初中数学有理数练习题三篇

合集下载

最新初中数学有理数经典测试题附答案(2)

最新初中数学有理数经典测试题附答案(2)

最新初中数学有理数经典测试题附答案(2)一、选择题1.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.4【答案】C【解析】【分析】首先确定原点位置,进而可得C点对应的数.【详解】∵点A、B表示的数互为相反数,AB=6∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又∵BC=2,点C在点B的左边,∴点C对应的数是1,故选C.【点睛】本题主要考查了数轴,关键是正确确定原点位置.2.下列说法中,正确的是()A.在数轴上表示-a的点一定在原点的左边B.有理数a的倒数是1 aC.一个数的相反数一定小于或等于这个数D.如果a a=-,那么a是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A、如果a<0,那么在数轴上表示-a的点在原点的右边,故选项错误;B、只有当a≠0时,有理数a才有倒数,故选项错误;C、负数的相反数大于这个数,故选项错误;D、如果a a=-,那么a是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.数轴上表示数a 和数b 的两点之间的距离为6,若a 的相反数为2,则b 为( ) A .4B .4-C .8-D .4或8- 【答案】D【解析】【分析】根据相反数的性质求出a 的值,再根据两点距离公式求出b 的值即可.【详解】∵a 的相反数为2∴20a +=解得2a =-∵数轴上表示数a 和数b 的两点之间的距离为6 ∴6a b -=解得4b =或8-故答案为:D .【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.4.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.5.下列四个数中,是正整数的是( )A .﹣2B .﹣1C .1D .12【答案】C【解析】【分析】正整数是指既是正数又是整数,由此即可判定求解.【详解】A 、﹣2是负整数,故选项错误;B 、﹣1是负整数,故选项错误;C 、1是正整数,故选项正确;D 、12不是正整数,故选项错误. 故选:C .【点睛】 考查正整数概念,解题主要把握既是正数还是整数两个特点.6.下列等式一定成立的是( )A =B .11=C 3=±D .6=-【答案】B【解析】【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可.【详解】321-=,故错误;B. 11=,故正确;3=, 故错误;D. ()66=--=,故错误;故答案为:B.【点睛】本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.7.若a 与b 互为相反数,则下列式子不一定正确的是( )A .0a b +=B .=-a bC .a b =D .a b =【答案】C【解析】【分析】依据相反数的概念及性质可确定正确的式子,再通过举反例可证得不一定正确的式子.【详解】解:∵a 与b 互为相反数,∴0a b +=,∴=-a b ,∴a b =, 故A 、B 、D 正确, 当1a =时,1b =-,则1=b ,∴a b =;当1a =-时,1b =,则1=b ,∴a b ≠,故C 不一定正确,故选:C .【点睛】本题考查了相反数的定义.解此题的关键是灵活运用相反数的定义判定式子是否正确.8.若(x +y ﹣1)2+|x ﹣y +5|=0,则x =( )A .﹣2B .2C .1D .﹣1 【答案】A【解析】【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 即可.【详解】解:∵(x +y ﹣1)2+|x ﹣y +5|=0,∴1050x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, 故选:A.【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.9.若x <2,化简()22x -+|3-x|的正确结果是( ) A .-1B .1C .2x -5D .5-2x 【答案】C【解析】分析:本题利用绝对值的化简和二次根式()2a a = 的化简得出即可. 解析:∵x <2,∴()22x -+|3﹣x|=2352x x x -+-=- .故选D.10.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A .b >aB .ab >0C .a >bD .|a |>|b |【答案】C【解析】【分析】 本题要先观察a ,b 在数轴上的位置,得b <-1<0<a <1,然后对四个选项逐一分析.【详解】A 、∵b <﹣1<0<a <1,∴b <a ,故选项A 错误;B 、∵b <﹣1<0<a <1,∴ab <0,故选项B 错误;C 、∵b <﹣1<0<a <1,∴a >b ,故选项C 正确;D 、∵b <﹣1<0<a <1,∴|b |>|a |,即|a |<|b |,故选项D 错误.故选C .【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.11.不论a 取什么值,下列代数式的值总是正数的是( )A .1a +B .1a +C .2aD .2(1)a + 【答案】B【解析】【分析】直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.12.2-的相反数是( )A .2-B .2C .12D .12- 【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .13.在﹣6,0,﹣1,4这四个数中,最大的数是()A.4 B.﹣6 C.0 D.﹣1【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A.【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.14.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a-c=0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.15.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D .【点睛】本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“6cm ”分别对应数轴上表示﹣2和实数x 的两点,那么x 的值为( )A .3B .4C .5D .6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x 之间的距离为6,∴x 表示的数为:﹣2+6=4,故选:B .【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.17.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b +-+++的值为( ) A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3【答案】A【解析】【分析】 根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数,则a b c a b c b c a c a b a b c+-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3.故选:A .【点睛】 本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.18.实数,a b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .a b <B .a b <C .0a b +>D .0a b ->【答案】A【解析】【分析】根据数轴得a<0<b ,且a b >,再根据实数的加法法则,减法法则依次判断即可.【详解】由数轴得a<0<b ,且a b >,∴a+b<0,a-b<0,故A 正确,B 、C 、D 错误,故选:A.【点睛】此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则.19.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;20.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13 D .513【答案】D【解析】【分析】【详解】解:∵|x 2-4|≥02(2)1y --,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形, 22222+=②当2,3222313+=③当2为一直角边,3为斜边时,则第三边是直角,22325-=.故选D .考点:1.非负数的性质;2.勾股定理.。

