4G移动通信实验报告

合集下载

移动通信实验报告

移动通信实验报告

移动通信实验报告移动通信实验报告引言移动通信作为现代社会不可或缺的一部分,已经深入到我们的生活中。

本次实验旨在探索移动通信的原理和技术,并通过实际操作来加深对移动通信的理解。

一、实验目的本次实验的主要目的是了解移动通信的基本原理和技术,包括信号传输、调制解调、信道编码等方面。

通过实际操作,掌握移动通信的实际应用和调试技巧。

二、实验原理1. 信号传输移动通信中,信号传输是实现通信的基础。

信号传输主要包括信号的产生、调制和解调三个过程。

信号的产生通过数字信号处理器或模拟信号发生器等设备完成。

调制过程将产生的信号转换成适合传输的载波信号,常用的调制方式有调幅、调频和调相等。

解调过程则是将接收到的信号转换回原始信号。

2. 信道编码为了提高通信质量和可靠性,移动通信中通常采用信道编码技术。

信道编码主要通过添加冗余信息来提高信号的抗干扰能力和纠错能力。

常用的信道编码方式有卷积码、纠错码等。

三、实验内容1. 信号传输实验通过实验设备产生信号,并进行调制和解调操作。

观察信号的变化和传输效果,了解调制解调的原理和过程。

2. 信道编码实验使用信道编码器对信号进行编码,然后进行传输和解码。

观察编码前后信号的差异,了解信道编码的作用和效果。

3. 通信质量测试通过实验设备进行通信质量测试,包括信号强度、信噪比、误码率等指标的测量。

根据测试结果评估通信质量,并进行相应的调整和优化。

四、实验结果与分析通过实验操作和测试,我们得到了一系列的实验结果。

根据实验数据和观察,我们可以得出以下几点结论:1. 信号传输的质量受到多种因素的影响,包括信号强度、信道干扰、调制方式等。

合理选择调制方式和增强信号强度可以提高信号传输的质量。

2. 信道编码可以有效提高信号的抗干扰能力和纠错能力。

采用适当的信道编码方式,可以降低误码率,提高通信质量。

3. 通信质量测试是评估移动通信系统性能的重要手段。

通过对信号强度、信噪比和误码率等指标的测量,可以及时发现和解决通信质量问题。

移动通信实验七(1) 4G基站与移动通信信道建模

移动通信实验七(1) 4G基站与移动通信信道建模

南昌大学实验报告学生姓名:学号:专业班级:实验类型:□验证□综合 设计□创新实验日期:2018/6/16 实验成绩:一、实验名称实验七4G基站与移动通信信道建模二、实验目的1、熟悉4G基站设备2、熟悉信道衰落对移动通信系统性能的影响3、掌握移动多径信道特性及信道模型4、掌握不同信道衰落条件下对传输信号误码率的影响;三、实验原理1、信道分类瑞利信道就是没有直射路径信号到达接收端的,主要用于描述多径信道和多普勒频移现象莱斯信道是当移动台与基站间存在直射波信号时,即有一条主路径,通过主路径传输过来被接收的信号为一个稳定幅度Ak和相位φk,其余多径传输过来的信号仍如“瑞利衰落概率模型”所述。

高斯信道(AWGN)主要是加性高斯白噪声,用于描述恒参信道,例如卫星通信,光纤信道,同轴电缆等等2、损耗分类:(1)、路径传播损耗电波在空间传播所产生的损耗。

它反映出传播在宏观大范围(千米量级)的空间距离上的接收信号电平平均值的变化趋势。

路径损耗在有线通信中也存在。

(2)、慢衰落损耗它主要是指电磁波在传播路径上受到建筑物等的阻挡产生的阴影效应而产生的损耗,它反映了在中等范围内(数百波长量级)的接收信号电平平均值起伏变化的趋势。

