过点作于点,如图2,则sin sin,投影探头的端点到桌面的距离为:;(2)过点于点,过点作,与延长线相交于点,过作于点,如图3,则,,,,,,sin,,.【点睛】此题主要考查了解直角三角形的应用,充分体现了数学与实际生活的密切联系,解题的关键是构造直角三角形.10.50m.【解析】【分析】如图,作CM⊥PB于M,DN⊥PB于N.则AB=CM=DN,设EM=xm,AB=DN=CM=ym.根据题中所给角度的正切构建方程即可解决问题.【详解】解:如图,作CM⊥BE于M,DN⊥BE于N.则四边形CDNM是矩形,设EM=xm,AB=DN=CM=ym.在Rt △CEM 中,∵tan ∠ECM =EM CM=0.63, ∴x y=0.63 ①, 在Rt △DEN 中,∵tan ∠EDN =EN DN =1.47, ∴42x y +=1.47 ②, 由①②可得y =50,答:楼间距AB 的长度为50m .【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程组解决问题,属于中考常考题型.11.云梯需要继续上升的高度BC 约为9米.【解析】【分析】过点A 作AM EF ⊥于点M ,AD BC ⊥于点D ,在Rt ABD ∆中,求得AD 的长;在Rt ACD ∆中,求得CD 的长,根据BC=CD-BD 即可求得BC 的长.【详解】过点A 作AM EF ⊥于点M ,AD BC ⊥于点D ,∵CN EF ⊥ ,∴90AMN MND ADN ∠=∠=∠=︒,∴四边形AMND 为矩形.∴ 2.5DN AM ==米.∴10.5 2.58BD BN DN =-=-=(米),由题意可知,45BAD ∠=︒,65CAD ∠=︒,∵AD BC ⊥,∴90ADB ∠=︒,在Rt ABD ∆中,tan BD BAD AD∠=, ∴88tan tan45BD AD BAD ===∠︒(米). 在Rt ACD ∆中,tan CD CAD AD∠=, ∴tan 8tan658 2.116.8CD AD CAD =⋅∠=︒≈⨯=(米).∴16.888.89BC CD BD =-≈-=≈(米).答:云梯需要继续上升的高度BC 约为9米.【点睛】本题考查解直角三角形﹣仰角俯角问题,添加辅助线,构造直角三角形,建立直角三角形模型是解决问题的关键.12.旗杆AB的高度约等于8.2m【解析】【分析】过点C作CE⊥AB于点E,设BM=x,根据矩形的性质以及锐角三角函数的定义即可求出答案.【详解】过点C作CE AB⊥于点E,2 CD=,1 tan3CMD∠=,6MD∴=,设BM x=,6BD x∴=+,60AMB∠=︒,30BAM∴∠=︒,3AB x∴=,已知四边形CDBE是矩形,2BE CD∴==,6CE BD x==+,32AE x∴=-,在Rt ACE∆中,tan30AECE︒=,∴13263x x -=+, 解得:33x =+,33338.2AB x m ∴==+≈【点睛】此题考查解直角三角形的应用,矩形的性质,锐角三角函数的定义,解题关键在于作辅助线和列出方程组. 13.(1)75°;(2)这棵大树折断前高约10米.【解析】【分析】(1)延长BA 交EF 于点G ,根据直角三角形的性质求出∠GAE 的度数,再由补角的定义即可得出结论;(2)过点A 作AH ⊥CD ,垂足为H ,在△ADH 中,利用锐角三角函数的定义求出DH 的长,同理可得出AC 的长,由AB =AC +CD 即可得出结论.【详解】(1)延长BA 交EF 于点G ,在Rt AGE 中,E 23∠=︒,∴GAE 67∠=︒.又∵BAC 38∠=︒,∴CAE 180673875∠=︒-︒-︒=︒;(2)过点A 作AH CD ⊥,垂足为H ,在ADH 中,ADC 60AD 4∠=︒=,,DH cos ADC AD∠=, ∴DH 2=. AH sin ADC AD∠=, ∴AH 23=,在Rt ACH 中,C 180756045∠=︒-︒-︒=︒, ∴AC 26=,CH AH 23==. ∴AB AC CD 2623210=+=++≈(米).答:这棵大树折断前高约10米.【点睛】本题考查的是解直角三角形的应用−坡度坡角问题,熟记锐角三角函数的定义是解答此题的关键.14.瀑布AB 的高度约为45.4 米.