北师大版八年级数学下册《第四章因式分解》测试题(含答案)
(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试(答案解析)(2)

一、选择题1.下列等式中,从左到右的变形正确的是( )A .()22242x x x ++=+B .()()2444x x x -=+-C .()222244x y x xy y +=++D .()()2x 2x 3x 6+-=- 2.下列各式中能用完全平方公式分解因式的是( ) A .2444x x ++B .244x x -++C .4244x x -+D .291216x x ++ 3.在下列多项式中,不能用平方差公式因式分解的是( ) A .229x y - B .21m -+ C .2216a b -+ D .21x -- 4.下列因式分解正确的是A .4m 2-4m +1=4m (m -1)B .a 3b 2-a 2b +a 2=a 2(ab 2-b )C .x 2-7x -10=(x -2)(x -5)D .10x 2y -5xy 2=5xy (2x -y ) 5.对于任何实数m 、n ,多项式2261036m n m n +--+的值总是( ) A .非负数B .0C .大于2D .不小于2 6.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( ) A .-2B .2C .-50D .50 7.因式分解x ﹣4x 3的最后结果是( ) A .x (1﹣2x )2B .x (2x ﹣1)(2x+1)C .x (1﹣2x )(2x+1)D .x (1﹣4x 2)8.下列各式由左边到右边的变形中,属于因式分解的是( ) A .()222x y x y +=+B .()24444x x x x -+=-+C .()()2111x x x +-=-D .()210 5521x x x x -=- 9.下列多项式分解因式正确的是( )A .a 2﹣2a ﹣3=a (a ﹣2)﹣3B .3ax 2﹣6ax =3(ax 2﹣2ax )C .m 3﹣m =m (m ﹣1)(m +1)D .x 2+2xy ﹣y 2=(x ﹣y )210.下列因式分解错误的是( )A .a 2﹣a +1=a (a ﹣1)+1B .a 2﹣b 2=(a +b )(a ﹣b )C .﹣a 2+9b 2=﹣(a +3b )(a ﹣3b )D .a 2﹣4ab +4b 2=(a ﹣2b )211.下列各式由左到右的变形中,属于分解因式的是( )A .x 2﹣16+6x =(x +4)(x ﹣4)+6xB .10x 2﹣5x =5x (2x ﹣1)C .a 2﹣b 2﹣c 2=(a ﹣b )(a +b )﹣c 2D .a (m +n )=am +an12.下列因式分解结果正确的是( )A .x 2+3x +2=x (x +3)+2B .4x 2﹣9=(4x +3)(4x ﹣3)C .a 2﹣2a +1=(a +1)2D .x 2﹣5x +6=(x ﹣2)(x ﹣3)二、填空题13.因式分解:316m m -=________.14.因式分解:41x -=______.15.若6x y +=,3xy =-,则2222x y xy +=_____.16.若m+n=1,mn=-6,则22m n mn +代数式的值是____________________;17.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x 4﹣y 4,因式分解的结果是(x ﹣y )(x+y )(x 2+y 2),若取x=9,y=9时,则各个因式的值是:(x ﹣y )=0,(x+y )=18,(x 2+y 2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x 3﹣xy 2,取x=27,y=3时,用上述方法产生的密码是:_____(写出一个即可).18.分解因式:a 2﹣a ﹣6=________________.19.已知2,350ab b a =--=,则代数式223a b ab ab -+的值为_______________________.20.分解因式:mn 2﹣4mn+4m =_____.三、解答题21.(1)因式分解:328a a -.(2)如图,//AB CD ,40A ∠=︒,45D ∠=︒,求1∠和2∠的度数.22.因式分解:(1)382a a -(2)()()24129x y x y +-+-23.下面是小华同学分解因式229()4()a x y b y x -+-的过程,请认真阅读,并回答下列问题.解:原式229()4()a x y b x y =-+-① 22()(94)x y a b =-+②2()(32)x y a b =-+③任务一:以上解答过程从第 步开始出现错误.任务二:请你写出正确的解答过程.24.(1)分解因式:244am am a ++(2)计算:(-2)(2)(2)x x x y x y ++-25.分解因式:(1)3218a b ab -;(2)244ab ab a -+.26.(阅读材料)把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.配方法在代数式求值、解方程、最值问题中都有着广泛的应用.例如:①用配方法因式分解:a 2+6a +8.原式=a 2+6a +9-1=(a +3) 2-1=(a +3-1)( a +3+1)=(a +2)(a +4)②求x 2+6x +11的最小值.解:x 2+6x +11=x 2+6x +9+2=(x +3) 2+2;由于(x +3) 2≥0,所以(x +3) 2+2≥2,即x 2+6x +11的最小值为2.请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a 2+4a + ;(2)用配方法因式分解:a 2-12a +35;(3)用配方法因式分解:x 4+4;(4)求4x 2+4x +3的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分别对各选项进行变形,然后对照进行判断即可得到答案.【详解】解:A 、()22241+3x x x ++=+,原选项变形错误,故不符合题意;B 、()()2422x x x -=+-,原选项变形错误,故不符合题意;C 、()222244x y x xy y +=++,原选项变形正确,故符合题意;D 、2(2)(3)6x x x x +=---,原选项变形错误,故不符合题意;故选:C .【点睛】此题主要考查了整式的乘法和因式分解,熟练掌握运算法则是解答此题的关键.2.C解析:C【分析】利用完全平方公式逐项进行判定即可.【详解】解:A. 2444x x ++,无法因式分解,故不符合题意;B. 244x x -++,无法因式分解,故不符合题意;C. ()2422442x x x -+=-,符合题意;D. 291216x x ++,无法因式分解,故不符合题意.故答案为C.【点睛】本题主要考查了运用完全公式法分解因式,熟练掌握完全平方公式是解答本题关键. 3.D解析:D【分析】根据平方差公式有: 229x y -==(x +3y )(x−3y );21m -+=m 2-1=(m+1)(m−1);2216a b -+=b 2−16a 2=(b +4a )(b−4a );而−x 2−1=−(x 2+1),不能用平方差公式分解.【详解】A.229x y -==(x +3y )(x−3y );B.21m -+=m 2-1=(m+1)(m−1);C.2216a b -+=b 2−16a 2=(b +4a )(b−4a );而−x 2−1=−(x 2+1),不能用平方差公式分解.故选:D .【点睛】本题考查了平方差公式:a 2−b 2=(a +b )(a−b ),熟练掌握此公式是解答此题的关键. 4.D解析:D【分析】A 、利用完全平方公式分解;B 、利用提取公因式a 2进行因式分解;C 、利用十字相乘法进行因式分解;D 、利用提取公因式5xy 进行因式分解.【详解】A 、4m 2-4m+1=(2m-1)2,故本选项错误;B 、a 3b 2-a 2b+a 2=a 2(ab 2-b+1),故本选项错误;C 、(x-2)(x-5)=x 2-7x+10,故本选项错误;D 、10x 2y-5xy 2=xy (10x-5y )=5xy (2x-y ),故本选项正确;故选D .【点睛】本题考查了因式分解,要想灵活运用各种方法进行因式分解,需要熟练掌握各种方法的公式和法则;分解因式中常出现错误的有两种:①丢项:整项全部提取后要剩1,分解因式后项数不变;②有些结果没有分解到最后,如最后一个选项需要一次性将公因式提完整或进行多次因式分解,分解因式一定要彻底.5.D解析:D【分析】利用完全平方公式把原式变形,根据偶次方的非负性解答即可.【详解】解:2261036m n m n +--+226910252m m n n =-++-++22(3)(5)2m n =-+-+,2(3)0m -,2(5)0n -,22(3)(5)22m n ∴-+-+,∴多项式2261036m n m n +--+的值总是不小于2,故选:D .【点睛】本题考查了完全平方公式的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.6.A解析:A【解析】试题分析:先提取公因式ab ,整理后再把a+b 的值代入计算即可.当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2.考点:因式分解的应用.7.C解析:C【分析】原式提取公因式,再利用平方差公式分解即可.【详解】原式=x (1﹣4x 2)=x (1+2x )(1﹣2x ).故选C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.8.D解析:D【分析】直接利用因式分解的定义逐一分析即可得出答案.【详解】A.()222x y x y +=+属于整式乘法运算,不符合因式分解的定义,故此选项不符合题意,B.()24444x x x x -+=-+,右边不是整式的积的形式,不符合因式分解的定义,故此选项不符合题意,C.()()2111x x x +-=-属于整式乘法运算,不符合因式分解的定义,故此选项不符合题意,D.()210 5521x x x x -=-属于因式分解,符合题意. 故选:D .【点睛】本题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.9.C解析:C【分析】直接利用十字相乘法以及公式法分别分解因式得出答案.【详解】A 、a 2﹣2a ﹣3=a (a ﹣2)﹣3,不符合因式分解的定义,故此选项错误;B 、3ax 2﹣6ax =3ax (x ﹣2),故此选项错误;C 、m 3﹣m =m (m ﹣1)(m +1),正确;D 、x 2+2xy ﹣y 2,无法运用完全平方公式分解因式,故此选项错误;故选:C .【点睛】此题主要考查了十字相乘法以及提取公因式法、公式法分解因式,正确应用公式是解题关键.10.A解析:A【分析】直接利用公式法以及提取公因式法分解因式得出答案.【详解】A .a 2﹣a +1=a (a ﹣1)+1,不符合因式分解的定义,故此选项正确;B .a 2﹣b 2=(a +b )(a ﹣b ),正确,不符合题意;C .﹣a 2+9b 2=﹣(a +3b )(a ﹣3b ),正确,不合题意;D .a 2﹣4ab +4b 2=(a ﹣2b )2,正确,不合题意.故选:A .【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键. 11.B解析:B【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A 、变形的结果不是几个整式的积,不是因式分解;B 、把多项式10x 2﹣5x 变形为5x 与2x ﹣1的积,是因式分解;C 、变形的结果不是几个整式的积,不是因式分解;D 、变形的结果不是几个整式的积,不是因式分解;故选:B .【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.12.D解析:D【分析】根据因式分解的方法进行计算即可判断.【详解】A .因为x 2+3x +2=(x +1)(x +2),故A 错误;B .因为4x 2﹣9=(2x +3)(2x ﹣3),故B 错误;C .因为a 2﹣2a +1=(a ﹣1)2,故C 错误;D .因为x 2﹣5x +6=(x ﹣2)(x ﹣3),故D 正确.故选:D .【点睛】本题考查了因式分解-十字相乘法、公式法,解决本题的关键是掌握因式分解的方法.二、填空题13.m (m+4)(m-4)【分析】原式提取公因式再利用平方差公式分解即可【详解】解:=m (m2-16)=m (m+4)(m-4)故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解解析:m (m+4)(m-4)【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:316m m=m (m 2-16)=m (m+4)(m-4),故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.14.【分析】两次运用平方差公式进行因式分解即可得到答案【详解】解:=(x2-1)(x2+1)=故答案为:【点睛】本题考查了运用平方差公式分解因式熟练掌握因式分解的方法是解本题的关键解析:()()()2111x x x +-+. 【分析】两次运用平方差公式进行因式分解即可得到答案.【详解】解:41x -=(x 2-1)(x 2+1)=()()()2111x x x +-+. 故答案为:()()()2111x x x +-+. 【点睛】本题考查了运用平方差公式分解因式,熟练掌握因式分解的方法是解本题的关键. 15.【分析】先将原式因式分解得再整体代入即可求出结果【详解】解:∵∴原式故答案是:【点睛】本题考查因式分解解题的关键是熟练运用因式分解和整体代入的思想求值解析:36-【分析】先将原式因式分解得()2xy x y +,再整体代入即可求出结果.【详解】解:()22222x y xy xy x y +=+, ∵6x y +=,3xy =-,∴原式()23636=⨯-⨯=-.故答案是:36-.【点睛】本题考查因式分解,解题的关键是熟练运用因式分解和整体代入的思想求值.16.-6【分析】利用提公因式法因式分解再把m+n=1mn=-6代入计算即可【详解】解:∵m+n=1mn=-6∴m2n+mn2=mn (m+n )=(-6)×1=-6故答案为:-6【点睛】本题主要考查了因式分解析:-6【分析】利用提公因式法因式分解,再把m+n=1,mn=-6代入计算即可.【详解】解:∵m+n=1,mn=-6,∴m2n+mn2=mn(m+n)=(-6)×1=-6.故答案为:-6.【点睛】本题主要考查了因式分解的应用,熟练掌握提公因式法因式分解是解答本题的关键.17.(答案不唯一)【分析】将多项式4x3-xy2提取x后再利用平方差公式分解因式将x与y的值分别代入每一个因式中计算得到各自的结果根据阅读材料中取密码的方法即可得出所求的密码【详解】4x3-xy2=x(解析:(答案不唯一)【分析】将多项式4x3-xy2,提取x后再利用平方差公式分解因式,将x与y的值分别代入每一个因式中计算得到各自的结果,根据阅读材料中取密码的方法,即可得出所求的密码.【详解】4x3-xy2=x(4x2-y2)=x(2x+y)(2x-y),∴当取x=10,y=10时,各个因式的值是:x=10,2x+y=30,2x-y=10,∴用上述方法产生的密码是:103010,101030或301010,故答案为103010,101030或301010.【点睛】本题考查了因式分解的应用,涉及了提公因式法及平方差公式分解因式,属于阅读型的新定义题,其中根据阅读材料得出取密码的方法是解本题的关键.18.(a+2)(a﹣3)【分析】利用十字相乘法分解即可【详解】解:原式=(a+2)(a-3)故答案是:(a+2)(a-3)【点睛】此题考查了利用十字相乘法因式分解熟练掌握因式分解的方法是解本题的关键解析:(a+2)(a﹣3)【分析】利用十字相乘法分解即可.【详解】解:原式=(a+2)(a-3).故答案是:(a+2)(a-3).【点睛】此题考查了利用十字相乘法因式分解,熟练掌握因式分解的方法是解本题的关键.19.-8【分析】直接提取公因式将原式变形进而整体代入已知得出答案【详解】∵∵∴又∴原式=2×(-4)=-8故答案为:-8【点睛】本题主要考查了代数式求值以及提取公因式法分解因式正确将原式变形是解题关键解析:-8【分析】直接提取公因式将原式变形进而整体代入已知得出答案.【详解】∵223a b ab ab -+(31)ab a b =-+,∵350b a --=,∴35a b -=-,又2ab =,∴原式=2×(-4)=-8.故答案为:-8.【点睛】本题主要考查了代数式求值以及提取公因式法分解因式,正确将原式变形是解题关键. 20.m (n ﹣2)2【分析】首先提取公因式m 再利用完全平方公式分解因式即可【详解】解:mn2﹣4mn+4m =m (n2﹣4n+4)=m (n ﹣2)2故答案为:m (n ﹣2)2【点睛】此题主要考查了提取公因式法以解析:m (n ﹣2)2【分析】首先提取公因式m ,再利用完全平方公式分解因式即可.【详解】解:mn 2﹣4mn+4m=m (n 2﹣4n+4)=m (n ﹣2)2.故答案为:m (n ﹣2)2.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.三、解答题21.(1)2(2)(2)a a a +-;(2)140∠=︒,285∠=︒.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2) 根据平行线的性质,可以得到∠1和∠A 的关系,从而可以得到∠1的度数,再根据∠2=∠1+∠D ,即可求得∠2的度数.【详解】解:(1)原式()2242(2)(2)a a a a a =-=+-. (2)//AB CD ,140A ∴∠=∠=︒,45D ∠=︒,2185D ∴∠=∠+∠=︒.【点睛】此题考查了提公因式法与公式法的综合运用,以及平行线的性质,解答第2小题的关键是明确题意,利用平行线的性质和三角形外角和内角的关系解答.22.(1)()()22121a a a +-;(2)()2332x y -+ 【分析】(1)首先提取公因式2a ,再利用平方差公式分解因式得出答案;(2)原式利用完全平方公式分解即可.【详解】解:(1)8a 3-2ab 2=2a (4a 2-1)=2a (2a+1)(2a-1),(2)原式=[3(x-y )+2]2=(3x-3y+2)2.【点睛】本题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.23.①;见解析【分析】根据提公因式法和平方差公式进行因式分解.【详解】解:在小华同学的解答中,对原式进行变形,从第①步开始出现错误,故答案为:①正确过程如下:229()4()a x y b y x -+-229()4()a x y b x y =---22()(94)x y a b =--()(32)(32)x y a b a b =-+-.【点睛】本题考查综合提公因式和公式法进行因式分解,掌握提公因式技巧和平方差公式的公式结构正确计算是解题关键.24.(1)()22a m + ;(2)22224x x y --【分析】(1)先提公因式a ,再根据完全平方公式分解因式;(2)先根据整式乘法、乘法公式展开括号,然后再合并同类项即可得到答案.【详解】(1)解:244am am a ++ ()244a m m =++()22a m =+; (2)(2)(2)(2)x x x y x y -++-22224x x x y =-+-22224x x y =--.【点睛】此题考查因式分解及整式的混合运算,掌握多项式的因式分解的方法,整式的乘法计算法则、合并同类项计算法则是解题的关键.25.(1)2(3)(3)ab a a +-;(2)2(21)a b -.【分析】(1)先提取公因式2ab 、然后再运用平方差公式分解即可;(2)先提取公因式a 、然后再运用完全平方公式分解即可.【详解】(1)3218a b ab -()229ab a =-;2(3)(3)ab a a =+-(2)244ab ab a -+()2441a b b =-+2(21)a b =-.【点睛】本题主要考查了因式分解,灵活运用提取公因式法和公式法分解因式是解答本题的关键. 26.(1)4;(2) ()()57a a --;(3) ()()222222x x x x ++-+;(4)2.【分析】(1)由2224___222,a a a a ++=+•⨯+ 从而可得答案;(2)由22221235266635a a a a -+=-•⨯+-+化为两数的平方差,再利用平方差公式分解,从而可得答案;(3)由()242222422222x x x x +=+••+-••化为两数的平方差,再利用平方差公式分解即可;(4)由 ()22224432221113x x x x ++=+⨯•+-+化为一个非负数与一个常数的和,再利用非负数的性质求解最小值即可.【详解】解:(1)()22442,a a a ++=+ 故答案为:4.(2)22221235266635a a a a -+=-•⨯+-+()2261a =-- ()()6161a a =-+--()()57.a a =--(3)()242222422222x x x x +=+••+-•• ()()22222x x =+-()()222222.x x x x =++-+(4)()22224432221113x x x x ++=+⨯•+-+ ()2212x =++ ()2210,x +≥()22122,x ∴++≥ 2443x x ∴++的最小值是2.【点睛】本题考查的是配方法的应用,同时考查了完全平方公式与平方差公式,掌握用配方法分解因式,求最值是解题的关键.。