这类损耗一般为无线传播所特有的。

它服从对数正态分布,其变化率比传送信息率慢,故称为慢衰落。

(3)、快衰落它反映微观小范围(数十波长以下量级)接收电平平均值的起伏变化趋势。

它一般服从瑞利、莱斯、纳卡伽米分布,其变化速率比慢衰落快,故称快衰落。

快衰落又可分为:空间选择性快衰落、频率选择性快衰落与时间选择性快衰落。

3、效应分类(1)、阴影效应由大型建筑物和其它物体的阻挡,在电波传播的接收区域中产生传播半盲区。

它类似于太阳光受阻挡后可产生的阴影,光波的波长较短,因此阴影可见,电磁波波长较长,阴影不可见,但是接收终端(如手机)与专用仪表可以测试出来。

(2)、远近效应由于接收用户的随机移动性,移动用户与基站之间的距离也是在随机变化,若各移动用户发射信号功率一样,那么到达基站时信号的强弱将不同,离基站近者信号强,离基站远者信号弱。

移动通信认知实验报告

移动通信认知实验报告

一、实验目的1. 了解移动通信的基本原理和发展历程。

2. 掌握移动通信系统的组成和功能。

3. 熟悉移动通信关键技术,如多址技术、调制技术、编码技术等。

4. 理解移动通信系统在现代社会中的应用和重要性。

二、实验设备1. 移动通信实验箱一台2. 台式计算机一台3. 移动通信教材及参考资料三、实验内容1. 移动通信基本原理(1)介绍移动通信的发展历程,从第一代模拟通信到第二代数字通信,再到第三代和第四代移动通信技术。

(2)阐述移动通信的基本原理,包括多址技术、调制技术、编码技术等。

(3)分析移动通信系统中的关键技术,如CDMA、TDMA、OFDM等。

2. 移动通信系统组成(1)介绍移动通信系统的组成,包括基站、移动台、交换中心、传输网络等。

(2)分析各个组成部分的功能和作用。

(3)展示移动通信系统的工作流程。

3. 移动通信关键技术(1)介绍多址技术,如FDMA、TDMA、CDMA等。

(2)阐述调制技术,如AM、FM、PM、QAM等。

(3)分析编码技术,如卷积编码、Turbo编码等。

4. 移动通信应用(1)介绍移动通信在现代社会中的应用,如手机通信、无线宽带接入、物联网等。

(2)分析移动通信对人们生活、工作的影响。

(3)探讨移动通信未来的发展趋势。

四、实验步骤1. 理论学习(1)阅读移动通信教材,了解移动通信的基本原理和发展历程。

(2)查阅相关资料,掌握移动通信关键技术。

(3)学习移动通信系统组成和功能。

2. 实验操作(1)根据实验指导书,搭建移动通信实验平台。

(2)按照实验步骤,进行实验操作。

(3)观察实验现象,记录实验数据。

3. 数据分析(1)分析实验数据,验证移动通信关键技术。

(2)总结实验结果,得出实验结论。

(3)撰写实验报告。

五、实验结果与分析1. 通过实验,我们了解到移动通信的基本原理和发展历程,掌握了移动通信关键技术。

2. 在实验过程中,我们搭建了移动通信实验平台,进行了实验操作,观察到了实验现象,记录了实验数据。

移动通信实验实验报告

移动通信实验实验报告

一、实验目的1. 理解移动通信系统的基本组成和功能;2. 掌握移动通信系统中基带话音的基本特点;3. 学习并掌握移动通信系统中常见的调制解调技术;4. 了解移动通信信道的特性及其对信号传输的影响;5. 熟悉移动通信实验设备和软件的使用。

二、实验设备与软件1. 实验设备:移动通信实验箱、示波器、频谱分析仪、计算机等;2. 实验软件:MATLAB、C++等编程语言及相关移动通信仿真软件。

三、实验内容1. 移动通信系统组成及功能(1)实验目的:了解移动通信系统的组成,掌握移动通信系统的基本功能。

(2)实验内容:1)观察移动通信实验箱的组成,了解各个模块的功能;2)根据实验指导书,搭建移动通信实验系统;3)观察实验系统工作状态,分析各个模块的作用;4)总结移动通信系统的基本组成和功能。

