用生物法处理重金属废水

用微生物从水溶液中提取和富集金属

生物富集又叫生物浓缩,是指

生物体通过对环境中某些元素或难以分解的化合物的积累,使这些物质在生物体内的浓度超过环境中浓度的现象。例如日本的水俣病

湖南浏阳镉污染事件

为什么要用微生物提取和富集金属呢?

由于工业的发展,重金属的使用越来越广泛,伴随而来的重金属污染问题也日趋严重。特别是重金属废水,因其中的铅、铬、镉等可通过食物链最终在生物体内累积,破坏正常的生理代谢活动甚至产生“三致”(致癌、致畸、致突变)作用,而成为一种对生态环境危害极大的工业废水。因此,寻找一种能有效地治理重金属废水污染的技术已显得紧

迫而重要。

治理金属废水的传统方法有:中和沉淀法、化学沉淀法、氧化还原法、气浮法、电解法、蒸发和凝固法、离子交换法、吸附法、溶剂萃取法、反渗透和电渗析法等。它们

各有优点,但又不同程度地存在着投资大、

能耗高、操作困难、易产生二次污染等不足,特别是在处理低含量金属污染时,其操作费用和原材料成本相对过高。利用微生物

体系制备的生物吸附剂处理和回

收废水中的金属,是目前实践证明最有发展前途的一种新方法。它与传统的处理方法相比,具有以下优点: (1)在低浓度下,金属可以被选择性地去除; (2)节能,处理效率高; (3)操作时的pH值和温度条件范围宽; (4)易于分离回收金属; (5)吸附剂易再生利用; (6)对钙、镁离子吸附量少;(7)投资小,运行费用低,无二次污染。

微生物提取和富集水溶液中金属的原理:微生物处理法就是利用细菌、真菌、

藻类得生物材料及其生命代谢活动

去除或积累水溶液中的金属,并通

过一定的方法是金属离子从微生物

体内释放出来,从而达到提取和富

集金属的目的。

调配槽生物反应器

沉淀池废水营养盐,养分

污泥回流剩余污泥排放

出水

1.利用微生物方法处理金属废水时,由于废水中常缺乏微生物生长所需的营养物质,包括有机物、氮、磷等,因此,在废水中需加入所缺的营养物质。

2.生物反应器是一个厌氧反应系统,微生物在厌氧条件下分解有机物。例如:还原硫酸盐生成硫化氢,硫化氢与废水中的铜、锌等离子反应生成不溶性的硫化物。生物反应器的类型可以是上流式厌氧污泥床、厌氧接触反应器等。

3.反应生成的金属沉淀物同厌氧污泥混在一起,当其浓度达到一定程度以后,为了保证生物反应器的正常运行,就必然排放一部分污泥。由于污泥中锌含量较高,可以回收。

4.从沉淀池中的出水,虽然一些金属离子的去除率很高,但是出水中还含有比较高的COD和硫化氢,因此必须要进行好氧处理去除COD和硫化氢,使最终出水的指标都达到国家排放标准。

基因工程技术在微生物治提取和富集金属废水中的应用:

运用基因工程技术构建具有高效降解能力的菌株是目前的研究热点,国内外学者均进行了大量研究,主要致力于应用基因工程技术,在微生物表面表达特异性金属结合蛋白或金属结合肽进而提高富集容量,或在微生物细胞膜处表达特异性金属转运系统的同时,在细胞内表达金属结合蛋白或金属结合肽,从而获得具有高富集容量和高选择性的高效菌株。构建出的菌株处理能力均显著提高,高选择性重组菌的构建使得废水中重金属的再资源化成为可能。由于人们对大肠杆菌的认识较深入,且其具有致病性弱,对生长环境要求不高,易于检查和培养的优点,适于作污水处理菌。

由于人们对大肠杆菌的认识较深入,且其具

有致病性弱,对生长环境要求不高,易于

检查和培养的优点,适于作污水处理菌。

目前研究中多以大肠杆菌为受体菌,运用

基因重组技术构建出多种高效菌株。Deng 等构建的基因重组菌E.coli JM10,在含镍废水的处理试验中,对Ni2+富集能力比原始菌株增加了6 倍多。Zhao 等的研究表明,基因工程菌E.coli JM109较宿主菌具有更

强的Hg2+耐受性和更高的Hg2+富集量,去除率达96%以上。

邓旭等研究了转MT-like 基因衣藻对不同重金属离子的抗性和对Cd2+富集行为,结果表明,转基因衣藻对Pb2+、Zn2+和Cd2+三种重金属离子的抗性得到明显增强,其中以对Zn2+的抗性增强最为显著。转基因藻对Cd2+的富集能力经MT-like 蛋白表达后较野生藻细胞有较大增加,最大达到144.48μmol/g ,为野生藻的8.3 倍。曾文炉等以转mMT-Ⅰ聚球藻7002 为对象,研究了其在含Cd2+、Pb2+和Hg2+的培养基中的生长特性及其对重金属的净化性能,结果表明,无论从生长速率还是对重金属的耐受特性来看,转mMT-Ⅰ聚球藻7002 均明显优于野生藻。

固定化技术在微生物治理重金属废水中的应用:

固定化微生物技术是通过采用化学或物理的方法将游离微生物定位于限定的空间区域内,使其保持活性并可反复利用的一种新型生物技术。具有微生物细胞密度高、反应速度快、稳定性强、耐毒害能力强、微生物流失少、产物分离容易和剩余污泥少等优点。利用此技术,可将筛选出的优势微生物(主要是菌体和藻类)加以固定,构成一种高效、快速、能连续处理的废水处理系统,可以有效地减少二次污染。

Kacar等用海藻酸钙固定真菌(Phanerochaete chrysosporium)(包括活的和加热灭活的2种形态菌体),去除30~500 g/L的含Hg(Ⅱ)和Cd(Ⅱ)的废水。吸附平衡为1 h,最佳pH值分别为5. 0和6?0;适宜温度为l5~45℃。用10 mmol/LHCl解析,回收吸附率达原来的97%。是一种新型有效的生物吸附剂。

