量子力学 周世勋(全套ppt课件)
合集下载
教学课件 《量子力学教程(第二版)》周世勋

1926 —1927年 戴维孙(Davisson)电子衍射实验
1925年 海森伯(Heisenberg) 矩阵力学
1926年 薛定谔(SchrÖedinger) 波动方程
1928年 狄拉克(Dirac)
RETURN
相对论波动方程
34
三 量子力学的应用简介
1.量子力学是现代物理学和其他自然学科的基础 量子光学、量子电动力学、量子统计 物理学、量子化学、量子生物学、量 子信息学等。
(二)经典物理学的困难与量子物理学的诞生
1. 黑体辐射问题 一个能全部吸收投射在其上面的辐射而 无反射的物体称为绝对黑体,简称黑体。
热平衡时,只与黑体
能
的绝对温度 T 有关而
量
与黑体的形状和材料
密
无关。
度
0
5
10
/10-4 cm
14
(1)维恩(Wien)经验公式
d c1 e3 c2 T d
33
• 量子力学发展简史 A 旧量子论的形成(冲破经典——量子假说)
1900年 普朗克(Planck) 振子能量量子化 1905年 爱因斯坦(Einstein)电磁辐射能量量子化
1913年 玻尔(N.Bohr) 原子能量量子化 B 量子力学的建立(崭新概念)
1923年 德布罗意(de Broglie)电子具有波动性
意义: ①光是由光子组成,能量是量子化的;
RETURN ②微观碰撞事件中能量、动量守恒 。
24
4. 原子结构及其光谱问题
实验:(1)原子是稳定的; (2)氢原子光谱是分立谱线:1911年卢瑟
福 粒子散射实验,原子是有核结构。
经验公式:(巴耳末公式)
RH
1 n2
量子力学-第二版-周世勋PPT课件

量子力学
QQuuaannttuumm mmeecchhaanniissmm
宝鸡文理学院物理与信息技术系
1
《量子力学》教材与参考书
教材
《量子力学教程》周世勋编,高等教育出版社
参考书及学习网站
1.《 量 子 力 学 教 程 》 曾 谨 言 著 , ( 科 学 出 版 社,2003年第一版,普通高等教育十五国家级规划教 材)
一个开有小孔的封闭空腔 可看作是黑体。
波
3.的思想。
4.2.海森堡的矩阵力学:
5.在批判旧量子论的基础之上建立起来
6.3.狄拉克表述:
7.更为普遍的形式 10
§1.1经典物理学的困难
Chap.1.绪论 The birth of quantum mechanism
一.经典物理学的成功
十九世纪末期,物理学理论在当时看来己发展到相 当完善的阶段,其各个分支已经建立起系统的理论:
第六章 散射
Ch6. The general theory of scattering
第七章 自旋与全同粒子
Ch7. Spin and identity of particles
第一章 绪论
The birth of quantum mechanism
基本内容
Chap.1.绪论 The birth of quantum mechanism
1.1 经典物理学的困难
The difficult in classical physics
1.2 光的波粒二象性
The duality of light between wave and particle
1.3 微粒的波粒二象性
The duality of small particles between wave and particle
QQuuaannttuumm mmeecchhaanniissmm
宝鸡文理学院物理与信息技术系
1
《量子力学》教材与参考书
教材
《量子力学教程》周世勋编,高等教育出版社
参考书及学习网站
1.《 量 子 力 学 教 程 》 曾 谨 言 著 , ( 科 学 出 版 社,2003年第一版,普通高等教育十五国家级规划教 材)