2. 基带话音的基本特点(1)实验目的:了解基带话音的基本特点,掌握话音信号的传输特性。

(2)实验内容:1)观察实验箱中的话音信号发生器,了解话音信号的生成过程;2)使用示波器观察话音信号的波形,分析其时域和频域特性;3)总结基带话音的基本特点。

3. 调制解调技术(1)实验目的:学习并掌握移动通信系统中常见的调制解调技术。

(2)实验内容:1)观察实验箱中的调制解调模块,了解其工作原理;2)搭建调制解调实验系统,进行模拟信号的调制和解调;3)使用频谱分析仪观察调制信号的频谱特性,分析调制效果;4)总结常见的调制解调技术及其特点。

4. 移动通信信道特性(1)实验目的:了解移动通信信道的特性及其对信号传输的影响。

(2)实验内容:1)观察实验箱中的信道模拟模块,了解信道特性;2)搭建信道模拟实验系统,进行信道特性分析;3)使用示波器观察信道模拟结果,分析信道对信号传输的影响;4)总结移动通信信道的特性。

5. 实验软件使用(1)实验目的:熟悉MATLAB、C++等编程语言及相关移动通信仿真软件的使用。

(2)实验内容:1)学习MATLAB、C++等编程语言的基本语法和编程技巧;2)使用相关移动通信仿真软件进行信号处理和系统仿真;3)总结实验软件的使用方法和技巧。

移动通信实验报告

移动通信实验报告

移动通信实验报告移动通信实验报告1. 简介移动通信是指通过无线电波或者其他无线传输媒介来进行通信的技术。

本实验旨在研究移动通信系统的基本原理,并通过实际操作来验证其可行性和效果。

2. 实验目的了解移动通信的基本原理和技术体系结构;理解移动通信系统中的关键参数和性能指标;掌握通信系统的信号传输与调制解调技术;通过实验验证移动通信系统的性能和可靠性。

3. 实验设备和材料移动通信综合实验平台移动通信终端设备通信软件4. 实验内容4.1 移动通信系统基本原理的研究通过实验平台,了解和学习移动通信系统的基本原理和技术体系结构。

包括信道分配方法、信号调制与解调技术、信噪比分析等。

4.2 移动通信系统参数和性能指标的理解学习移动通信系统中的关键参数和性能指标,包括频率、带宽、误码率、接入方式等。

通过实验,了解并掌握这些参数及其对通信系统性能的影响。

4.3 通信系统的信号传输与调制解调技术通过使用信号发生器和示波器等设备,进行信号传输和调制解调技术的实验。

了解不同调制方式的特点和应用场景,掌握调制器和解调器的原理和工作过程。

4.4 移动通信系统性能和可靠性的实验验证通过在实验平台上搭建移动通信系统,对其性能和可靠性进行实验验证。

包括信号传输质量、误码率、抗干扰性能等。

通过实验数据的分析和对比,评估通信系统的性能和可靠性。

5. 实验结果与分析根据实验操作和获得的数据,进行实验结果的和分析。

包括对移动通信系统的参数和性能指标进行评价,对实验结果的可靠性和准确性进行分析。

6. 实验通过本次实验,我们深入了解了移动通信系统的基本原理和技术体系结构,掌握了通信系统的信号传输与调制解调技术。

通过对移动通信系统的性能和可靠性进行实验验证,我们对移动通信系统有了更深入的认识。

7. 实验心得在实验过程中,我们遇到了许多困难和问题。

但通过同学之间的合作和老师的指导,我们最终成功完成了实验任务。

通过这次实验,我们不仅提升了对移动通信技术的理解和实践能力,也加深了团队协作和解决问题的能力。

移动通信实验报告

移动通信实验报告

移动通信实验报告一、实验目的移动通信作为现代通信技术的重要组成部分,其发展日新月异。

本次实验旨在深入了解移动通信的基本原理和关键技术,通过实际操作和数据测量,加深对移动通信系统性能和特点的认识。

二、实验设备1、移动通信实验箱2、频谱分析仪3、信号发生器4、示波器5、计算机及相关软件三、实验原理1、移动通信系统的组成移动通信系统通常由移动台、基站、移动交换中心和传输链路等部分组成。