【解析】【分析】过点D 作DM⊥CE,交CE 于点M,作DN⊥AB,交AB 于点N,在Rt△ CMD 中,通过解直角三角形可求出CM 的长度,进而可得出MF、DN 的长度,再在Rt△BDN、Rt△ADN 中,利用解直角三角形求出BN、AN 的长度,结合AB=AN+BN 即可求出瀑布AB 的高度.【详解】如图,过点D 作DM⊥CE,交CE 于点M,作DN⊥AB,交AB 于点N,在Rt△CMD 中,CD=20m,∠DCM=40°,∠CMD=90°,∴CM=CD•cos40°≈15.4 ,DM=CD•sin40°≈12.8 ,∴DN=MF=CM+CG+GF=60m,在Rt△BDN 中,∠BDN=10°,∠BND=90°,DN=60m,∴BN=DN•tan10°≈10.8 ,在Rt△ADN 中,∠ADN=30°,∠AND=90°,DN=60m,∴AN=DN•tan30°≈34.6 ,∴AB=AN+BN=45.4m,答:瀑布 AB 的高度约为 45.4 米. 【点睛】本题考查了解直角三角形的应用——仰角俯角问题、坡度坡角问题,添加辅助线构造直角三角形,求出 AN 、BN 的长度是解题的关键.15.(1)点P 需从0P 上调0.6m ;(2)点P 在(1)的基础上还需上调0.7m . 【解析】【分析】(1)如图2,当点P 位于初始位置0P 时,02CP m =. 10:00时,太阳光线与地面的夹角为65,点P 上调至1P 处,165CPE ∠=.11145.1,45CPF CF PF m C CPF ∠===∠=∠=,1 CPF ∆为等腰直角三角形,12CP m =,即可求出点P 需从0P 上调的距离.(2)中午12:00时,太阳光线与PE ,地面都垂直,点P 上调至2P 处,过点F 作2FG CP ⊥于点G ,22cos7010.340.34GP P F m =⋅=⨯=,2220.68CP GP m ==,根据1212PP CP CP =-即可求解.【解答】(1)如图2,当点P 位于初始位置0P 时,02CP m =. 如图3,10:00时,太阳光线与地面的夹角为65,点P 上调至1P 处,190∠=,90CAB ∠=,∴1115APE ∠=, ∴165CPE ∠=. ∵120DPE ∠=,∴145CPF ∠=. ∵11CF PF m ==,∴145C CPF ∠=∠=, ∴1CPF ∆为等腰直角三角形,∴12CP m =,∴0101220.6P P CP CP m =-=-≈,即点P 需从0P 上调0.6m .(2)如图4,中午12:00时,太阳光线与PE ,地面都垂直,点P 上调至2P 处, ∴2//P E AB .∵90CAB ∠=,∴290CP E ∠=.∵220DP E ∠=,∴22270CP F CP E DP E ∠=∠-∠=.∵21CF P F m ==,得2CP F ∆为等腰三角形,∴270C CP F ∠=∠=. 过点F 作2FG CP ⊥于点G ,∴22cos7010.340.34GP P F m =⋅=⨯=, ∴2220.68CP GP m ==,∴121220.680.7PP CP CP m =-=-≈,即点P 在(1)的基础上还需上调0.7m .【点评】考查等腰三角形的性质,解直角三角形,熟练运用三角函数是解题的关键.可以数形结合.16.灯杆AB的长度为2米.【解析】分析:过点B作BF⊥CE,交CE于点F,过点A作AG⊥AF,交BF于点G,则FG=AC=11.设BF=3x知EF=4x、DF=BFtan BDF∠,由DE=18求得x=4,据此知BG=BF-GF=1,再求得∠BAG=∠BAC-∠CAG=30°可得AB=2BG=2.详解:过点B作BF⊥CE,交CE于点F,过点A作AG⊥AF,交BF于点G,则FG=AC=11.由题意得∠BDE=α,tan∠β=34.设BF=3x,则EF=4x在Rt△BDF中,∵tan∠BDF=BF DF,∴DF=31=62BF xx tan BDF=∠,∵DE=18,∴12x+4x=18. ∴x=4. ∴BF=12,∴BG=BF-GF=12-11=1, ∵∠BAC=120°,∴∠BAG=∠BAC-∠CAG=120°-90°=30°. ∴AB=2BG=2,答:灯杆AB 的长度为2米.点睛:本题主要考查解直角三角形-仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力.17.