一个开有小孔的封闭空腔 可看作是黑体。
波
3.的思想。
4.2.海森堡的矩阵力学:
5.在批判旧量子论的基础之上建立起来
6.3.狄拉克表述:
7.更为普遍的形式 10
§1.1经典物理学的困难
Chap.1.绪论 The birth of quantum mechanism
一.经典物理学的成功
十九世纪末期,物理学理论在当时看来己发展到相 当完善的阶段,其各个分支已经建立起系统的理论:
第六章 散射
Ch6. The general theory of scattering
第七章 自旋与全同粒子
Ch7. Spin and identity of particles
第一章 绪论
The birth of quantum mechanism
基本内容
Chap.1.绪论 The birth of quantum mechanism
1.1 经典物理学的困难
The difficult in classical physics
1.2 光的波粒二象性
The duality of light between wave and particle
1.3 微粒的波粒二象性
The duality of small particles between wave and particle
量子力学_第一章_周世勋

1864年 光和电磁现象之间的联系 光的波动性
(二)经典物理学的困难
20世纪初 经典理论遇到了一些严重的困难 (1)黑体辐射问题 (2)光电效应 (3)氢原子光谱
黑体辐射
黑体:能完全吸收一切频率入射电磁 波 (广义光波) 的物体
能 量 密 度
黑体辐射:由这样的空腔小孔发 出的辐射就称为黑体辐射。
h 6.62606896 1034 J s
基于上述假定,普朗克得到了与实验符合很好的黑体辐射公式:
能 量 密 度
8hv3 v dv c3 Planck 线
1 e
hv 1 K BT
dv
吸收或发射电磁能量的不连续概念,经典力学是无法理解的 当时并未引起较多人的注意 用量子假设解决经典困难的是A. Einstein
3. v v0
光愈强,单位时间产生的光电子愈多
光的本性认识:1. Maxwell, Hertz等人工作,肯定了光是电磁波 2. 光电效应,黑体辐射,体现了光的粒子性
光是粒子性和波动性的统一体
• 虽然爱因斯坦对光电效应的解释是对Planck量 子概念的极大支持,但是Planck不同意爱因斯坦的 光子假设,这一点流露在Planck推荐爱因斯坦为普 鲁士科学院院士的推荐信中。 “ 总而言之,我们可以说,在近代物理学结出 硕果的那些重大问题中,很难找到一个问题是爱因 斯坦没有做过重要贡献的,在他的各种推测中,他 有时可能也曾经没有射中标的,例如,他的光量子 假设就是如此,但是这确实并不能成为过分责怪他 的理由,因为即使在最精密的科学中,也不可能不 偶尔冒点风险去引进一个基本上全新的概念 ”
20 sin
2
2
其中 称为电子的Compton波长。
第二章波函数和薛定谔方程(量子力学周世勋)PPT课件

第二章 波函数与薛定谔方程
The wave function and Schrödinger Equation
1
学习内容
➢ 2.1 波函数的统计解释 The Wave function and its statistic explanation
➢ 2.2 态叠加原理
The principle of su续4)
(2)粒子由波组成
电子是波包。把电子波看成是电子的某种实际结构, 是三维空间中连续分布的某种物质波包。因此呈现 出干涉和衍射等波动现象。波包的大小即电子的大 小,波包的群速度即电子的运动速度。
什么是波包?波包是各种波数(长)平面波的迭 加。平面波描写自由粒子,其特点是充满整个空间, 这是因为平面波振幅与位置无关。如果粒子由波组 成,那么自由粒子将充满整个空间,这是没有意义 的,与实验事实相矛盾。