移动台是用户终端设备,基站负责与移动台进行通信,移动交换中心用于控制和管理整个通信网络,传输链路则负责信息的传输。

2、无线信号传播模型在移动通信中,无线信号的传播受到多种因素的影响,如路径损耗、阴影衰落和多径衰落等。

常用的传播模型有自由空间传播模型、OkumuraHata 模型等。

3、调制与解调技术调制是将数字或模拟信号变换为适合在无线信道中传输的信号形式,常见的调制方式有幅移键控(ASK)、频移键控(FSK)和相移键控(PSK)等。

解调则是将接收到的调制信号还原为原始信号。

四、实验内容与步骤1、移动通信系统的搭建按照实验设备的说明书,连接好移动通信实验箱、频谱分析仪、信号发生器和示波器等设备,构建一个简单的移动通信实验系统。

2、信号发射与接收使用信号发生器产生一定频率和幅度的正弦信号,作为发射信号。

通过移动通信实验箱将发射信号进行调制和放大后,通过天线发射出去。

在接收端,使用天线接收信号,经过解调、滤波等处理后,使用示波器观察接收信号的波形和频谱。

3、路径损耗测量在不同的距离上测量接收信号的强度,计算路径损耗,并与理论模型进行对比。

4、多径衰落观察通过改变实验环境中的障碍物和反射物,观察接收信号的多径衰落现象,分析其对通信质量的影响。

5、调制方式的性能比较分别采用 ASK、FSK 和 PSK 等调制方式进行信号传输,测量误码率等性能指标,比较不同调制方式的优缺点。

五、实验数据与分析1、路径损耗测量数据记录在不同距离上的接收信号强度,并绘制路径损耗曲线。

移动通信实验报告

移动通信实验报告移动通信实验报告1. 简介本实验旨在通过搭建移动通信系统的实验平台,探索移动通信技术原理和实际应用。

移动通信是指在不受空间限制的情况下,通过移动通信设备进行无线通信的技术,广泛应用于方式、平板电脑等移动设备。

在本实验中,我们将使用SIM卡、方式和电脑组成实验平台,通过调试和实验,深入了解移动通信的基本原理和技术。

2. 实验目的- 了解移动通信的基本原理和技术;- 掌握移动通信实验平台的搭建;- 学习使用SIM卡进行移动通信。

3. 实验内容实验所需材料和设备:- SIM卡- 方式- 电脑实验步骤:1. 将SIM卡插入方式;2. 打开方式的设置菜单,找到移动网络设置,并将方式连接到移动网络;3. 在电脑上安装移动通信调试软件;4. 连接方式和电脑,确保二者之间可以进行数据传输;5. 打开移动通信调试软件,选择方式SIM卡,并进行一系列测试和调试。