初中数学七年级上册练习题(有理数)-附答案

初中数学七年级上册练习题(有理数)-附答案

初中数学七年级上册练习题(有理数)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式值必为正数的是( )A .||||a b +B .22a b +C .21a +D .2(1)a + 2.下列运算正确的是( )A .(6)(13)7++-=+B .(6)(13)19++-=-C .()()9.059.0518.1++-=D .735( 3.75)2936⎛⎫-+=- ⎪⎝⎭3.下列数对相加和最小的是( ) A .5和15- B .2与2- C .1-与1- D .0.01与104.一个数是8,另一个数比8的相反数小2,则这两个数的和为( ) A .2- B .2 C .6- D .65.下列运算不正确的个数是( )①(2)(2)0-+-=;①(6)(4)10-++=-;①0(3)3+-=+;①512663⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭;①337744⎛⎫⎛⎫--+-=- ⎪ ⎪⎝⎭⎝⎭;①111236⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭;①(5)(6)(1)0++-++=. A .0 B .1 C .2 D .36.据全球新冠疫情统计,截至2021年12月7日,全球累计确诊新冠肺炎病例逾2.6亿例.2.6亿用科学记数法表示为( )A .26×710B .2.6×810C .0.26×910?D .2.6×9107.在-3,36,+25,-0.01,0,34-中,负数的个数为( ) A .2个 B .3个 C .3个 D .4个 8.当我们把其中一种意义的量规定为正,用正数表示,则与它具有相反意义的量直接可以用负数表示.例:中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )A .支出20元B .收入20元C .支出80元D .收入80元 9.港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.数“720亿”用科学记数法可表示为( )A .27.210⨯B .37.210⨯C .107.210⨯D .117.210⨯ 10.在有理数-4,0,-1,3中,最小的数是( )A .-4B .0C .-1D .3 二、填空题11.数2-的符号是_______,绝对值是_______;数0.5的符号是_______,绝对值是_______,这两个数属_______号(填:“同”或“异”),绝对值较大的数的符号是_______.这两个数的绝对值之和是_______;较大的绝对值减较小的绝对值的差是_______. ()()20.5-++=____(|__|____|__|)=_______.零加上a 得_______.12.符号相同的几个数相加,取_______的符号,并把它们的_______相_______;符号不同两个数相加,取______________的符号,并用较大的绝对值_______较小的绝对值.互为相反数的和是_______.13.按法则要求步骤填空(1)(3)(9)++-=_______( )=_______.(2)( 5.7)(4,3)-+-=_______( )=_______.(3)106⎛⎫+-= ⎪⎝⎭_______. (4)2134⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭_______( )=_______. (5)10.254⎛⎫-+= ⎪⎝⎭_______. 14.若a 是绝对值最小的数,b 是最大的负整数,则()a b +-=_______.15.若3,7m n =-=-,则||m n +=_______;||m n +=_______;m n +=_______;||||m n +=_______.16.若||5,||3x y ==,则x y +=______________.17.x 是有理数,它在数轴上的对应点的位置如图所示.则77x x -++=________.18.央视天下财经2021年11月25日晚报道电影《长津湖》票房突破57亿,截至11月25日,电影《长津湖》已打破此前由影片《战狼2》保持的国产票房最高纪录,以破56.95亿元的成绩成为中国影史票房冠军.将56.95亿用科学记数法表示为___________.19.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前256年,可记作_________.20.截止北京时间2021年12月20日全球累计确诊新冠肺炎病例约为274950000例,将这个数精确到十万位为__例.21.在横线上填上适当的符号使式子成立:( )6+(﹣18)=﹣12.22.钓鱼岛是中国领土的一部分,岛屿周围的海域面积约174000平方千米,数据174000用科学记数法可以表示为________.23.计算:22139⎛⎫-+=⎪⎝⎭______.24.把数字3120000用科学记数法表示为______.三、解答题25.计算:(1)(51.76)(32.8)++-(2)( 3.75)( 3.75)-++(3)116332⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭(4)25( 2.7)3⎛⎫-+-⎪⎝⎭26.计算:1(2)3(4)99(100)+-++-+⋅⋅⋅++-27.公路养护小组乘车沿南北公路巡视维护,某天早晨从A地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下(单位:千米):+18.5,﹣9.3,+7,﹣14.7,+15.5,﹣6.8,﹣8.2,请通过计算回答:(1)B地在A地何方,相距多少千米?(2)若汽车行驶每100千米耗油8升,出发时汽车油箱有油20升,晚上到达B地时油箱还剩油多少升?28.小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O 最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻? 29.某大米包装袋上印有(50±2)kg ,请问:(1)±2kg 是什么意思?(2)若随机抽查了其中5袋大米,质量分别为47.5kg ,51.3kg ,49.8kg ,50.3kg ,51.8kg ,请判断一下,这5袋大米的质量哪些是合格的?30.将下列数按照整数与分数进行分类:3,2.6,-26,3.1415926,0,45-. 31.讨论:观察下面两个式子有什么不同?(1)(-4)2与-42; (2)23()5与23532.411(2)()|2|3⎡⎤-+-÷---⎣⎦. 33.计算:10+(﹣5)×2﹣(﹣9)参考答案:1.C【解析】【分析】根据题意可知选项中的值必须为正数,所以无论a、b取何值时都得满足其值为正数这一条件,据此依次判断即可.【详解】解:A、当a=0,b=0时,此式不符合条件,故本选项错误;B、当a=0,b=0时,此式不符合条件,故本选项错误;C、无论a取何值,a2+1的值都为正数,故本选项正确;D、当a=-1时,此式不符合条件,故本选项错误;故选:C.【点睛】本题考查有理数的乘方和绝对值以及非负数与正数的关系,注意掌握非负数包括0,而正数不包括0.2.D【解析】【分析】根据有理数的加法计算法则进行求解即可.【详解】解:A、(6)(13)613=7++-=--,此选项不符合题意;B、(6)(13)613=7++-=--,此选项不符合题意;C、(9.05)(9.05)9.059.05=0++-=-,此选项不符合题意;D、73735( 3.75)3=294936⎛⎫-+=-+-⎪⎝⎭,此选项符合题意;故选D.【点睛】本题主要考查了有理数的加法,解题的关键在于能够熟练掌握有理数的加法计算法则.3.C【解析】【分析】根据有理数的加法分别算出四个选项的和,然后比较大小即可【详解】解:145=455⎛⎫+- ⎪⎝⎭,()22=0+-,()11=-2-+-,0.0110=10.01+,①410.014025>>>-,故选C.【点睛】本题主要考查了有理数的加法运算和有理数的比较大小,解题的关键在于能够熟练掌握相关知识进行求解4.A【解析】【分析】根据相反数的定义和有理数的减法确定另一个数,再利用有理数的加法法则计算即可.【详解】依题意另一个数为:-8-2=-10,①8+(-10)=-2.故选:A.【点睛】本题考查了相反数,有理数的加减法,熟练掌握有理数加减法法则是解题的关键.5.D【解析】【分析】根据有理数的加法法则,逐项计算分析可得.【详解】①(2)(2)4-+-=-,故①不正确;①(6)(4)2-++=-,故①不正确;①0(3)3+-=-,故①不正确;①512663⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭,故①正确;①337744⎛⎫⎛⎫--+-=-⎪ ⎪⎝⎭⎝⎭,故①正确;①111236⎛⎫⎛⎫-++=- ⎪ ⎪⎝⎭⎝⎭,故①不正确; ①(5)(6)(1)0++-++=,故①正确;综上,正确的有①①①,共计3个.故选D .【点睛】本题考查了有理数的加法,掌握有理数的加法法则是解题的关键.6.B【解析】【分析】科学记数法的定义即可得.【详解】解:2.6亿=82.610⨯,故选B .【点睛】本题考查了精确度和科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 7.B【解析】【分析】负数是小于零的数,由此可得出答案.【详解】解:由负数的概念可以得到-3,-0.01,34-,这三个数是负数, 故选:B【点睛】本题考查了正数和负数,掌握正数和负数的定义是解题的关键.8.C【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.9.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:720亿=72000000000=7.2×1010.故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.A【解析】【分析】根据有理数大小比较的法则:①正数都大于0;①负数都小于0;①正数大于一切负数;①两个负数,绝对值大的其值反而小可得答案.【详解】解:①44,11,而41,①41,在有理数-4,0,-1,3中,4103,①最小的数是-4,故选:A.【点睛】本题主要考查了有理数的比较大小,关键是掌握有理数的比较大小的方法.11.-2+0.5异- 2.5 1.5-2--0.5 1.5-a 【解析】【分析】根据有理数的性质及加法运算法则即可依次填空.【详解】数2-的符号是-,绝对值是2;数0.5的符号是+,绝对值是0.5,这两个数属异号(填:“同”或“异”),绝对值较大的数的符号是-.这两个数的绝对值之和是2.5;较大的绝对值减较小的绝对值的差是1.5.()()20.5-++=-(|2|-|0.5|)= 1.5-.零加上a得a.故答案为:-;;2;+;0.5;异;-;2.5;1.5;-;2-;-;0.5; 1.5-;a.