(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试题(含答案解析)(4)

一、选择题1.下列各式中,从左到右变形是因式分解的是( )A .()()22224a b a b a b +--=B .()()2633m m m -=+- C .()22542x x x x ++=++D .()()2933a a a -=+- 2.下列因式分解正确的是A .4m 2-4m +1=4m (m -1)B .a 3b 2-a 2b +a 2=a 2(ab 2-b )C .x 2-7x -10=(x -2)(x -5)D .10x 2y -5xy 2=5xy (2x -y ) 3.若x -y +3=0,则x (x -4y )+y (2x +y )的值为( ) A .9B .-9C .3D .-3 4.已知x -y =12,xy =43,则xy 2-x 2y 的值是 A .1B .-23C .116D .23 5.多项式x 2+mx ﹣21因式分解的结果为(x +3)(x ﹣7),则m 的值是( ) A .4 B .﹣4 C .10D .﹣10 6.已知三角形的三边a ,b ,c 满足2223()()b a b c ba a -+=-,则△ABC 是( )A .等腰三角形B .等腰直角三角形C .等边三角形D .等腰三角形或直角三角形 7.下列各式由左到右的变形中,属于因式分解的是( )A .()210x 5x 5x 2x 1-=-B .()()2222a b c a b a b c --=-+-C .()a m n am an +=+D .()()2x 166x x 4x 46x -+=+-+ 8.下列等式从左到右的变形是因式分解的是( ) A .12a 2b 2=3a •4ab 2B .(x +4)(x ﹣4)=x 2﹣16C .am +an =a (m +n )D .x ﹣1=x (1﹣1x) 9.下列各多项式从左到右变形是因式分解,并分解正确的是( )A .2()()()(1)a b b a a b a b ---=--+B .2(2)(3)56x x x x ++=++C .2249(49)(49)a b a b a b -=-+D .222()()2m n m n m n -+=+-+10.下列因式分解错误的是( )A .a 2﹣a +1=a (a ﹣1)+1B .a 2﹣b 2=(a +b )(a ﹣b )C .﹣a 2+9b 2=﹣(a +3b )(a ﹣3b )D .a 2﹣4ab +4b 2=(a ﹣2b )211.下列因式分解正确的是( )A .()()()()a a b b a b a b a b ---=-+B .2229(3)a b a b -=-C .22244(2)a ab b a b ++=+D .2()a ab a a a b -+=-12.下列各项分解因式正确的是( )A .22(1)1a a -=-B .2242(2)a a a -+=-C .22()()b a a b a b -+=+-D .223(1)(3)x x x x --=-+二、填空题13.因式分解:316m m -=________.14.利用1个a×a 的正方形,1个b×b 的正方形和2个a×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.15.边长为m 、n 的长方形的周长为14,面积为10,则33m n mn +的值为_________. 16.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.17.因式分解:33327xy x y -=______.18.已知为等腰三角形ABC ,其中两边,a b 满足,244|3|0a a b -++-=,则ABC ∆的周长为_______________________19.分解因式:4232x -=_________.20.若a 2-b 2=8,a-b=2,则a+b 的值为_________.三、解答题21.如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正五形,五块是长为m ,宽为n 的全等小长方形.且m n >.(以上长度单位:cm )(1)观察图形,可以发现代数式22252m mn n ++可以因式分解为________.(2)若每块小长方块的面积为220cm ,四个正方形的面积和为2162cm .①试求图中所有裁剪线(虚线部分)长度之和;②求2()m n -的值.22.分解因式(1)()()()()a b x y b a x y ----+(2)4+12(x -y )+9(x -y )2(3)22369xy x y y -- (4)()228a b ab -+23.阅读下面的材料:常用的分解因式的方法有提取公因式法、公式法等,但有的多项式只用上述方法无法分解.如22926a b a b --+,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前、后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下: ()()2222926926a b a b a b a b --+=---()()()3323a b a b a b =+---()()332a b a b =-+-.像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:22222x xy y x y -+-+;(2)已知ABC 的三边长a ,b ,c 满足220a bc b ac +--=,判断ABC 的形状并说明理由.24.先阅读下列材料,再解答问题:常用的分解因式的方法有提取公因式法和公式法,但有的多项式只用上述一种方法无法分解,例如多项式244x xy x y -+-和2222a b c bc --+.经过细心观察可以发现,若将多项式进行合理分组后,先将每一组进行分解,分别分解后再用提公因式法或公式法就可以完整分解了.解答过程如下:()()()()()()22(1)444444x xy x yx xy x y x x y x y x y x -+-=-+-=-+-=-+()()()()22222222(2)22a b c bca b c bc a b c a b c a b c --+=-+-=--=+--+这种方法叫分组分解法,对于超过三项的多项式往往考虑这种方法.利用上述思想方法,把下列各式分解因式:(1)32236m m m --+(2)2229x xy y --+25.分解因式:(1)222ax axy ay ++;(2)4161y -26.(1)分解因式:()()22 4?a x yb x y ---; (2)计算:()()222322a a b ab b a a b a b ⎡⎤---÷⎣⎦.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据因式分解的定义逐项判断即可得.【详解】A 、()()22224a b a b a b +--=是整式的乘法,此项不符题意; B 、()()2933m m m -=+-,则等式左右两边不相等,此项不符题意; C 、()22542x x x x ++=++没有将一个多项式转化成几个整式的乘积的形式,此项不符题意;D 、()()2933a a a -=+-,此项符合题意; 故选:D .【点睛】本题考查了因式分解的定义,掌握理解定义是解题关键.2.D解析:D【分析】A 、利用完全平方公式分解;B 、利用提取公因式a 2进行因式分解;C 、利用十字相乘法进行因式分解;D 、利用提取公因式5xy 进行因式分解.【详解】A 、4m 2-4m+1=(2m-1)2,故本选项错误;B 、a 3b 2-a 2b+a 2=a 2(ab 2-b+1),故本选项错误;C 、(x-2)(x-5)=x 2-7x+10,故本选项错误;D 、10x 2y-5xy 2=xy (10x-5y )=5xy (2x-y ),故本选项正确;故选D .【点睛】本题考查了因式分解,要想灵活运用各种方法进行因式分解,需要熟练掌握各种方法的公式和法则;分解因式中常出现错误的有两种:①丢项:整项全部提取后要剩1,分解因式后项数不变;②有些结果没有分解到最后,如最后一个选项需要一次性将公因式提完整或进行多次因式分解,分解因式一定要彻底.3.A解析:A【解析】解:∵x -y +3=0,∴x -y =-3.原式=2242x xy xy y -++=2()x y -=2(3)-=9.故选A .4.B解析:B【解析】因为x -y =12,xy =43,所以xy 2-x 2y =xy (y -x )=12×43⎛⎫- ⎪⎝⎭=-23,故选B . 5.B解析:B【分析】直接利用因式分解法得出m 与3,-7的关系.【详解】解:∵多项式x 2+mx ﹣21因式分解的结果为(x +3)(x ﹣7),∴m =﹣7+3=﹣4.故选:B .【点睛】此题主要考查了因式分解法分解因式,正确掌握常数项与一次项系数的关系是解题关键. 6.D解析:D【分析】先将原式分解因式得(b-a )(b 2+c 2-a 2)=0,从而得b ﹣a =0或c 2+b 2﹣a 2=0,根据等腰三角形的判定和勾股定理的逆定理判断即可.【详解】解:∵2223()()b a b c ba a -+=-,∴(b-a )(b 2+c 2-a 2)=0.∴b ﹣a =0或c 2+b 2﹣a 2=0,则a=b 或c 2+b 2=a 2.∴△ABC 是等腰三角形或直角三角形.故选D .【点睛】此题综合运用了因式分解的知识、勾股定理的逆定理.勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.7.A解析:A【分析】根据把一个多项式写成几个整式积的形式叫做因式分解对各选项分析判断后利用排除法求解.【详解】解:A 、10x 2-5x=5x(2x-1)是因式分解,故本选项正确;B 、右边不是整式积的形式,故本选项错误;C 、是整式的乘法,不是因式分解,故本选项错误;D 、右边不是整式积的形式,故本选项错误.故选A.【点睛】本题考查了因式分解的意义,因式分解与整式的乘法互为逆运算,熟记因式分解的定义是解题的关键.8.C解析:C【分析】因式分解就是把一个多项式化为几个整式的积的形式.要确定从左到右的变形中是否为因式分解,只需根据定义来确定.【详解】A 、左边不是多项式的形式,不是因式分解,故此选项不符合题意;B 、是整式的乘法,不是因式分解,故此选项不符合题意;C 、am+an =a (m+n )是因式分解,故此选项符合题意;D 、右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意.故选:C .【点睛】本题考查了因式分解的意义,解决问题的关键在于能否正确应用分解因式的定义来判断;同时还要注意变形是否正确.9.A解析:A【分析】直接利用因式分解的定义进而分析得出答案.【详解】解:A 、2()()()(1)a b b a a b a b ---=--+,是因式分解,故此选项正确;B 、(x+2)(x+3)=x 2+5x+6,是整式的乘法运算,故此选项错误;C 、4a 2-9b 2=(2a-3b )(2a+3b ),故此选项错误;D 、m 2-n 2+2=(m+n )(m-n )+2,不符合因式分解的定义,故此选项错误.故选:A .【点睛】此题主要考查了因式分解的意义,正确把握因式分解的定义是解题关键.10.A解析:A【分析】直接利用公式法以及提取公因式法分解因式得出答案.【详解】A .a 2﹣a +1=a (a ﹣1)+1,不符合因式分解的定义,故此选项正确;B .a 2﹣b 2=(a +b )(a ﹣b ),正确,不符合题意;C .﹣a 2+9b 2=﹣(a +3b )(a ﹣3b ),正确,不合题意;D .a 2﹣4ab +4b 2=(a ﹣2b )2,正确,不合题意.故选:A .【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键. 11.C解析:C【分析】利用提公因式法分解因式和平方差公式以及完全平方公式进行分解即可得到答案.【详解】A 、2()()()()()a a b b a b a b a b a b ---=--=-,故此选项错误;B 、229(3)(3)a b a b a b -=+-,故此选项错误;C 、22244(2)a ab b a b ++=+,故此选项正确;D 、2(+1)a ab a a a b -+=-,故此选项错误.故选:C .【点睛】此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.12.C解析:C【分析】利用平方差公式对A 、C 进行判断;根据完全平方公式对B 进行判断;利用十字相乘法对D 进行判断.【详解】解:A 、a 2−1=(a +1)(a−1),所以A 选项错误;B 、a 2−4a +2在实数范围内不能因式分解;C 、−b 2+a 2=a 2−b 2=(a +b )(a−b ),所以C 选项正确;D 、x 2−2x−3=(x−3)(x +1),所以D 选项错误.故选:C .【点睛】本题考查了因式分解−十字相乘法:借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.也考查了公式法因式分解.二、填空题13.m (m+4)(m-4)【分析】原式提取公因式再利用平方差公式分解即可【详解】解:=m (m2-16)=m (m+4)(m-4)故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解解析:m (m+4)(m-4)【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:316m m=m (m 2-16)=m (m+4)(m-4),故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.14.a2+2ab+b2=(a+b )2【解析】试题分析:两个正方形的面积分别为a2b2两个长方形的面积都为ab 组成的正方形的边长为a +b 面积为(a +b)2所以a2+2ab +b2=(a +b)2点睛:本题考查解析:a 2+2ab+b 2=(a+b )2【解析】试题分析:两个正方形的面积分别为a 2,b 2,两个长方形的面积都为ab ,组成的正方形的边长为a +b ,面积为(a +b )2,所以a 2+2ab +b 2=(a +b )2.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.15.290【分析】根据题意可知m +n =7mn =10再由因式分解法将多项式进行分解后可求出答案【详解】解:由题意可知:m +n =7mn =10原式=mn (m2+n2)=mn(m+n)2-2mn=10×(72-解析:290【分析】根据题意可知m +n =7,mn =10,再由因式分解法将多项式进行分解后,可求出答案.【详解】解:由题意可知:m +n =7,mn =10,原式=mn (m 2+n 2)=mn[(m+n)2-2mn]=10×(72-2×10)=10×29=290故答案为:290.【点睛】本题考查代数式求值,解题的关键是熟练运用因式分解法以及完全平方公式的变形公式. 16.5【分析】根据整式的乘法和因式分解的逆运算关系按多项式乘以多项式法则把式子变形然后根据pq 的关系判断即可【详解】解:∵(x +p)(x +q)=x2+(p+q )x+pq=x2+mx-6∴p+q=mpq=解析:5【分析】根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.【详解】解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx-6∴p+q=m ,pq=-6,∴pq=1×(-6)=(-1)×6=(-2)×3=2×(-3)=-6,∴m=-5或5或1或-1,∴m 的最大值为5,故答案为:5.【点睛】此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.17.【分析】根据因式分解的提公因式法找出公因式为然后再根据平方差公式求解即可;【详解】原式=故答案为:【点睛】本题考查了因式分解的提公因式法平方差公式找出公因式是是解题的关键解析:()()333xy y x y x +-【分析】根据因式分解的提公因式法,找出公因式为3xy ,然后再根据平方差公式求解即可;【详解】原式=()()()2239333xy y x xy y x y x -=+-,故答案为:()()333xy y x y x +-.【点睛】本题考查了因式分解的提公因式法、平方差公式,找出公因式是3xy 是解题的关键. 18.7或8【分析】先运用平方差公式将等式的前三项因式分解得再根据非负性求出的值再代入求值即可【详解】解:当腰为3时等腰三角形的周长为当腰为2时等腰三角形的周长为故答案为:7或8【点睛】此题考查了配方法的 解析:7或8【分析】先运用平方差公式将等式的前三项因式分解得2(2)|3|0a b -+-=,再根据非负性求出a ,b 的值,再代入求值即可.【详解】解:244|3|0a a b -++-=,2(2)|3|0a b ∴-+-=,2a ∴=,3b =,∴当腰为3时,等腰三角形的周长为3328++=,当腰为2时,等腰三角形的周长为3227++=.故答案为:7或8.【点睛】此题考查了配方法的应用,三角形三边关系及等腰三角形的性质,解题的关键熟练掌握完全平方公式.19.2(x2+4)(x+2)(x -2)【分析】首先提取公因式2然后利用平方差公式继续分解直到不能分解为止即可求得答案【详解】解:2x4﹣32=2(x4﹣16)=2(x2+4)(x2﹣4)=2(x2+4)解析:2(x 2+4)(x +2)(x -2)【分析】首先提取公因式2,然后利用平方差公式继续分解,直到不能分解为止,即可求得答案.【详解】解:2x 4﹣32=2(x 4﹣16)=2(x 2+4)(x 2﹣4)=2(x 2+4)(x +2)(x -2).故答案为:2(x 2+4)(x +2)(x -2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 20.4【分析】先对a2-b2=8左侧因式分解然后将a-b=2代入求解即可【详解】解:∵a2-b2=8∴(a-b )(a+b )=8∴2(a+b )=8∴a+b=4故答案为4【点睛】本题考查了代数式求值和因式分解析:4【分析】先对a 2-b 2=8左侧因式分解,然后将a-b=2代入求解即可.【详解】解:∵a 2-b 2=8∴(a-b )(a+b )=8∴2(a+b )=8∴a+b=4.故答案为4.【点睛】本题考查了代数式求值和因式分解,灵活运用因式分解是正确解答本题的关键.三、解答题21.(1)(2m+n )(m+2n );(2)①66cm ;②41【分析】(1)根据图中的面积关系,两个大正方形、两个小正方形和5个长方形的面积之和等于大长方形的面积,据此可解;(2)①根据题意可得mn ,2m 2+2n 2,从而可得从而m 2+n 2,进而可求得m+n ,结合图形可得答案.②根据m 2+n 2以及mn 的值,结合完全平方公式计算即可.【详解】解:(1)观察图形,发现代数式:2m 2+5mn+2n 2表示大长方形的面积,则2m 2+5mn+2n 2=(2m+n )(m+2n );故答案为:(2m+n )(m+2n );(2)①若每块小矩形的面积为20cm 2,四个正方形的面积和为162cm 2,则mn=20cm 2,2m 2+2n 2=162cm 2,∴m 2+n 2=81,∴(m+n )2=81+20×2=121,∴m+n=11,∴图中所有裁剪线(虚线部分)长之和为6m+6n=6(m+n )=66(cm );②(m-n )2= m 2+n 2-2mn=81-2×20=41.【点睛】本题考查了因式分解在几何图形问题中的应用,数形结合,并熟练掌握相关计算法则,是解题的关键.22.(1)()2x a b -;(2)2(233)x y +- ;(3)()23y x y --;(4)()22a b + 【分析】(1)先将原式变形,然后提取公因式进行因式分解;(2)利用完全平方公式进行因式分解;(3)先提取公因式,然后利用完全平方公式进行因式分解;(4)先将原式进行整式的混合计算化简,然后利用完全平方公式进行因式分解.【详解】解:(1)()()()()a b x y b a x y ----+=()()+()()a b x y a b x y ---+=()()a b x y x y --++=()2x a b -(2)4+12(x -y )+9(x -y )2=22+2×2×3(x -y )+[3(x -y )]2=[2+3(x -y )]2=2(233)x y +-(3)22369xy x y y -- =()2269y y xy x--+=()23y x y -- (4)()228a b ab -+=22448a ab b ab -++=224+4a ab b +=()22a b +【点睛】本题考查综合提公因式法和公式法进行因式分解,掌握提取公因式的技巧和乘法公式的公式结构正确计算是解题关键.23.(1)()()2x y x y ---;(2)ABC 为等腰三角形,理由见解析【分析】(1)前三项符合完全平方公式,最后一项用提公因式法进行分解因式,最后再提公因式(x-y )即可.(2)通过因式分解22a bc b ac +--()()0a b a b c =-+-=,因为0a b c +->,所以得0a b -=,则a b =,那么ABC 为等腰三角形.【详解】解:(1)原式()()22222x xy y x y =-+--()()22x y x y =--- ()()2x y x y =---.(2)结论:ABC 为等腰三角形理由:∵22a bc b ac +--()()22a b ac bc =---()()()a b a b c a b =+---()()a b a b c =-+-0=又∵0a b c +->∴0a b -=∴a b =∴ABC 为等腰三角形.【点睛】 此题主要考查了因式分解的应用,要熟练掌握,用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.24.(1)2(2)(3)m m --;(2)()()33x y x y -+--【分析】(1)将1、2项,3、4项分别结合分别分解因式,再进行组间的公因式提取便可达目的;(2)原式分成222x xy y -+和-9两组,前一组利用完全平方公式分解,然后再利用平方差公式继续分解即可.【详解】解:(1)32236m m m --+2(2)3(2)m m m =---2(2)(3)m m =--;(2)2229x xy y --+2229x xy y =-+-()223x y =-- ()()33x y x y =-+--.【点睛】本题考查了分组分解法,关键要明确分组的目的,是分组分解后仍能继续分解,还是分组后利用各组本身的特点进行解题.25.(1)2()a x y +;(2)2(41)(21)(21)y y y ++-.【分析】(1)先提公因式,再利用完全平方公式分解因式,即可得出结果;(2)先利用平方差公式分解可得22(41)(41)y y +-,再次利用平方差公式对2(41)y -进行分解,即可完成.【详解】解:(1)原式22(2)a x xy y =++2()a x y =+,(2)原式22(41)(41)y y =+-2(41)(21)(21)y y y =++-.【点睛】本题考查了因式分解,掌握因式分解的基本方法,并能根据多项式的特点准确选择分解方法是解题的关键.26.(1)()()()22x y a b a b -+-;(2)1ab -. 【分析】(1)提取公因式()x y -后,再利用平方差公式分解即可; (2)中括号内先利用单项式乘多项式展开,再合并同类项,然后利用多项式除以单项式法则计算即可.【详解】(1)()()224?a x y b x y --- ()()22 4x y a b =-- ()()() 2?2x y a b a b =-+-;(2)()()222322a a b ab b a a b a b ⎡⎤---÷⎣⎦ ()3222322 2a b a b a b a b a b =--+÷()32222?2?2a b a b a b =-÷ 1?ab =-.【点睛】本题考查了因式分解以及整式的混合运算,涉及的知识有:平方差公式,单项式乘多项式法则,多项式除以单项式法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.。