4. 实验结果通过实验,我们成功搭建了移动通信实验平台,并使用SIM卡进行通信测试。

在测试过程中,我们可以观察到方式的移动网络信号强度、数据传输速度等指标,并将其记录下来。

实验结果表明,移动通信系统能够正常工作,方式可以成功连接到移动网络,并且数据传输速度较快、信号强度较高。

5. 实验分析从实验结果可以看出,移动通信系统在现实应用中具有良好的稳定性和可靠性。

方式能够稳定连接到移动网络,并且能够以较快的速度进行数据传输。

同时,我们还观察到移动网络信号强度会随着距离的增加而下降。

这是由于移动通信系统的工作原理决定的,信号的传输和接收都会受到距离的限制。

6. 实验总结通过本次实验,我们深入了解了移动通信的基本原理和技术,并成功搭建了实验平台进行测试和调试。

实验结果表明,移动通信系统在现实应用中具有良好的稳定性和可靠性。

在今后的学习和工作中,我们可以根据移动通信技术的原理和特点,开展更多的研究和应用。

移动通信技术已经成为了现代社会不可或缺的一部分,对于我们的生活和工作都起着重要的作用。

移动通信实验报告

移动通信实验报告一、实验目的移动通信实验的主要目的是深入了解移动通信系统的工作原理、关键技术以及性能特点。

通过实际操作和数据分析,掌握移动通信中的信号传输、调制解调、信道编码、多址接入等重要概念,并能够运用所学知识解决实际问题,提高对移动通信领域的综合理解和应用能力。