经典概念 中粒子意
味着
1.有一定质量、电荷等“颗粒性”的属性;
2.有确定的运动轨道,每一时刻有一定 位置和速度。
经典概 念中波 意味着
1.实在的物理量的空间分布作周期性的 变化;
2.干涉、衍射现象,即相干叠加性。 7
§2.1 波函数的统计解释(续6)
▲ 玻恩的解释: 我们再看一下电子的衍射实验
P
P
12
§2.1 波函数的统计解释(续10)
3.波函数的归一化
令
(r,t)C (r,t)
相对t 几时率刻是,:在空C间(r任1,t意) 两2 点r 1 (和r1,rt2)处2找到粒子的 C(r2,t) (r2,t)
波函数
2.通过对实验的分析,理解态叠加原理。
3.掌握微观粒子运动的动力学方程
波函
数随时间演化的规律
The wave function and Schrödinger Equation
1
学习内容
➢ 2.1 波函数的统计解释 The Wave function and its statistic explanation
➢ 2.2 态叠加原理
The principle of su续4)
(2)粒子由波组成
电子是波包。把电子波看成是电子的某种实际结构, 是三维空间中连续分布的某种物质波包。因此呈现 出干涉和衍射等波动现象。波包的大小即电子的大 小,波包的群速度即电子的运动速度。
什么是波包?波包是各种波数(长)平面波的迭 加。平面波描写自由粒子,其特点是充满整个空间, 这是因为平面波振幅与位置无关。如果粒子由波组 成,那么自由粒子将充满整个空间,这是没有意义 的,与实验事实相矛盾。
经典概念 中粒子意
味着
1.有一定质量、电荷等“颗粒性”的属性;
2.有确定的运动轨道,每一时刻有一定 位置和速度。
经典概 念中波 意味着
1.实在的物理量的空间分布作周期性的 变化;
2.干涉、衍射现象,即相干叠加性。 7
§2.1 波函数的统计解释(续6)
▲ 玻恩的解释: 我们再看一下电子的衍射实验
P
P
12
§2.1 波函数的统计解释(续10)
3.波函数的归一化
令
(r,t)C (r,t)
相对t 几时率刻是,:在空C间(r任1,t意) 两2 点r 1 (和r1,rt2)处2找到粒子的 C(r2,t) (r2,t)
波函数
2.通过对实验的分析,理解态叠加原理。
3.掌握微观粒子运动的动力学方程
波函
数随时间演化的规律
量子力学(周世勋)第2章课件-10

E ix i t
i E1 t
v( x)e
u( x)e
u( x)e
i ix Et
i E2 t
(2) 2 ( x) u( x)e
(3) 3 ( x) u( x)e
E i t
E i t
4.应用实例
x x
补 充 练 习 题
1. 下列一组波函数共描写粒子的几个不同状态? 并指出每 个状态由哪几个波函数描写。
1 ei 2 x / , 4 ei 3 x / ,
2 ei 2 x / , 5 ei 2 x / ,
| x | a | x | a | x | a | x | a
扫描隧道显微镜就是利用穿透势垒的电流对于金属探针尖端同待测物体表面的距离很敏感的关系可以探测到量级高低起伏的样品表面的地形图10m11?例1
P
电子源
P
O Q
感 光 屏
Q
已知一维粒子状态波函数为 1 2 2 i (r , t ) A exp a x t 2 2 求归一化的波函数,粒子的几率分布,粒子在何处 出现的几率最大。 Ex.1 Solve:
3 3e i (2 x ) / , 6 (4 2i )ei 2 x / .
2.已知下列两个波函数
试判断: (1)波函数 1 ( x) 和 2 ( x) 是否描述同一状态? (2)对 1 ( x) 取 n 2 两种情况,得到的两个波函 数是否等价?