教学楼AB 的高度AB 长13.3m . 【解析】 【分析】如图,延长HF 交CD 于点N ,延长FH 交AB 于点M ,由题意可得,MB=HG=FE=ND=1.6m ,HF=GE=8m ,MF=BE ,HN=GD ,MN=BD=24m ,设AM=xm ,则CN=xm ,在Rt △AFM 中,可得MF=x ,在Rt △CNH 中,可得HN=3x ,根据HF=MF+HN ﹣MN 可得关于x 的方程,解方程求得x 的值,继而可求得AB 的值. 【详解】延长HF 交CD 于点N ,延长FH 交AB 于点M ,如图所示,由题意可得,MB=HG=FE=ND=1.6m ,HF=GE=8m ,MF=BE ,HN=GD ,MN=BD=24m , 设AM=xm ,则CN=xm , 在Rt △AFM 中,MF=tan 451AM x=︒=x ,在Rt △CNH 中,HN=3tan 3033CN xx==︒, ∴HF=MF+HN ﹣MN=x+3x ﹣24,即8=x+3x ﹣24, 解得,x≈11.7, ∴AB=11.7+1.6=13.3m ,答:教学楼AB 的高度AB 长13.3m .【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键. 18.路灯的高度约为8.4m . 【解析】 【分析】设PQ =MN =xm ,根据正切的定义分别用x 表示出AQ 、BN ,根据题意列式计算即可. 【详解】解:设PQ =MN =xm ,在Rt △APQ 中,tanA =PQAQ, 则AQ =tan x A ≈0.25x=4x ,在Rt△MBN中,tan∠MBN=MN BN,则BN=tan MNMBN≈0.45x=209x,∵AQ+QN=AB+BN,∴4x+10=25+209x,解得,x≈8.4,答:路灯的高度约为8.4m.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.19.(1)2米;(2)(6+4)米.【解析】【分析】(1)在在Rt△DCE中,利用30°所对直角边等于斜边的一半,可求出DE=2米;(2)过点D作DF⊥AB于点F,则AF=2,根据三角函数可用BF表示BC、BD,然后可判断△BCD是Rt△,进而利用勾股定理可求得BF的长,AB的高度也可求.【详解】(1)在Rt△DCE中,∠DEC=90°,∠DCE=30°,∴DE=DC=2米;(2)过D作DF⊥AB,交AB于点F,则AF=DE=2米.∵∠BFD=90°,∠BDF=45°,∴∠BFD=45°,∴BF=DF.设BF=DF=x米,则AB=(x+2)米,在Rt△ABC中,∠BAC=90°,∠BCA=60°,∴sin∠BCA=,∴BC=AB÷sin∠BCA=(x+2)÷=米,在Rt△BDF中,∠BFD=90°,米,∵∠DCE=30°,∠ACB=60°,∴∠DCB=90°.∴,解得:或(舍) ,则AB=米.考点:1特殊直角三角形;2三角函数;3勾股定理. 20.能,点D 到地面的距离DH 的长约为13.2m . 【解析】 【分析】延长EF 交CH 于N ,根据等腰直角三角形的性质得到CN NF =,根据正切的定义求出DN ,结合图形计算即可. 【详解】 能,理由如下:延长EF 交CH 于N , 则90CNF ∠=︒,45CFN ∠=︒, CN NF ∴=,设DN xm =,则(3)NF CN x m ==+, 5(3)8EN x x ∴=++=+,在Rt DEN ∆中,tan DNDEN EN∠=,则tan DN EN DEN =∠, 0.6(8)x x ∴≈+,解得,12x =,则12 1.213.2()DH DN NH m =+=+=,答:点D 到地面的距离DH 的长约为13.2m .【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键. 21.建筑物AB 的高度约为5.9m . 【解析】分析:在Rt CED 中,用三角函数表示DE 的长度, 在Rt CFD 中,用三角函数表示出DF 的长度,从而得到22tan22tan58EF =-,同理得tan45tan70AB ABEF =-,建立等量关系,求出即可. 详解:在Rt CED 中,58CED ∠=,∵tan58CDDE=. ∴2tan58tan58CD DE ==.