二、实验设备本次实验所使用的设备包括移动通信实验箱、信号发生器、频谱分析仪、示波器、计算机等。

移动通信实验箱是核心设备,集成了移动通信系统的各个模块,能够模拟不同的通信场景和参数设置。

三、实验原理(一)信号传输在移动通信中,信号以电磁波的形式在空间中传播。

电磁波的频率、幅度、相位等参数携带了信息。

信号在传输过程中会受到衰减、干扰、多径效应等影响,导致信号质量下降。

(二)调制解调调制是将数字或模拟信号转换为适合在信道中传输的高频信号的过程。

常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)等。

解调则是将接收到的调制信号还原为原始信号的过程。

(三)信道编码为了提高信号在信道中传输的可靠性,需要对原始数据进行信道编码。

常见的信道编码方式有卷积码、Turbo 码等。

信道编码通过增加冗余信息,使得接收端能够检测和纠正传输过程中产生的错误。

(四)多址接入在移动通信系统中,多个用户需要同时共享有限的频谱资源。

多址接入技术用于区分不同用户的信号,常见的多址接入方式有频分多址(FDMA)、时分多址(TDMA)和码分多址(CDMA)等。

四、实验内容及步骤(一)信号传输特性测试1、连接实验设备,设置信号发生器的输出频率和幅度,产生一个正弦波信号。

2、通过移动通信实验箱的发射模块将信号发送出去,在不同距离和障碍物条件下,使用示波器观察接收端的信号幅度和波形变化。

3、记录实验数据,分析信号传输的衰减特性和障碍物对信号的影响。

(二)调制解调实验1、在实验箱中设置不同的调制方式(如 AM、FM、PM),输入一个数字或模拟信号。

2、观察调制后的信号频谱和波形,分析调制方式对信号频谱和带宽的影响。

移动通信原理 实验报告

移动通信原理实验报告一、引言移动通信是指利用无线通信技术将通信信息传递到移动的终端设备之间的通信方式。

移动通信已经成为现代社会中不可或缺的一部分,在各个领域都有广泛应用。

本实验旨在通过对移动通信原理的探究,进一步理解移动通信系统的工作原理,并通过实际的实验操作,加深对移动通信技术的认识和理解。

二、实验目的1. 掌握移动通信系统的基本原理和工作流程。

2. 学习和熟悉移动通信系统中的关键技术和设备。

3. 分析和理解移动通信系统中面临的问题和挑战。

三、实验内容1. 了解移动通信系统的基本组成和工作原理。

2. 熟悉移动通信系统中的关键设备和技术,如基站、移动终端、调制解调器等。

3. 进行实际的实验操作,模拟移动通信系统的工作流程。

4. 分析实验结果,移动通信系统面临的问题和挑战。

四、实验步骤1. 初步了解移动通信系统的基本原理和组成。

2. 熟悉移动通信系统中的关键设备和技术,如基站、移动终端、调制解调器等。

3. 搭建实验环境,模拟移动通信系统的工作流程。

4. 进行实际的实验操作,记录实验数据和观察结果。

5. 分析实验结果,移动通信系统中存在的问题和挑战。

五、实验结果与分析在实验中,我们成功模拟了移动通信系统的工作流程,并观察到了一些实验结果。

通过对实验结果的分析,我们发现移动通信系统中存在一些常见的问题和挑战,如信号干扰、信道容量限制等。

这些问题需要我们进一步研究和探索,以提高移动通信系统的性能和可靠性。

六、实验通过本次实验,我们深入了解了移动通信系统的基本原理和工作流程,并掌握了移动通信系统中的关键设备和技术。

通过实际的实验操作,我们进一步加深了对移动通信技术的理解和认识。

我们也认识到移动通信系统中存在的问题和挑战,为日后的研究和改进奠定了基础。

七、参考文献1. 《移动通信原理与技术》,张旭著,电子工业出版社,2023年。

2. 《移动通信系统设计与实现》,李文涛著,清华大学出版社,2023年。

3. 《移动通信理论与技术》,王新华著,人民邮电出版社,2023年。

移动通信原理 实验报告(2023版)

移动通信原理实验报告
实验报告:移动通信原理
1.引言
本实验旨在通过实际操作和观察,探究移动通信原理,了解移动通信技术的基本原理和相关概念。

2.实验设备和材料
●移动通信设备终端
●基站接入控制器
●移动通信网络
●电脑和相关软件
3.实验步骤
3.1 设置实验环境
●连接移动通信设备终端和基站接入控制器
●打开电脑并安装相关软件
3.2 进行信号传输测试
●在终端设备上输入指定移动通信网络的接入点名称(APN)
●通过基站接入控制器连接到移动通信网络
●在终端设备上发送数据,观察数据的传输情况
3.3 进行通话测试
●在终端设备上拨打方式号码
●观察呼叫成功率和通话质量
3.4 进行短信发送测试
●在终端设备上发送短信
●观察短信发送成功率和传输时间
4.实验结果分析
根据实验步骤中观察到的结果,分析移动通信原理下的信号传输、通话、短信发送等方面的表现和性能。

5.实验总结
在本实验中,我们通过实际操作和观察,加深了对移动通信原理的理解。

移动通信技术的不断发展使得人们可以快速、稳定地进行语音通信和数据传输,为人们的生活带来了极大的便利。

附件:
本文档无附件。

法律名词及注释:
●APN(Access Point Name):接入点名称,移动通信网络中用于识别终端设备的标识符。

●基站接入控制器:移动通信网络中用于处理终端设备与网络之间的通信和控制的设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北文理学院 4G移动通信课程 实验报告

学 院 专 业 班 级 学 号 姓 名 任课教师 实验一:通用软件无线电平台与QPSK无线传输系统 一、 实验目的 1. 掌握XSRP无线传输Matlab形式接口的使用方法。 2. 掌握真实FM信号的解调处理方法 3. 掌握QPSK调制的原理及实现方法。 4. 掌握QPSK解调的原理及实现方法。

二、 实验内容 1. 掌握XSRP无线传输Matlab形式接口的使用方法。 2. 掌握真实FM信号的解调处理方法 3. 分别采用数字键控法、模拟相乘法QPSK调制,观测QPSK调制信号波形。 4. 采用相干解调法QPSK解调。

三、 实验仪器 1. 安装有XSRP系统软件的PC机。 2. XSRP系统软件加密狗。 3. XSRP硬件。 4. 示波器。

四、 实验原理

FM接收机 FM的原理是以载波的瞬时频率变化来表示信息,可以使用一个频率偏移来精确地模拟相位随时间的变化,而从IQ中得到相位信息是很容易的。 FM Signal = sine(carrier frequency + ∫0t message signal dt) 下划线部分即为相位信息,而对于以IQ形式采集的调频电台信号,可以很方便地获得相位信息,将IQ构成的复数转换为polar极坐标形式即可获得。然后我们利用积分的逆过程即微分就可以获得原来的信号。但是当相位在-180度至180 度范围内变化时,还存在一个相位不连续问题。为了解决这个问题,我们可以把相位增加360度的倍数使得相位变化连续,即进行相位展开。 五、 实验步骤 首先,打开实验目录1.7.4,呈现如图30. 1界面。