Chang等则是利用假单孢兰绿藻(Pseudomonas aerugi-nosaPu 21)制备了2种固定化生物吸附剂:一种是用死的微生物细胞制备的,一种是用活的微生物细胞制备的。实验表明,假单孢兰绿藻活的和死的细胞对重金属离子Pb、Cu和Cd都具有很大的吸附能力,活的比死的细胞吸附能力大。不同生长阶段的假单孢兰绿藻对Pb、Cd显示出不同的吸附能力。随着溶液pH值的增加,其吸附能力增强。pH最佳范围在5?0~6?0之间。用稀盐酸解吸后,对于Pb、Cu的吸附能力仍保持在原吸附能力的98%以上,对Cd的吸附能力保持在80%以上。

以上大量研究表明,固定化菌类和藻类可以有效地去除废水中的重金属。固定化微生物细胞用来富集重金属,实际上起着生物离子交换树脂的作用,但固定化细胞比离子交换更经济,且不受Ca2+、Mg2+、Na+和K+等离子的影响,在废水处理和受污染水环境的修复中更实用。因此,固定化微生物技术在处理重金属废水领域中有着广阔的应用前景。

展望与未来:

生物法治理金属污染有一定的局限性,尤其是微生物法受离子浓度、pH、温度等外界条件的影响较大。但由于其显著优点,生物治理法已经对金属废水的传统处理过程起到显著的补充作用,再加上近年来基因工程技术、分子生物学技术以及固定化技术的不断发展及其在重金属废水治理中的有效应用,使得重金属废水的生物治理技术取得长足进展,其研究和发展必有广阔的前景。

构建与筛选同时具有高富集量、高选择性、高适应性等特点的工程菌,以及培育转基因水生重金属积累植物将是今后的研究热点。微藻在有效去除废水中重金属元素的同时,还具有修复富营养化水源的巨大潜力,这方面的研究近年来逐渐增多。目前在微生物与植物的协同净化作用领域已有不少研究,如果在重金属废水治理领域,能将植物治理法与微生物治理法有效的结合起来,那么处理能力将大大提高,微生物与废水不易分离的缺点也将得到有效解决

废水的生物处理

废水的生物处理 废水是环境污染“三废”之一,利用微生物的代谢作用可除去废水中的有机污染物,其方法简单、科学,常分为需氧生物处理法和厌氧生物处理法两种,现对其机制简述如下: 一、需氧生物处理废水 生活污水中的典型有机物是碳水化合物、合成洗涤剂、脂肪、蛋白质及其分解产物如尿素、甘氨酸、脂肪酸等。这些有机物可按生物体系中所含元素量的多寡顺序表示为C H O N S。  生物体系中这些反应有赖于生物体系中的酶来加速。酶按其催化反应分为:1)氧化还原酶在细胞内催化有机物的氧化还原反应,促进电子转移,使其与氧化合成脱氢。可分为氧化酶和还原酶。氧化酶可活化分子氧,形成水或过氧化氢。还原酶包括各种脱氢酶,可活化基质上的氢,并由输酶将氢传给被还原的物质,使基质氧化,受氢体还原;2)水解酶对有机物的加水分解反应起催化作用。水解反应是在细胞外产生的最基本的反应,能将复杂的高分子有机物分解为小分子,使之易于透过细胞壁。如将蛋白质分解为氨基酸,将脂肪分解为甘油和脂肪酸,将复杂的多糖分解为单糖等。此外还有脱氨基、脱羧基、磷酸化和脱磷酸等酶。 在需氧生物处理过程中,污水中的有机物在微生物酶的催化作用下被氧化降解,分3个阶段:第1阶段,大的有机物分子降解成为构成单元——单糖、氨基酸或甘油和脂肪酸。在第2阶段中,第1阶段的产物部分地被氧化为下列物质中的一种或几种:二氧化碳、水、乙酰基辅酶A,酮戊二酸和草醋酸。第3阶段(即三羧酸循环)是乙酰基辅酶A、酮戊二酸和草醋酸被氧化为二氧化碳和水。有机物在氧化降解的各个阶段,都释放出一定的能量。 在有机物降解的同时,还发生微生物原生质的合成反应。在第1阶段中由被作用物分解成的构成单元可以合成碳水化合物、蛋白质和脂肪,再进一步合成细胞原生质。合成能量是微生物在有机物的氧化过程

金属矿山废水处理新技术

金属矿山废水废渣处理新技术院系:城建给排水工程学号:111824224 :熊聪 摘要:随着经济建设的快速发展,我国金属矿山废水产生的环境问题日益严重,金属矿山废水的污染已成为制约矿业经济可持续发展的主要因素之一。概述了矿山酸性废水的形成及危害,重点介绍了几种常见的处理矿山酸性废水的处理技术如中和法、硫化物沉淀法、吸附法、离子交换法和人工湿地法,同时介绍了它们的原理、特点和存在的问题,在此基础上,对矿山酸性废水处理技术的研究,并介绍了几种金属矿山废水处理的新技术以及实例。 关键词:金属矿山废水废渣处理新技术 Abstract:With the rapid development of economic construction, the metal mine waste water environment problem is increasingly serious, metal mine waste water pollution has become one of the main factors restricting the sustainable development of mining economy. Formation and harm of the acidic mining waste water are summarized, mainly introduces several common treatment of acidic mining waste water treatment technologies such as neutralization, sulfide precipitation, adsorption, ion exchange method and the method of artificial wetland, and introduces the principle, characteristics and existing problems, and on this basis, the study of acidic mining waste water treatment technology, and introduces several kinds of metal mine wastewater treatment technology and examples. Keywords:Metal mine Waste water Conduct The new technology 一、金属矿山废水的形成及危害 1.1金属矿山废水的形成 在大部分金属矿物开采过程中会产生大量矿坑涌水。当矿石或围岩中含有的硫化物矿物与空气、水接触时,矿坑涌水就会被氧化成酸性矿坑废水。酸性矿坑水极易溶解矿石中的重金属,造成矿坑水中重金属浓度严重超标。同时在雨水的冲刷作用下废石堆和尾矿也产生大量含有高浓度重金属的酸性淋滤水。 1.2金属矿山废水的危害 金属矿山矿山酸性废水中含有大量的有害物质,一般不能直接循环利用,矿