在Rt CFD 中,22CFD ∠=,∵tan22CDDF=∴2tan22tan22CD DF ==.∴22tan22tan58EF DF DE =-=-.同理tan45tan70AB ABEF BE BF =-=-. ∴22tan45tan70tan22tan58AB AB -=-. 解得()5.9m AB ≈.因此,建筑物AB 的高度约为5.9m .点睛:此题主要考查了仰角与俯角问题,根构造两个直角三角形求解.考查了学生读图构造关系的能力. 22.古塔的高度ME 约为39.8m . 【解析】 【分析】作DC EP ⊥交EP 的延长线于点C ,作DF ME ⊥于点F ,作PH DF ⊥于点H ,先在Rt △DCP 中利用已知条件利用勾股定理求出DC 和PC 的长,从而可得DH 和EF 的长,设MF y =,分别在Rt △MPE 和Rt △MFD 中根据60°和30°的三角函数用y 的代数式表示出PE 和DF ,再根据PE 、DF 和DH 的关系列出方程,解方程后即可求出结果. 【详解】解:作DC EP ⊥交EP 的延长线于点C ,作DF ME ⊥于点F ,作PH DF ⊥于点H ,则DC PH FE ==,DH CP =,HF PE =,设3DC x =,∵3tan 4θ=,∴4CP x =, 由勾股定理得,222PD DC CP =+,即22225(3)(4)x x =+,解得,5x =, 则315DC x ==,420CP x ==, ∴20DH CP ==,15FE DC ==, 设MF y =,则15ME y =+,在Rt MDF V 中,tan MF MDF DF∠=,则3tan 30MFDF y ==o, 在Rt MPE V 中,tan ME MPE PE ∠=,则3(15)tan 603ME PE y ==+o , ∵DH DF HF =-,∴33(15)203y y -+=,解得,7.5103y =+, ∴7.51031539.8ME MF FE =+=++≈. 答:古塔的高度ME 约为39.8m .【点睛】本题考查了解直角三角形的实际应用和仰角、坡度等概念,熟练掌握锐角三角函数的定义、灵活运用数形结合和方程的思想是解题的关键. 23.13米. 【解析】试题分析:根据矩形性质得出DG=CH ,CG=DH ,再利用锐角三角函数的性质求出问题即可. 试题解析:如图,过点D 作DG ⊥BC 于G ,DH ⊥CE 于H , 则四边形DHCG 为矩形. 故DG=CH ,CG=DH , 在直角三角形AHD 中,∵∠DAH=30°,AD=6,∴DH=3,AH=33, ∴CG=3, 设BC 为x ,在直角三角形ABC 中,AC=tan BAC BC ∠=x1.11,∴DG=33+x1.11,BG=x ﹣3, 在直角三角形BDG 中,∵BG=DG•tan30°,∴x ﹣3=(33+x 1.11)33⋅解得:x≈13,∴大树的高度为:13米.【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.24.(1)点F 到地面的距离为23米;(2)宣传牌的高度约为4.3米. 【解析】 【分析】(1)过点F 作FG EC ⊥于G ,依题意知FG DE ,DF GE P ,90FGE ∠=o ;得到四边形DEFG 是矩形;根据矩形的性质得到FG DE =;解直角三角形即可得到结论; (2)解直角三角形即可得到结论. 【详解】解:(1)过点F 作FG EC ⊥于G ,依题意知FG DE ,DF GE P ,90FGE ∠=o ; ∴四边形DEFG 是矩形; ∴FG DE =; 在Rt CDE ∆中,tan DE CE DCE =⋅∠; 6tan 3023=⨯=o (米);∴点F 到地面的距离为23米; (2)∵斜坡CF :1:1.5i =.∴Rt CFG ∆中, 1.523 1.533CG FG ==⨯=,∴336FD EG ==+. 在Rt BCE ∆中,tan 6tan 6063BE CE BCE =⋅∠=⨯=o .∴AB AD DE BE =+-.336236363 4.3=++-=-≈(米).答:宣传牌的高度约为4.3米. 【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,正确标注仰角和俯角、熟记锐角三角函数的定义是解题的关键. 