例1: 入射粒子为电子。
设 E=1eV, U0 = 2eV, a = 2× 10-8 cm = 2Å , 算得 D ≈ 0.51。
例2: 入射粒子为质子。
量子力学课件(完整版)

Light beam
metal
electric current
11
能量量子化的假设
造成以上难题的原因是经典物理学认为 能量永远是连续的。
如果能量是量子化的,即原子吸收或发 射电磁波,只能以“量子”的方式进行, 那末上述问题都能得到很好的解释。
12
能量量子化概念对难题的解释
原子寿命 ①原子中的电子只能处于一系列分立的能级之中。
18
当 kT hc(高频区)
E(, T)
2hc2 5
e hc
kT
Wein公式
当 kT hc(低频区)
E(, T)
2c 4
kT
Rayleigh–Jeans公式
19
能量量子化概念对难题的解释
对光电效应的解释
如果电子处于分立能级且入射光的能 量也是量子化的,那么只有当光子的能 量(E =hυ)大于电子的能级差,即E =hυ > En-Em时,光电子才会产生。如 果入射光的强度足够强,但频率υ足够 小,光电子是无法产生的。
2 , k 2 / ,
得到 d 2 0,所以,t x(t)
dk 2 m
物质波包的观点夸大了波动性的一面,抹杀 了粒子性的一面,与实际不符。
45
(2)第二种解释:认为粒子的衍射行为是大 量粒子相互作用或疏密分布而产生的行为。 然而,电子衍射实验表明,就衍射效果 而言, 弱电子密度+长时间=强电子密度+短时间 由此表明,对实物粒子而言,波动性体 现在粒子在空间的位置是不确定的,它是以 一定的概率存在于空间的某个位置。
2
这面临着两个问题:
1、信号电磁波所覆盖的区域包括大量的 元件,每个元件的工作状态有随机性,但 器件的响应具有统计性;
周世勋量子力学课件第三章

2 2 2 2
2
2
所谓一维运动就是指在某一方向上的运动。
(二)一维无限深势阱
0, V ( x)
| x | a | x | a
V(x)
I
II
III
-a
l l l l l
0
a
求解步骤: (1)列出各势域的一维Schrö dinger 方程 (2)解方程 (3)使用波函数标准条件定解 (4)定归一化系数
d2 2 I ( x ) 2 (V E ) I ( x ) 0 x a 2 dx 2 d2 2 II ( x ) 2 E II ( x ) 0 a x a 2 dx 2 d2 2 III ( x ) 2 (V E ) III ( x ) 0 xa 2 dx
1 ( n 2 ) 2 a
( 2 n1) 2 2 2 8 a 2
综合 I 、II 2 2 2 m Em 2 8a
I
结果,最后得:
III
0
对应 m = 2 n
2
设:V ( x, y, z ) V1 ( x) V2 ( y ) V3 ( z )
令: ( x, y, z) X ( x)Y ( y)Z ( z)
2 2 V ( x , y , z ) ( x , y , z ) E ( x , y , z ) 2
(3)如果在空间反射下, ( r , t ) (r , t )
则波函数没有确定的宇称。
(四)讨论 1) 定态波函数为
n ( x, t ) n ( x)e
i Ent
0
x a
2
2
所谓一维运动就是指在某一方向上的运动。
(二)一维无限深势阱
0, V ( x)
| x | a | x | a
V(x)
I
II
III
-a
l l l l l
0
a
求解步骤: (1)列出各势域的一维Schrö dinger 方程 (2)解方程 (3)使用波函数标准条件定解 (4)定归一化系数
d2 2 I ( x ) 2 (V E ) I ( x ) 0 x a 2 dx 2 d2 2 II ( x ) 2 E II ( x ) 0 a x a 2 dx 2 d2 2 III ( x ) 2 (V E ) III ( x ) 0 xa 2 dx
1 ( n 2 ) 2 a
( 2 n1) 2 2 2 8 a 2
综合 I 、II 2 2 2 m Em 2 8a
I
结果,最后得:
III
0
对应 m = 2 n
2