2022年强化训练北师大版八年级数学下册第四章因式分解专项测评试题(含答案解析)

北师大版八年级数学下册第四章因式分解专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列由左到右的变形,是因式分解的是( )A .()228164x x x -+=-B .()()2212x x x x --=-+C .()2111a a a a -+=-+D .()()26636a a a +-=-2、下列从左边到右边的变形,是因式分解的是( )A .(3﹣x )(3+x )=9﹣x 2B .x 2+y 2=(x +y )(x ﹣y )C .x 2﹣x =x (x ﹣1)D .2yz ﹣y 2z +z =y (2z ﹣yz )+z3、下列各式的因式分解中正确的是( )A .2()a ab ac a a b c -+-=-+-B .22963(32)xyz x y xyz xy -=-C .()2236332a x bx x x a b -+=-D .22111()222xy x y xy x y +=+4、下列等式从左到右的变形,属于因式分解的是( )A .()m x y mx my -=-B .22()()a b a b a b -=+-C .221(2)1x x x x ++=++D .2(3)(1)43x x x x ++=++5、下列式子从左到右的变形中,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .22()()a b a b a b -=+-C .221(2)1x x x x -+=-+D .()()mx my nx ny m x y n x y +++=+++6、下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b ++D .214x x -+7、如果多项式x 2﹣5x +c 可以用十字相乘法因式分解,那么下列c 的取值正确的是()A .2B .3C .4D .58、因式分解m 2-m -6正确的是( )A .(m +2)(m -3)B .(m -2)(m +3)C .(m -2)(m -3)D .(m +2)(m +3)9、已知x ,y 满足3135x y x y +=-⎧⎨-=⎩,则229x y -的值为( )A .—5B .4C .5D .2510、下列等式中,从左到右的变形是因式分解的是( )A .()()2224m m m +-=-B .()23232m m m m ++=++C .()22442m m m ++=+D .()233m m m m -=-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知a =a 2﹣2a ﹣3的值为_______.2、当x =___时,x 2﹣2x +1取得最小值.3、因式分解:2412x x --=_______.4、把多项式229a b -分解因式结果是______.5、当x =4,a +b =-3时,代数式:ax +bx 的值为________.三、解答题(5小题,每小题10分,共计50分)1、分解因式:2a 2-8ab +8b 2.2、(1)若x +1是多项式x 3+ax +1的因式,求a 的值并将多项式x 3+ax +1分解因式.(2)若多项式3x 4+ax 3+bx -34含有因式x +1及x -2,求a +b 的值.3、将下列多项式进行因式分解:(1)32242436x x y xy -+;(2)()()2494x y y -+-.4、(1)按下表已填的完成表中的空白处代数式的值:(2)比较两代数式计算结果,请写出你发现的2()a b -与222a ab b -+有什么关系?(3)利用你发现的结论,求:222021404220202020-⨯+的值.5、分解因式:(1)3a 2﹣6a +3(2)(x 2+y 2)2﹣4x 2y 2-参考答案-一、单选题1、A【分析】根据因式分解的定义,对各选项作出判断,即可得出正确答案.【详解】解:A 、()228164x x x -+=-,是因式分解,故此选项符合题意; B 、()()2212x x x x --=+-,原式分解错误,故本选项不符合题意;C 、右边不是整式的积的形式,故本选项不符合题意;D 、原式是整式的乘法运算,不是因式分解,故本选项不符合题意;故选:A .【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.2、C【分析】根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可.【详解】解:A 、(3﹣x )(3+x )=9﹣x 2属于整式的乘法运算,不是因式分解,不符合题意;B 、22()()x y x y x y -=+-,原式错误,不符合题意;C 、x 2﹣x =x (x ﹣1),属于因式分解,符合题意;D 、2yz ﹣y 2z +z =2(21)z y y -+,原式分解错误,不符合题意;故选:C .【点睛】本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键.3、D【分析】根据提公因式法,先提取各个多项式中的公因式,再对余下的多项式进行观察,能分解的继续分解.【详解】A -a 2+ab -ac =-a (a -b +c ) ,故本选项错误;B 9xyz -6x 2y 2=3xy (3z -2xy ),故本选项错误;C 3a 2x -6bx +3x =3x (a 2-2b +1),故本选项错误;D 22111()222xy x y xy x y +=+,故本选项正确.故选:D .【点睛】本题考查提公因式法分解因式,准确确定公因式是求解的关键.4、B【分析】根据因式分解的定义直接判断即可.解:A .等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .等式从左到右的变形属于因式分解,故本选项符合题意;C .没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D .属于整式乘法,不属于因式分解,故本选项不符合题意;故答案为:B .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5、B【分析】把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.【详解】解:2(1)(1)1x x x +-=-是整式的乘法,故A 不符合题意;22()()a b a b a b -=+-是因式分解,故B 符合题意;221(2)1x x x x -+=-+右边不是整式的积的形式,不是因式分解,故C 不符合题意;()()mx my nx ny m x y n x y +++=+++右边不是整式的积的形式,不是因式分解,故D 不符合题意; 故选B【点睛】本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.6、D根据完全平方公式法分解因式,即可求解.【详解】解:A 、不能用完全平方公式因式分解,故本选项不符合题意;B 、不能用完全平方公式因式分解,故本选项不符合题意;C 、不能用完全平方公式因式分解,故本选项不符合题意;D 、221142x x x ⎛⎫-+=- ⎪⎝⎭能用完全平方公式因式分解,故本选项符合题意; 故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握()2222a ab b a b ±+=± 是解题的关键.7、C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A 、252x x -+,不能用十字相乘法进行因式分解,不符合题意;B 、253x x -+,不能用十字相乘法进行因式分解,不符合题意;C 、()()25414x x x x -+=--,能用十字相乘法进行因式分解,符合题意;D 、255x x ,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.8、A【分析】先把6-分解32, 再利用十字乘法分解因式,再逐一分析各选项,从而可得答案.【详解】 解: m 2-m -632m m故选A【点睛】本题考查的是利用十字乘法分解因式,掌握“利用十字乘法分解因式”是解题的关键.9、A【分析】根据题意利用平方差公式将229x y -变形,进而整体代入条件即可求得答案.【详解】解:2222(59(3)(3))315x x y y x y x y ==+-=---⨯=-.故选:A.【点睛】本题考查代数式求值,熟练掌握平方差公式的运用以及结合整体思维分析是解题的关键.10、C【分析】根据因式分解的定义:把一个多项式化成几个整式乘积的形式,即可进行判断.【详解】A. ()()2224m m m +-=-,变形是整式乘法,不是因式分解,故A 错误;B. ()23232m m m m ++=++,右边不是几个因式乘积的形式,故B 错误;C. ()22442m m m ++=+,把一个多项式化成两个整式乘积的形式,变形是因式分解,故C 正确; D. ()233m m m m -=-,变形是整式乘法,不是因式分解,故D 错误.【点睛】本题考查因式分解的定义,掌握因式分解的定义是解题的关键.二、填空题1、-2【分析】将所求算式因式分解,再将1a =【详解】解:223(3)(1)a a a a --=-+ ,将1a =+22(3)(1)(13)(11)2)22a a -+===-=-.故答案为:-2.【点睛】本题考查因式分解,代数式求值以及平方差公式.利用整体代入的思想是解答本题的关键. 2、1【分析】先根据完全平方公式配方,再根据偶次方的非负性即可求解.【详解】解:∵2221(1)0x x x +=-≥-,∴当x =1时,x 2﹣2x +1取得最小值.故答案为:1.【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式. 3、(6)(2)x x -+【分析】利用十字相乘法分解因式即可得.【详解】解:因为1262,624-=-⨯-+=-,且4-是x 的一次项的系数, 所以2412(6)(2)--=-+x x x x ,故答案为:(6)(2)x x -+.【点睛】本题考查了因式分解,熟练掌握十字相乘法是解题关键. 4、(3)(3)a b a b +-【分析】利用平方差公式分解得到结果,即可做出判断.【详解】解:229a b -=22(3)a b -=(3)(3)a b a b +-故答案为:(3)(3)a b a b +-【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.5、-12【分析】本题可先代入x 的值得4(a +b ),再把a +b =-3整体代入求值即可.【详解】解:∵x =4,a +b =-3∴ax +bx ()()=4444312a b a b +=+=⨯-=-故答案为:-12【点睛】本题主要考查了因式分解的应用,整理出已知条件的形式是解题的关键,注意整体代换的思想.三、解答题1、2(a -2b )2【分析】先提取公因式2,再利用完全平方公式因式分解.【详解】解:2a 2-8ab +8b 2=2(a 2-4ab +4b 2)=2(a -2b )2.【点睛】本题考查了整式的因式分解,掌握因式分解的完全平方公式是解决本题的关键.2、(1)a=0;(x+1)(x2-x+1);(2)-31;【分析】(1)先将x=-1代入x3+ax+1=0中,得a=0,令x3+1=(x+1)(x2+bx+c),根据等式两边x同次幂的系数相等确定b、c的值,再因式分解多项式;(2)设3x4+ax3+bx-34=(x+1)(x-2)•M,则x=-1,x=2是方程3x4+ax3+bx-34=0的解,然后解关于a、b的方程组,即可得到答案.【详解】解:(1)∵x+1是多项式x3+ax+1的因式,∴当x=-1时,x3+ax+1=0,∴-1-a+1=0,∴a=0,令x3+1=(x+1)(x2+bx+c),而(x+1)(x2+bx+c)=x3+(b+1)x2+(c+b)x+c,∵等式两边x同次幂的系数相等,即x3+(b+1)x2+(c+b)x+c=x3+1,∴101bc+=⎧⎨=⎩,解得:11bc=-⎧⎨=⎩,∴a的值为0,x3+1=(x+1)(x2-x+1);(2)设3x4+ax3+bx-34=(x+1)(x-2)•M(其中M为二次整式),∴x=-1,x=2是方程3x4+ax3+bx-34=0的解,∴334031682340a b a b ---=⎧⎨⨯++-=⎩ ∴839a b =⎧⎨=-⎩, ∴a +b =8+(-39)=-31;【点睛】本题考查了分解因式,因式分解的应用,解二元一次方程组,解题的关键是掌握因式分解的方法,从而进行解题.3、(1)()243x x y -;(2)()()()433y x x -+-. 【分析】(1)提取公因式然后利用完全平方公式进行因式分解即可;(2)提取公因式然后利用平方差公式进行因式分解即可.【详解】解:(1)原式()()22246943x x xy y x x y =-+=-; (2)原式()()()()()()()2249449433x y y y x y x x =---=--=-+-.【点睛】此题考查了因式分解,涉及了平方差公式和完全平方公式,解题的关键是掌握因式分解的方法.4、(1)见解析;(2)()2222a b a ab b -=-+;(3)1【分析】(1)把每组,a b 的值分别代入2()a b -与222a ab b -+进行计算,再填表即可;(2)观察计算结果,再归纳出结论即可;(3)利用结论()2222a b a ab b -=-+可得2021,2020,a b 再代入进行简便运算即可.【详解】解:(1)填表如下:(2)观察上表的计算结果归纳可得:()2222a b a ab b -=-+(3)222021404220202020-⨯+=2220212202120202020-⨯⨯+=()220212020-=1【点睛】本题考查的是代数式的求值,运算规律的探究,完全平方公式的应用,熟练的利用完全平方公式进行简便运算是解本题的关键.5、(1)23(1)a -;(2)22()()x y x y +-【分析】(1)先提公因式3,再由完全平方公式进行因式分解;(2)先由完全平方公式去括号,化简再由完全平方公式以及平方差公式进行因式分解即可.【详解】(1)2363a a -+,23(21)a a =-+,23(1)a =-;(2)2222()4x y x y +-,42242224x x y y x y =++-,42242x x y y =-+,222()x y =-,22()()x y x y =+-.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.。
北师大版八年级下册因式分解100题及答案

北师大版八年级下册因式分解100题及答案一、提取公因式(1)(75)(4)(75)(45)(75)(92)++++--++-+m n m n m n(2)(71)(83)(92)(71)--+---x x x x(3)(43)(5)(43)(73)(43)(1)---+--+---m n m n m n(4)(2)(83)(93)(2)+--+-+m n n m(5)(71)(4)(71)(21)+---++m x m x(6)42224+a x y x y412(7)2443-+x yz y z xyz639(8)3444-abc a b c2718(9)(45)(53)(45)(62)+-+++-a b a b(10)(72)(21)(84)(72)++--+x x x x(11)(1)(92)(1)(1)x x x x------(12)(5)(45)(73)(5)+-+-++a b b a(13)(85)(94)(85)(85)---+-+x y x y(14)2422-x y x yz2(15)(3)(52)(3)(51)(3)(93)---+--++-+a b a b a b(16)(83)(75)(83)(31)(83)(4)++++--++-+a b a b a b(17)(3)(52)(3)(64)+-+-+-m x m x(18)(5)(1)(5)(65)(5)(64)-++---+-+a b a b a b(19)(3)(81)(75)(3)x x x x+--+++(20)2223-153a b c c二、公式法(21)22-x y19664(22)22-+-m n m441(23)2-+x x49266361(24)22-+a ab b169468324(25)22-+a ab b60900(26)236418121x x ++(27)22169494361x xy y ++(28)229644249m n m ---(29)221625309m n n -+-(30)22649161a b a ---三、分组分解法(31)7014408xy x y ----(32)2212351525x z xy yz zx--++(33)22351642248a c ab bc ca-++-(34)36451620--+ab a b(35)22++++x z xy yz zx1828153554 (36)22--+-x y xy yz zx4542193630 (37)49147020mx my nx ny+--(38)22--++xy x y(39)22x y xy yz zx---+403191830 (40)56483530-+-+xy x y(41)22-+-+a c ab bc ca8158519 (42)22-+-+a b ab bc ca721029418(43)22352301219a c ab bc ca++--(44)221676322x z xy yz zx+-+-(45)49144212mn m n --+(46)48163612mx my nx ny-+-(47)40722036mx my nx ny-+-(48)22825355a b ab bc ca-+++(49)30103612mx my nx ny+--(50)70704242xy x y +--四、拆添项(51)221616644039m n m n -+-+(52)22649801816a b a b ---+(53)22252023a b a b -+++(54)2236121880m n m n --+-(55)2264961011x y x y --++(56)4224165749a a b b -+(57)4224429m m n n -+(58)22811081413x y x y --+-(59)221694836m n m n--+(60)4224493164a a b b ++五、十字相乘法(61)2--++x xy x y5635892535 (62)222+----96152122a b c ab bc ac(63)222+---+2146201039x y z xy yz xz (64)29961535-++-x xy x y(65)222+++--x y z xy yz xz2146201445 (66)22x xy y x y-+-+-1845734621 (67)22x xy y x y+--+1437423530 (68)222+-+-+20156352x y z xy yz xz(69)2482446205x xy x y +--+(70)24614912p pq p q -+-+(71)2263024372235x xy y x y -+-+-(72)2222456143132x