图30. 1 FM接收机实验界面 FM实验打开后,FM解码过程就开始了,但由于未配置合适的接收频率,解出的信号完全为噪声。因此在开始实验前,需要对RF进行配置,将RF接收频率配置到目标频率,如106.4MHz,示意图如图30. 2。确认配置成功。

图30. 2射频参数配置 之后在界面上点击右键,选择右键菜单中的“显示后面板”,我们可以看到该实验的源程序,如图30. 3。 图30. 3功能实现源码 拖动水平滚动条,可以调整显示区域至合适位置。可以看到,实现FM接收机,主要通过几个步骤完成: 1) 通过GSM_IQ_Send_Rcv.vi这个函数获取IQ数据

2) 通过Complex to Polar Waveform.vi将IQ复数转为极坐标形式获取相位信息

3) 通过Unwrap Phase-Continuous.vi实现相位连续展开 4) 通过Differentiate-Continuous.vi对相位数据进行微分还原FM消息 5) 通过Resample Waveform.vi将还原的FM消息重采样至声卡可接受的速率

6) 对于GSM_IQ_Send_Rcv.vi,函数接口示意图如图30. 4所示。

图30. 4 GSM_IQ_Send_Rcv.vi接口说明 GSM_IQ_Send_Rcv.vi实现IQ数据的收发,在FM功能中,将采集配置设备为连续时隙连续采集,则可以实现IQ数据的连续接收。函数的具体用法,参见函数的使用文档。

图30. 5 Unwrap Phase-Continuous.vi接口说明 图30. 6 Differentiate-Continuous.vi接口说明 图30. 7 Resample Waveform.vi接口说明 最后,被重采样的FM解调信号送声卡进行播放,用户即可收听FM广播。 需要说明的是,XSRP所采集的空口FM信号一般来说特别弱,信噪比不利于解码,即使解出来,噪音的成分特别重,几乎听不清FM消息。在进行此实验时,强烈建议用户使用FM发射机。 如图30. 8,XSRP采集信号源发射的扫频信号,IQ呈现为恒包络信号,而解出来FM消息为正弦波信号。

图30. 8 XSRP接收到良好质量的FM信号并解调 最后,点击界面的结束按钮,结束当前实验。

QPSK调制调制解调 QPSK(Quadrature Phase Shift Keying,正交相移键控)又叫四相绝对相移调制,利用载波的四种不同相位来表征数字信息。我们把组成双比特码元的前一信息比特用a代表,后一信息比特用b代表。双比特码元中两个信息比特ab通常是按格雷码排列的,它与载波相位的关系如表所示,矢量关系如表格16. 1

所示。图(a)表示A方式时QPSK信号的矢量图,图(b)表示B方式时QPSK信号的矢量图。 双比特码元 载波相位

a b A方式 B方式 0 1 1 0 0 0 1 1 0° 90° 180° 270° 225° 315° 45° 135°

表格16. 1双比特码元与载波相位关系 由图16.1可知,QPSK信号的相位在(0°,360°)内等间隔地取四种可能相位。由于正弦和余弦函数的互补特性,对应于载波相位的四种取值,比如在A方式中为0°、90°、180°、270°,则其成形波形幅度有三种取值,即±1、0;比如在B方式中为45°、135°、2250、315°,则其成形波形幅度有两种取值,即±2/2。

图16.1 QPSK信号矢量图 QPSK信号地产生方法与2PSK信号一样,也可分为调相法和相位选择法。实验中用调相法产生QPSK调制信号的原理框图如图16. 2所示。

