不定积分乘法
高等数学常用微积分公式

高等数学常用微积分公式一、极限1.无穷大与无穷小:当x→∞时,若极限值L=0,则称函数f(x)是无穷小。
常见无穷小有:x→0时的无穷小o(x)、无穷次可导的无穷小O(x^n);当x→∞时,若极限值L≠0或不存在,则称函数f(x)是无穷大;2.函数极限:若函数f(x)当x→a时的极限存在稳定的常数L,则称L为f(x)当x→a时的极限,记作:lim(x→a) f(x) = L;3.等价无穷小:若 f(x) 和 g(x) 都是x→a 时的无穷小,并且lim(x→a)(f(x)/g(x))=1,则称 f(x) 和 g(x) 是x→a 时的等价无穷小。
二、导数1.导数的定义:若函数f(x)在点x处的函数值可近似表示为f(x+Δx)≈f(x)+f'(x)Δx,其中f'(x)为f(x)在点x处的导数,则称f'(x)是函数f(x)在点x处的导数。
2.常见函数的导数:(1)和差法则:(u±v)'=u'±v';(2)乘法法则:(u*v)'=u'*v+u*v';(3)除法法则:(u/v)'=(u'*v-u*v')/v^2,其中v≠0;(4) 链式法则:若 y=f(u),u=g(x) ,则 y=f(g(x)) 的导数为dy/dx = f'(u)*g'(x)。
3.高阶导数:函数f(x)的导数f'(x)的导数称为f(x)的二阶导数,记为f''(x)。
可以依此类推,得到函数f(x)的n阶导数f^(n)(x)。
三、微分1.微分的定义:函数 f(x) 在点 x 处的微分记为 dx,根据导数的定义,有 df(x) = f'(x)dx。
2.微分的性质:(1)常数微分:d(c)=0,其中c为常数;(2) 取单项微分:d(x^n) = nx^(n-1)dx,其中 n 为实数,x 为变量;(3) 和差微分:d(u ± v) = du ± dv;(4) 乘法微分:d(uv) = u*dv + v*du;(5) 除法微分:d(u/v) = (v*du - u*dv)/v^2,其中v ≠ 0;(6) 复合函数微分:若 y=f(u),u=g(x),则 dy = f'(u)du =f'(g(x))g'(x)dx。
第一节 不定积分的概念与性质

因[x 为 arx ct 1la n 1 n x (2)]arx c, tan 2
所以 xarcxta 1ln n1 (x2)是 arcx的 tan一个原 2
= =
微分运算与求不定积分的运算是互逆的:
d
F(x)F(x),dF(x)
F( x)C f(x), f(x)dx
由此可知:
(1)d d xf(x)dxf(x), d [f(x)d x]f(x)d x;
(2)F(x)dxF(x) +C, dF(x)F(x)+C.
( 2)
例3 d x x C.
二、 基本积分表
实例
x1 x
1
xdxx1 C. 1
(1)
结论 既然积分运算和微分运算是互逆的, 因此可以根据求导公式得出积分公式.
基 (1 )k dkx x C(k 是常数);
本 积
0dxC 1dxxC
分项积分 常用恒等变形方法 加项减项
利用三角公式 , 代数公式 ,
思考与练习
1.
证明
arc 2 x s1 )ia ,nr(c 1 c 2 x)o 和 2 s a(rcx tan 1 x
都是 1 的原函. 数 xx2
2. 若 ex是f(x)的原函 ,则数
x2f(lx)n dx
1 2
f(x ) f(x ) 0 F (x ) G (x ) C ( C为任意常数)
不定积分的定义:
函数f在区间I上的全体原函数称为f在I上的不定积分,
记 为 f ( x ) d . x
常用求导积分公式及不定积分基本方法