y z xy yz xz--+--(73)222201634817a b c ab bc ac-++--(74)2220113541236u uv v u v --+-+(75)22122035842a ab b a b -----(76)22232425242060x y z xy yz xz+++++(77)22204161783a ab b a b +---+(78)22-++-+x xy y x y16263521212(79)222a b c ab bc ac+++++ 212420464647 (80)22-++-+x xy y x y672241424六、双十字相乘法(81)222a b c ab bc ac-++++121237913 (82)22--+-+x xy y x y16421822397 (83)222x y z xy yz xz--++-41036114 (84)22x xy y x y+-+--2748356121 (85)22+---+401125515x xy y x y(86)2262315361742a ab b a b ++---(87)2227364911x y z xy yz xz-----(88)221051523285a ab b a b -----(89)222646356932x y z xy yz xz+++++(90)22352231241x xy y x y +++++七、因式定理(91)32152234x x x -++(92)3224221715x x x +--(93)321021256x x x +-+(94)32466m m m ---(95)32273318x x x --+(96)326583y y y --+(97)32313106x x x -++(98)32376x x x +--(99)321110x x x ---(100)32311212x x x ++-北师大版八年级下册因式分解100题答案一、提取公因式(1)(75)(121)m n+-+ (2)(71)(175)x x---(3)(43)(59)m n--(4)(2)(6)m n+-(5)(71)(35)m x-++ (6)22424(3)x y a y+(7)23323(23)yz x z y z x-+ (8)3339(32)abc a b c-(9)(45)(1)a b++ (10)(72)(65)x x-+-(11)(1)(81)x x--(12)(5)(112)a b-+-(13)(85)(1)x y---(14)232(2)x y y z-(15)(3)(2)a b--+(16)(83)(38)a b++ (17)(3)(116)m x-+-(18)(5)(0)a b-+ (19)(3)(4)x x-+-(20)2223(5)c a b c-二、公式法(21)(148)(148)x y x y+-(22)(21)(21)m n m n++-+ (23)2(719)x-(24)2(1318)a b-(25)2(30)a b-(26)2(1911)x+(27)2(1319)x y+(28)(387)(387)m n m n+---(29)(453)(453)m n m n+--+(30)(831)(831)a b a b+---三、分组分解法(31)2(74)(51)x y-++ (32)(457)(35)x y z x z-+-(33)(564)(74)a b c a c+-+(34)(94)(45)a b--(35)(654)(37)x y z x z+++ (36)(976)(56)x y z x y+--(37)(710)(72)m n x y-+ (38)(2)(1)x y--+(39)(53)(86)x y x y z-++(40)(85)(76)x y-+-(41)(3)(85)a b c a c++-(42)(92)(852)a b a b c-++(43)(52)(76)a c ab c-+-(44)(2)(837)x z x y z---(45)(76)(72)m n--(46)4(43)(3)m n x y+-(47)4(2)(59)m n x y+-(48)(5)(85)a b a b c+-+(49)2(56)(3)m n x y-+(50)14(53)(1)x y-+四、拆添项(51)(4413)(443)m n m n++-+(52)(832)(838)a b a b+---(53)(51)(53)a b a b++-+(54)(610)(68)m n m n+--+(55)(811)(81)x y x y+---(56)2222(47)(47)a ab b a ab b+---(57)2222(25)(25)m mn n m mn n+---(58)(913)(91)x y x y+--+(59)(4312)(43)m n m n+--(60)2222(798)(798)a ab b a ab b++-+五、十字相乘法(61)(75)(857)x x y---(62)(23)(935)a b c a b c---+(63)(72)(326)x y z x y z---+(64)(35)(337)x x y--+(65)(326)(72)x y z x y z+-+-(66)(373)(67)x y x y-+--(67)(275)(76)x y x y+--(68)(432)(553)x y z x y z+-++ (69)(841)(65)x y x+--(70)(23)(234)p p q+-+(71)(47)(665)x y x y---+(72)(46)(65)x y z x y z--++(73)(543)(44)a b c a b c--+-(74)(56)(436)u v u v++-+(75)(346)(457)a b a b--++(76)(425)(825)x y z x y z++++(77)(543)(441)a b a b--+-(78)(236)(82)x y x y-+-+(79)(345)(764)a b c a b c++++ (80)(24)(326)x y x y-+-+六、双十字相乘法(81)(34)(433)a b c a b c++-+ (82)(837)(261)x y x y++-+ (83)(22)(253)x y z x y z-++-(84)(371)(951)x y x y++--(85)(83)(525)x y x y--+-(86)(656)(37)a b a b+++-(87)(733)(2)x y z x y z++--(88)(235)(551)a b a b--++ (89)(863)(8)x y z x y z++++(90)(731)(51)x y x y++++七、因式定理(91)(1)(31)(54)x x x-+-(92)(1)(65)(43)x x x+-+ (93)(3)(21)(52)x x x+--(94)2(2)(423)m m m-++ (95)(3)(6)(21)x x x+--(96)(1)(23)(31)y y y+--(97)2(3)(342)x x x---(98)2(2)(53)x x x-++ (99)2(2)(35)x x x+--(100)2(3)(324)x x x++-。
北师大版八年级数学下册第四章因式分解专项测试题 附答案解析(二)_1

第四章因式分解专项测试题(二)一、单项选择题(本大题共有 15 小题,每小题 3 分,共 45 分)1、填空:____________ .A. ,B. ,C. ,D. ,2、因式分解的结果是( )A.B. C. D. 3、下面的多项式在实数范围内能因式分解的是( )A.B.C.D. 4、下列四个多项式中,能分解因式的是( )A.B. C.D. 5、把因式分解的结果是( )A.B.C.D.6、在有理数范围内因式分解:①②④的有( )A. 个B. 个C. 个D. 个7、下列因式分解正确的是( )A. B. C. D. 8、下列因式分解的变形中,正确的是( )A. B. C. D. 9、多项式的公因式是( )A. B. C. D. 10、下列等式一定成立的是() A.B. C. D.③ 其中正确11、把多项式分解因式的结果是( )A. B. C. D. 12、化简: A. 无法化简()B. C. D. 13、分解因式:__________.A. B. C. D. 14、把代数式分解因式,下列结果中正确的是( )A. B. C. D. 15、多项式与多项式的公因式是( )A.B.C.D. 二、填空题(本大题共有 5 小题,每小题 5 分,共 25 分)16、填空:_______17、填空:已知,,则.18、若进行因式分解的结果为,则.19、分解因式:______.20、已知, 的值为.三、解答题(本大题共有 3 小题,每小题 10 分,共 30 分)21、用简便方法计算:.22、因式分解:.23、指出下列各式中的公因式:.第四章因式分解专项测试题(二) 答案部分一、单项选择题(本大题共有 15 小题,每小题 3 分,共 45 分)1、填空:____________ .A. ,B. ,C. ,D. ,【答案】D【解析】解:,. 故答案应选: , . 2、因式分解的结果是( )A.B.C.D. 【答案】B【解析】解:,,. 故正确答案为: . 3、下面的多项式在实数范围内能因式分解的是( )A. B.C. D. 【答案】D【解析】解:符合完全平方公式特征,可分解为:故答案为:.4、下列四个多项式中,能分解因式的是( )A.B. C.D. 【答案】B 【解析】解: 故答案为: 5、把符合完全平方公式特征,可分解为: .因式分解的结果是( )A.B.C.D. 【答案】D 【解析】解:故答案为:.6、在有理数范围内因式分解:①②④的有( )A. 个B. 个C. 个③ 其中正确D. 个 【答案】B 【解析】解:① 误; ② ③ ④ 故正确答案为: 个. 7、下列因式分解正确的是(,此为整式乘法,故本选项错,故本选项错误; ,故本选项正确; ,故本选项正确.)A.B.C.D. 【答案】A【解析】解:,故此选项错误;无法分解,故此选项错误;,故此选项错误;,故此选项正确;故正确答案为:.8、下列因式分解的变形中,正确的是( )A. B. C. D. 【答案】A 【解析】解:确;,故本选项正选项错误;故本选项错误;中,多项式有公因式,不能进行因式分解,故本选项错误;故答案为:.9、多项式的公因式是( )A.B.C.D.【答案】C【解析】解;公因式是多项式中每项都含有的因式,所以的公因式是,故答案为:.10、下列等式一定成立的是()A.B.C.D. 【答案】B 【解析】解:11、把多项式故 正确;故 错误;故 分解因式的结果是( )A.,故本 ,,没错误; 错误.B. C. D. 【答案】A 【解析】解:故答案为: 12、化简:A. 无法化简 B. C. D. 【答案】B 【解析】13、分解因式: A. B. C. D.【答案】B 【解析】 14、把代数式A. B.() __________.分解因式,下列结果中正确的是( )C.D. 【答案】D 【解析】 15、多项式与多项式的公因式是( )A.B.C.D. 【答案】D【解析】,,多项式与多项式的公因式是.二、填空题(本大题共有 5 小题,每小题 5 分,共 25 分)16、填空:_______【答案】【解析】解:. 故答案为: .17、填空:已知,,则.【答案】4000000【解析】解:当,时,原式.故答案为:.18、若进行因式分解的结果为,则.【答案】-2【解析】解:,,,,.故答案为:.19、分解因式:______.【答案】【解析】解:.20、已知,的值为 . 【答案】10【解析】解:由此可看出.故答案为:.三、解答题(本大题共有3小题,每小题10分,共30分)21、用简便方法计算:.【解析】解:.故答案为:.22、因式分解:.【解析】解:.故答案为:.23、指出下列各式中的公因式:.【解析】解:各式系数的最大公约数为;字母的指数最小为. 各式的公因式为.故答案应选:.。
(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》检测题(含答案解析)(5)

一、选择题1.下列各式由左边到右边的变形中,是分解因式的为( )A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ 2.已知a+b=3,ab=1,则多项式a 2b+ab 2-a-b 的值为( ) A .-1 B .0 C .3 D .63.若3x y +=+3x y -=- )A .B .1C .6D .3- 4.下列各式从左边到右边的变形是因式分解的是( )A .221(2)1x x x x -+=-+B .44331234x y x y xy =⋅C .2(2)(2)4x x x +-=-D .2269(3)x x x -+=-5.对于任何实数m 、n ,多项式2261036m n m n +--+的值总是( )A .非负数B .0C .大于2D .不小于26.已知三角形的三边a ,b ,c 满足2223()()b a b c ba a -+=-,则△ABC 是( )A .等腰三角形B .等腰直角三角形C .等边三角形D .等腰三角形或直角三角形 7.已知a ,b ,c 是△ABC 的三条边的长度,且满足a 2-b 2=c (a -b ),则△ABC 是( )A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形 8.下列各式的因式分解正确的是( )A .221142a a a ⎛⎫-+=- ⎪⎝⎭B .()3244a a a a -=-C .224(2)4a a a a --=--D .2294(34)(34)a b a b a b -=+-9.若a + b = 3,a 2-b 2=6,则a - b 等于( ) A .1 B .2C .-2D .-1 10.下列各多项式从左到右变形是因式分解,并分解正确的是( )A .2()()()(1)a b b a a b a b ---=--+B .2(2)(3)56x x x x ++=++C .2249(49)(49)a b a b a b -=-+D .222()()2m n m n m n -+=+-+11.下列等式从左到右变形中,属于因式分解的是( )A .a(x+y)=ax+ayB .x 2-2x+1=x(x-2)+1C .x 2-1=(x+1)(x-1)D .a 2+2a+3=(a+1)2+2 12.下列等式中从左到右边的变形是分解因式的是( )A .()21a a b a ab a +-=+-B .()2211a a a a --=-- C .()()22492323a b a b a b -+=-++ D .1212x x x ⎛⎫+=+ ⎪⎝⎭二、填空题13.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.14.分解因式:32m n m -=________.15.已知一个长方形的面积是2642a ab a -+,且它的一条边长为2a ,则长方形的周长为___.16.二次三项式2248y xy x -+-在实数范围内分解因式的结果是______.17.已知2x y -=,3xy =,则22x y xy -的值为__________.18.若x ﹣y =2,xy =3,则x 2y ﹣xy 2=____.19.若m +n =1,mn =﹣6,则代数式m 2n +mn 2的值是_____.20.若1,33a b a b +=-=-,则22a b -=_________. 三、解答题21.观察下列分解因式的过程:2223a ab b +-.解:原式=222223a ab b b b ++--222(2)4a ab b b =++-22()(2)a b b =+-()()22a b b a b b =+++-(3)()a b a b =+-像这种通过增减项把多项式转化成完全平方形式的方法称为配方法.(1)请你运用上述配方法分解因式:2245a ab b +-;(2)代数式222612a a b b ++-+是否存在最小值?如果存在,请求出当a 、b 分别是多少时,此代数式存在最小值,最小值是多少?如果不存在,请说明理由.22.(1)因式分解:()222224x y x y +- (2)计算:()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦23.下面是小华同学分解因式229()4()a x y b y x -+-的过程,请认真阅读,并回答下列问题.解:原式229()4()a x y b x y =-+-① 22()(94)x y a b =-+②2()(32)x y a b =-+③任务一:以上解答过程从第 步开始出现错误.任务二:请你写出正确的解答过程.24.计算或因式分解(1()20211- (2)计算()()()2322232a ab ab ⋅-÷-(3)因式分解:323108x xy -(4)因式分解:2221a b b -+-(5)先化简,再求值:()()()()225x y x y x y x x y ++-+--.其中1x =,y 是的小数部分.25.(阅读学习)课堂上,老师带领同学们学习了“提公因式法、公式法”两种因式分解的方法.分解因式的方法还有许多,如分组分解法.它的定义是:将一个多项式分组后,可提公因式或运用公式继续分解的方法叫分组分解法.使用这种方法的关键在于分组适当,而在分组时,必须有预见性.能预见到下一步能继续分解.例如:(1)()()()()()()am an bm bn am bm an bn m a b n a b a b m n +++=+++=+++=++; (2)()2222222121(1)(1)(1)x y y x y y x y x y x y ---=-++=-+=++--. (学以致用)请仿照上面的做法,将下列各式分解因式:(1)1ab a b --+;(2)22444x xy y -+-. (拓展应用)已知:7x y +=,5x y -=.求:2222x y y x --+的值.26.(阅读材料)把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.配方法在代数式求值、解方程、最值问题中都有着广泛的应用. 例如:①用配方法因式分解:a 2+6a +8.原式=a 2+6a +9-1=(a +3) 2-1=(a +3-1)( a +3+1)=(a +2)(a +4)②求x 2+6x +11的最小值.解:x 2+6x +11=x 2+6x +9+2=(x +3) 2+2;由于(x +3) 2≥0,所以(x +3) 2+2≥2,即x 2+6x +11的最小值为2.请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a 2+4a + ;(2)用配方法因式分解:a 2-12a +35;(3)用配方法因式分解:x 4+4;(4)求4x 2+4x +3的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义解答.【详解】解:A 、2105525x x x x x -=⋅-,不是分解因式;B 、()a x y ax ay +=+,不是分解因式;C 、()22442x x x -+=-,是分解因式;D 、()()2163443x x x x x -+=-++,不是分解因式; 故选:C .【点睛】此题考查多项式的分解因式,熟记定义及分解因式后式子的特点是解题的关键. 2.B解析:B【分析】根据分解因式的分组分解因式后整体代入即可求解.【详解】解:a 2b+ab 2-a-b=(a 2b-a )+(ab 2-b )=a (ab-1)+b (ab-1)=(ab-1)(a+b )将a+b=3,ab=1代入,得原式=0.故选:B .【点睛】本题考查了因式分解的应用,解决本题关键是掌握分组分解因式的方法.3.B解析:B【分析】利用平方差公式进行分解因式后计算即可得到答案.【详解】∵3x y +=+,3x y -=-∴=,故选:B.【点睛】此题考查平方差公式分解因式,22()()a b a b a b -=+-,熟记公式并运用解题是关键. 4.D解析:D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的意义求解即可.【详解】A 、没把一个多项式转化成几个整式积的形式,故A 不符合题意;B 、是单项式转化成几个整式积的形式,故B 不符合题意;C 、是整式的乘法,故C 不符合题意;D 、把一个多项式转化成几个整式积的形式,故D 符合题意;故选D .【点睛】本题考查了因式分解的意义,利用把一个多项式转化成几个整式积的形式是解题关键. 5.D解析:D【分析】利用完全平方公式把原式变形,根据偶次方的非负性解答即可.【详解】解:2261036m n m n +--+226910252m m n n =-++-++22(3)(5)2m n =-+-+,2(3)0m -,2(5)0n -,22(3)(5)22m n ∴-+-+,∴多项式2261036m n m n +--+的值总是不小于2,故选:D .【点睛】本题考查了完全平方公式的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.6.D解析:D【分析】先将原式分解因式得(b-a )(b 2+c 2-a 2)=0,从而得b ﹣a =0或c 2+b 2﹣a 2=0,根据等腰三角形的判定和勾股定理的逆定理判断即可.【详解】解:∵2223()()b a b c ba a -+=-,∴(b-a )(b 2+c 2-a 2)=0.∴b ﹣a =0或c 2+b 2﹣a 2=0,则a=b 或c 2+b 2=a 2.∴△ABC 是等腰三角形或直角三角形.故选D .【点睛】此题综合运用了因式分解的知识、勾股定理的逆定理.勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.7.C解析:C【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.8.A解析:A【分析】利用提公因式法同时结合公式法进行因式分解.