电镀废水中各种重金属废水处理反应原理及控制条件

重金属废水反应原理及控制条件 1.含铬废水 (2) 2.含氰废水 (3) 3.含镍废水 (4) 4.含锌废水 (5) 5.含铜废水 (6) 6.含砷废水 (8) 7.含银废水 (9) 8.含氟废水 (10) 9.含磷废水 (11) 10.含汞废水 (11) 11.氢氟酸回收 (14) 12.研磨废水 (14) 13.晶体硅废水 (15) 14.含铅废水 (17) 15.含镉废水 (17)

1.含铬废水 前处理废水包括镀前准备过程中的脱脂、除油等工序产生的清洗废水,主要污染物为有机物、悬浮物、石油类、磷酸盐以及表面活性剂等。 电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。 含铬废水的处理方法较多,常用的有化学法、电解法、离子交换法等。 电镀废水中的六价铬主要以CrO 42-和Cr 2 O 7 2-两种形式存在,在酸性条件 下,六价铬主要以Cr 2O 7 2-形式存在,碱性条件下则以CrO 4 2-形式存在。六价铬 的还原在酸性条件下反应较快,一般要求pH<4,通常控制pH2.5~3。常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚硫酸氢钠、连二亚硫酸钠、硫代硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。还原后Cr3+以Cr(OH) 3沉淀的最佳pH为7~9,所以铬还原以后的废水应进行中和。 (1)亚硫酸盐还原法 目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应: 4H 2CrO 4 +6NaHSO 3 +3H 2 SO 4 ==2Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +10H 2 O 2H 2CrO 4 +3Na 2 SO 3 +3H 2 SO 4 ==Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +5H 2 O 还原后用NaOH中和至pH=7~8,使Cr3+生成Cr(OH) 3 沉淀。 采用亚硫酸盐还原法的工艺参数控制如下: ①废水中六价铬浓度一般控制在100~1000mg/L; ②废水pH为2.5~3 ③还原剂的理论用量为(重量比):亚硫酸氢钠∶六价铬=4∶1 焦亚硫酸钠∶六价铬=3∶1 亚硫酸钠∶六价铬=4∶1 投料比不应过大,否则既浪费药剂,也可能生成 [Cr 2(OH) 2 SO 3 ]2-而沉淀不下来; ORP= 250~300mv

重金属废水生物制剂法处理与回用技术

技术汇集 智慧互联 全球共享网站首页关于我们登录注册通讯员登录中文English 您现在的位置: 首页> 技术供给> 详情 重金属废水生物制剂法处理与回用技术 所属领域:水污染防治 > 工业废水 [匹配需求] 行 业:有色金属 电镀 化工 钢铁重金属 电子工业 冶金 矿业 地 区:湖南 成 熟 度:推广阶段 关 键 词:生物制剂,重金属废水,深度处理,回用,冶炼,有色金 属,矿山,酸性,电镀,化工,采矿,选矿,尾矿库 合作方式:直接购买 合作开发 其他合作方式 信息来源: 推荐单位: 点 击 数:5227 我要对接 收藏打印返回基本信息 技术概述生物制剂是以硫杆菌为主的复合特异功能菌群在非平衡生长(缺乏氮、氧、磷、硫)条件下大规模培养形成的代谢产物与某种无机化合物复配,形成的一种带有大量羟基、巯基、羧基、氨基等功能基团的聚合物,使用过程无需进行分离纯化,也不需外加营养源。生物制剂在低 pH 条件下呈胶体粒子状态存在,富含的多功能基团,可与Cu2+,Pb2+,Zn2+,Hg2+,Cd2+ 等重金属离子成键形成生物配合体。生物制剂在pH 3-4时开始水解,诱导生物配位体形成的“胶团”长大,并形成溶度积非常小的、含有多种元素的非晶态的化合物,从而使重金属离子高效脱除。同时协同脱钙,调整废水水质,使净化水中钙离子稳定低于50 mg/L,净化水可全面回用于冶炼企业,实现重金属离子(铜、铅、锌、镉、砷、汞等)和钙离子的同时高效净化,净化水中各重金属离子浓度远低于《铅、锌工业污染物排放标准》(GB25466-2010),能够直接回用,水解渣通过压滤机压滤后可以作为冶炼的原来对其中的有价金属进行回收,达到重金属“零排放”的目的。 技术优势①抗重金属冲击负荷强,净化高效,运行稳定,对于浓度波动很大且无规律的废水,经新工艺处理后净化水中重金属低于或接近《生活饮用水水源水质标准》(CJ3020-93); ②废水中钙离子可控脱除,效果明显,可控到50mg/L以下,净化水回用率95%以上; ③净化水COD、SS达到一级排放标准; ④渣水分离效果好,出水清澈,水质稳定; ⑤水解渣量比中和法少,重金属含量高,利于资源化; ⑥对于100-300mg/L重金属废水,生物制剂投加成本0.3-0.8元/m3; ⑦处理设施均为常规设施,占地面积小,投资建设成本低,工艺成熟。对于现有石灰中和法处理系统只需增加生物制剂的贮备槽和药剂投加泵等系 统,改造费用低。微信关注 APP下载 12345