设:V ( x, y, z ) V1 ( x) V2 ( y ) V3 ( z )
令: ( x, y, z) X ( x)Y ( y)Z ( z)
2 2 V ( x , y , z ) ( x , y , z ) E ( x , y , z ) 2
(3)如果在空间反射下, ( r , t ) (r , t )
则波函数没有确定的宇称。
(四)讨论 1) 定态波函数为
n ( x, t ) n ( x)e
i Ent
0
x a
周世勋量子力学课件第九章

ˆ2 的属于同一本征值的本征函数:分 散射前后始终是 L
波法精髓
将入射波作瑞利展开:平面波按球面波展开
jl (kr ) 是 l 阶球贝塞耳函数
各个不同 l 的分波互相独立地发生散射, 经过散射 后仍是第 l 个分波,散射只影响波函数的径向部分:
Rl (r ) 由径向方程求解,叠加系数 Al 由边界条件定
K 2k sin
2
实验测量 ( , ) 数值计算
V (K )
V (x)
玻恩近似适用的条件: 设V(x)近似用平均势 V 和力程 r0 表征
玻恩近似适用时要求微扰修正项是小量:
一级修正的小量
p 是小量 x ~ 是大量 p x ~ r0 p
x ~ r0 p
3 在 p 附近 d p体积元内的状态数为:
2n1 p1 L
2n2 p2 L
2n3 p3 L 2 3
L
) 的体积
的跃迁概率为:
对 p 积分, 得到单位时间内落到θ, φ方向dΩ范围内的 概率为:
设L3范围内的粒子数为n, 则
入射粒子流强度
动量转移:
K p p0
对于弹性散射, Q=0; m1=m3, m2=m4; r=m1/m2
总散射截面是一个无穷级数求和:
当 jl(kr) 的第一个极大值位于散射势场的力程之外时, 即 l/k>a 时散射效应很小, 相移δl 可以忽略,在低能时 只需考虑S分波的贡献:
§3 方形势阱与势垒所产生的散射
考虑低能粒子受球对称方形势阱或势垒的散射, 入射粒 子能量很小,其德布罗意波长比势场作用力程大得多 散射势场写为:
对于非弹性散射, 总能量守恒, 但是相对运动能量 不再守恒:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2 量子论的诞生
(一)Planck 黑体辐射定律 (二)光量子的概念和光电效应理论 (四)波尔(Bohr)的量子论
(三)Compton 散射 ——光的粒子性的进一步证实
(一)Planck 黑体辐射定律
究竟是什么机制使空腔的原子产生出所观 察到的黑体辐射能量分布,对此问题的研 究导致了量子物理学的诞生。
能 量 密 度
•该式称为 Planck 辐射定律
0
Planck 线
5
10
(104 cm)
对 Planck 辐射定律的
三点讨论:
d
8h
C3
3
exp(h
1 /
kT
)
1
d
•(1)当 v 很大(短波)时,因为 exp(hv /kT)-1 ≈ exp(hv /kT), 于是 Planck 定律 化为 Wien 公式。
人们自然会提出如下三个问题:
1. 原子线状光谱产生的机制是什么? 2. 光谱线的频率为什么有这样简单的规律?
nm
3. 光谱线公式中能用整数作参数来表示这一事实启发我们 思考: 怎样的发光机制才能认为原子的状态可以用包含整数值的量来描写。
从前,希腊人有一种思想认为:
自然之美要由整数来表示。例如:
1. Wien 公式
能 量 密 度
Wien 线
0
5
10
(104 cm)
Wien 公式在短波部分与实验还相符合, 长波部分则明显不一致。
(2)光电效应
光照射到金属上,有电子从金属上逸出的现象。 这种电子称之为光电子。试验发现光电效应有 两个突出的特点:
•1.临界频率v0 只有当光的频率大于某一定值v0 时, 才有光电子发射出来。若光频率小于该值时,则不论 光强度多大,照射时间多长,都没有电子产生。光的 这一频率v0称为临界频率。
黑体物体就
能
称为绝对黑体,简称黑体。 量
密
度
黑体辐射:由这样的空腔小孔发 出的辐射就称为黑体辐射。
辐射热平衡状态: 处于某一温度 T 下的腔 壁,单位面积所发射出的辐射能量和它所 吸收的辐射能量相等时,辐射达到热平衡 状态。