【详解】A 、221142a a a ⎛⎫-+=- ⎪⎝⎭,正确,符合题意; B 、()3244(2)(2)a a a a a a a -=-=+-,错误,不符合题意;C 、右边不是积的形式,错误,不符合题意;D 、2294(32)(32)a b a b a b -=+-,错误,不符合题意;故选:A .【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.B解析:B【分析】根据平方差公式将a 2-b 2=6进行变形,再把a+b=3代入求值即可.【详解】解:∵a+b=3,∴a 2-b 2=(a+b )(a-b )=3(a-b )=6,∴a-b=2,故选:B .【点睛】此题主要考查了因式分解的应用,熟练掌握平方差公式是解答此题的关键.10.A解析:A【分析】直接利用因式分解的定义进而分析得出答案.【详解】解:A 、2()()()(1)a b b a a b a b ---=--+,是因式分解,故此选项正确;B 、(x+2)(x+3)=x 2+5x+6,是整式的乘法运算,故此选项错误;C 、4a 2-9b 2=(2a-3b )(2a+3b ),故此选项错误;D 、m 2-n 2+2=(m+n )(m-n )+2,不符合因式分解的定义,故此选项错误.故选:A .【点睛】此题主要考查了因式分解的意义,正确把握因式分解的定义是解题关键.11.C解析:C【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.【详解】解:A .属于整式乘法运算,不属于因式分解;B .右边不是几个整式积的形式,不属于因式分解;C .x 2-1=(x+1)(x-1),属于因式分解;D .右边不是几个整式积的形式,不属于因式分解.故选:C .【点睛】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.12.C解析:C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断.【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意; B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意; C 、()()22492323a b a b a b -+=-++,故该项符合题意; D 、1212x x x ⎛⎫+=+⎪⎝⎭,等式右侧是乘积,但1x不是整式,故该项不符合题意; 故选:C .【点睛】 此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.二、填空题13.4【分析】根据x2-3x -1=0可得x2-3x =1再将所求代数式适当变形后分两次整体代入即可求得值【详解】解:∵x2-3x -1=0∴x2-3x =1∴==将x2-3x =1代入原式==将x2-3x =1代解析:4【分析】根据x 2-3x -1=0可得x 2-3x =1,再将所求代数式适当变形后分两次整体代入即可求得值.【详解】解:∵x 2-3x -1=0,∴x 2-3x =1,∴3223111x x x --+=223132611x x x x -+-+=()22233111x x x x x -+-+将x 2-3x =1代入原式=221113x x x +-+=23)13(x x -+将x 2-3x =1代入原式=314+=,故答案为:4.【点睛】本题考查代数式求值,因式分解法的应用.解决此题的关键是掌握“降次”思想和整体思想. 14.【分析】原式提取公因式再利用平方差公式分解即可【详解】解:原式==故答案为:【点睛】此题考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解本题的关键解析:(1)(1)m mn mn -+【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:原式=3222(1)m n m m m n -=-,=(1)(1)m mn mn -+故答案为:(1)(1)m mn mn -+.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 15.【分析】先将分解因式得到长方形的另一条边长即可求解【详解】解:∵长方形的面积是它的一条边长为∴另一条边长是∴周长为:故答案为:【点睛】本题考查因式分解整式的加减运算掌握提公因式法是解题的关键 解析:1042a b -+【分析】先将2642a ab a -+分解因式,得到长方形的另一条边长,即可求解.【详解】解:∵长方形的面积是()26422321a ab a a a b -+=-+,它的一条边长为2a , ∴另一条边长是()321a b -+,∴周长为:()232121042a b a a b -++=-+,故答案为:1042a b -+.【点睛】本题考查因式分解、整式的加减运算,掌握提公因式法是解题的关键.16.【分析】先提出负号把括号内多项式分两组4y2-8xy 两项一组x2单独一组把两项一组配方4y2-8xy+4x2-4x2=4(y-x )2-4x2把-4x2与x2合并得-3x2括号内变为再因式分解即可【详解析:)(22)y x --【分析】先提出负号()224y 8xy x --+,把括号内多项式分两组4y 2-8xy 两项一组,x 2单独一组, 把两项一组配方4y 2-8xy +4x 2-4x 2=4(y-x )2-4x 2,把-4x 2与x 2合并得-3x 2,括号内变为 ()()2222224y 2-443xy x x x y x x ⎡⎤⎡⎤--++=---⎣⎦⎣⎦,再因式分解即可. 【详解】22-4y 8xy x +-,()224y 8xy x =--+,()222242y xy x x x ⎡⎤=--+-+⎣⎦, ()2243y x x ⎡⎤=---⎣⎦, ()()22y x y x ⎡⎤⎡⎤=--+-⎣⎦⎣⎦()()2222y x y x =--+-.故答案为:()()2222y x y x ---- 【点睛】本题考查在实数范围内因式分解问题,掌握两数和与差完全平方公式与平方差公式,会灵活运用公式解决问题,特别是三项式因式分解,一般要考虑用两数和与差完全平方公式,而且先配方,在因式分解是解题关键. 17.6【分析】直接提取公因式进而分解因式再整体代入数据即可得出答案【详解】∵∴=3×2=6故答案为:6【点睛】本题主要考查了分解因式的应用以及代数式的求值正确找出公因式是解题关键解析:6【分析】直接提取公因式xy ,进而分解因式,再整体代入数据即可得出答案.【详解】∵2x y -=,3xy =,∴()22x y xy xy x y -=- =3×2=6.故答案为:6.【点睛】本题主要考查了分解因式的应用以及代数式的求值,正确找出公因式是解题关键. 18.6【分析】原式提取xy 利用提公因式法因式分解将各自的值代入计算即可求出值;【详解】解:∵x-y=2xy=3∴原式=xy (x-y )==6【点睛】此题考查了提公因式法因式分解熟练掌因式分解是解本题的关键解析:6【分析】原式提取xy ,利用提公因式法因式分解,将各自的值代入计算即可求出值;【详解】解:∵x-y=2,xy=3,∴原式=xy (x-y )=32⨯=6.【点睛】此题考查了提公因式法因式分解,熟练掌因式分解是解本题的关键.19.-6【分析】利用提公因式法因式分解再把m+n =1mn =﹣6代入计算即可【详解】解:∵m+n =1mn =﹣6∴m2n+mn2=mn (m+n )=(﹣6)×1=﹣6故答案为:﹣6【点睛】此题考查了已知式子的解析:-6【分析】利用提公因式法因式分解,再把m +n =1,mn =﹣6代入计算即可.【详解】解:∵m +n =1,mn =﹣6,∴m 2n +mn 2=mn (m +n )=(﹣6)×1=﹣6.故答案为:﹣6.【点睛】此题考查了已知式子的值求代数式的值,正确分解因式是解题的关键.20.【分析】利用平方差公式进行计算即可得到答案【详解】解:∵∴;故答案为:【点睛】本题考查了平方差公式的运用解题的关键是熟练掌握平方差公式进行求值解析:1-【分析】利用平方差公式进行计算,即可得到答案.【详解】解:∵1,33a b a b +=-=-, ∴221()()(3)13a b a b a b =+-=⨯-=--; 故答案为:1-.【点睛】本题考查了平方差公式的运用,解题的关键是熟练掌握平方差公式进行求值.三、解答题21.(1)(a-b )(a+5b );(2)存在最小值,当a=-1,b=3时,最小值为2.【分析】(1)理解题意,按题意所给方法分解因式即可;(2)根据题中所给方法,对原式进行变形求解即可.【详解】解:(1) 2245a ab b +-,22224445a ab b b b -=++-,()()2223a b b =+-,()()2323b a b a b b =+++-,()()5a b a b =+-;(2)代数式222612a a b b ++-+,=a 2+2a+1+b 2-6b+9-1-9+12,=()()22132a b ++-+, ()()2210,30a b +≥-≥, ∴当10a +=,b-3=0即1a =-,b=3时原式有最小值,最小值是2.【点睛】本题主要考查了配方法分解因式,掌握因式分解的方法,正确理解问题情境是解题关键. 22.(1)()()22x y x y -+;(2)9a 【分析】(1)先用平方差公式进行因式分解,然后再用完全平方公式进行因式分解;(2)整式的混合运算,注意先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的.【详解】解:(1)()222224x y x y +- =()()222222x y xyx y xy +-++ =()()22x y x y -+(2)()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦ =()222296923a ab b b a a b ⎡⎤++--÷-⎣⎦ =2222(96+9)23a ab b b a a b ++-÷-=2(186)23a ab a b +÷-=933a b b +-=9a【点睛】本题考查因式分解和整式的混合运算,掌握运算法则正确计算是解题关键.23.①;见解析【分析】根据提公因式法和平方差公式进行因式分解.【详解】解:在小华同学的解答中,对原式进行变形,从第①步开始出现错误,故答案为:①正确过程如下:229()4()a x y b y x -+-229()4()a x y b x y =---22()(94)x y a b =--()(32)(32)x y a b a b =-+-.【点睛】本题考查综合提公因式和公式法进行因式分解,掌握提公因式技巧和平方差公式的公式结构正确计算是解题关键.24.(1)54;(2)94ab -;(3)3(6)(6)x x y x y +-;(4)(1)(1)a b a b +--+;(5)9xy ,9【分析】(1)先算算术平方根,立方根和乘方,再算加减法,即可求解;(2)先算积的乘方,再根据单项式的乘除法法则,求解即可;(3)先提取公因式,再利用平方差分解因式,即可;、(4)先括号,再利用完全平方公式和平方差公式分解因式,即可;(5)根据完全平方公式,平方差公式,单项式乘多项式法则,合并同类项法则,先化简,再代入求值,即可.【详解】(1)原式=()5(3)214+-+-- =54; (2)原式=()22433(2)(9)8a a b a b⋅÷- =94ab -; (3)原式=223(36)x x y -=3(6)(6)x x y x y +-;(4)原式=22(21)a b b --+=22(1)a b --=[][](1)(1)a b a b +---=(1)(1)a b a b +--+;(5)原式=222224455x xy y x y x xy +++--+=45xy xy +=9xy ,∵y的小数部分, ∴1y =,∴当1x =+,1y =时,原式=9xy 11)=9.【点睛】 本题主要考查实数的混合运算,整式的化简求值,分解因式,掌握平方差公式和完全平方公式,是解题的关键.25.(1)(1)(1)a b --;(2)(22)(22)x y x y -++-;【拓展应用】45.【分析】此题根据因式分解的常用方法,观察各式,参照例子把1ab a b --+分为()(1)ab a b ---再提取公因式分解即可,把22444x xy y -+-化为224)4(4x xy y --+再利用完全平方和平方差分解;把2222x y y x --+化为22()(22)x y x y -+-再因式分解代入即可.【详解】(1)1ab a b --+()()()()111ab a b a b =---=--(2)()()()()22222444444422222x xy y x xy y x y x y x y -+-=--+=--=-++-【拓展应用】 ()()()()222222222x y y x x y x y x y x y --+=-+-=-++∵7x y +=,5x y -=,代入得:原式=()(2)5(72)45x y x y -++=⨯+=.【点睛】此题考查了因式分解所涉及的相关知识:完全平方公式,平方差公式,提取公因式法因式分解和分组结合等,也考查了学生对题文的理解能力.26.(1)4;(2) ()()57a a --;(3) ()()222222x x x x ++-+;(4)2.【分析】(1)由2224___222,a a a a ++=+•⨯+ 从而可得答案;(2)由22221235266635a a a a -+=-•⨯+-+化为两数的平方差,再利用平方差公式分解,从而可得答案;(3)由()242222422222x x x x +=+••+-••化为两数的平方差,再利用平方差公式分解即可;(4)由 ()22224432221113x x x x ++=+⨯•+-+化为一个非负数与一个常数的和,再利用非负数的性质求解最小值即可.【详解】解:(1)()22442,a a a ++=+ 故答案为:4.(2)22221235266635a a a a -+=-•⨯+-+()2261a =--()()6161a a =-+-- ()()57.a a =--(3)()242222422222x x x x +=+••+-•• ()()22222x x =+-()()222222.x x x x =++-+(4)()22224432221113x x x x ++=+⨯•+-+ ()2212x =++ ()2210,x +≥()22122,x ∴++≥ 2443x x ∴++的最小值是2.【点睛】本题考查的是配方法的应用,同时考查了完全平方公式与平方差公式,掌握用配方法分解因式,求最值是解题的关键.。
(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》检测题(答案解析)(2)
一、选择题1.如图,Rt ABC ∆中,90,2,3ACB BC AC ︒∠===,点D 在Rt ABC ∆的边AC 上,DC m =,以BD 为直角边在AC 同侧作等腰直角三角形BDE ,使BD DE n ==,连接AE ,若52AEBC S n =四边形,则m 与n 的数量关系式是( )A .6nm =B .5m n +=C .1n m -=D .23n m = 2.下列因式分解中,正确的是( )A .224(4)(4)x y x y x y -=-+B .()ax ay a a x y ++=+C .()()()()a x y b y x x y a b -+-=--D .2224(2)x y x y +=+3.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解 4.下列各式由左边到右边的变形中,是分解因式的为( ) A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ 5.已知a+b=3,ab=1,则多项式a 2b+ab 2-a-b 的值为( ) A .-1B .0C .3D .6 6.下列各式从左到右的变形中,属于因式分解的是( ) A .()a m n am an +=+B .2221(1)x x x +-=-C .21055(21)x x x x -=-D .216+6(+4)(4)+6x x x x x -=-7.下列各式中,能用完全平方公式进行因式分解的是() . A .2x 4x 4-+B .2x 1+C .2x 2x 2--D .2x 4x 1++ 8.已知a +1a =3,则a 2+21a等于( )A .5B .7C .9D .11 9.下列等式从左到右的变形是因式分解的是( ) A .12a 2b 2=3a •4ab 2 B .(x +4)(x ﹣4)=x 2﹣16C .am +an =a (m +n )D .x ﹣1=x (1﹣1x) 10.下列等式从左到右变形中,属于因式分解的是( ) A .a(x+y)=ax+ay B .x 2-2x+1=x(x-2)+1 C .x 2-1=(x+1)(x-1)D .a 2+2a+3=(a+1)2+2 11.下列四个多项式:①-a 2+b 2;②-x 2-y 2;③1-(a -1)2;④x 2-2xy +y 2,其中能用平方差公式分解因式的有( )A .4个B .3个C .2个D .1个12.下列各式由左到右的变形中,属于分解因式的是( )A .x 2﹣16+6x =(x +4)(x ﹣4)+6xB .10x 2﹣5x =5x (2x ﹣1)C .a 2﹣b 2﹣c 2=(a ﹣b )(a +b )﹣c 2D .a (m +n )=am +an二、填空题13.分解因式:224ma mb -=______.14.已知一个长方形的面积是2642a ab a -+,且它的一条边长为2a ,则长方形的周长为___.15.分解因式:a 3﹣4a 2b+4ab 2=___________.16.计算()()9910022-+-=_______. 17.分解因式(2a ﹣1)2+8a =__.18.分解因式:1015mn m -= ______.19.已知3a b -=,4b c -=-,则代数式()2a acb ac ---的值是________.20.已知:10,a a a>-=1a a +=___________________. 三、解答题21.计算:(1)(ab+1)2﹣(ab ﹣1)2(2)4xy 2z÷(-2x -2yz -1)22.计算:(1)分解因式①()()39a x y y x -+-②27196x x --(2)解不等式及不等式组并把它们的解集在数轴上表示出来.①()21132x x +-≥+②43421x x x x ->⎧⎨+<-⎩23.化简与因式分解:()1化简:()()()()3362a a a a -+-+-;()2因式分解:()()3x p q x q p +--24.因式分解:(1)322242a a b ab -+(2)4481x y -25.a b c 是ABC 的三边,且有2241029a b a b +=+-(1)求a 、b 的值(2)若c 为整数,求c 的值(3)若ABC 是等腰三角形,求这个三角形的周长26.因式分解:(1)3-a b ab(2)2244x xy y -+-【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】作EF ⊥AC ,垂足为F ,根据全等的条件可得,△DBC ≌△EDF ,可得CD=EF=m ,AEBC S =四边形S △BDE + S △BDC + S △ADE ,可得出m+n=5.【详解】解:作EF ⊥AC ,垂足为F∴∠EFD=90,ACB ︒∠=∴∠BDC+∠DBC=90°∵三角形BDE 是等腰直角三角形,∴∠EDB=90°,∴∠EDF+∠BDC=90°,∴∠EDF=∠DBC在△DBC 和△EDF 中==EFD DCB EDF DBC ED DB ∠∠⎧⎪∠∠⎨⎪=⎩∴△DBC ≌△EDF (AAS )∴CD=EF=m,∵AC=3,∴AD=AC-CD=3-m∵AEBC S =四边形S △BDE + S △BDC + S △ADE∴AEBC S =四边形111222BD DE DC CB AD FE ⋅+⋅+⋅ =11152(3)2222n n m m m n ⋅+⋅+-⋅= 化简得:22235n m m m n ++-=()()5()n m n m n m +-=-,∵n 是Rt DBC ∆的斜边,m 是直角边∴n-m >0∴5n m +=故答案选:B【点睛】本题主要考查了构造三角形全等,割补法求面积,因式分解,解决本题的关键是构造全等三角表示出面积.2.C解析:C【分析】根据因式分解的基本方法,对各多项式进行分解,即可得出结论.【详解】解:A 、224(2)(2)x y x y x y -=-+,故此选项错误;B 、(1)ax ay a a x y ++=++,故此选项错误;C 、()()()()a x y b y x x y a b -+-=--,故此选项正确;D 、224x y +不能在实数范围内分解因式,故此选项错误.故选:C .【点睛】本题考查了因式分解,掌握因式分解的基本方法是解题的关键.3.D解析:D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.4.C解析:C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义解答.【详解】解:A 、2105525x x x x x -=⋅-,不是分解因式;B 、()a x y ax ay +=+,不是分解因式;C 、()22442x x x -+=-,是分解因式;D 、()()2163443x x x x x -+=-++,不是分解因式; 故选:C .【点睛】此题考查多项式的分解因式,熟记定义及分解因式后式子的特点是解题的关键. 5.B解析:B【分析】根据分解因式的分组分解因式后整体代入即可求解.【详解】解:a 2b+ab 2-a-b=(a 2b-a )+(ab 2-b )=a (ab-1)+b (ab-1)=(ab-1)(a+b )将a+b=3,ab=1代入,得原式=0.