三种常见重金属的处理方法的比较

三种常见的处理方法的比较 一、石灰中和法 1.1基本原理 石灰中和反应法是在含重金属离子废水中投加消石灰C a( O H ) : , 使它和水中的重金属离子反应生成离子溶度积很小的重金属氢氧化物。通过投药量控制水中P H 值在一定范围内, 使水中重金属氢氧化物的离子浓度积大于其离子溶度积而析出重金属氢氧化物沉淀, 达到去除重金属离子, 净化废水的目的。 将废水收集到废水均化调节池,通过耐腐蚀自吸泵将混合后的废水送至一次中和槽,并且在管路上投加硫酸亚铁溶液作为砷的共沉剂(添加量为Fe/As=10),同时投加石灰乳进行充分搅拌反应,搅拌反应时间为30 min,石灰乳投加量由pH 计自动控制,使一次中和槽出口溶液pH值为7.0;为了使二价铁氧化成三价铁,产生絮凝作用,在一次中和槽后设置氧化槽,进行曝气氧化,经氧化后的废水自流至二次中和槽,再投加石灰乳,石灰乳投加量由pH计自动控制,使二次中和槽出口溶pH值为9~11;在二次中和槽废水出口处投加3号凝聚剂(投加浓度为10 mg/L),处理废水自流至浓密机,进行絮凝、沉淀;上清液自流至澄清池,传统的石灰中和处理重金属废水流程如下: 石灰一段中和及氢氧化钠二段中和时,各种重金属去除率随pH不同而沉淀效果不同,不同的金属的溶度积随PH不同而不同。同一PH所以对重金属的沉淀效果不一样,而废水中的重金属通常不只一种,根据重金属的含量在进水时把配合调到某金属在较低ph溶度积最高时对应的PH。加石灰乳进行中和反应,沉淀废水中的大部分金属。上清液进入下一个调节池,进入调节PH ,进入二次中和反应池,除去剩余的重金属离子。 1.2 石灰中和沉淀的优缺点 采用石灰石作为中和剂有很强的适应性,还具有废水处理工艺流程短、设备简单石灰就地可取,价格低廉,废水处理费用很低,渣含水量较低并易于脱水等优点,但是,石灰中和处理废水后,生成的重金属氢氧化物———矾花,比重小,在强搅拌或输送时又易碎成小颗粒,所以它的沉降速度慢。往往会在沉降分离过程中随水流外溢,又使处理后的废水浊度升高,含重金属离子仍然超标。要求废水不含络合剂如C N 一、N H 。等, 否则水中的重金属离子就会和络合剂发生络合反应, 生成以重金属离子为中心离子以络合剂为配位体的复杂而又稳定的络离子, 使废水处理变得复杂和困难。已沉降的矾花中和渣泥的含水率极高(达99%以上),其过滤脱水性能又很差,加上组成复杂、含重金属品位又低,这给综合回收利用与处置带来了困难,甚至造成二次污染。此外,渣量大,不利于有价金属的回收,也易造成二次污染II。用石灰水处理的重金属废水。由于不同重金属与OH的结合在同一PH下不同,同一金属在不同PH下的溶度积不同。所以,用传统的石灰法处理重金属含量较多的复杂的废水,显然不行,首先某些重金属不能达标排放,其次,处理废水中含钙比较多。在冶炼厂,很难循环使用。 二、硫化沉淀法

重金属废水处理方法

1.3 重金属废水处理方法 现代水处理技术,按原理可分为化学处理法,物理处理法和生物化学处理法3大类[6]。生物法处理无机重金属离子废水的技术正在积极的研究和试用中。 化学法是利用化学反应的作用,分离回收污水中处于各种形态的污染物质(包括悬浮的、溶解的、胶体的等)。主要方法有中和、混凝、电解、氧化还原等。 ⑴中和沉淀法:投加碱中和剂,使废水中重金属离子形成溶解度较小的氢氧化物或碳酸盐沉淀而去除的方法。碱石灰(CaO)等石灰类中和剂,价格低廉,可去除汞以外的重金属离子,工艺简单,处理成本低[7]。但沉渣量大,含水率高,易二次污染,有些重金属废水处理后难以达到排放标准。 ⑵硫化物沉淀法:硫化物沉淀法的沉淀机理是:废水中的重金属离子与S2-结合生成溶解度很小的盐。操作中应该注意以下几个方面:①硫化物沉淀一般比较细小,易形成胶体,为便于分离应加入高分子絮凝剂协助沉淀沉降;②硫化物沉淀中沉淀剂会在水中部分残留,残留沉淀剂也是一种污染物,会产生恶臭等,而且遇到酸性环境产生有害气体,将会形成二次污染[8]。 ⑶铁氧体沉淀法:FeSO4可使各种重金属离子形成铁氧体晶体而沉淀析出。经典铁氧体法能一次脱除多种重金属离子,设备简单,操作方便[9]。但不能单独回收重金属。铁氧体法工艺流程技术关键在于:①Fe3+:Fe2+ =2:1,因此,Fe2+的加入量,应是废水中除铁以外各种重金属离子当量数的2倍或2倍以上;②NaOH或其碱的投入量应等于废水中所含酸根的0.9~1.2倍浓度;③碱化后应立即通蒸汽加热,加热至60~70℃或更高温度;④在一定温度下,通入空气氧化并进行搅拌,待氧化完成后再分离出铁氧体。 铁氧体法处理含重金属离子的废水,能一次脱除废水中的多种金属离子,对脱除Cu, Zn,Cd,Hg,Cr等离子均有很好的效果。 物理法是利用物理作用分离污水中呈悬浮固体状态的污染物质。主要方法有离子交换法,沉淀法,上浮法,气浮法,过滤法和反渗透法等。 ⑴离子交换法:离子交换法是重金属离子与离子交换树脂发生离子交换的过程。螯合树脂具有螯合基团,对特定重金属离子具有选择性。腐植酸树脂是由腐植酸和交联剂交联而成的高分子材料,具有阳离子交换和络合能力。这两类树脂实质上开拓了阴阳离子树脂的应用范围。