常用求导积分公式及不定积分基本方法常用求导公式:1.一元函数求导公式:- 反函数求导法则:若y=f(u),则u=f^(-1)(y),则有(dy)/(dx) =1/(du/dy)- 常数乘法法则:若y=kf(x),则(dy)/(dx) = kf'(x)-基本初等函数求导法则:- 常数函数求导法则:若y=c,则(dy)/(dx) = 0- 幂函数求导法则:若y=x^n,则(dy)/(dx) = nx^(n-1)- 指数函数求导法则:若y=a^x,则(dy)/(dx) = (lna) * a^x- 对数函数求导法则:若y=loga(x),则(dy)/(dx) = 1 / (xlna)- 三角函数求导法则:若y=sin(x)、cos(x)、tan(x)、cot(x)、sec(x)、csc(x),则(dy)/(dx) = cos(x)、-sin(x)、sec^2(x)、-csc^2(x)、sec(x)tan(x)、-csc(x)cot(x),对应地还有反三角函数的求导公式- 反函数求导法则:若y=f^(-1)(x),则(dy)/(dx) = 1 / (dx/dy)-两个函数的和、差、积、商求导法则:- 和、差法则:若y=u+v,则(dy)/(dx) = (du)/(dx) + (dv)/(dx),若y=u-v,则(dy)/(dx) = (du)/(dx) - (dv)/(dx)- 积法则:若y=uv,则(dy)/(dx) = u(dv)/(dx) + v(du)/(dx)- 商法则:若y=u/v,则(dy)/(dx) = (v(du)/(dx) - u(dv)/(dx))/ v^22.多元函数求导公式:-偏导数:对多元函数,其对其中其中一个自变量求导,其它自变量当作常数,即得到偏导数-偏导函数的求导法则:对偏导函数重复使用一元函数求导公式常用不定积分基本方法:1.基本初等函数的不定积分法则:- 幂函数积分法则:∫x^n dx = (1/(n+1)) * x^(n+1) + C,其中n≠-1- 指数函数与对数函数积分法则:∫a^x dx = (1/lna) * a^x + C,∫(1/x) dx = ln,x, + C-三角函数与反三角函数积分法则:- ∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C- ∫sec^2(x) dx = tan(x) + C,∫csc^2(x) dx = -cot(x) + C- ∫sec(x)tan(x) dx = sec(x) + C,∫csc(x)cot(x) dx = -csc(x) + C- ∫(1/√(1-x^2)) dx = arcsin(x) + C,∫(1/√(1+x^2)) dx = arctan(x) + C- 反函数的不定积分法则:若F'(x) = f(x),则∫f^(-1)(x) dx =x * f^(-1)(x) - F(f^(-1)(x)) + C-特殊函数的不定积分法则:包括指数函数幂倍积分法则、二次函数积分法则等2.基本不定积分运算:- 基本线性运算:若∫f(x) dx = F(x) + C₁,∫g(x) dx = G(x) +C₂,则∫(af(x) + bg(x)) dx = aF(x) + bG(x) + C₃,其中a、b为实数- 递推公式:若∫f(x) dx = F(x) + C,则∫f(x)Ⓓ(x) dx = FⒹ(x) - ∫FⒹ(x) fⒹd(x) dx + C3. 分部积分法:设u(x)和v(x)具有连续一阶导数,根据分部积分公式,有∫u(x)v(x) dx = u(x)v(x) - ∫v(x)uⒹ(x) dx4.换元积分法(含有待定变量):设y=f(u),u=g(x),当g(x)可导、f(u)的原函数可积时5.改线积分法:将不定积分中的自变量换成关于自变量的函数。
不定积分常用的16个基本公式

不定积分常用的16个基本公式近年来,随着数学研究的深入发展,不定积分及其应用在许多领域发挥着重要作用。
它不仅可以在数学方面发挥重要作用,而且可以在工程,物理,经济学等多个学科中得到应用。
不定积分可以根据它的定义和它的公式来求解,其中有16个主要的基本公式。
首先,不定积分的定义是什么?它是用来表示一个函数的增量的定义,就是说,它是一个函数f(x)的“梯形”,得到这个梯形的面积,可以用不定积分法来进行计算。
其中,有16个主要的基本公式,分别是:1)不定积分公式:intf(x)dx=f(x)+ c2)乘积公式:intu(x)v(x)dx=intu(x)dx intv(x)dx 3)反函数公式:int(1/U)dx=ln|U(x)|+c4)倍拆公式:int(f(x)+g(x))dx=intf(x)dx+intg(x)dx5)定积分公式:int_a^bf(x)dx=intf(x)dx|_a^b6)分部积分公式:intf(x)dx=f(x)intf(x)dx+c7)牛顿-洛克(N)公式:int_a^bf(x)dx=intf(x)dx|_a^b + (b-a) intf(x)dx|_a^b8)级数积分:int[f(x)+ fi(x)]dx= intf(x)dx+ intf (x)dx|_a^b9)变量变换:intu(x)dx= intu(u)du10)定积分变换:int_a^bf(x)dx= int_a^bf(u)du11)约瑟夫-马尔科夫(J-M)公式:intf(x)dx=intf(x)dx+f (x) intf(x)dx|_a^b12)奇拆公式:intf(x)dx=intf(x)dx+f(x) intf(x)dx|_a^b 13)展开与积分公式:intu(x)v(x)dx= intu(x)dx intv (x)dx+intv(x)dx intu(x)dx14)矩形公式:int_a^bf(x)dx=frac{f(a)+f(b)}{2} int_a^b1dx 15)双曲函数公式:intfrac{1}{u(x)}dx=intfrac{1}{u(x)}dx+c 16)椭圆曲线公式:intfrac{1}{u(x)v(x)}dx= intfrac{1}{u (x)}dx+ intfrac{1}{v(x)}dx上述16个基本公式,构成了不定积分的基础,是解决不定积分问题不可缺少的重要部分。
不定积分的减法公式