故选:B .【点睛】本题考查了因式分解的应用,解决本题关键是掌握分组分解因式的方法.6.C解析:C【分析】根据因式分解的定义逐项作出判断即可.【详解】解:A. ()a m n am an +=+,是乘法运算,不是因式分解,不合题意;B. 2221(1)x x x +-=-,变形错误,不是因式分解,不合题意;C. 21055(21)x x x x -=-,是因式分解符合题意;D. 216+6(+4)(4)+6x x x x x -=-,没有化为整式的积的形式,不是因式分解,不合题意. 故选:C .【点睛】本题考查了因式分解的定义:把一个多项式化为几个整式的积的形式,叫因式分解. 7.A解析:A【分析】根据完全平方式的特征进行因式分解,判断即可.【详解】A. 22x 4x 4=(x-2)-+,能用完全平方公式进行因式分解,故选项A 正确;B. 2x 1+,不能用完全平方公式进行因式分解,故选项B 错误;C. 2x 2x 2--,不能用完全平方公式进行因式分解,故选项C 错误;D. 2x 4x 1++,不能用完全平方公式进行因式分解,故选项D 错误.故选:A【点睛】本题考查的是多项式的因式分解,掌握用完全平方公式进行因式分解的方法是解题的关键. 8.B解析:B【分析】 利用完全平方公式把221a a+变形成为21()2a a +-,代入解答即可. 【详解】 221a a+=21()2a a +-=232-=7. 故选B .【点睛】 本题考查了完全平方公式.解题的关键是把221a a +变形成为21()2a a +-.9.C解析:C【分析】因式分解就是把一个多项式化为几个整式的积的形式.要确定从左到右的变形中是否为因式分解,只需根据定义来确定.【详解】A、左边不是多项式的形式,不是因式分解,故此选项不符合题意;B、是整式的乘法,不是因式分解,故此选项不符合题意;C、am+an=a(m+n)是因式分解,故此选项符合题意;D、右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意.故选:C.【点睛】本题考查了因式分解的意义,解决问题的关键在于能否正确应用分解因式的定义来判断;同时还要注意变形是否正确.10.C解析:C【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.【详解】解:A.属于整式乘法运算,不属于因式分解;B.右边不是几个整式积的形式,不属于因式分解;C.x2-1=(x+1)(x-1),属于因式分解;D.右边不是几个整式积的形式,不属于因式分解.故选:C.【点睛】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.11.C解析:C【分析】根据平方差公式特点:①两项,②都可以写成平方的形式,③平方前面是异号,可以得到答案.【详解】解:①-a2+b2;③1-(a-1)2;符合平方差特点;④x2-2xy+y2,②-x2-y2;不符合平方差特点;故选:C.【点睛】此题主要考查了平方差公式特点,把握公式特点是解题的关键.12.B【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A 、变形的结果不是几个整式的积,不是因式分解;B 、把多项式10x 2﹣5x 变形为5x 与2x ﹣1的积,是因式分解;C 、变形的结果不是几个整式的积,不是因式分解;D 、变形的结果不是几个整式的积,不是因式分解;故选:B .【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.二、填空题13.【分析】应先提取公因式m 再对余下的多项式利用平方差公式继续分解;【详解】故答案为:【点睛】本题考查了提公因式法公式法分解因式关键在于提取公因式后继续利用平方差公式进行因式分解解析:()()22m a b a b -+【分析】应先提取公因式m ,再对余下的多项式利用平方差公式继续分解;【详解】()()()22224422ma mb m a b m a b a b -=-=+- ,故答案为:()()22m a b a b +-.【点睛】本题考查了提公因式法、公式法分解因式,关键在于提取公因式后继续利用平方差公式进行因式分解.14.【分析】先将分解因式得到长方形的另一条边长即可求解【详解】解:∵长方形的面积是它的一条边长为∴另一条边长是∴周长为:故答案为:【点睛】本题考查因式分解整式的加减运算掌握提公因式法是解题的关键 解析:1042a b -+【分析】先将2642a ab a -+分解因式,得到长方形的另一条边长,即可求解.【详解】解:∵长方形的面积是()26422321a ab a a a b -+=-+,它的一条边长为2a , ∴另一条边长是()321a b -+,∴周长为:()232121042a b a a b -++=-+,故答案为:1042a b -+.本题考查因式分解、整式的加减运算,掌握提公因式法是解题的关键.15.a (a ﹣2b )2【解析】试题分析:根据因式分解的步骤和方法先提公因式再用完全平方公式分解为:a3﹣4a2b+4ab2=a (a2-4ab+4b2)=a (a-2b )2故答案为a (a-2b )2点睛:因式分解析:a (a ﹣2b )2【解析】试题分析:根据因式分解的步骤和方法,先提公因式,再用完全平方公式分解为: a 3﹣4a 2b+4ab 2=a (a 2-4ab+4b 2)=a (a-2b )2.故答案为a (a-2b )2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).16.【分析】先提取公因式即可得【详解】解:故答案为:【点睛】本题考查因式分解提取公因式的方法熟练掌握提取公因式方法是解题的关键解析:992【分析】先提取公因式,即可得()()999999100(2)222(1)2-⨯-++=-=-. 【详解】解:()()999999100(2)222(1)2-⨯-++=-=- 故答案为:992【点睛】本题考查因式分解提取公因式的方法,熟练掌握提取公因式方法是解题的关键. 17.(2a+1)2【分析】运用乘法公式展开合并同类项即可再根据完全平方公式进行分解因式【详解】原式═4a2+4a+1=(2a )2+4a+1=(2a+1)2故答案为:(2a+1)2【点睛】本题考查乘法公式解析:(2a +1)2【分析】运用乘法公式展开,合并同类项即可,再根据完全平方公式进行分解因式.【详解】原式═4a 2+4a +1=(2a )2+4a +1=(2a +1)2,故答案为:(2a +1)2.【点睛】本题考查乘法公式在多项式的化简及因式分解中的运用.解题关键是明确要求,特别是因式分解时,要分解到不能再分解为止.18.【分析】提取公因式5m 后即可求解【详解】原式=【点睛】此题考查因式分解熟练运用提取公因式法运算是解题关键解析:5(23)m n -【分析】提取公因式5m 后即可求解.【详解】原式=5253⋅-⋅m n m5(23)=-m n【点睛】此题考查因式分解,熟练运用提取公因式法运算是解题关键.19.-3【分析】先根据求出a-c=-1再将多项式分解因式代入求值即可【详解】∵∴a-c=-1∴====-3故答案为:-3【点睛】此题考查多项式的化简求值掌握多项式的因式分解的方法:分组分解法和提公因式法解析:-3【分析】先根据3a b -=,4b c -=-,求出a-c=-1,再将多项式分解因式代入求值即可.【详解】∵3a b -=,4b c -=-,∴a-c=-1,∴()2a acb ac --- =()()a a c b a c ---=()()a c a b --=13-⨯=-3,故答案为:-3.【点睛】此题考查多项式的化简求值,掌握多项式的因式分解的方法:分组分解法和提公因式法是解题的关键.20.【分析】由已知式子利用等式性质开方运算以及完全平方公式进行变形可得再由已知条件即可确定答案【详解】解:∵∴∴∴∴∴∴∴∵∴故答案是:【点睛】本题考查了代数求值涉及到的知识点有等式性质开方运算完全平方解析:【分析】由已知式子利用等式性质、开方运算以及完全平方公式进行变形可得1a a +=±已知条件0a >即可确定答案.【详解】解:∵1a a-=∴(221a a ⎛⎫-= ⎪⎝⎭ ∴22128a a -+= ∴22110a a+= ∴221212a a++= ∴2211212a a a a ⎛⎫+⋅⋅+= ⎪⎝⎭∴2112a a ⎛⎫+= ⎪⎝⎭∴1a a+==±∵0a >∴1a a +=.故答案是:【点睛】本题考查了代数求值,涉及到的知识点有等式性质、开方运算、完全平方公式等知识点,体现了数学运算的核心素养.三、解答题21.(1)4ab ;(2)322x yz - .【分析】(1)利用平方差公式进行计算即可;(2)根据单项式除以单项式的法则计算即可.【详解】(1) 22(1)(1)ab ab +--= (11)(11)ab ab ab ab ++-+-+=2ab×2=4ab ;(2) 2214(2)xy z x yz --÷-= 1(2)211(1)4(2)x y z -----÷-= 322x yz -.【点睛】本题考查了平方差公式,单项式除以单项式,熟练掌握平方差公式和单项式除以单项式的法则是解题的关键.22.(1)①()()33x y a --;②(3)(72)x x -+;(2)①x≤-1,数轴见详解;②x >5,数轴见详解【分析】(1)①根据提取公因式法,即可求解;②根据十字相乘法分解因式,即可求解;(2)①通过去括号,移项合并同类项,未知数系数化为1,即可求解;②分别求出两个不等式的解,再取公共部分,即可.【详解】(1)①原式=()()39a x y x y ---=()()39x y a --=()()33x y a --;②原式=(3)(72)x x -+;(2)①()21132x x +-≥+,去括号得:22132x x +-≥+,移项合并同类项得:1x -≥,解得:x≤-1,②43421x x x x ->⎧⎨+<-⎩①②, 由①得:x >1,由②得:x >5,∴不等式组的解为:x >5.【点睛】本题主要考查因式分解以及解一元一次不等式(组),熟练掌握提取公因式法以及解不等式(组)的基本步骤,是解题的关键.23.()143a -;()2()11()()+--x x x p q【分析】(1)先用多项式公式和乘法法则展开,合并同类项即可;(2)先提公因式,然后再用公式因式分解即可.【详解】解:()1原式()()22941243a a a a =--++--=; ()2原式()()()211())1(x p q x x x x p q =--=+--. 【点睛】本题考查多项式乘法与因式分解,掌握多项式乘法法则与因式分解方法,两者互为逆运算,能区别多项式乘法与因式分解是解题关键.24.(1)22()a a b -;(2)22((3)(3)9)x y x y x y +-+.【分析】(1)先提公因式2a ,再利用完全平方公式进行分解222a ab b -+,即可得出结果;(2)原多项式先利用平方差公式分解为2222(9)(9)x y x y +-,再次利用平方差公式对229x y -进行分解即可.【详解】解:(1)322242a a b ab -+222(2)a a ab b =-+22()a a b =-,(2)4481x y -2222(9)(9)x y x y =+-22(93(3))()x y x y x y =+-+.【点睛】本题考查了因式分解,掌握因式分解的基本方法并能结合多项式的特点准确分解是解题的关键.25.(1)2a =,5b =;(2)4c =或5c =或6c =;(3)12【分析】(1)由a 2+b 2=4a+10b−29,可得:(a−2)2+(b−5)2=0,利用非负数的性质求解a ,b ; (2)再利用三角形三边的关系得到c 的取值范围;(3)分两种情况讨论,当a=2为腰时,当b=5为腰时,再结合三角形的三边的关系,确定三角形的三边,从而可得答案.【详解】解:(1)2241029a b a b +=+-()()224410250a a b b -++-+=()()22250a b -+-=2a =,5b =(2)a 、b 、c 是ABC 的三边37c ∴<<又c 为整数4c ∴=,5c =,6c =(3)ABC 是等腰三角形,2a =,5b =根据三边关系可知,只有当c=5时三角形才为等腰三角形,5c ∴=25512ABC C ∴=++=△故周长为:12【点睛】本题考查的是完全平方式的变形,非负数的性质,因式分解,三角形三边之间的关系,等腰三角形的定义,掌握以上知识是解题的关键.26.(1)()()11ab a a +-;(2)()22x y -- 【分析】(1)首先提公因式“ab”,然后再利用平方差公式分解即可;(2)首先提出“-”,然后利用完全平方公式分解.【详解】解:(1)3-a b ab()21ab a =-()()11ab a a =+-(2)2244x xy y -+-()2244x xy y =--+()22x y =--【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用公式法进行二次分解,注意分解要彻底.。
2022年最新北师大版八年级数学下册第四章因式分解单元测试试题(含答案解析)
北师大版八年级数学下册第四章因式分解单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果a 、b 分别是622ab a b -的值是( )A .8B .8-C .4D .4-2、已知x 2+x ﹣6=(x +a )(x +b ),则( )A .ab =6B .ab =﹣6C .a +b =6D .a +b =﹣63、在实数范围内因式分解2x 2﹣3xy ﹣y 2,下列四个答案中正确的是( )A .(x y )(x )B .(x y )(x )C .2(x y )(x )D .2(x y )(x ) 4、下列各式从左至右是因式分解的是( )A .()242(2)a a a -=+-B .()()2211x y x y x y --=+--C .222()x y x xy y +=++D .222()2x y x xy y -=++5、下列多项式中有因式x ﹣1的是( )①x 2+x ﹣2;②x 2+3x +2;③x 2﹣x ﹣2;④x 2﹣3x +2A .①②B .②③C .②④D .①④6、下列运算错误的是( )A .()23924b b =B .235a a a ⋅=C .()ax ay a x y +=+D .32a a a ÷=(a ≠0)7、如果多项式x 2﹣5x +c 可以用十字相乘法因式分解,那么下列c 的取值正确的是()A .2B .3C .4D .58、若a 2=b +2,b 2=a +2,(a ≠b )则a 2﹣b 2﹣2b +2的值为( )A .﹣1B .0C .1D .39、下列各式中,从左到右的变形是因式分解的是( )A .2a 2﹣2a +1=2a (a ﹣1)+1B .(x +y )(x ﹣y )=x 2﹣y 2C .x 2﹣4xy +4y 2=(x ﹣2y )2D .x 2+1=x (x +1x )10、因式分解m 2-m -6正确的是( )A .(m +2)(m -3)B .(m -2)(m +3)C .(m -2)(m -3)D .(m +2)(m +3)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:322x x -=______.2、已知ab =2,a ﹣b =﹣4,则a 2b ﹣ab 2=___.3、当x =4,a +b =-3时,代数式:ax +bx 的值为________.4、因式分解:-12x2+xy-12y2=________.5、在实数范围内因式分解:y2﹣2y﹣1=__________________.三、解答题(5小题,每小题10分,共计50分)1、先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2﹣6x﹣7;(2)分解因式:a2+4ab﹣5b22、(1)若x+1是多项式x3+ax+1的因式,求a的值并将多项式x3+ax+1分解因式.(2)若多项式3x4+ax3+bx-34含有因式x+1及x-2,求a+b的值.3、(1)20032-1999×2001(公式法)(2)16(a-b)2-9(a+b)2(分解因式)4、因式分解:(1)9y2 - 16x2(2)x2(x﹣y)+9(y﹣x)(3)a 2 -4a+4 (4)-2a3+12a2-18a5的小数部分我们不可能全部写出1的小数部分.理由是:对于正无理数,用本身减去其整数部分,差11.参考小燕同学的做法,解答下列问题:(1________;(2)已知7a 和b ,求a 2+2ab +b 2的值;(339=x y ,其中x 是整数,0<y <1,那么25x y +=________(4m 为正整数)的整数部分为n ,那么mm 的小数部分为________(用含m ,n 的式子表示).-参考答案-一、单选题1、B【分析】的范围,进而求得6,a b 的值,进而代入代数式求值即可【详解】 122<<21∴-<-则4<65<a、b 分别是64,642a b ===∴22ab a b -()ab b a =-(()4224=⨯⨯ ((422=-⨯⨯+ ()442=-⨯-8=-【点睛】本题考查了估算无理数的大小,二次根式的混合运算,求得,a b的值是解题的关键.2、B【分析】先利用十字相乘法去掉括号,再根据等式的性质得a+b=1,ab=﹣6.【详解】解:∵x2+x﹣6=(x+a)(x+b),∴x2+x﹣6=x2+(a+b)x+ab,∴a+b=1,ab=﹣6;故选:B.【点睛】本题考查了十字相乘法分解因式,掌握运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,这是解题关键.3、C【分析】首先解关于x的方程,进而分解因式得出即可.【详解】解:当2x2﹣3xy﹣y2=0时,解得:x1y,x2,则2x2﹣3xy﹣y2=2(x y)(x).故选:C.此题主要考查了实数范围内分解因式,正确解方程是解题关键.4、A【分析】根据因式分解的定义逐个判断即可.【详解】解:A 、()242(2)a a a -=+-,等式从左到右的变形属于因式分解,故本选项符合题意;B 、()()2211x y x y x y --=+--,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C 、222()x y x xy y +=++,是整式的乘法,不是因式分解,故本选项不符合题意;D 、222()2x y x xy y -=++,是整式的乘法,不是因式分解,故本选项不符合题意.故选:A .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5、D【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:①x 2+x ﹣2=()()21x x +-;②x 2+3x +2=()()21x x ++;③x 2﹣x ﹣2=()()12x x +-;④x 2﹣3x +2=()()21x x --.∴有因式x ﹣1的是①④.故选:D .【点睛】本题考查了十字相乘法因式分解,对于形如2x px q ++的二次三项式,若能找到两数a b 、,使a b q ⋅=,且a b p +=,那么2x px q ++就可以进行如下的因式分解,即()()()22x px q x a b x ab x a x b ++=+++=++.6、A【分析】根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.【详解】解:A. ()23624b b =,故该选项错误,符合题意; B. 235a a a ⋅=,故该选项正确,不符合题意;C. ()ax ay a x y +=+,故该选项正确,不符合题意;D. 32a a a ÷=(a ≠0),故该选项正确,不符合题意,故选A .【点睛】本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.7、C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A 、252x x -+,不能用十字相乘法进行因式分解,不符合题意;B 、253x x -+,不能用十字相乘法进行因式分解,不符合题意;C 、()()25414x x x x -+=--,能用十字相乘法进行因式分解,符合题意;D 、255x x ,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.8、D【分析】由a 2=b +2,b 2=a +2,且a ≠b ,可得a +b =−1,将a 2-b 2-2b +2变形为(a +b )(a -b )−2b +2,再代入计算即可求解.【详解】解:∵a 2=b +2,b 2=a +2,且a ≠b ,∴a 2−b 2=b −a ,即(a +b )(a -b )=b -a ,∴a +b =−1,∴a 2-b 2-2b +2=(a +b )(a -b )−2b +2=b −a -2b +2=-(a+b)+2=1+2=3.故选:D.【点睛】本题考查了代数式求值,解题的关键是求得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2是解题的关键.9、C【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从左到右的变形不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从左到右的变形属于因式分解,故本选项符合题意;D.等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;故选:C.【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式.10、A【分析】先把6分解32,再利用十字乘法分解因式,再逐一分析各选项,从而可得答案.