重金属废水处理原理及控制条件

重金属废水反应原理及控制条件 1.含铬废水 前处理废水包括镀前准备过程中的脱脂、除油等工序产生的清洗废水,主要污染物为有机物、悬浮物、石油类、磷酸盐以及表面活性剂等。 电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。含铬废水的处理方法较多,常用的有化学法、电解法、离子交换法等。 电镀废水中的六价铬主要以CrO 42-和Cr 2 O 7 2-两种形式存在,在酸性条件下,六价铬主 要以Cr 2O 7 2-形式存在,碱性条件下则以CrO 4 2-形式存在。六价铬的还原在酸性条件下反应较 快,一般要求pH<4,通常控制pH2.5~3。常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚

硫酸氢钠、连二亚硫酸钠、硫代硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。还原后Cr3+以Cr(OH) 3 沉淀的最佳pH为7~9,所以铬还原以后的废水应进行中和。 (1)亚硫酸盐还原法 目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应: 4H 2CrO 4 +6NaHSO 3 +3H 2 SO 4 ==2Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +10H 2 O 2H 2CrO 4 +3Na 2 SO 3 +3H 2 SO 4 ==Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +5H 2 O 还原后用NaOH中和至pH=7~8,使Cr3+生成Cr(OH) 3 沉淀。 采用亚硫酸盐还原法的工艺参数控制如下: ①废水中六价铬浓度一般控制在100~1000mg/L; ②废水pH为2.5~3 ③还原剂的理论用量为(重量比):亚硫酸氢钠∶六价铬=4∶1 焦亚硫酸钠∶六价铬=3∶1 亚硫酸钠∶六价铬=4∶1 投料比不应过大,否则既浪费药剂,也可能生成 [Cr 2(OH) 2 SO 3 ]2-而沉淀不下来; ORP= 250~300mv ④还原反应时间约为30min; ⑤氢氧化铬沉淀pH控制在7~8,沉淀剂可用石灰、碳酸钠或氢氧化钠,可根据实际情况选用。 2.含氰废水 含氰废水来源于氰化镀铜、碱性氰化物镀金、中性和酸性镀金、氰化物镀银、氰化镀铜锡合金、仿金电镀等含氰电镀工序,废水中主要污染物为氰化物、重金属离子(以络合态存在)等。 氰化镀铜,氰化镀铜作为暂缓淘汰镀铜方式,主要组分,氰化亚铜,氰化钠,Cu(CN) 2- 以络离子形式存在,铜离子被氧化,氰化物也被氧化,而Fe(CN) 6 4- 被氧化后仍然以络离 子存在,所以氰离子并不能解离氧化,增加了破氰难度。 氰化物镀锌,在镀锌工艺中占比不高。采用碱性氯化法,分两阶段破氰,第一阶段为不完全氧化将氰氧化成氰酸盐: CN?+OCl?+H 2 O==CNCl+2OH??

污水的生物处理方法生物膜法

污水的生物处理方法生 物膜法 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

污水的生物处理方法——生物膜法 教学要求: 1)掌握生物膜法的微生物学特征和工艺特征 2)掌握高负荷生物滤池、曝气生物滤池、塔式生物滤池以及生物转盘三 相传质和工艺运行特点。 3)掌握生物接触氧化特点及其工艺设计 第一节概述 生物膜——是使细菌、放线菌、蓝绿细菌一类的微生物和原生动 物、后生动物、藻类、真菌一类的真核微生物附着在滤料或某些载体上 生长繁殖,并在其上形成膜状生物污泥。 生物膜法:污水经过从前往后具有细菌→原生动物→后生动物、从 表至里具好氧→兼氧→厌氧的生物处理系统而得到净化的生物处理技 术。 一、生物构造及其对有机物的降解 1 生物膜的构造特征 生物膜(好氧层+兼氧层+厌氧层) Array+附着水层(高亲水性)。 2 降解有机物的机理 1)微生物:沿水流方向为细菌—— 原生动物——后生动物的食物链 或生态系统。具体生物以菌胶团 为主、辅以球衣菌、藻类等,含

有大量固着型纤毛虫(钟虫、等枝虫、独缩虫等)和游泳型纤毛虫(楯纤虫、豆形虫、斜管虫等),它们起到了污染物净化和清除池内生物(防堵塞)作用。 2) 污染物:重→轻(相当多污带→α中污带→β中污带→寡污带). 3) 供氧:借助流动水层厚薄变化以及气水逆向流动,向生物膜表面供 氧。 4) 传质与降解:有机物降解主要是在好氧层进行,部分难降解有机物经 兼氧层和厌氧层分解,分解后产生的H 2S ,NH 3等以及代谢产物由内向外传递而进入空气中,好氧层形成的NO 3--N 、NO 2--N 等经厌氧层发生反硝化,产生的N2也向外而散入大气中。 5) 生物膜更新:经水力冲刷,使膜表面不断更新(DO 及污染物),维持 生物活性(老化膜固着不紧)。 二、生物膜的主要特征 1 微生物相方面的特征 1) 参与净化反应微生物多样化; 2) 食物链长,污泥产率低; 3) 能够存活世代较长的微生物; 4) 可分段运行,形成优势微生物种群,提高降解能力。 2 工艺方面的特征 1) 对水质水量变动有较强适应性; 2) 污泥沉降性能好,宜于固液分离; 3) 能处理低浓度污水;