【点睛】此题主要考查有理数的性质与运算,解题的关键是熟知绝对值的运用.12.相同绝对值加绝对值较大加数减去零【解析】【分析】根据有理数加法的计算法则进行求解即可.【详解】解:符号相同的几个数相加,取相同的符号,并把它们的绝对值相加;符号不同两个数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的和是零.故答案为:相同,绝对值,加,绝对值较大加数,减去,零.【点睛】本题主要考查了有理数加法的计算法则,解题的关键在于能够熟练掌握有理数的加法计算法则.13.-93-6-- 5.7 4.3+10-16--2134-512-0【解析】【分析】根据有理数加法运算法则计算即可.【详解】解:(1)原式=(93)--=6-;(2)原式=(5.7 4.3)-+=10-;(3)原式=16-; (4)原式=215()3412--=-; (5)原式=0; 故答案为:-;93-;6-;-;5.7 4.3+;10-;16-;-;2134-;512-;0. 【点睛】本题考查了有理数加法运算法则,同号两数相加,取相同符号,在把绝对值相加;异号两数相加;取绝对值大的符号,再把绝对值相减;任何数加上零还等于原数.14.1【解析】【分析】根据绝对值最小的数为0,最大的负整数为1-,求解即可.【详解】解:①a 是绝对值最小的数,b 是最大的负整数,①0,1a b ==-,①()[]0(1)1a b +-=+--=,故答案为:1.【点睛】本题考查了有理数的加法,熟知运算法则以及得出a 、b 的值是解本题的关键. 15. 4- 4 10- 10【解析】【分析】根据有理数的加法运算法则以及绝对值的意义求解即可.【详解】解:①3,7m n =-=-,①||3(7)4m n +=+-=-,||374m n +=-+=,m n +=3(7)10-+-=-;||||3710m n +=+=;故答案为:4-;4;10-;10.【点睛】本题考查了有理数的加法运算法则以及绝对值的意义,熟知运算法则是解本题的关键. 16.8±或2±【解析】【分析】根据绝对值的代数意义分别求出x 与y 的值,再代入所求的式子中计算即可.【详解】解:①|x |=5,|y |=3,①x =±5,y =±3,①x +y =5+3=8或x +y =5−3=2或x +y =−5+3=−2或x +y =−3−5=−8.故答案为:±2或±8.【点睛】本题考查了绝对值的意义以及有理数的加法,根据题意求出x 与y 的值是解题的关键. 17.14【解析】【分析】由数轴可知-6< x < 0,则x - 7< 0,x +7 > 0,再去掉绝对值,可解.【详解】由数轴可知-6<x <0,则x -7<0,x +7> 0,①|x - 7|+|x +7|=7-x +x +7=14故答案为14.【点睛】此题综合考查了数轴、绝对值的有关内容,在去掉绝对值的时候,要特别细心.18.9⨯5.69510【解析】【分析】根据科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,确定a、n的值即可.【详解】解:由题意知:56.95亿=5695000000=5.695×109,故答案为:5.695×109.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解题的关键.19.256-【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:李白出生于公元701 年,我们记作+701,那么秦始皇出生于公元前256年,可记作﹣256.故答案为:﹣256.【点睛】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.20.82.75010⨯【解析】【分析】根据精确度和科学记数法的定义即可得.【详解】解:274950000精确到十万位为275000000,8=⨯,275000000 2.75010故答案为:8⨯.2.75010【点睛】本题考查了精确度和科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 21.+【解析】【分析】根据有理数的加法法则即可得出答案.【详解】解:6+(﹣18)=﹣12,故答案为:+.【点睛】本题考查了有理数的加法,掌握绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值是解题的关键.22.51.7410⨯【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中11|0|a ≤<,n 为整数. 【详解】解:51.7174000401=⨯.故答案为:51.7410⨯.【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.23.13- 【解析】【分析】根据有理数的乘方、有理数的加法可以求解即可.【详解】 解:221()39-+ 4199=-+ 13=- 故答案为:13-. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题关键.24.63.1210⨯【解析】【分析】根据科学记数法的定义即可得.【详解】解:63.31212000001=⨯,故答案为:63.1210⨯.【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.25.(1)18.96;(2)0;(3)526;(4)11830- 【解析】【分析】(1)根据有理数的加减运算法则即可求解;(2)根据有理数的加减运算法则即可求解;(3)根据有理数的加减运算法则即可求解;(4)根据有理数的加减运算法则即可求解.【详解】(1)(51.76)(32.8)++-=51.7632.8-=18.96;(2)( 3.75)( 3.75)-++=0;(3)116332⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭=()116332⎛⎫-+- ⎪⎝⎭=136⎛⎫+- ⎪⎝⎭=526 (4)25( 2.7)3⎛⎫-+- ⎪⎝⎭=()2752310⎛⎫--+-- ⎪⎝⎭=117130--=11830-. 【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.26.50-【解析】【分析】根据1(2)=12=1+---,3(4)=34=1+---,()56=56=1+---从而可得()()()1(2)3(4)99(100)=111+-++-+⋅⋅⋅++--+-+⋅⋅⋅+-(一共50个负1相加),由此求解即可.【详解】解:①1(2)=12=1+---,3(4)=34=1+---,()56=56=1+---,①()()()1(2)3(4)99(100)=111+-++-+⋅⋅⋅++--+-+⋅⋅⋅+-(一共50个负1相加) ①1(2)3(4)99(100)=-50+-++-+⋅⋅⋅++-.【点睛】本题主要考查了有理数的加法运算,解题的关键在于能够发现()()()1(2)3(4)99(100)=111+-++-+⋅⋅⋅++--+-+⋅⋅⋅+-(一共50个负1相加). 27.(1)北方,2千米(2)13.6升【解析】【分析】(1)根据有理数的加法,有理数的大小比较,可得答案;(2)根据单位耗油量乘以行驶路程,可得总耗油量,根据原有油量减去耗油量,可得答案.(1)解: +18.5﹣9.3+7﹣14.7+15.5﹣6.8﹣8.2=2(千米),2>0,在北方,答:B地在A地北方,相距2千米;(2)路程=18.5+|﹣9.3|+7+|﹣14.7|+15.5+|﹣6.8|+|﹣8.2|=80(千米),每千米的耗油量8÷100=0.08升,耗油量80×0.08=6.4(升),20﹣6.4=13.6(升),答:晚上到达B地时油箱还剩油13.6升.【点睛】本题考查了正数和负数,有理数的加减法运算是解题关键.28.(1)能回到原点O(2)12厘米(3)54粒【解析】【分析】(1)将爬过的路程相加即可求出答案.(2)计算出每次爬行否离开原点的距离即可判断.(3)求出每次路程的绝对值之和即可求出答案.(1)由题意可知:+5-3+10-8-6+12-10=0,故小虫回到原点O;(2)第一次爬行,此时离开原点5厘米,第二次爬行,此时离开原点5-3=2厘米,第三次爬行,此时离开原点5-3+10=12厘米,第四次爬行,此时离开原点5-3+10-8=4厘米,第五次爬行,此时离开原点5-3+10-8-6=-2厘米,第六次爬行,此时离开原点5-3+10-8-6+12=10厘米,第7次爬行,此时离开原点5-3+10-8-6+12-10=0厘米,故小虫离开出发点最远是12厘米;(3)小虫共爬行的路程为:5+|-3|+10+|-8|+|-6|+12+|10|=5+3+10+8+6+12+10=54厘米,①每爬行1厘米奖励一粒芝麻,①小虫共可得到54粒芝麻.【点睛】本题考查正数与负数的意义,解题的关键是熟练运用正数与负数的意义.29.(1)表示质量比50kg最多多2kg或最多少2kg(2)51.3kg,49.8kg,50.3kg,51.8kg这四袋大米质量是合格的【解析】【分析】(1)(50±2)kg,50kg是标准质量,+2k g是上偏差,表示比标准质量最多多2kg,-2kg是下偏差,表示比标准质量最多少2kg;(2)在(50-2)kg和(50+2)kg之间的为合格,在这个范围之外的为不合格.(1)解:+2kg是表示比50kg最多多2kg,-2kg是表示50kg最多少2kg;①±2kg是表示比50kg最多多2kg或最多少2kg;(2)解:50+2=52(kg),50-2=48(kg),在48~52kg之间为合格,则51.3kg,49.8kg,50.3kg,51.8kg为合格,47.5kg为不合格,①51.3kg,49.8kg,50.3kg,51.8kg这四袋大米质量是合格的.【点睛】本题考查正负数的意义,理解正负数的相对性,能用正负数表示同意一对具有相反意义的量是解题的关键.30.整数:3,-26,0;分数:2.6,3.1415926,4 5【解析】【分析】直接根据整数和分数的概念进行判断即可得到答案.解:整数:3,-26,0;分数:2.6,3.1415926,45-. 【点睛】此题主要考查了有理数的分类,解题的关键是掌握有理数的分类.31.(1)见解析(2)见解析【解析】【分析】(1)根据乘方的定义,即可求解;(2)根据乘方的定义,即可求解;(1)解:①(-4)2表示-4的平方,-42表示4的平方的相反数,①(-4)2与-42互为相反数;(2) 解:235⎛⎫ ⎪⎝⎭表示35的平方,235表示23除以5. 【点睛】本题主要考查了乘方的定义,熟练掌握n 个相同因数的积的运算,叫做乘方,记作n a ,其中a 叫做底数,n 叫做指数;注意()n a -的意义是-a 的n 次方”, n a -的意义是“a 的n 次方的相反数”是解题的关键.32.7【解析】【分析】根据有理数的混合运算顺序进行计算即可求解.【详解】解:原式=()()1232--⨯-- 92=-7=本题考查了有理数的混合运算,正确的计算是解题的关键.33.9【解析】【详解】解:10+(﹣5)×2﹣(﹣9)=-+101099=【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.。