【详解】解: m 2-m -632m m故选A【点睛】 本题考查的是利用十字乘法分解因式,掌握“利用十字乘法分解因式”是解题的关键.二、填空题1、()221x x -【分析】用提公因式法即可分解因式.【详解】()322221x x x x -=-.故答案为:()221x x -.【点睛】本题考查了提公因式法分解因式,因式分解的步骤一般是先考虑提公因式,其次考虑公式法.另外因式分解要进行到再也不能分解为止.2、-8【分析】将22a b ab -提取公因式,在整体代入求值即可.【详解】∵2ab =,4a b -=-,∴22()2(4)8a b ab ab a b -=-=⨯-=-.故答案为:-8.【点睛】本题考查代数式求值和因式分解,利用整体代入的思想是解答本题的关键.3、-12【分析】本题可先代入x 的值得4(a +b ),再把a +b =-3整体代入求值即可.【详解】解:∵x =4,a +b =-3∴ax +bx ()()=4444312a b a b +=+=⨯-=-故答案为:-12【点睛】本题主要考查了因式分解的应用,整理出已知条件的形式是解题的关键,注意整体代换的思想.4、21()2x y -- 【分析】综合利用提公因式法和完全平方公式进行因式分解即可得.【详解】 解:原式()22122x xy y =--+ ()212x y =--, 故答案为:()212x y --. 【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题关键.5、(y﹣1)(y﹣1)【分析】变形整式为y2﹣2y+1﹣2,前三项利用完全平方公式,再利用平方差公式因式分解.【详解】解:y2﹣2y﹣1=y2﹣2y+1﹣2=(y﹣1)22=(y﹣1)(y﹣1).故答案为:(y﹣1(y﹣1.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式因式分解的方法是解题的关键.三、解答题1、(1)(x+1)(x-7);(2)(a+5b)( a-b)【分析】(1)仿照例题方法分解因式即可;(2)仿照例题方法分解因式即可;【详解】解:(1)x2﹣6x﹣7= x2﹣6x+9-16=(x-3)2-42=(x-3+4)(x-3-4)=(x+1)(x-7);(2)a2+4ab﹣5b2= a2+4ab+4b2﹣9b2=(a+2b)2-(3b)2=(a+2b +3b)(a+2b-3b)=(a+5b)( a-b).【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,理解题中的分解因式方法并能灵活运用是解答的关键.2、(1)a=0;(x+1)(x2-x+1);(2)-31;【分析】(1)先将x=-1代入x3+ax+1=0中,得a=0,令x3+1=(x+1)(x2+bx+c),根据等式两边x同次幂的系数相等确定b、c的值,再因式分解多项式;(2)设3x4+ax3+bx-34=(x+1)(x-2)•M,则x=-1,x=2是方程3x4+ax3+bx-34=0的解,然后解关于a、b的方程组,即可得到答案.【详解】解:(1)∵x+1是多项式x3+ax+1的因式,∴当x=-1时,x3+ax+1=0,∴-1-a+1=0,∴a=0,令x3+1=(x+1)(x2+bx+c),而(x+1)(x2+bx+c)=x3+(b+1)x2+(c+b)x+c,∵等式两边x同次幂的系数相等,即x3+(b+1)x2+(c+b)x+c=x3+1,∴101bc+=⎧⎨=⎩,解得:11bc=-⎧⎨=⎩,∴a的值为0,x3+1=(x+1)(x2-x+1);(2)设3x4+ax3+bx-34=(x+1)(x-2)•M(其中M为二次整式),∴x=-1,x=2是方程3x4+ax3+bx-34=0的解,∴3340 31682340a ba b---=⎧⎨⨯++-=⎩∴839ab=⎧⎨=-⎩,∴a+b=8+(-39)=-31;【点睛】本题考查了分解因式,因式分解的应用,解二元一次方程组,解题的关键是掌握因式分解的方法,从而进行解题.3、(1)12010;(2)(7a-b)(a-7b)【分析】(1)运用完全平方公式和平方差公式进行计算即可;(2)直接运用平方差公式进行计算即可.【详解】解:(1)20032-1999×2001=(2000+3)2-(2000-1)(2000+1)=20002+2×2000×3+9-(20002-12)=20002+2×2000×3+9-20002+12=12010(2)16(a -b )2-9(a +b )2=22[4()][3()]a b a b --+=[4()3()]{4()3()]a b a b a b a b -++--+=(4433)(4433)a b a b a b a b -++---=(7)(7)a b a b --【点睛】本题主要考查了分解因式,熟练掌握因式分解的方法是解答本题的关键.4、(1)(34)(34)y x y x +-;(2)()(3)(3)x y x x -+-;(3)2(2)a -;(4)22(3)a a --【分析】(1)原式直接用平方差公式进行因式分解即可;(2)原式先提取公因式(x -y )再运用平方差公式进行因式分解即可;(3)原式直接运用完全平方公式进行因式分解即可;(4)原式先提取公因式-2a ,再运用完全平方公式进行因式分解即可【详解】解:(1)9y 2 - 16x 2=22(3)(4)y x -=(34)(34)y x y x +-(2)x 2(x ﹣y )+9(y ﹣x )= x 2(x ﹣y )-9(x ﹣y )=2()(9)x y x --=()(3)(3)x y x x -+-(3)a 2 -4a +4=22222a a -⨯+=2(2)a -(4)-2a 3+12a 2-18a=22(69)a a a --+=22(3)a a --【点睛】本题主要考查了因式分解,熟练掌握乘法公式是解答本题的关键5、(13;(2)1;(3(4)1n m【分析】(1)由题意易得34<3,然后问题可求解;(2)由题意易得23<,则有97+710,475<,然后可得7+7972,77437a b ,然后根据完全平方公式可进行求解;(3)由题意易得23<2,然后可得35,92xy ,进而问题可求解;(4)根据题意可直接进行求解.【详解】解:(1)∵34<,3,3;3;(2)∵23,∴97+710,475<,∵7a 和b , ∴7+7972,77437a b ,∴2222272371a ab b a b ;(339=x y 可知339=x y ,∵23<<,2,∵x 是整数,0<y <1, ∴35,92x y ,∴225255x y +=⨯=;(4m 为正整数)的整数部分为n ,∴n∴m m的小数部分即为1,为1n m;故答案为1n m.【点睛】本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.。
(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》检测题(有答案解析)(3)
一、选择题1.下列因式分解正确的是( )A .m 2+n 2=(m+n)(m-n)B .a 3-a=a(a+1)(a-1)C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)2 2.若22()x y A x y -+⋅=-,则代数式A 等于( ) A .x y --B .-+x yC .x y -D .x y + 3.下列各式中能用完全平方公式分解因式的是( ) A .2444x x ++B .244x x -++C .4244x x -+D .291216x x ++ 4.如果917255+能被n 整除,则n 的值可能是( ) A .20B .30C .35D .40 5.下列各式由左到右的变形中,属于因式分解的是( ) A .()210x 5x 5x 2x 1-=-B .()()2222a b c a b a b c --=-+-C .()a m n am an +=+D .()()2x 166x x 4x 46x -+=+-+ 6.下列多项式中,不能用乘法公式进行因式分解的是( ) A .a 2﹣1 B .a 2+2a +1 C .a 2+4D .9a 2﹣6a +1 7.下列各式从左到右因式分解正确的是( ) A .()26223x y x y -+=-B .()22121x x x x -+=-+C .()2242x x -=-D .()()311x x x x x -=+- 8.下列各式中:①()()22x y x y x y --=-+-,②()()22x y x y x y -+=-++, ③()22 242x x x --=-,④221142x x x ++=+⎛⎫ ⎪⎝⎭中,分解因式正确的个数有( ) A .1个 B .2个 C .3个 D .4个9.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( )A .301050B .103020C .305010D .501030 10.下列各式从左到右的变形中,属于因式分解的是( )A .()212x a ax x +=+B .2224(4)x x x x -+=-+C .()236966)9(x x x x x -+=+-+D .()()22m n m n m n -=+- 11.因式分解2x ax b ++,甲看错了a 的值,分解的结果是()()61x x +-,乙看错了b的值,分解的结果为()()21x x -+,那么x ax b ++分解因式正确的结果为( ). A .()()23x x -+B .()()23x x +-C .()()23x x --D .()()23x x ++12.已知,则a 2-b 2-2b 的值为 A .4 B .3 C .1 D .0 二、填空题13.分解因式:269a a ++=_______________.14.分解因式:-3x 2+6xy -3y 2=________.15.因式分解:24a b b -=______.16.已知2019x y +=,20202019-=x y ,则22x y -的值为___________. 17.若a 2-b 2=8,a-b=2,则a+b 的值为_________.18.分解因式:3m n mn -=_________.19.把多项式2122214x x --进行分解因式,结果为________________.20.若多项式222(3)x mx x x +=-,则m =_______________.三、解答题21.(1)因式分解:32862a a a --;(2)利用因式分解进行计算:32322022220222020202220222023-⨯-+-. 22.因式分解(1)22()()a x y b x y --- (2)2288x y xy y -+23.观察下列分解因式的过程:2223a ab b +-.解:原式=222223a ab b b b ++--222(2)4a ab b b =++-22()(2)a b b =+-()()22a b b a b b =+++-(3)()a b a b =+-像这种通过增减项把多项式转化成完全平方形式的方法称为配方法.(1)请你运用上述配方法分解因式:2245a ab b +-;(2)代数式222612a a b b ++-+是否存在最小值?如果存在,请求出当a 、b 分别是多少时,此代数式存在最小值,最小值是多少?如果不存在,请说明理由.24.(1)分解因式:244am am a ++(2)计算:(-2)(2)(2)x x x y x y ++-25.分解因式:(1)21449x x -+=__________;2718x x +-=__________;(2)()()2294a x y b y x -+-.26.(1)计算题:①(a 2)3•(a 2)4÷(a 2)5②(x ﹣y+9)(x+y ﹣9)(2)因式分解①﹣2a 3+12a 2﹣18a②(x 2+1)2﹣4x 2.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据因式分解的定义判断即可.【详解】解:A 、等号左右两边不相等,故错误;B 、a 3-a=a(a+1)(a-1),故正确;C 、右边不是整式的积,故错误;D 、等号左右两边不相等,故错误.故选:B .【点睛】因式分解与整式的乘法互为逆变形,并且因式分解是等式的恒等变形,变形前后一定相等.2.A解析:A【分析】利用平方差公式将等号右边写成()()x y x y +-,即可求解.【详解】解:∵()()22()y x y A x y x y x -+=+⋅--=, ∴A x y =--,故选:A .【点睛】本题考查平方差公式,掌握平方差公式是解题的关键.3.C解析:C【分析】利用完全平方公式逐项进行判定即可.【详解】解:A. 2444x x ++,无法因式分解,故不符合题意;B. 244x x -++,无法因式分解,故不符合题意;C. ()2422442x x x -+=-,符合题意;D. 291216x x ++,无法因式分解,故不符合题意.故答案为C.【点睛】本题主要考查了运用完全公式法分解因式,熟练掌握完全平方公式是解答本题关键. 4.B解析:B【分析】两项的底数可以进行转化,25写成5的平方,利用幂的乘方转化后,就可提取公因数进行分解即可解答.【详解】()91718171717162555555156530+=+=⨯+=⨯=⨯,917255∴+能被n 整除,则n 的值可能是30,故选B .【点睛】本题考查了分解因式在计算中的应用,将所给的式子化成积的形式,关键是将两项的底数转化成相同的.5.A解析:A【分析】根据把一个多项式写成几个整式积的形式叫做因式分解对各选项分析判断后利用排除法求解.【详解】解:A 、10x 2-5x=5x(2x-1)是因式分解,故本选项正确;B 、右边不是整式积的形式,故本选项错误;C 、是整式的乘法,不是因式分解,故本选项错误;D 、右边不是整式积的形式,故本选项错误.故选A.【点睛】本题考查了因式分解的意义,因式分解与整式的乘法互为逆运算,熟记因式分解的定义是解题的关键.6.C解析:C【分析】直接利用公式法分别分解因式进而得出答案.【详解】A 、a 2﹣1=(a+1)(a ﹣1),可以运用公式法分解因式,不合题意;B 、a 2+2a+1=(a+1)2,可以运用公式法分解因式,不合题意;C 、a 2+4,无法利用公式法分解因式,符合题意;D 、9a 2﹣6a+1=(3a ﹣1)2,可以运用公式法分解因式,不合题意;故选:C .【点睛】本题考查了公式法,正确运用乘法公式是解题的关键.7.D解析:D【分析】根据提公因式法可判断A 项,根据公式法可判断B 、C 两项,根据提公因式法和平方差公式可判断D 项,进而可得答案.【详解】解:A 、()262231x y x y -+=-+,所以本选项因式分解错误,不符合题意; B 、()22211x x x -+=-,所以本选项因式分解错误,不符合题意;C 、()()2422x x x -=-+,所以本选项因式分解错误,不符合题意;D 、()()()32111x x x x x x x -=-=+-,所以本选项因式分解正确,符合题意. 故选:D .【点睛】本题考查了多项式的因式分解,属于基本题型,熟练掌握分解因式的方法是解题的关键. 8.B解析:B【分析】直接利用平方差公式和完全平方公式分解因式得出答案即可.【详解】解:①()2222+x y x y--=-,无法分解因式,故此选项错误; ②()()22x y x y x y -+=-++,正确;③()222415(11x x x x x --=--=-+--,故此选项错误; ④221142x x x ++=+⎛⎫ ⎪⎝⎭,故此选项正确;所以,正确的答案有2个,故选:B .【点睛】此题主要考查了公式法分解因式,正确应用平方差公式和完全平方公式是解题关键. 9.B解析:B【分析】对多项式利用提公因式法分解因式,利用平方差公式分解因式,然后把数值代入计算即可确定出密码.【详解】x 3−xy 2=x (x 2−y 2)=x (x +y )(x−y ),当x =30,y =20时,x =30,x +y =50,x−y =10,组成密码的数字应包括30,50,10,所以组成的密码不可能是103020.故选:B .【点睛】本题主要考查提公因式法分解因式、平方差公式分解因式,立意新颖,熟记公式结构是解题的关键.10.D解析:D【分析】将多项式写成整式积的形式,即为将多项式分解因式,根据定义解答.【详解】A 、()212x a ax x +=+,不是因式分解,不符合题意;B 、2224(4)x x x x -+=-+,不是因式分解,不符合题意;C 、()236966)9(x x x x x -+=+-+,不是因式分解,不符合题意; D 、()()22m n m n m n -=+-,是因式分解,符合题意; 故选:D .【点睛】此题考查多项式因式分解的定义,熟记定义及因式分解的特点是解题的关键.11.B解析:B【分析】根据甲看错了a 的值,将分解的结果展开,能求出正确的b 的值,乙看错了b 的值,可以求出a 的值,再因式分解即可得到答案.【详解】解:∵甲看错了a 的值∴b 是正确的∵()()61x x +-=256x x +-∴b=-6∵乙看错了b 的值∴a 是正确的∵()()21x x -+=22x x --∴a=-1∴26x x --=()()23x x +-故选:B .【点睛】本题主要考查了因式分解,熟练因式分解以及计算是解决本题的关键.12.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 二、填空题13.(a+3)2【分析】直接利用完全平方公式分解因式得出答案【详解】解:(a+3)2故答案为:(a+3)2【点睛】此题主要考查了公式法分解因式正确运用乘法公式是解题关键解析:(a +3)2【分析】直接利用完全平方公式分解因式得出答案.【详解】解:269a a ++=(a +3)2.故答案为:(a +3)2.【点睛】此题主要考查了公式法分解因式,正确运用乘法公式是解题关键.14.;【分析】先提公因式-3再用完全平方公式因式分解即可【详解】解:原式=-3(x2-2xy+y2)=;故答案为:;【点睛】本题考查了因式分解掌握因式分解的方法是解题的关键解析:23()x y --;【分析】先提公因式-3,再用完全平方公式因式分解即可.【详解】解:原式=-3(x 2-2xy+y 2)=23()x y --; 故答案为:23()x y --;【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键. 15.【分析】直接提取公因式b 进而利用平方差公式分解因式得出即可【详解】解:4a2b-b=b (4a2-1)=b (2a-1)(2a+1)故答案为:b (2a-1)(2a+1)【点睛】本题考查了提取公因式法以及解析:()()2121b a a -+【分析】直接提取公因式b ,进而利用平方差公式分解因式得出即可.【详解】解:4a 2b-b=b (4a 2-1)=b (2a-1)(2a+1).故答案为:b (2a-1)(2a+1).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键. 16.2020【分析】将写成(x+y)(x-y)然后利用整体代入求值即可【详解】解:∵∴故答案为:2020【点睛】本题考查了平方差公式的应用将写成(x+y)(x-y)形式是代入求值在关键解析:2020【分析】将22x y -写成(x+y)(x-y),然后利用整体代入求值即可.【详解】解:∵2019x y +=,20202019-=x y , ∴()()222020==2019=20202019x y x y y x -+⨯-, 故答案为:2020.【点睛】 本题考查了平方差公式的应用,将22x y -写成(x+y)(x-y)形式是代入求值在关键.17.4【分析】先对a2-b2=8左侧因式分解然后将a-b=2代入求解即可【详解】解:∵a2-b2=8∴(a-b )(a+b )=8∴2(a+b )=8∴a+b=4故答案为4【点睛】本题考查了代数式求值和因式分解析:4【分析】先对a 2-b 2=8左侧因式分解,然后将a-b=2代入求解即可.【详解】解:∵a 2-b 2=8∴(a-b )(a+b )=8∴2(a+b )=8∴a+b=4.故答案为4.【点睛】本题考查了代数式求值和因式分解,灵活运用因式分解是正确解答本题的关键. 18.【分析】原式提取公因式后利用平方差公式分解即可【详解】解:==故答案为:【点睛】此题主要考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解本题的关键解析:()()11mn m m +-【分析】原式提取公因式后,利用平方差公式分解即可.【详解】解:3m n mn -=2(1)mn m -=()()11mn m m +-.故答案为:()()11mn m m +-.【点睛】此题主要考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.2(2x+1)(3x-7)【分析】先提取公因式2再利用十字相乘法进行因式分解【详解】12x2-22x-14=2(6x2-11x-7)=2(2x+1)(3x-7)故答案为:2(2x+1)(3x-7)【解析:2(2x+1)(3x-7)【分析】先提取公因式2,再利用十字相乘法进行因式分解.【详解】12x 2-22x-14=2(6x 2-11x-7)=2(2x+1)(3x-7).故答案为:2(2x+1)(3x-7).【点睛】考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行两次因式分解,分解因式一定要彻底. 20.-6【分析】利用多项式乘法去括号根据对应项的系数相等即可求解【详解】∵∴故答案为:-6【点睛】本题主要考查了因式分解与整式的乘法互为逆运算并且考查了代数式相等的条件:对应项的系数相等解析:-6【分析】利用多项式乘法去括号,根据对应项的系数相等即可求解.【详解】∵222(3)262+x x x x x mx --==∴6m =-,故答案为:-6.【点睛】本题主要考查了因式分解与整式的乘法互为逆运算,并且考查了代数式相等的条件:对应项的系数相等.