生物制剂深度处理重金属废水及资源化技术

生物制剂深度处理重金属废水及资源化技术集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

生物制剂深度处理重金属废水及资源化技术 适用范围 应用于选矿尾矿库废水、有色金属冶炼废水、有色金属压延加工废水、矿山酸性重金属废水、电镀废水、化工重金属废水处理。 基本原理 生物制剂是以硫杆菌为主的复合特异功能菌群在非平衡生长(缺乏氮、氧、磷、硫)条件下大规模培养形成的代谢产物与某种无机化合物复配,形成的一种带有大量羟基、巯基、羧基、氨基等功能基团的聚合物,在低pH条件下呈胶体粒子状态存在,可与金属离子Cu2+,Pb2+,Zn2+,Hg2+,Cd2+成键形成生物配合体。然后在pH9~10时水解,诱导生物配位体形成的“胶团”长大,并形成溶度积非常小的、含有多种元素的非晶态的化合物,从而使重金属离子高效脱除。 生物制剂与重金属配合图如下所示: 工艺流程 生物制剂处理常规重金属废水工艺流程图如下所示: 流程说明:重金属废水经收集至调节池进行水质水量调节,然后经提升泵进入配合反应池,在配合反应池中加入生物制剂与废水中的重金属离子发生配合反应,生成重金属配合物,实现重金属离子的深度脱除;在水解反应池中加入石灰乳调节体系pH值进行水解反应,在絮凝反应池中加入PAM絮凝后进入沉淀池实现固液分离,固液分离后的上清液进入清水池,在清水池经硫酸调节pH值至6-9后外排或回用。污泥经脱水后根据需要安全处置或回用。 根据企业水质不同,可调整为不同工艺; 当废水需脱钙回用时,应增加脱钙剂和脱钙反应池,其余流程不变; 当废水为选矿废水,含有CODCr时,应增加氧化剂和氧化反应池,其余流程不变;当废水需要脱铊时,应增加稳定剂和稳定反应池,其余流程不变; 当废水需要脱氟时,应增加脱氟剂和脱氟反应池,其余流程不变。 关键技术或设计特征 该技术经取样分析,经过筛选和分离得到三株细菌:PannonibacterphragmitetusT1,,,这三株细菌能够耐受Pb2+、Cr6+、Mn2+、Zn2+、Cu2+、Ni2+、Cd2+、Co2+、Ag+、Hg2+多种重金属。 在整个系统的运行过程中,无废气产生,节约能源。系统抗污染物冲击负荷强,净化高效,运行稳定。 处理快速高效,反应时间只需10-30min,且工艺稳定,高效处理CODCr的同时,对重金属离子实现同时深度脱除。 设备设施简单,布局紧凑,投资成本低,可结合自控系统减少人工劳动力。 对于常规的重金属废水处理药剂成本很低,且处理后的净化水能够满足回用的要求。 典型规模 生物制剂处理重金属废水处理规模不限,日处理规模可从几立方米到几万立方米。 推广情况 该技术已经被广泛应用于株洲冶炼集团(14400m3/d)、河南豫光金铅集团(5000m3/d)、中金岭南凡口铅锌矿(14400m3/d)、湖南水口山康家湾矿(5500m3/d)、锡矿山闪星锑业(10000m3/d)、江西铜业铅锌金属有限公司(8000m3/d)、紫金铜业有限公司(1500m3/d)、株洲清水塘重金属污水处理厂(10000m 3/d)、永州福嘉(300m3/d)、郴州金贵银业(100m3/d)等50多家大型采选矿、冶炼、化工企业。由该技术处理废水总量占当前我国铅锌总产能水量的60%以上,实现年处理重金属废水量为11000万m 3,废水减排量4000万m3,重金属减排量230t/a。 典型案例 (一)项目概况 水口山康家湾重金属废水生物制剂处理及回用设施设计处理水量5500m3/d,污水来源于选矿废水,2014年3月开工建设,于2015年1月完成调试并建成投产。 (二)技术指标 根据水口山集团康家湾矿、长沙质监站和湖南诚信监理有限公司共同出具的验收报告,项目出水达到《铅锌工业污染物排放标准》(GB25466—2010)。以平均进水铅为L,锌为L,CODCr为99,SS为208计,该污水处理设施每年削减CODCr约吨,重金属离子吨,其中Pb减排吨,Zn减排吨。同时该

生物法处理废水

生物法处理废水 研究污水的微生物处理就是研究微生物对废水中的有机物、营养盐类及重金属等物质去处的微生物学原理及其规律,并加以实际应用的一门科学。目前,常用于污水治理的方法可归纳为物理法、化学法、生物法。物理法常作为一种预处理的手段应用于废水处理;化学处理法是指向废水中加入化学药剂如明矾等,使其与污染物发生化学反应而生成无害物的过程,这种方法也常常作为预处理方法使用;而生物处理法是利用微生物降解代有机物为无机物来处理废水。通过人为的创造适于微生物生存和繁殖的环境,使之大量繁殖,以提高其氧化分解有机物的效率。它则作为末端处理装置广泛应用于各行业的废水处理中。与物理法、化学法相比,微生物处理法具有经济、高效的优点,并可实现无害化、资源化,所以长期以来始终占重要位置。根据使用微生物的种类,可分为好氧法、厌氧法和生物酶法等。 一好氧处理法 该办法是根据需好氧微生物生活的特点,提供充足的氧气,使好氧微生物大量繁殖, 通过微生物的新代活动使废水中的有机物最 终氧化分解成CO2 、水、硝酸盐等简单的无机物,已达到净化污水的目的。好氧处理方法包括: 活性污泥法、生物膜法 (一)活性污泥法 1912年英国人Clark and Cage发现对废水进行长时间曝气会产生污泥并使水质明显改善,其后Arden and Lackett进一步研究,发现由于实验容器洗不干净,瓶壁留下残渣反而使处理效果提高,从而发现活性微生物菌胶团,定名为活性污泥。活性污泥法是利用悬浮在废水中人工培养的微生物群体——活性污泥,对废水中