初中数学有理数的运算经典测试题含答案

初中数学有理数的运算经典测试题含答案

对值>10 时,n 是正数;当原数的绝对值<1 时,n 是负数.
【详解】
129 800 000 000=1.298×1011,
故选 C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<
10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
的两个面,
∵2+(﹣2)=0,0+1=1,﹣4+3=﹣1,
∴原正方体相对两个面上的数字和的最小值是﹣1.
故选:A.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分 析解答问题.
10.已知|m+3|与(n﹣2)2 互为相反数,那么 mn 等于( )
A.6
B.﹣6
6.2018 年全国高考报名总人数是 975 万人,用科学记数法表示为( )
A. 0.975103 人 B. 9.75102 人
C. 9.75106 人
D. 0.975107 人
【答案】C
【解析】
【分析】
根据科学计数法的定义进行作答.
【详解】
A.错误,应该是 9.75106 ;B.错误,应该是 9.75106 ;C.正确;D. 错误,应该是
A. 6048102
B. 6.048105
C. 6.048106
【答案】B
【解析】
【分析】
)10n 的形式,其中1 a 10 , n 为整数.确定 n 的值时,要
看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数 绝对值 1时, n 是正数;当原数的绝对值 1时, n 是负数.
对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.

最新初中数学有理数经典测试题附答案解析

最新初中数学有理数经典测试题附答案解析

最新初中数学有理数经典测试题附答案解析一、选择题1.下列说法中不正确的是()A.-3 表示的点到原点的距离是|-3|B.一个有理数的绝对值一定是正数C.一个有理数的绝对值一定不是负数D.互为相反数的两个数的绝对值一定相等【答案】B【解析】【分析】根据绝对值的意义以及相反数的意义逐项进行分析即可得答案.【详解】A、根据绝对值的意义|-3|表示在数轴上表示-3的点到原点的距离,故A选项正确,不符合题意;B、若这个有理数为0,则0的绝对值还是0,故B选项错误,符合题意;C、根据绝对值的意义,|a|的绝对值表示在数轴上表示a的点到原点的距离,故任意有理数的绝对值都为非负数,所以不可能为负数,故C选项正确,不符合题意;D、根据相反数的定义可知:只有符号不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,即互为相反数的两个数的绝对值相等,故D选项正确,不符合题意,故选B.【点睛】本题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a的这个点到原点的距离,熟练掌握绝对值的意义是解本题的关键.2.下列四个数中,是正整数的是()A.﹣2 B.﹣1 C.1 D.1 2【答案】C【解析】【分析】正整数是指既是正数又是整数,由此即可判定求解.【详解】A、﹣2是负整数,故选项错误;B、﹣1是负整数,故选项错误;C、1是正整数,故选项正确;D、12不是正整数,故选项错误.故选:C.考查正整数概念,解题主要把握既是正数还是整数两个特点.3.下列等式一定成立的是( )A =B .11=C 3=±D .6=-【答案】B【解析】【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可.【详解】321-=,故错误;B. 11=,故正确;3=, 故错误;D. ()66=--=,故错误;故答案为:B.【点睛】本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.4.若︱2a ︱=-2a ,则a 一定是( )A .正数B .负数C .正数或零D .负数或零【答案】D【解析】试题分析:根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数,可知a 一定是一个负数或0.故选D5.已知整数1a ,2a ,3a ,4a ⋯满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+⋯依此类推,则2017a 的值为( )A .1007-B .1008-C .1009-D .2016- 【答案】B【解析】【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -;然后把n 的值代入进行计算即可得解.解:10a =,21|1|011a a =-+=-+=-,32|2|121a a =-+=--+=-,43|3|132=-+=--+=-a a ,54|4|242=-+=--+=-a a ,……∴n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -; ∴20172017110082a -=-=-; 故选:B .【点睛】此题考查数字的变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.6.在数轴上,点A ,B 在原点O 的两侧,分别表示数a 和3,将点A 向左平移1个单位长度,得到点C .若OC OB =,则a 的值为( ).A .3-B .2-C .1-D .2 【答案】B【解析】【分析】先用含a 的式子表示出点C ,根据CO =BO 列出方程,求解即可.【详解】解:由题意知:A 点表示的数为a ,B 点表示的数为3, C 点表示的数为a -1.因为CO =BO ,所以|a -1| =3, 解得a =-2或4,∵a <0,∴a =-2.故选B .【点睛】本题主要考查了数轴和绝对值方程的解法,用含a 的式子表示出点C ,是解决本题的关键.7.数轴上的A 、B 、C 三点所表示的数分别为a 、b 、1,且|a ﹣1|+|b ﹣1|=|a ﹣b |,则下列选项中,满足A 、B 、C 三点位置关系的数轴为( )A .B .C.D.【答案】A【解析】【分析】根据绝对值的意义,在四个答案中分别去掉绝对值进行化简,等式成立的即为答案;【详解】A中a<1<b,∴|a﹣1|+|b﹣1|=1﹣a+b﹣1=b﹣a,|a﹣b|=b﹣a,∴A正确;B中a<b<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=b﹣a,∴B不正确;C中b<a<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=a﹣b,∴C不正确;D中1<a<b,∴|a﹣1|+|b﹣1|=a﹣1+b﹣1=﹣2+b+a,|a﹣b|=b﹣a,∴D不正确;故选:A.【点睛】本题考查数轴和绝对值的意义;熟练掌握绝对值的意义是解题的关键.8.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D.若线段AP=BP,则P一定是AB中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的9.若x <2,化简()22x -+|3-x|的正确结果是( ) A .-1B .1C .2x -5D .5-2x 【答案】C【解析】分析:本题利用绝对值的化简和二次根式()2a a = 的化简得出即可. 解析:∵x <2,∴()22x -+|3﹣x|=2352x x x -+-=- .故选D.10.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13 D .513【答案】D【解析】【分析】【详解】解:∵|x 2-4|≥02(2)1y --,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形,22222+=②当2,3222313+=③当2为一直角边,3为斜边时,则第三边是直角,22325-=.故选D .考点:1.非负数的性质;2.勾股定理.11.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.12.7-的绝对值是 ( )A .17-B .17C .7D .7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.13.下列各组数中互为相反数的是( )A .5B .-和(-C .D .﹣5和15 【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A 、5,两数相等,故此选项错误;B 、和-()互为相反数,故此选项正确;C 、=-2,两数相等,故此选项错误;D 、-5和15,不互为相反数,故此选项错误. 故选B .【点睛】 本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.14.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.15.下列运算正确的是( )A .4 =-2B .|﹣3|=3C .4=± 2D .39=3【答案】B【解析】【分析】 A 、根据算术平方根的定义即可判定;B 、根据绝对值的定义即可判定;C 、根据算术平方根的定义即可判定;D 、根据立方根的定义即可判定.【详解】解:A 、C 、42=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.16.实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a b >B .0a b +>C .0ac >D .a c >【答案】D【解析】【分析】根据数轴的特点:判断a 、b 、c 正负性,然后比较大小即可.【详解】根据数轴的性质可知:a <b <0<c ,且|c|<|b|<|a|;所以a >b ,0a b +>,ac >0错误;|a|>|c|正确;故选D .【点睛】本题考查实数与数轴的关系,关键是根据实数在数轴上的位置判断字母的正负性,根据实数在数轴上离原点的距离判断绝对值的大小.17.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b -【答案】A【解析】【分析】 利用2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可. 【详解】 解:0,,a b a b Q <<>0,a b ∴+<22||a a b b a a b b ∴+++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.18.在﹣6,0,﹣1,4这四个数中,最大的数是( )A .4B .﹣6C .0D .﹣1 【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A .【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.19.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】>>>,由数轴得-5<a<b<0<c<d,且a d b c∴A错误;∵b+d>0,故B错误;>,∵a c∴C错误;>,c>0,∵d c∴c<D正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.20.已知|m+3|与(n﹣2)2互为相反数,那么m n等于()A.6 B.﹣6 C.9 D.﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n﹣2)2互为相反数,∴|m+3|+(n﹣2)2=0,∴m+3=0,n﹣2=0,解得m=﹣3,n=2,所以,m n=(﹣3)2=9.故选C.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.。