0
实验发现:
5
10
(104 cm)
总之,新的实验现象的发现,暴露了经典理论的局限性,迫使 人们去寻找新的物理概念,建立新的理论,于是量子力学就在
这场物理学的危机中诞生。
§2 量子论的诞生
(一)Planck 黑体辐射定律 (二)光量子的概念和光电效应理论 (四)波尔(Bohr)的量子论
(三)Compton 散射 ——光的粒子性的进一步证实
RH
C
1 22
1 n2
n 3,4,5,
其中RH 1.09677576 107 m 1是氢的Rydberg常数, C是光速。
•这就是著名的巴尔末公式(Balmer)。以后又发现了一
系列线系,它们都可以用下面公式表示:
RH
C
1 m2
1 n2
nm
§1 经典物理学的困难
(一)经典物理学的成功
19世纪末,物理学理论在当时看来已经发展到 相当完善的阶段。主要表现在以下两个方面:
(1) 应用牛顿方程成功的讨论了从天体到地上各种尺度的力 学客体体的运动,将其用于分子运动上,气体分子运动论, 取得有益的结果。1897年汤姆森发现了电子,这个发现表明 电子的行为类似于一个牛顿粒子。
目录
第一章 量子力学的诞生 第二章 波函数和 Schrodinger 方程 第三章 一维定态问题 第四章 量子力学中的力学量 第五章 态和力学量表象 第六章 近似方法 第七章 量子跃迁 第八章 自旋与全同粒子
附录 科学家传略
第一章 量子力学的诞生
• §1 经典物理学的困难 §2 量子论的诞生 §3 实物粒子的波粒二象性
•1900年12月14日Planck 提出: 如果空腔内的黑体辐射和腔壁原子处
于平衡,那么辐射的能量分布与腔壁原子 的能量分布就应有一种对应。作为辐射原 子的模型,Planck 假定:
(1)原子的性能和谐振子一样,以给定的频率 v 振荡;
(2)黑体只能以 E = hv 为能量单位不连续的发射和吸收辐射能量, 而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。
奏出动听音乐的弦的长度应具有波长的整数倍。
这些问题,经典物理学不能给于解释。首先,经典物理学不能 建立一个稳定的原子模型。根据经典电动力学,电子环绕原子 核运动是加速运动,因而不断以辐射方式发射出能量,电子的 能量变得越来越小,因此绕原子核运动的电子,终究会因大量 损失能量而“掉到”原子核中去,原子就“崩溃”了,但是, 现实世界表明,原子稳定的存在着。除此之外,还有一些其它 实验现象在经典理论看来是难以解释的,这里不再累述。
谱系
m
Lyman
1
Balmer
2
Paschen
3
Brackett
4
Pfund
5
氢原子光谱
n 2,3,4,...... 3,4,5,...... 4,5,6,...... 5,6,7,...... 6,7,8,......
区域 远紫外 可见 红外 远红外 超远红外
RH
C
1 m2
1 n2
热平衡时,空腔辐射的能量密度, 与辐射的波长的分布曲线,其形状和位置只 与黑体的绝对温度 T 有关而与黑体的形状和 材料无关。
能 量 密 度
Wien 线
0
5
10
(104 cm)
Wien 公式在短波部分与实验还相符合, 长波部分则明显不一致。
1. Wien 公式
从热力学出发加上一些 特殊的假设,得到一个 分布公式:
•2.电子的能量只是与光的频率有关,与光强无关,光 强只决定电子数目的多少。光电效应的这些规律是经典 理论无法解释的。按照光的电磁理论,光的能量只决定 于光的强度而与频率无关。
(3)原子光谱,原子结构
氢原子光谱有许多分立谱线组成,这是很早就 发现了的。1885年瑞士巴尔末发现紫外光附近的 一个线系,并得出氢原子谱线的经验公式是:
(2) 光的波动性在1803年由杨的衍射实验有力揭示出来,麦 克斯韦在1864年发现的光和电磁现象之间的联系把光的波动 性置于更加坚实的基础之上。
(二)经典物理学的困难
但是这些信念,在进入20世纪以后, 受到了冲击。经典理论在解释一些新 的试验结果上遇到了严重的困难。
(1)黑体辐射问题 (2)光电效应 (3)氢原子光谱