的有机物和某些无机物产生吸附、氧化分解而使废水得到净化,是目前较为经济、应用广泛、处理效果较好的净化废水方法。 1影响活性污泥性能的环境因素 (1)溶解 生化处理的基本要素:营养物、活性微生物、溶解氧,所以要使生化处理正常运行,供氧是重要因素。一般说,溶解氧浓度以不低于2mg/L为宜(2—4mg/L)。 (2)水温 维持在15~25摄氏度,低于5摄氏度微生物生长缓慢。 (3)营养料 细菌的化学组成实验式为C 5H 7 O 2 N,霉菌为C 10 H 17 O 6 原生动物为 C 7H 14 O 3 N,所以在培养微生物时,可按菌体的主要成分比例供给营养。 微生物赖以生活的主要外界营养为碳和氮,此外,还需要微量的钾,镁,铁,维生素等。碳源--异氧菌利用有机碳源,自氧菌利用无机 碳源。氮源--无机氮(NH 3及NH 4 +)和有机氮(尿素,氨基酸,蛋白 质等)。一般比例关系:BOD:N:P=100:5:1。好氧生物处 BOD 5 =500——1000mg/l (4)有毒物质 主要毒物有重金属离子(如锌,铜,镍,铅,铬等)和一些非金属化合物(如酚,醛,氰化物,硫化物等)。 2基本流程 典型的活性污泥法是由曝气池、沉淀池、污泥回流系统和剩余污泥排除系统组成。1916年英国建成第一座污水处理厂,下图为活

工业废水中金属离子的去除方法

1化学沉淀 化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等。 中和沉淀法 在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。中和沉淀法操作简单,是常用的处理废水方法。实践证明在操作中需要注意以下几点: (1)中和沉淀后,废水中若pH值高,需要中和处理后才可排放; (2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH值,实行分段沉淀; (3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过预处理; (4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成。 硫化物沉淀法 加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀后从废水中去除的方法。 与中和沉淀法相比,硫化物沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,反应时最佳pH值在7—9之间,处理后的废水不用中和。硫化物沉淀法的缺点是:硫化物沉淀物颗粒小,易形成胶体;硫化物沉淀剂本身在水中残留,遇酸生成硫化氢气体,产生二次污染。为了防止二次污染问题,英国学者研究出了改进的硫化物沉淀法,即在需处理的废水中有选择性的加入硫化物离子和另一重金属离子(该重金属的硫化物离子平衡浓度比需要除去的重金属污染物质的硫化物的平衡浓度高)。由于加进去的重金属的硫化物比废水中的重金属的硫化物更易溶解,这样废水中原有的重金属离子就比添加进去的重金属离子先分离出来,同时能够有效地避免硫化氢的生成和硫化物离子残留的问题。 2氧化还原处理 化学还原法 电镀废水中的Cr主要以Cr6+离子形态存在,因此向废水中投加还原剂将Cr6+还原成微毒的Cr3+后,投加石灰或NaOH产生Cr(OH)3沉淀分离去除。化学还原法治理电镀废水是最早应用的治理技术之一,在我国有着广泛的应用,其治理原理简单、操作易于掌握、能承受大水量和高浓度废水冲击。根据投加还原剂的不同,可分为FeSO4法、NaHSO3法、铁屑法、SO2法等。 应用化学还原法处理含Cr废水,碱化时一般用石灰,但废渣多;用NaOH 或Na2CO3,则污泥少,但药剂费用高,处理成本大,这是化学还原法的缺点。 铁氧体法 铁氧体技术是根据生产铁氧体的原理发展起来的。在含Cr废水中加入过量的FeSO4,使Cr6+还原成Cr3+,Fe2+氧化成Fe3+,调节pH值至8左右,

重金属废水处理方法

在环境与人类健康领域,重金属主要指汞(Hg)、镉(Cd)、铅(Pb)、铬(cr)、砷(As)、铜(Cu)、锌(Zn)、钴(Co)、镍(Ni)等重金属。他们以不同的形态存在于环境之中,并 在环境中迁移、积累。采矿、冶金、化工等行业是水体中主要的人为污染源。重金属在食物链中的过量富集会对自然环境和人体健康造成很大的危害。 1.1 沉淀法 1.1.1 氢氧化物沉淀法 往重金属废水中加入碱性溶液,利用OH一与重金属离子反应生成难溶的金属氢氧化物沉淀,通过过滤予以分离。氢氧化物沉淀法包括分步沉淀法和一次沉淀法两种。分步沉淀法是分段加入石灰乳,利用不同的金属氢氧化物在不同的pH值下沉淀析出的特性,依次回收各金属氢氧化物。一次沉淀法则是一次性投加石灰乳,使溶液达到额定的pH值,从而使废 水中的各种重金属离子同时以氢氧化物沉淀的形式析出。 1.1.2 硫化物沉淀法 将重金属废水pH值凋节为一定碱性后,再通过向重金属废水中投加硫化钠或硫化钾等硫化物,或者直接通人硫化氢气体,使重金属离子同硫离子反应生成难溶的金属硫化物沉淀,然后被过滤分。由于金属硫化物的溶度积比相应的金属氢氧化物的溶度积小得多,因此。硫化物沉淀法比氢氧化物沉淀法具有更多的优点,比如沉渣量少,容易脱水,沉渣金属品位高,有利于金属的回收。可是硫化物沉淀法也有不足之处,比方说硫化物结晶比较细小,难以沉降,因而应用也不是很广。 1.1.3 还原一沉淀法 这种方法的原理是,用还原剂将重金属废水中的重金属离子还原为金属单质或者价态较低的金属离子,先将金属过滤收集,然后再往处理液中加入石灰乳,使得还原态的重金属离子以氢氧化物的形式沉淀收集。铜和汞等的回收可以利用这种方法。该法也常用于含铬废水的处理。较常使用的还原剂有硫酸亚铁、亚硫酸氢钠、铁粉等。 1.1.4 絮凝浮选沉淀法 通过添加絮凝剂使得重金属废水中的小胶体颗粒稳定性变差,聚集形成大颗粒胶体物质,最终通过重力作用沉淀下来。为增大胶体颗粒的尺寸,采用浮选的办法,用于将不稳定的胶体粒子变为固相絮凝物。这一浮选过程一般包括两个重要的步骤,一是调节pH值,二是加入含铁或铝盐的絮凝剂,以克服离子间静电排斥导致的稳定作用。 1.2 物理化学法 1.2.1 吸附法 (1)物理吸附法。活性炭是最早使用的吸附剂,也是目前使用最广泛的吸附剂。之所以能够进行物理吸附,是因为活性炭具有高的比表面积以及高度发达的孔隙结构。后来在此基础上又出现了活性炭纤维等衍生物,去除效率高,但价格比较昂贵。能够用于物理吸附的材料还有各种矿物质以及分子筛等。 (2)树脂吸附。环保是树脂吸附法的一个重要的特点t41,这种方法能够分离、纯化、回收重金属,效果显着。主要是由于树脂中含有各种活性基团,比较典型的有羟基、羧基、氨基等,能够与重金属离子进行螯合,因而这些功能性树脂材料能有效的吸附重金属离子。根据活性基团的种类不同,分为阳离子交换树脂和阴离子交换树脂。 (3)生物吸附。近些年来,很多研究者将各种生物(如植物、细菌、真菌、藻类以及酵母)经处理加工成生物吸附剂,用于处理含重金属废水。生物体具有特定的化学结构以及成分特征,而生物吸附法的主要原理,就是利用生物体的这些特性来吸附溶于水中的重金属离子。生物吸附法具有几个特点:①生物吸附剂可以降解,一般不会发生二次污染;②来源广泛,容易获取并且价格便宜;③生物吸附剂容易解析,能够有效地回收重金属。 1.2.2 浮选法