初中数学专项练习《有理数》50道解答题包含答案

初中数学专项练习《有理数》50道解答题包含答案

初中数学专项练习《有理数》50道解答题包含答案一、解答题(共50题)1、在数轴上画出表示下列各数的点,并用“<”号将这些数按从小到大的顺序连接起来:﹣,0,2,﹣(+3),|﹣5|,﹣1.5.2、省实验中学初一年级某班体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录(其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒)﹣1,+0.8,0,﹣1.2,﹣0.1,0,+0.5,﹣0.6这个小组女生的达标率为多少?平均成绩为多少秒?3、在数轴上表示下列各数,并把它们按照从小到大的顺序排列.1, -2, -2.5, 0,|-3|,4、小红和小明根据下图做游戏,在游戏中规定:长方形表示加,圆形表示减,结果小的获胜.列式计算,小明和小红谁为胜者?5、在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来﹣(﹣3); |﹣2|; 0; (﹣1)3; -3.5;;;.6、结合具体的数,通过特例进行归纳,然后判断下列说法的对错,认为对的,说明理由,认为错的,举出反例.(1)任何一个数与它的相反数的和都为0;(2)任何一个数a(a≠0)与它的倒数的积可能是1也可能是﹣1;(3)如果a大于b(a<0,b<0).那么a的倒数大于b的倒数.7、8、已知a,b,c为三个不等于0的数,且满足abc>0,a+b+c<0,求++ 的值.9、把下列各数填到相应的括号内:+203、0、+6.4、-9、、3.14、-0.1整数: { … }正有理数:{ … }负分数: { … }非负整数:{ … }10、在数轴上表示下列各数,并用“ ”号把它们连接起来.,,,1 , 0 ,11、若a, b互为相反数,c,d互为倒数,|m|=2,求a+b+m2﹣3cd的值.12、若a>0,b>0,且,则a>b;若a<0,b<0,且,则a<b.以上这种比较大小的方法,叫做作商比较法.试利用作商比较法,比较与的大小.13、用四舍五入法按下列要求取各数的近似数.(1)某次地震中,约伤亡10000人;(保留两个有效数字)(2)生物学家发现一种毒的长度约为0.0000430mm.(保留两个有效数字)14、在数轴上表示出下列各数,并把这些数用“>”号连接起来:﹣3.5,2 ,﹣1,415、已知a、b互为倒数,c、d互为相反数,且m是最大的负整数,求2ab﹣m2的值.16、已知:有理数m到原点的距离为4个单位,a,b互为相反数,且都不为零,c,d 互为倒数.求:2a+2b+(-3cd)+|m|的值.17、在数轴上画出表示下列各数的点,并把它们按从小到大的顺序用“<”连接起来:﹣3,3.5,0,﹣,﹣4,1.5.18、经过30多年的观测,人们发现冥王星的直径只有2.3×106米,比月球还要小,因此2006年8月24日在在捷克首都布拉格举行的国际天文学联合会第26届大会上,根据新定义,冥王星被排在行星行列之外,而将其列入“矮行星”.若银河系密集部分的直径是十万光年,用科学记数法表示冥王星与银河系密集部分直径的比值.(结果保留两位有效数字)19、已知a,b互为相反数,c,d互为倒数,m是绝对值等于3的负数.求的值.20、将下列各数在数轴上表示出来,并用“<”连接:﹣22,﹣(﹣1),0,|﹣3|,﹣2.5.21、某公园的成人票价是15元,儿童买半票,甲旅行团有x(名)成年人和y (名)儿童,乙旅行团的成人数是甲旅行团的2倍,儿童数比甲旅行团的2倍少8人.这两个旅行团的门票费用总和各是多少?22、写出下列各数的相反数,并将这些数连同他们的相反数在数轴上表示出来.+3,-1.5,0,23、把下列各数在数轴上表示出来,并用“ ”号把这些数连接起来.24、在数轴上画出表示下列各数的点,并把它们用“ ”连接起来. ,0,,|-3|,-(-3.5).25、一架直升飞机从高度为450米的位置开始,先以20米/秒的速度上升60秒,后以 12米/秒的速度下降120秒,这时的直升飞机所在的高度是多少?26、某中学老师为减轻学生们的负担,让同学们做了一个游戏,他说:“如果张华和李明分别代表不大于5的正整数m、n,且是最简真分数,那么形如的数一共有多少个不同的有理数?”27、已知|a﹣1|=9,|b+2|=6,且a+b<0,求a﹣b的值.28、有一个水库某天8:00的水位为(以警戒线为基准,记高于警戒线的水位为正),在以后的6个时刻测得的水位升降情况如下(记上升为正,单位:):.经这6次水位升降后,水库的水位超过警戒线了吗?29、已知实数a,b,c在数轴上的位置如图,且,化简30、小希准备在6年后考上大学时,用15000元给父母买一份礼物表示感谢,决定现在把零花钱存入银行下面有两种储蓄方案:①直接存一个6年期.(6年期年利率为)②先存一个3年期,3年后本金与利息的和再自动转存一个3年期.(3年期年利率为)你认为按哪种储蓄方案开始存入的本金比较少?请通过计算说明理由.31、若a、b互为相反数,c、d互为倒数,m的绝对值等于2,计算m﹣(a+b)2﹣(cd)3的值.32、如图所示,某公司员工分别住在A,B,C三个住宅区,A区有30人,B区有15人,C区有10人.三个区在同一条直线上,该公司的接送车打算在此间设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在哪个区?33、把下列各数在数轴上表示出来,并用“>”号把它们连接起来。