不定积分没有四则运算法则,只有基本公式法,第一类换元积分,第二类换元积分,分部积分等。
1、积分公式法:直接利用积分公式求出不定积分。
2、第一类换元法(即凑微分法):通过凑微分,最后依托于某个积分公式,进而求得原不定积分。
积分常用法则公式:1、∫0dx=c 不定积分的定义。
2、∫x^udx=(x^(u+1))/(u+1)+c。
3、∫1/xdx=ln|x|+c。
4、∫a^xdx=(a^x)/lna+c。
5、∫e^xdx=e^x+c。
6、∫sinxdx=-cosx+c。
积分常用法则公式:1、∫0dx=c 不定积分的定义。
2、∫x^udx=(x^(u+1))/(u+1)+c。
3、∫1/xdx=ln|x|+c。
4、∫a^xdx=(a^x)/lna+c。
5、∫e^xdx=e^x+c。
6、∫sinxdx=-cosx+c。
不同,积分只有加减运算,没有乘除运算如果要算ƒ(x)g(x)形式,可以考虑分部积分法或者换元积分法分部积分法就是应付乘积形式的被积函数uv的导数(uv)' = uv' + u'v,两边积分 uv = ∫uv' dx + ∫ ...不定积分运算法则是什么? ——不定积分运算没有乘法运算法则,只有基本公式法,第一类换元积分,第二类换元积分,分部积分等。
1、积分公式法:直接利用积分公式求出不定积分。
2、第一类换元法(即凑微分法):通过凑微分,最后依托于某个积分公式。
进而求...不定积分的乘法运算? ——不定积分运算没有乘法运算法则,只有基本公式法,第一类换元积分,第二类换元积分,分部积分等。
1、积分公式法:直接利用积分公式求出不定积分。
2、第一类换元法(即凑微分法):通过凑微分,最后依托于某个积分公式。
进而求...不定积分的四则运算法则设f(x)和g(x)两函数, ∫f(x)*g(x)=? ∫f... ——只有常数能提出来自坚固无比的lumia928,不跟随,不妥协,不抛弃求不定积分,用最简单的方法,变成加减法——原式=∫(t^2+1)/t*2tdt =2∫(t^2+1)dt =(2/3)*t^3+2t+C =(2/3)*(x-1)^(3/2)+2√(x-1)+C,其中C是任意常数2、第一类换元积分法原式=∫(x-1+1)/√(x-1)dx =∫[√(x-1)+1/√...。
22 不定积分的分部积分法

1 2 v x 则 2 1 1 2 原式 = x ln x x dx 2 2
1 2 1 2 x ln x x C 2 4
都是两种不同类型函数的乘积。 这就启发我们把两个 函数乘积的微分法则反过来用于求这类不定积分,
这就是另一个基本的积分方法:分部积分法.
2
首页
上页
返回
下页
结束
铃
由导数乘法公式: (uv) u v uv
积分得:
uv u vdx u v dx
或
分部积分公式
1) v 容易求得 ; 容易计算 .
2 2 2
ln( x 2 1)d (x 2 1)
( x 2 1) ln( x 2 1) 2 xdx
( x 2 1) ln(x 2 1) x 2 C.
首页 上页 返回 下页 结束 铃
7
分部积分过程: u vdx u dv uv v du uv vu dx 例3 求 x 2 e x dx. 解
2
u x , e dx de dv ,
x x
2 x
x e
2 x
dx x e 2 xe dx
2 x x
降 幂
x u x , e dx dv (再次使用分部积分法)
x e 2( xe e ) C .
x x
用分部积分法,使多项式的次数降低
8
首页
上页
返回
下页
不定积分计算公式