图16. 2 QPSK调制调相法原理框图 下面以B方式的QPSK调制为例,讲述QPSK信号相位的合成原理。 上图中,输入的二进制序列,即信号源模块提供的NRZ码,先经串/并转换分为两路并行数据DI和DQ。 I路成形和Q路成形信号分别与同相载波及其正交载波乘法器相乘进行二相调制,得到I路调制和Q路调制信号。 将两路调制信号叠加,即I路调制与Q路调制信号加法器相加,得QPSK调制信号输出。 QPSK信号相位编码逻辑关系如表格16. 2所示: DI 0 0 1 1

DQ 0 1 0 1

I路成形 -2/2 -2/2 +2/2 +2/2

Q路成形 -2/2 +2/2 -2/2 +2/2

I路调制 180° 180° 0° 0° Q路调制 180° 0° 180° 0°

合成相位 225° 135° 315° 45°

表格16. 2 QPSK信号相位编码逻辑关系(B方式) 同理,根据A方式QPSK信号的矢量图,有相位编码逻辑关系表如表格16. 3

所示: DI 0 0 1 1

DQ 0 1 0 1

I路成形 +1 0 0 -1

Q路成形 0 -1 +1 0

I路调制 0° 无 无 180°

Q路调制 无 180° 0° 无 合成相位 0° 270° 90° 180° 表格16. 3 QPSK信号相位编码逻辑关系(A方式) 上表中,“无”表示乘法器相乘后无载波输出。另外,因为Q路与I路是正交的,所以Q路的0°相位相当于合成相位的90°,Q路的180°相位相当于合成相位的270°。 2、QPSK解调 由于QPSK可以看作是两个正交2PSK信号的叠加,故它可以采用与2PSK信号类似的解调方法进行解调,即由两个2PSK信号相干解调器构成,其原理框图如图16. 3所示:

图16. 3 QPSK解调原理框图 上图中,QPSK调制信号与输入的两路正交的相干载波SIN和COS分别乘法器相乘,得I路解调和Q路解调信号。 两路解调信号分别经双二阶低通滤波器得I路滤波和Q路滤波信号。 两路滤波信号分别经电压比较器与不同的直流电平比较,比较结果分别送入CPLD中抽样判决再数据还原,得DI和DQ信号。 DI和DQ信号最后并/串转换,恢复成串行数据输出。

一、 实验步骤 1、固定数据输入,观测并记录波形 1) 将数据类型配置为0 1交替,数据长度配置为10,不勾选添加噪声。点击“开始仿真”按钮。双击原理框图上流程分支的探针图标,参考实验原理逐个观测、分析并记录调制过程点的波形,各个探针位置如错误!未找到引用源。中红色标识所示,将观测得到的波形保存为图片。 2)将数据类型配置为0 1交替,数据长度配置为10,不勾选添加噪声。双击解调原理框图上流程分支的探针图标,逐个观测、分析并记录调制过程点的波形,解调过程波形探测点波形所示,并将波形结果保存为图片。 进行波形观测实验时,数据类型可以改变为其它类型。如果进行实验时,XSRP设备与上位机连接正常,则可以选择将波形输出到示波器进行观测。XSRP设备支持将波形输出到CH1和CH2。如果上位机未连接XSRP设备,例如当前软件工作在虚拟实验室环境,则输出到示波器显示波形的功能无法使用,按钮为灰色禁用状态。 2、改变基带数据类型为固定数据类型,修改相位偏转方式观察并记录星座图变化 1)将数据类型配置为固定数据类型,相位偏转方式选择“A方式”,数据长度配置为10,如图16. 4所示。

图16. 4数据配置 2)记录数据源并观察“A方式”星座图,如图16. 5和图16. 6所示。

图16. 5数字基带信号

图16. 6 A方式星座图 3)修改相位偏转方式,观察星座图。 3、改变基带数据类型,修改噪声参数,观测并记录波形 1)改变数据类型配置,将数据类型配置为1 0交替,数据长度配置为10,勾选添加噪声,默认信噪比为10dB,如图16. 7所示。

图16. 7数据配置 点击“实验现象”铵钮,切换到波形显示页面,观察“已调信号”、“乘相干

相关文档
最新文档