初中数学经典题-有理数及运算

初中数学经典题-有理数及运算

中考数学核心题目赏析有理数及其运算篇【核心提示】有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方. 通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面.【核心例题】例1计算:200720061......431321211⨯++⨯+⨯+⨯ 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆成2111211-=⨯,可利用通项()11111+-=+⨯n n n n ,把每一项都做如此变形,问题会迎刃而解.解 原式=)2007120061(......413131212111-++-+-+-)()()( =2007120061......41313121211-++-+-+-=200711-=20072006例2 已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如右图).化简b c b a a -+-+. 分析 从数轴上可直接得到a 、b 、c 的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b<0、c-b>0.解 由数轴知,a<0,a-b<0,c-b>0所以,b c b a a -+-+= -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c例3 计算:⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-211311 (9811991110011)A OB Ca b c分析 本题看似复杂,其实是纸老虎,只要你敢计算,马上就会发现其中的技巧,问题会变得很简便.解 原式=2132......9897999810099⨯⨯⨯⨯⨯=1001 例4 计算:2-22-23-24-……-218-219+220.分析 本题把每一项都算出来再相加,显然太麻烦.怎么让它们“相互抵消”呢?我们可先从最简单的情况考虑.2-22+23=2+22(-1+2)=2+22=6.再考虑2-22-23+24=2-22+23(-1+2)=2-22+23=2+22(-1+2)=2+22=6.这怎么又等于6了呢?是否可以把这种方法应用到原题呢?显然是可以的.解 原式=2-22-23-24-……-218+219(-1+2) =2-22-23-24-……-218+219=2-22-23-24-……-217+218(-1+2) =2-22-23-24-……-217+218 =…… =2-22+23 =6【核心练习】1、已知│ab-2│与│b-1│互为相反数,试求:()()......1111++++b a ab ()()200620061++b a 的值. (提示:此题可看作例1的升级版,求出a 、b 的值代入就成为了例1.) 2、代数式ababb b a a ++的所有可能的值有( )个(2、3、4、无数个) 【参考答案】1、200820072、3字母表示数篇【核心提示】用字母表示数部分核心知识是求代数式的值和找规律.求代数式的值时,单纯代入一个数求值是很简单的.如果条件给的是方程,我们可把要求的式子适当变形,采用整体代入法或特殊值法.【典型例题】例1已知:3x-6y-5=0,则2x-4y+6=_____分析 对于这类问题我们通常用“整体代入法”,先把条件化成最简,然后把要求的代数式化成能代入的形式,代入就行了.这类问题还有一个更简便的方法,可以用“特殊值法”,取y=0,由3x-6y-5=0,可得35=x ,把x 、y 的值代入2x-4y+6可得答案328.这种方法只对填空和选择题可用,解答题用这种方法是不合适的.解 由3x-6y-5=0,得352=-y x所以2x-4y+6=2(x-2y)+6=6352+⨯=328例2已知代数式1)1(++-n n x x ,其中n 为正整数,当x=1时,代数式的值是 ,当x=-1时,代数式的值是 .分析 当x=1时,可直接代入得到答案.但当x=-1时,n 和(n-1)奇偶性怎么确定呢?因n 和(n-1)是连续自然数,所以两数必一奇一偶.解 当x=1时,1)1(++-n n x x =111)1(++-n n =3当x=-1时,1)1(++-n n x x =1)1()1()1(+-+--n n =1例3 152=225=100×1(1+1)+25, 252=625=100×2(2+1)+25352=1225=100×3(3+1)+25, 452=2025=100×4(4+1)+25…… 752=5625= ,852=7225=(1)找规律,把横线填完整; (2)请用字母表示规律; (3)请计算20052的值.分析 这类式子如横着不好找规律,可竖着找,规律会一目了然.100是不变的,加25是不变的,括号里的加1是不变的,只有括号内的加数和括号外的因数随着平方数的十位数在变.解 (1)752=100×7(7+1)+25,852=100×8(8+1)+25(2)(10n+5)2=100×n (n+1)+25(3) 20052=100×200(200+1)+25=4020025例4如图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.S 表示三角形的个数.(1)当n=4时,S= ,(2)请按此规律写出用n 表示S 的公式.分析 当n=4时,我们可以继续画图得到三角形的个数.怎么找规律呢?单纯从结果有时我们很难看出规律,要学会从变化过程找规律.如本题,可用列表法来找,规律会马上显现出来的.解 (1)S=13(2)可列表找规律:n 1 2 3 … n S 1 5 9 … 4(n-1)+1S 的变化过程 1 1+4=5 1+4+4=9 … 1+4+4+…+4=4(n-1)+1所以S=4(n-1)+1.(当然也可写成4n-3.)【核心练习】1、观察下面一列数,探究其中的规律:—1,21,31-,41,51-,61①填空:第11,12,13三个数分别是 , , ; ②第2008个数是什么?③如果这列数无限排列下去,与哪个数越来越近?.2、观察下列各式: 1+1×3 = 22, 1+2×4 = 32, 1+3×5 = 42,……请将你找出的规律用公式表示出来:【参考答案】1、①111-,121,1311-;②20081;③0.2、1+n ×(n+2) = (n+1)2平面图形及其位置关系篇【核心提示】平面图形是简单的几何问题.几何问题学起来很简单,但有时不好表述,也就是写不好过程.所以这部分的核心知识是写求线段、线段交点或求角的过程.每个人写的可能都不一样,但只要表述清楚了就可以了,不过在写清楚的情况下要尽量简便.【典型例题】例1平面内两两相交的6条直线,其交点个数最少为______个,最多为______个.分析 6条直线两两相交交点个数最少是1个,最多怎么求呢?我们可让直线由少到多一步步找规律.列出表格会更清楚.解 找交点最多的规律:直线条数 2 3 4 … n交点个数 1 3 6 …2)1( n n 交点个数变化过程 1 1+2=3 1+2+3=6 … 1+2+3+…+(n-1)图形 图1 图2 图3 …例2 两条平行直线m 、n 上各有4个点和5个点,任选9点中的两个连一条直线,则一共可以连( )条直线.A .20B .36C .34D .22分析与解 让直线m 上的4个点和直线n 上的5个点分别连可确定20条直线,再加上直线m 上的4个点和直线n 上的5个点各确定的一条直线,共22条直线.故选D. 例3 如图,OM 是∠AOB 的平分线.射线OC 在∠BOM 内,ON 是∠BOC 的平分线,已知∠AOC=80°,那么∠MON 的大小等于_______.分析 求∠MON 有两种思路.可以利用和来求,即∠MON=∠MOC+∠CON.也可利用差来求,方法就多了,∠MON=∠MOB-∠BON=∠AON-∠AOM=∠AOB-∠AOM-∠BON.根据两条角平分线,想办法和已知的∠AOC 靠拢.解这类问题要敢于尝试,不动笔是很难解出来的.解 因为OM 是∠AOB 的平分线,ON 是∠BOC 的平分线,所以∠MOB=21∠AOB ,∠NOB=21∠COB 所以∠MON=∠M OB-∠N OB=21∠AOB-21∠C OB=21(∠AOB-∠C OB )=21∠AOC=21×80°=40°例4 如图,已知∠AOB=60°,OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC. (1)求∠DOE 的大小; O BAM CNOB ACD E图1图2图3(2)当OC 在∠AOB 内绕O 点旋转时,OD 、OE 仍是∠BOC 和∠AOC 的平分线,问此时∠DOE 的大小是否和(1)中的答案相同,通过此过程你能总结出怎样的结论.分析 此题看起来较复杂,OC 还要在∠AOB 内绕O 点旋转,是一个动态问题.当你求出第(1)小题时,会发现∠DOE 是∠AOB 的一半,也就是说要求的∠DOE , 和OC 在∠AOB 内的位置无关.解 (1)因为OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC.所以∠DOC=21∠BOC ,∠COE=21∠COA所以∠DOE=∠DOC+∠COE=21∠BOC+21∠COA=21(∠BOC+∠COA )=21∠AOB因为∠AOB=60°所以∠DOE =21∠AOB= 21×60°=30° (2)由(1)知∠DOE =21∠AOB ,和OC 在∠AOB 内的位置无关.故此时∠DOE 的大小和(1)中的答案相同.【核心练习】1、A 、B 、C 、D 、E 、F 是圆周上的六个点,连接其中任意两点可得到一条线段,这样的线段共可连出_______条.2、在1小时与2小时之间,时钟的时针与分针成直角的时刻是1时 分.【参考答案】1、15条2、分分或1165411921.一元一次方程篇【核心提示】一元一次方程的核心问题是解方程和列方程解应用题。

人教版七年级数学上册 《1.2 有理数》同步练习题(无答案)