不定积分计算公式不定积分是微积分中一个重要的概念,它表示函数的原函数。
计算不定积分可以使用一系列的公式和技巧。
下面将介绍一些常用的不定积分计算公式。
1.幂函数不定积分的基本公式之一是幂函数的不定积分公式。
∫x^n dx = (x^(n+1))/(n+1) + C (n≠-1)其中C为常数。
例如,∫x^2 dx = x^3/3 + C只有当指数n不等于-1时,幂函数才有原函数。
2.指数函数和对数函数指数函数和对数函数是常用的函数,它们的不定积分可以通过以下公式计算。
∫e^x dx = e^x + C∫ln(x) dx = xln(x) - x + C其中e为自然对数的底数。
3.三角函数三角函数也有常用的不定积分公式。
∫sin(x) dx = -cos(x) + C∫cos(x) dx = sin(x) + C∫tan(x) dx = -ln,cos(x), + C∫cot(x) dx = ln,sin(x), + C其中C为常数。
4.反三角函数其不定积分公式如下所示。
∫sec^2(x) dx = tan(x) + C∫csc^2(x) dx = -cot(x) + C∫sec(x)tan(x) dx = sec(x) + C∫csc(x)cot(x) dx = -csc(x) + C其中C为常数。
5.一些特殊函数除了上述常见的函数,还有一些特殊的函数和它们的不定积分公式。
∫1 dx = x + C∫1/x dx = ln,x,+ C (x≠0)∫e^ax sin(bx) dx = (a e^ax sin(bx) - b e^ax cos(bx))/(a^2 + b^2) + C∫e^ax cos(bx) dx = (a e^ax cos(bx) + b e^ax sin(bx))/(a^2 + b^2) + C其中a和b为常数。
6.分部积分法分部积分法是一个常用的计算不定积分的技巧,它基于导数运算和不定积分之间的关系。
分部积分法求积分

分部积分法求积分引言分部积分法是微积分中常用的一种方法,用于求解不定积分。
它基于积分运算中的乘法法则,通过将原始积分转化为一个乘积的形式,然后再进行求解,从而简化求积分的过程。
在本文中,我们将详细探讨分部积分法的原理、应用以及一些常见的示例。
原理分部积分法是基于乘法法则的一个应用,乘法法则的公式表达为:(uv)′=u′v+uv′其中,u和v都是可微函数。
通过对上述等式进行重排,我们可以得到以下等式:∫u′v dx=uv−∫uv′dx分部积分法的步骤使用分部积分法求解不定积分需要遵循以下步骤:1.选择一个适合的分部函数,将原始积分表示为乘积的形式。
2.计算分部函数的导数,即u′和v′。
3.使用原始积分的形式,将结果表示为uv的形式。
4.计算另一个不定积分,即∫uv′dx。
5.将上述结果代入分部积分法的公式,得到最终结果。
可行的分部函数选择在选择分部函数时,通常有一些常见的模式可以参考,包括:•选择含有代数函数的u,如多项式、指数函数等。
•选择含有三角函数的u,如正弦函数、余弦函数等。
•选择含有对数函数或反三角函数的u。
示例1:求解∫xcos(x)dx我们将使用分部积分法求解∫xcos(x)dx,其中u为x,v′为cos(x)。
步骤1:选择分部函数u和v′。
此处选择u=x,v′=cos(x)。
步骤2:计算u′和v′。
因为u=x,所以u′=1;因为v′=cos(x),所以v=sin(x)。
步骤3:将结果表示为uv的形式。
即uv=x⋅sin(x)。
步骤4:计算∫uv′dx。
由于v=sin(x),所以∫uv′dx=∫xsin(x)dx。
步骤5:将结果代入分部积分法的公式,得到最终结果:∫xcos(x)dx=xsin(x)−∫xsin(x)dx我们可以继续应用分部积分法来计算∫xsin(x)dx,以求得最终结果。
示例2:求解∫ln(x)dx在一些特殊情况下,我们可以选择对数函数作为分部函数。
步骤1:选择分部函数u和v′。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不定积分乘法
在求不定积分时,有时需要使用乘积的性质进行计算。
以下是常见的不定积分乘法的公式和应用。
1. 乘积法则:
若函数G(x)是f(x)和h(x)的乘积,则有:
∫[f(x) * h(x)]dx = ∫f(x) * h(x)dx = F(x) * h(x) - ∫F(x) * h'(x)dx,
其中F(x)是f(x)的一个原函数。
这个公式也被称为莱布尼茨
法则。
2. 特殊的乘积法则:
当f(x)和g(x)的乘积具有特殊形式时,可以直接进行积分,
而不需要使用乘积法则进行计算。
例如:
- ∫e^x * f(x)dx = e^x * ∫f(x)dx,
- ∫x^n * f(x)dx = (x^(n+1) / (n+1)) * ∫f(x)dx,其中n不等于-1, - ∫sin(x) * cos(x)dx = (sin(x))^2/2 + C。
3. 积分表:
对于一些常见的乘积形式,存在一些已知的积分公式,可以
直接查表进行计算。
需要注意的是,不同的乘积形式求积分的方法可能有所不同,具体的计算方法需要根据具体问题来确定。
在实际应用中,可以根据乘积的特点来选择相应的方法进行计算。