25.(1)甲楼的高度为18.60m ,彩旗的长度为36.05m ;(2)乙楼的高度为31.25m ,甲乙两楼之间的距离为37.20m . 【解析】试题分析:(1)在直角三角形ABE 中,利用锐角三角函数定义求出AE 与BE 的长即可;(2)过点F 作FM ⊥GD ,交GD 于M ,在直角三角形GMF 中,利用锐角三角函数定义表示出GM 与GD ,设甲乙两楼之间的距离为xm ,根据题意列出方程,求出方程的解即可得到结果. 试题解析:解:(1)在Rt △ABE 中,BE =AB •tan31°=31tan31°≈18.60,AE =cos31AB =31cos31≈36.05,则甲楼的高度为18.60m ,彩旗的长度为36.05m ;(2)过点F 作FM ⊥GD ,交GD 于M ,在Rt △GMF 中,GM =FM •tan19°,在Rt △GDC 中,DG =CD •tan40°,设甲乙两楼之间的距离为xm ,FM =CD =x ,根据题意得:x tan40°﹣x tan19°=18.60,解得:x =37.20,则乙楼的高度为31.25m ,甲乙两楼之间的距离为37.20m .点睛:此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握直角三角形的性质是解本题的关键. 26.楼AB 的高度为()50303+米. 【解析】 【分析】 由12DE i EC ==,222DE EC CD +=,解得20DE m =,40EC m =,过点D 作DG AB ⊥于G ,过点C 作CH DG ⊥于H ,则四边形DEBG 、四边形DECH 、四边形BCHG 都是矩形,证得AB BC =,设AB BC x m ==,。
北师大版初中数学九年级下册学案及课堂同步练习试题 全册
九年级数学第一章《直角三角形的边角关系》学案1.1从梯子的倾斜程度谈起【学习目标】1、掌握正切的意义,坡度的概念,用正切表示生活中物体的倾斜程度。
2、培养学生分析问题、解决问题的能力以及创新能力。
3、积极参与数学活动,对数学产生好奇心和求知欲。
【学习重点】1、从现实情景中探索直角三角形的边、角关系。
2、理解正切的意义和与生活现象——倾斜度、坡度的内在本质的统一性,密切数学与生活的联系。
【学习难点】1、如何从生活的瞬间激发灵感,激发现实创造性学习新知。
2、如何把正切的意义从现实生活中抽取并灵活应用。
【学习过程】一、试一试:图1中的梯子AB和梯子EF哪个更陡,你是怎样判断的?你有几种判断方法?能与大家交流一下吗?图2中的梯子AB和梯子EF哪个更陡,你是怎样判断的?与大家交流一下.图1 图2二、想一想:在墙角处放有一架较长的梯子, 你有什么方法得到梯子的倾斜 程度?与同伴进行讨论. 三、归纳总结 :在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边的 比便随之确定,这个比叫做∠A 的正切。
四、合作交流1、在前面的学习过程中,你认为梯子的倾斜程度与tanA 有什么关系?2、如图是甲、乙两个自动扶梯,哪一个自动扶梯比较陡?五、.小结反思这节课我学会了: ; 我的困惑: 。
六、当堂测试:1、在Rt △ABC 中,∠C=90°,AB=3,BC=1,则tanA= _______.2、在△ABC 中,AB=10,AC=8,BC=6,则tanA=_______.3、在△ABC 中,AB=AC=3,BC=4,则tanC=______.4、在Rt △ABC 中,∠C 是直角,∠A、∠B、∠C 的对边分别是a 、b 、c,且a=24,c= 25,求tanA 、tanB 的值.的邻边的对边A A A ∠∠=tan5、若三角形三边的比是25:24:7,求最小角的正切值.6、如图,在菱形ABCD 中,AE⊥BC 于E,EC=1,tanB=125, 求菱形的边长和四边形AECD 的周长.7、已知:如图,斜坡AB 的倾斜角a,且tan α=34,现有一小球从坡底A 处以20cm/s 的速度向坡顶B 处移动,则小球以多大的速度向上升高?七、自我评价八、布置作业E DB ACBAC1.2、30°,45°,60°角的三角函数值(主备:张斌等,审核:刘丙勇)【学习目标】1、经历探索30°、45°、60°角的三角函数值过程,能够进行有关的推理,进一步体会三角函数的意义。