人教版七年级数学上册 《1.2 有理数》同步练习题(无答案)人教七上《1.2 有理数》同步练习一.选择题(共 12 小题) 1.下列结论中正确的是( ) A .0 是最小的数 B .0℃表示没有温度C .小学学过的数前面添上“﹣”,就是负数D .0 既不是正数,也不是负数 2.下列四句话中,错误的是( ) A .存在最大的负整数 B .不存在最小的有理数 C .若|a |=﹣a ,则 a <0D .若|a |=a ,则 a ≥03.如图,数轴上的 A 、B 、C 三点所表示的数分别为 a 、b 、c ,其中 AB =BC ,如果点 A 到原点的距离最大,点 B 到原点的距离最小,那么该数轴的原点 O 的位置应该在( )A .点 A 的左边B .点 A 与点 B 之间C .点 B 与点 C 之间D .点 C 的右边4.下列数轴画得正确的是哪个( )A .B .C .D .5.下列说法正确的是( ) 1A .﹣5 是 的相反数5 4 5B . 与 互为相反数5 4C .0 的相反数是 0D .互为相反数的两个数必定一个是正数,一个是负数 6.化简﹣(﹣5)的结果是( )8.如图,点A 所表示的有理数的绝对值是()A.﹣1 B.1 C.±1 D.以上都不对9.下列说法中,正确的有()(1)绝对值相等的两个数必相同或互为相反数(2)正数和零的绝对值等于它本身(3)只有负数的绝对值是它的相反数(4)一个数的绝对值必为正.A.1 个B.2 个C.3 个D.4 个10.在数轴上点A 表示的数是2,到A 点的距离是4 个单位长度的点表示的数是()A.6 B.﹣2 C.6 或﹣2 D.4 或﹣411.下列说法错误的是()A.零是最小的整数B.有最大的负整数,没有最大的正整数D.所有的有理数都可以用数轴上的点表示出来12.下列说法正确的是()A.两个不同的有理数可以对应数轴上同一个点B.数轴上的点只能表示整数C.任何有理数的绝对值一定不是负数D.互为相反数的两个数一定不相等二.填空题(共15 小题)13.有理数中.是整数而不是正数的数是;是整数而不是负数的数是.14.分数有,.15.两个负数较大的数所对应的点离原点较.16.如图,数a 在数轴上表示的点与原点间的距离是.17.如果a 的相反数是﹣3,那么a=.18.不同的两个数称互为相反数,零的相反数为.19.一个数 a 与原点的距离叫做该数的.20.﹣|− 6|=, 7 ﹣(− 6)=, 7﹣|+ 1|=,3﹣(+ 1)= , 3 1+|﹣( )| ,2+(− 1)=.2 21.在数+8.3、﹣4、﹣18.18、− 1、0、90.1、− 34、﹣|﹣24|中,不是负数, 是53非正整数.22.若 A 表示整数,B 表示分数,C 表示正整数,D 表示零,E 表示负整数,F 表示正分数, G 表示负分数,用 A ,B ,C ,D ,E ,F ,G 填空.然后将下列各数填入相应的大括号内: 13.− 3,0,1.25,﹣35,﹣0.33 722 , ,+5,﹣600.723.如图,点 A ,B ,C 为数轴上的 3 点,请回答下列问题:(1)将点 A 向右平移 3 个单位长度后,点表示的数最小;(2)将点 C 向左平移 6 个单位长度后,点 A 表示的数比点 C 表示的数小 ;24.化简:1(1)﹣[﹣(﹣3 )]=4 (2)﹣|+(﹣6)|=.25.已知|a |<2 且 a 为整数,|b |=3,则 a +b 的最小值是.26.在数轴|6|表示的意义是表示6 的点与原点之间的距离,式子|6﹣2|在数轴上的意义表示6 的点与表示2 的点之间的距离.类似的,式子|a﹣4|在数轴上的意义是.27.数轴上表示﹣5 的点与表示2 的点的距离是个单位长度.三.解答题(共5 小题)28.比较下列各组数的大小.(2)﹣2.8 和﹣3.7.29.已知4﹣m 与﹣1 互为相反数,求m 的值.32.数轴上两点A、B,其中A 到原点2 个单位,B 到原点4 个单位,借助数轴:画图求线段AB 的长度是多少?。

初二数学有理数试题

初二数学有理数试题1.计算:【答案】-2.【解析】根据有理数乘方、绝对值、立方根的意义进行计算即可得出答案.试题解析:原式=4+1×1+2-9=-2.【考点】实数的混合运算.2.计算(1)(2)【答案】(1);(2).【解析】(1)针对绝对值,立方根化简,零指数幂,负整数指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)根据运算顺序计算即可.试题解析:(1)原式=.(2)原式=【考点】1.绝对值;2.立方根化简;3.零指数幂;4.负整数指数幂;5.整式的混合运算.3.在下表中,我们把第i行第j列的数记为(其中i,j都是不大于5的正整数),对于表中的每个数,规定如下:当i≥j时,=1;当i<j时,= -1.例如:当i=2,j=1时,=1.按此规定,=;表中的25个数中,共有个1;的最小值为.【答案】-1;15;-3.【解析】由题意当时,.当时,;由图表中可以很容易知道等于1的数有15个.要求最小值,只要求、、、、的最小值即可.试题解析:由题意,很容易发现,从i与j之间大小分析:当时,.当时,;由图表可知有15个1.==.故答案为:-1;15;-3.【考点】数字的变化.4.利用一面墙(墙的长度为12m),其它三面用40m长的篱笆,围成—个面积为l50㎡的长方形的场地,则此长方形的场地的长为 __________m.(规定长要大于宽)【答案】15【解析】设此长方形的场地的长为xm,根据“三面用40m长的篱笆,围成—个面积为l50㎡的长方形的场地”即可列方程求解.解:设此长方形的场地的长为xm,由题意得解得,因为,不符题意,设去则此长方形的场地的长为.【考点】一元二次方程的应用点评:解题的关键是读懂题意,找到等量关系,正确列方程求解,最后注意要舍去不符题意的解.5.计算的结果是-1的式子是()A.B.C.D.【答案】A【解析】根据绝对值的规律、有理数的混合运算法则依次分析各选项即可作出判断.解:A、,本选项正确;B、,C、,D、,故错误.【考点】有理数的混合运算点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.6.计算:(1);(2).【答案】(1);(2)【解析】(1)先根据二次根式的性质化简,再合并同类二次根式即可;(2)先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分即可.(1)原式==;(2)原式==.【考点】实数的运算,分式的化简点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.7.与数轴上的点一一对应的数是A.整数B.有理数C.无理数D.实数【答案】D【解析】根据数轴上的点表示的数的特征即可作出判断.与数轴上的点一一对应的数是实数,故选D.【考点】数轴的知识点评:数轴的知识是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.下列数中,0.483,,3.14,,,,0.373373337…无理数有()A.2个B.3个C.4个D.5个【答案】B【解析】无理数包括:①开方开不尽的数,②无限不循环小数,③含有π的数,即可得到结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 19 页 初中数学有理数练习题三篇 篇一:初中数学有理数练习题 一、选择题(本题满分30分,每题2分) 1.(2分)(2013秋•营口期末)下列说法中,正确的个数是( ) ①一个有理数不是整数就是分数;②一个有理数不是正的,就是负的;③一个整数不是正的,就是负的; ④一个分数不是正的,就是负的. A.1个 B.2个 C.3个 D.4个 2.在有理数中,绝对值等于它本身的数有( ) A.1个 B.2个 C.3个 D.无穷多个 3.下列说法中正确的是( ) A. π的相反数是314. B. 符号不同的两个数一定是互为相反数 C. 若x和y互为相反数,则xy0 D. 一个数的相反数一定是负数 4.(2分)(2015秋•邗江区校级月考)下列正确的式子是( ) A.﹣|﹣|>0 B.﹣(﹣4)=﹣|﹣4| C.﹣>﹣ D.﹣3.14>﹣π 5.(2分)(2013秋•莱州市期中)若a+b<0,ab<0,则( ) A.a>0,b>0 B. a,b两数一正一负,且正数的绝对值大于负数的绝对值 第 2 页 共 19 页