三、解答题21.(1)()()2141a a a -+;(2)20202023. 【分析】(1)提取公因式2a ,后用十字相乘法分解即可;(2)反复使用提取公因式法化简即可.【详解】(1)32862a a a --=22(431)a a a --=()()2141a a a -+;(2)32322022220222020202220222023-⨯-+- =222022(20222)20202022(20221)2023--+- =22202220202020202220232023⨯-⨯- =222020(20221)2023(20221)⨯-⨯- =20202023.【点睛】本题考查了提取公因式法,十字相乘法分解因式,熟练掌握因式分解的基本方法,并灵活选择方法是解题的关键.22.(1)()()()x y a b a b -+-;(2)22(2)y x -【分析】(1)根据提取公因式和平方差公式化简即可;(2)先提取公因式,再利用完全平方公式化简即可;【详解】(1)()()()()()2222()()---=--=--+a x y b x y x y a b x y a b a b ; (2)()()22228824422-+=-+=-x y xy y y x x y x ; 【点睛】本题主要考查了因式分解的应用,准确计算是解题的关键.23.(1)(a-b )(a+5b );(2)存在最小值,当a=-1,b=3时,最小值为2.【分析】(1)理解题意,按题意所给方法分解因式即可;(2)根据题中所给方法,对原式进行变形求解即可.【详解】解:(1) 2245a ab b +-,22224445a ab b b b -=++-,()()2223a b b =+-, ()()2323b a b a b b =+++-,()()5a b a b =+-;(2)代数式222612a a b b ++-+,=a 2+2a+1+b 2-6b+9-1-9+12,=()()22132a b ++-+, ()()2210,30a b +≥-≥, ∴当10a +=,b-3=0即1a =-,b=3时原式有最小值,最小值是2.【点睛】本题主要考查了配方法分解因式,掌握因式分解的方法,正确理解问题情境是解题关键. 24.(1)()22a m + ;(2)22224x x y --【分析】(1)先提公因式a ,再根据完全平方公式分解因式;(2)先根据整式乘法、乘法公式展开括号,然后再合并同类项即可得到答案.【详解】(1)解:244am am a ++()244a m m =++()22a m =+; (2)(2)(2)(2)x x x y x y -++-22224x x x y =-+-22224x x y =--.【点睛】此题考查因式分解及整式的混合运算,掌握多项式的因式分解的方法,整式的乘法计算法则、合并同类项计算法则是解题的关键.25.(1)()27x -;()()29x x -+;(2)()()()3232x y a b a b -+- 【分析】(1)直接运用完全平方公式和十字相乘法因式分解即可;(2)先凑出公因式x-y ,然后提取公因式,最后运用平方差公式分解即可.【详解】解:(1)21449x x -+=22277x x -⨯+=()27x -; 2718x x +-=()()29x x -+:(2)()()2294a x y b y x -+-()()2294a x y b x y =--- ()()2294x y a b =--()()()3232x y a b a b =-+-.【点睛】本题主要考查了因式分解,灵活运用提取公因式法、完全平方公式和十字相乘法成为解答本题的关键.26.(1)①4a ②x 2﹣y 2+18y ﹣81 (2)①﹣2a (a ﹣3)2 ②(x+1)2(x ﹣1)2【分析】(1)①原式利用幂的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;②原式利用平方差公式变形,再利用完全平方公式展开即可;(2)①原式提取公因式,再利用完全平方公式分解即可;②原式利用平方差公式及完全平方公式分解即可.【详解】解:(1)①原式=a 14÷a 10=a 4;②原式=x 2﹣(y ﹣9)2=x 2﹣y 2+18y ﹣81;(2)①原式=﹣2a (a ﹣3)2;②原式=(x2+1+2x)(x2+1-2x)=(x+1)2(x﹣1)2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.。
难点解析北师大版八年级数学下册第四章因式分解章节测评试题(含答案及详细解析)
北师大版八年级数学下册第四章因式分解章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组多项式中,没有公因式的是( )A .ax ﹣by 和by 2﹣axyB .3x ﹣9xy 和6y 2﹣2yC .x 2﹣y 2和x ﹣yD .a +b 和a 2﹣2ab +b 22、下列各式从左至右是因式分解的是( )A .()242(2)a a a -=+-B .()()2211x y x y x y --=+--C .222()x y x xy y +=++D .222()2x y x xy y -=++3、下列各式中,从左到右的变形是因式分解的是( )A .2223(1)2x x x ++=++B .22()()x y x y x y -=-+C .2222()x xy y x y -+=-D .2()22x y x y +=+4、下列从左到右的变形,是分解因式的是( )A .xy 2(x ﹣1)=x 2y 2﹣xy 2B .2a 2+4a =2a (a +2)C .(a +3)(a ﹣3)=a 2﹣9D .x 2+x ﹣5=(x ﹣2)(x +3)+15、当n 为自然数时,(n +1)2﹣(n ﹣3)2一定能( )A .被5整除B .被6整除C .被7整除D .被8整除6、已知a ﹑b ﹑c 为△ABC 的三条边边长,且满足等式a 2+2b 2+c 2-2ab -2bc =0,则△ABC 的形状为( )A .等腰三角形B .等边三角形C .直角三角形D .钝角三角形7、下列等式中,从左到右是因式分解的是( )A .2111111x x x ⎛⎫⎛⎫-=+⋅- ⎪ ⎪⎝⎭⎝⎭B .2222()a ab b a b ++=+C .1()1am bm m a b +-=+-D .22()()a b a b a b +-=-8、不论x ,y 取何实数,代数式x 2-4x +y 2-6y +13总是( )A .非负数B .正数C .负数D .非正数9、下列各式中,正确的因式分解是( )A .2222()()a b ab c a b c a b c -+-=+---B .2()()()(1)x y x y x y x y ----=---+C .2()3()(23)()a b a b a a a b -+-=+-D .222422(222)(1)x x y x y x y ++-=+++-10、下列因式分解正确的是( )A .16m 2-4=(4m +2)(4m -2)B .m 4-1=(m 2+1)(m 2-1)C .m 2-6m +9=(m -3)2D .1-a 2=(a +1)(a -1)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将长方形纸片ABCD 沿MN 折叠,使点A 落在BC 边上点A '处,点D 的对应点为D ,连接A D ''交边CD 于点E ,连接CD ',若9AB =,6AD =,A '点为BC 的中点,则线段ED '的长为________.2、观察下列因式分解中的规律:①()()23212x x x x ++=++;②()()271025x x x x ++=++;③()()25623x x x x -+=--;④()()28422x x x x -=+--;利用上述系数特点分解因式26x x +-=__________.3、把多项式3a 2﹣6a +3因式分解得 ___.4、分解因式322m m m ++=________.5、我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法等,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.例如,分组分解法:()()()()2222222424222x xy y x xy y x y x y x y -+-=-+-=--=---+.仔细阅读以上内容,解决问题:已知:a 、b 、c 为ABC 的三条边,222446170a b c a b c ++---+=,则ABC 的周长______.三、解答题(5小题,每小题10分,共计50分)1、把下列多项式分解因式:(1)3312x x -(2)325105a a a -+-2、分解因式:2a 2-8ab +8b 2.3、分解因式(1)4x 2-16; (2)16-125m 2; (3)()222x y x +- ; (4)9a 2(x ﹣y )+4b 2(y ﹣x ).4、(1)计算:x (x 2y 2﹣xy )÷x 2y ;(2)分解因式:3bx 2+6bxy +3by 2.5、因式分解:3296x x x -+-参考答案-一、单选题1、D【分析】直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.【详解】解:A 、by 2−axy =−y (ax −by ),故两多项式的公因式为:ax −by ,故此选项不合题意;B 、3x −9xy =3x (1−3y )和6y 2−2y =−2y (1−3y ),故两多项式的公因式为:1−3y ,故此选项不合题意;C 、x 2−y 2=(x −y )(x +y )和x −y ,故两多项式的公因式为:x −y ,故此选项不合题意;D 、a +b 和a 2−2ab +b 2=(a −b )2,故两多项式没有公因式,故此选项符合题意;故选:D .【点睛】此题主要考查了公因式,掌握确定公因式的方法是解题关键.2、A【分析】根据因式分解的定义逐个判断即可.【详解】解:A 、()242(2)a a a -=+-,等式从左到右的变形属于因式分解,故本选项符合题意;B 、()()2211x y x y x y --=+--,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C 、222()x y x xy y +=++,是整式的乘法,不是因式分解,故本选项不符合题意;D 、222()2x y x xy y -=++,是整式的乘法,不是因式分解,故本选项不符合题意.故选:A .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.3、C【分析】根据因式分解的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. 2223(1)2x x x ++=++,不是几个整式的积的形式,A 选项不是因式分解;B. 22()()x y x y x y -=-+,不是几个整式的积的形式,B 选项不是因式分解C. 2222()x xy y x y -+=-,符合因式分解的定义,C 是因式分解.D. 2()22x y x y +=+,不是几个整式的积的形式,D 选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.4、B【分析】根据因式分解的意义对各选项进行逐一分析即可.【详解】解:A 、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;B 、符合因式分解的意义,是因式分解,故本选项正确,符合题意;C 、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;D 、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.故选:B .【点睛】本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.5、D【分析】先把(n +1)2﹣(n ﹣3)2分解因式可得结果为:()81,n -从而可得答案.【详解】 解: (n +1)2﹣(n ﹣3)2()()1313n n n n =++-+--⎡⎤⎣⎦()=224n -⨯()=81n -n 为自然数所以(n +1)2﹣(n ﹣3)2一定能被8整除,故选D【点睛】本题考查的是利用平方差公式分解因式,掌握“()()22a b a b a b -=+-”是解题的关键.6、B【分析】首先利用分组分解法对已知等式的左边进行因式分解,再根据三角形的三边关系得到==a b c ,从而得到答案.【详解】解:∵a 2+2b 2+c 2-2ab -2bc =0∴()()2222-2++-2+0a ab b c bc b =()()22-+-0a b c b =∴=a b ;=c b∴==a b c∴ABC 为等边三角形.故选B .【点睛】本题考查了因式分解的应用、非负数的性质、等边三角形的判断,以及灵活利用因式分解建立与方程之间的关系来解决问题.7、B【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A 、2111111x x x ⎛⎫⎛⎫-=+⋅- ⎪ ⎪⎝⎭⎝⎭,不是整式积的形式,不是因式分解,不符而合题意; B 、2222()a ab b a b ++=+,是因式分解,符合题意;C 、1()1am bm m a b +-=+-,不是乘积的形式,不是因式分解,不符合题意;D 、22()()a b a b a b +-=-,不是乘积的形式,不是因式分解,不符合题意;故选B .【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.8、A【分析】先把原式化为224469x x y y -++-+,结合完全平方公式可得原式可化为()()2223,x y -+-从而可得答案.【详解】解:x 2-4x +y 2-6y +13224469x x y y =-++-+()()22230,x y =-+-≥ 故选A【点睛】本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“()2222a ab b a b -+=-”是解本题的关键.9、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:A .2222()()a b ab c a b c a b c -+-=-+--,故此选项不合题意;B .2()()()(1)x y x y x y x y ----=---+,故此选项符合题意;C .()()()()2323a b a b a a a b -+-=--,故此选项不合题意;D .()()222422211x x y x y x y ++-=+++-,故此选项不合题意;故选:B .【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.10、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义即可求解.【详解】解:A 、16m 2-4=4(4 m 2-1)=4(m +1)(m -1),故该选项错误;B 、m 4-1=(m 2+1)(m 2-1)=(m +1)(m -1)(m 2+1),故该选项错误;C 、m 2-6m +9=(m -3)2,故该选项正确;D 、1-a 2=(a +1)(1-a ),故该选项错误;故选:C .【点睛】本题考查了因式分解的意义,属于基础题,关键是掌握因式分解的定义.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.二、填空题1、94【分析】连接NA ',勾股定理求得DN ,进而证明A D N NCA '''≌,设,EC a A E b '==,根据6NC =,以及Rt A EC '三边关系建立方程组,解方程组求解即可. 【详解】解:如图,连接NA ',折叠DN D N '∴=,AD A D ''=,A D N D ''∠=∠四边形ABCD 是长方形,9AB =,6AD =,9DC AB ∴==,6BC AD ==,90D BCD ∠=∠=︒设DN x =则9NC DC DN x =-=-A '是BC 的中点,6BC AD ==∴132CA BC '== 在Rt A CN '中, 222A N CN A C ''=+在Rt A D N ''中,222A N ND AD '''=+∴22CN A C '+22ND AD ''=+即()2222936x x -+=+解得3x =ND ND A C ''∴==3=,6NC A D ''== 又∵90ND A A CD '''∠=∠=︒A D N NCA '''∴≌NA D A NC '''∴∠=∠A E NE '∴=A D CN ''=CE ED '∴=设,EC a A E b '==在Rt A EC '中222A E EC A C ''-=即2223b a -=①又6CE EN CN +==6EC A E EC EN a b '∴+=+=+=②由①可得()()9b a b a +-=③ 将②代入③得32b a -=④②-④得922a = 解得94a = 即94EC =94ED CE '∴==故答案为:94【点睛】本题考查了勾股定理,折叠问题,因式分解,三角形全等的性质与判定,解二元一次方程组,掌握折叠的性质是解题的关键.2、()()32x x +-【分析】利用十字相乘法分解因式即可.【详解】解:()()2632x x x x +-=+-,故答案为:()()32x x +-.【点睛】本题考查了十字相乘法因式分解,解题关键是明确二次项系数为1的十字相乘法公式:()()2()x a b x ab x a x b +++=++.3、3(a -1)2【分析】首先提取公因式3,再利用完全平方公式分解因式.【详解】解:3a 2-6a +3=3(a 2-2a +1)=3(a -1)2,故答案为:3(a -1)2.【点睛】本题主要考查了综合提公因式和公式法分解因式,熟记公式结构是解题的关键.4、()21m m +【分析】原式提取m 后,利用完全平方公式分解即可.【详解】解:322m m m ++=()()22211m m m m m ++=+ 故答案为:()21m m +【点睛】本题考查了因式分解,掌握提公因式法因式分解和公式法因式分解是解题的关键.5、7【分析】根据拆项法将多项式变形为完全平方式的性质,利用平方的非负性求出a 、b 、c 的值即可.【详解】解:222446170a b c a b c ++---+=,2224444690a a b b c c -++-++-+=,222()()(2230)a b c -+-+-=,∴20,20,30a b c -=-=-=,解得2,2,3a b c ===,∴ABC 的周长为2237a b c ++=++=,故答案为:7.【点睛】此题考查多项式分解因式的方法,掌握分解因式的方法及能依据多项式的特点选择恰当的解法是解题的关键.三、解答题1、(1)3(2)(2)x x x +-;(2)25(1)a a --【分析】(1)先提取公因式3x ,然后利用平方差公式分解因式即可;(2)先提取公因式-5a ,然后利用完全平方公式分解因式即可.【详解】(1)3312x x -23(4)x x =-3(2)(2)x x x =+-;(2)325105a a a -+-25(21)a a a =--+25(1)a a =--.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.2、2(a -2b )2【分析】先提取公因式2,再利用完全平方公式因式分解.【详解】解:2a 2-8ab +8b 2=2(a 2-4ab +4b 2)=2(a -2b )2.【点睛】本题考查了整式的因式分解,掌握因式分解的完全平方公式是解决本题的关键.3、(1)()()422x x +-;(2)114455⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭m m ;(3)()()3x y x y ++;(4)()()()3232x y a b a b --+. 【分析】(1)(4)先提取公因式,再利用平方差公式继续分解即可;(2)(3)利用平方差公式分解即可.【详解】解:(1)4x 2-16=4(x 2-4)=4(x +2)(x -2);(2)16-125m2=(4+15x)( 4-15x);(3)()22222()()(3)()x y x x y x x y x x y x y+-+++-++==;(4)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)-4b2(x﹣y)=(x﹣y)(9a2-4b2)()()()3232x y a b a b=--+.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解因式,分解因式要彻底是解题关键.4、(1)xy-1;(2)3b(x+y)2.【分析】(1)先计算单项式乘多项式,再计算多项式除以单项式,即可;(2)先提取公因式3b,再利用完全平方公式继续分解即可.【详解】解:(1)x(x2y2﹣xy)÷x2y=(x3y2-x2y)÷x2y=x3y2÷x2y -x2y÷x2y=xy-1;(2)3bx2+6bxy+3by2=3b(x2+2xy+y2)=3b(x+y)2.【点睛】本题考查了单项式乘多项式,多项式除以单项式以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.5、()231x x -【分析】根据题意先提取公因式x ,进而利用完全平方差公式即可进行因式分解.【详解】解:3296x x x -+()2961x x x =-+ ()231x x =- 【点睛】本题考查因式分解,注意掌握因式分解的常见方法有提取公因式法、公式法、十字交叉相乘法、分组分解法等.。