C. a,b两数一正一负,且负数的绝对值大于正数的绝对值 D.a<0,b<0 6.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差( ) A.0.8kg B.0.6kg C.0.5kg D.0.4kg 7.有理数a、b在数轴上的对应的位置如图所示,则( ) A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>0 8.如果两个有理数的积是正数,和也是正数,那么这两个有理数( ) A.同号,且均为正数 B.异号,且正数的绝对值比负数的绝对值大 C.同号,且均为负数 D.异号,且负数的绝对值比正数的绝对值大 9.(2分)(2015秋•德州校级月考)如果a表示有理数,那么a+1,|a+1|,(a+1),|a|+1中肯定为正数的有( ) A.1个 B.2个 C.3个 D.4个 10.下列说法中正确的是( ) A.﹣a一定是负数 B.|a|一定是负数 C.|﹣a|一定不是负数 D.﹣a2一定是负数 11.甲、已、丙三地的海拔高度分别为20米,﹣15米和﹣10米,那么最高的地方比最低的地方高( )A.10米 B.15米 C.35米 D.5米 12.下面是小卢做的数学作业,其中算式中正确的是( ) ①;②;③;④. A.①② B.①③ C.①④ D.②④ 第 3 页 共 19 页

13.下面说法中正确的是( ) A.两数之和为正,则两数均为正 B.两数之和为负,则两数均为负 C.两数之和为0,则这两数互为相反数 D.两数之和一定大于每一个加数 14.如果|a|=﹣a,下列成立的是( ) A.a>0 B.a<0 C.a≥0 D.a≤0 15.(2分)(2014秋•萧山区校级期中)如果a<2,那么|﹣1.5|+|a﹣2|等于( ) A.1.5﹣a B.a﹣3.5 C.a﹣0.5 D.3.5﹣a 二、填空题(本题满分20分,每题2分) 16.把(﹣8)+(﹣10)﹣(+9)﹣(﹣11)写成省略加号的和式是 . 17.数轴上点A所表示数的数是﹣18,点B到点A的距离是17,则点B所表示的数是 . 18.吐鲁番盆地低于海平面155米,记作﹣155m,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高 m. 19.一个数加上﹣12得﹣5,那么这个数为 . 20.﹣9,6,﹣3三个数的和比它们绝对值的和小 . 21.一个数的倒数的相反数是,则这个数是 . 22.(2分)(2012•天津模拟)+5.7的相反数与﹣7.1的绝对值的和是 . 23.(2分)(2016秋•灌云县月考)小明不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是 . 第 4 页 共 19 页

24.(2分)(2013秋•象山区校级期中)若a<0,b<0,则a+b 0(填“>”或“<”) 三、计算题(本题满分32分) 25.(8分)(2015秋•德州校级月考)比较大小,要求写出比较的过程. (1)﹣和﹣ (2)﹣[﹣(﹣)]和﹣|﹣|

26.(16分)(2015秋•德州校级月考)计算下列各式的值. (1)(﹣1.5)+4+2.75+(﹣5)

(2)(﹣5)×(﹣3)+(﹣7)×(﹣3)+12×(﹣3)

(3)[(+)+(﹣)+(﹣)]×(+60) (4)﹣39×(﹣6) 四、解答题:(本题满分38分) 27.(2015秋•德州校级月考)把下列各数填在相应的集合内:6,﹣3,2.5,0,﹣1,﹣|﹣9|,﹣(﹣3.15) (1)整数集合{ …} (2)分数集合{ …} (3)非负数集合{ …} (4)正有理数集合{ …} (5)负数集合{ …}. 第 5 页 共 19 页

28.(6分)(2015秋•德州校级月考)在数轴上表示下列各数,并按照从小到大的顺序用“<”号连接起来.+3,﹣1,4,﹣2,|﹣0.5|,﹣(﹣1.5)

29.(12分)(2015秋•德州校级月考)如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照图1﹣8并思考,完成下列各题: (1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是 ,A,B两点间的距离是 ; (2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是 ,A,B两点间的距离为 ; 30.(2011春•青羊区校级期中)观察下列各式: 13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2; 13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2; 13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2; ∴13+23+33+43+53=( )2= . 根据以上规律填空:(1)13+23+33+…+n3=( )2=[ ]2.(2)猜想:113+123+133+143+153= . 第 6 页 共 19 页

篇二:有理数综合练习题 班级 姓名 判断正误: 1、一个数的平方是16,这个数一定是4。 ( ) 2、an2是非负数。 ( ) 3、nnaa ( ) 4、如果aan00,,那么n为偶数。( ) 5、abn2等于ban2 ( ) 6、abn21等于21()nba( ) 7、abab222永远成立 ( ) 8、如果mn22,那么mn ( ) 9、如果mn33,那么mn( ) 10、近似数0.031040有四位有效数字( ) 11、两个数相乘,乘积不一定大于每个因数 ( ) 12、无论x是什么数,xx1( )13、任何一个有理数的平方都大于零 ( ) 二、选择题:

1、2219891990应等于( ) A.21989 B.21990 C.-1 D.21989 2、一个数的平方等于这个数的绝对值,这个数一定为( ) A.0 B.1 C.-1 D.0,1或-1 3、若a,b是互为相反数,则( ) 第 7 页 共 19 页

A.abnn22,也是互为相反数 B.abnn2121,也是互为相反数 C.abnn,也是互为相反数 D.以上三种情况都不可能 4、若a、b、c都是有理数,且abbcca222000,,,则( ) A.abc000,, B.abc000,, C.abc000,, D.abc000,, 5、若aaa2,则a是( ) A.正数 B.负数 C.零 D.非正数 6、一个有理数的平方小于这个有理数,则有( ) A.这个数的倒数是负数 B.这个数的相反数大于这个数 C.这个数的二次幂大于四次幂 D.这样的有理数不存在 7、如果x,y表示有理数,且x,y满足条件xyxyyx52,,,那么xy2的值 ( ) A.-1 B.-9 C.-1或-9 D.以上都不对 8、任意的有理数a,它的平方a2的末位数字不可能出现在( )中 A.3,4,9,0 B.2,3,7,8 C.4,5,6,7 D.1,5,6,9 9、若ab00,,则下面四个式子中一定成立的是( ) A.ab0 B.ab·0 C.ab0 D.ab0 10、下面四个不等式中,正确的是( )

A.020310346.. B.031002463.. C.100203634.. D.030210436.. 第 8 页 共 19 页

11、一个有理数的平方是正数,那么这个有理数的立方( ) A.是正数 B.是负数 C.也可能是正数,也可能是负数 D.不可能是负数

12、数94与322的( ) A.和为0 B.差为0 C.积为1 D.商为1 13、如果一个有理数的偶次幂不是负数,那么这个有理数( ) A.是任何有理数 B.是正有理数 C.是非负有理数 D.是负有理数 14、若x是有理数,则下列代数式的值一定是正数的是( ) A.1999x B.x +1999 C.|x| D.x21999 15、下列各式中,计算正确的是( )

A.235 B.121254 C.34433434 D.2212241423 16、近似数1.101×105的有效数字有( ) A.2个 B.3个 C.4个 D.5个 17、下列说法正确的是( )

A.有理数a的倒数都可以是1a B.a与b互为相反数,ba1 C.如果aann,那么n一定是偶数 D.an与-an一定不相等 18、如果两个数的和与积都是正数,那么只要( ) A.这两个数均为正数 B.这两个数均为负数

相关文档
最新文档