生物制药污水处理方案

重庆英特安制药有限责任公司 制药废水处理设计方案 (二)

目录 第一章………………………………………………………概况第二章……………………………………设计依据及设计范围第三章…………………………………………………设计参数第四章……………………………………………工艺方案选择第五章…………………………………………………设计说明第六章…………………………………………………工艺设计第七章………………………………………………电气及控制第八章……………………………环境保护、安全及节能措施第九章…………………………………………………应急措施第十章…………………………………………总图及建筑结构第十一章……………………………………………人员及其他第十二章…………………………………………工程投资估算第十三章………………………………………运行成本分析第十四章……………………………………………结论及建议第十五章………………………………………………售后服务

第一章概况 1.1前言 一家生产药品中间体的厂家,制药废水为高浓度的苯系物、醇类、酯类、有机酸、卤代烃等有机物和极高浓度的钠盐、钾盐等无机盐构成的混合废水,成分极为复杂。其产生的医药废水有三高,1.高COD,2.高盐,3.高磷。其中盐的成分比较复杂占20%以上,COD 在100000左右,磷3000多。处理量在100吨,再加上部分辅助用水(设备冲洗用水和职工生活用水)。该公司医药废水处理后排入园区管网进入污水处理厂,园区污水厂对水排放提出三个排放标准,1、COD指标500ppm, 2、氨氮指标为45 ,3、磷酸盐达到2级标准1PPM。设计水量:150T。 这类废水COD、磷含量高,如果直接排放将对环境造成严重污染,必须经处理后,才能达标排放。 1.2项目改造的必要性 由于生产废水COD、磷含量高, 如果不能达标排放,造成水域环境的恶化给流域内的工农业生产和居民生活带来了严重的后果,妨碍地区经济持续、稳定地发展;值得注意的是如不尽早实施污染治理工程措施,环境质量的恶化将进一步加剧。因此,对该污染源进行治理,使其达到国家排放标准后再排入水体和回收利用,具有良好的环境效益、社会效益和一定的经济效益;新建废水处理站,已成为经济发展步入良性循环所面临的重大问题,势在必行,有利于保护环境,保障人民的身体健康,促进社会全面发展。

常见工业废水处理技术介绍

常见工业废水处理技术介绍 在电子、塑胶、电镀、五金、印刷、食品、印染等行业,从废水的排放量和对环境污染的危害程度来看,电镀、线路板、表面处理等以无机类污染物为主的废水和食品、印染、印刷及生活污水等以有机类污染物为主的废水是处理的重点。本文主要介绍几种比较典型的工业废水的处理技术。 一、表面处理废水 1.磨光、抛光废水 在对零件进行磨光与抛光过程中,由于磨料及抛光剂等存在,废水中主要污染物为COD、BOD、SS。 一般可参考以下处理工艺流程进行处理: 废水→调节池→混凝反应池→沉淀池→水解酸化池→好氧池→二沉池→过滤→排放 2.除油脱脂废水 常见的脱脂工艺有:有机溶剂脱脂、化学脱脂、电化学脱脂、超声波脱脂。除有机溶剂脱脂外,其它脱脂工艺中由于含碱性物质、表面活性剂、缓蚀剂等组成的脱脂剂,废水中主要的污染物为pH、SS、COD、BOD、石油类、色度等。 一般可以参考以下处理工艺进行处理: 废水→隔油池→调节池→气浮设备→厌氧或水解酸化→好氧生化→沉淀→过滤或吸附→排放

该类废水一般含有乳化油,在进行气浮前应投加CaCl2破乳剂,将乳化油破除,有利于用气浮设备去除。当废水中COD浓度高时,可先采用厌氧生化处理,如不高,则可只采用好氧生化处理。 3.酸洗磷化废水 酸洗废水主要在对钢铁零件的酸洗除锈过程中产生,废水pH一般为2-3,还有高浓度的Fe2+,SS浓度也高。 可参考以下处理工艺进行处理: 废水→调节池→中和池→曝气氧化池→混凝反应池→沉淀池→过滤池→pH回调池→排放 磷化废水又叫皮膜废水,指铁件在含锰、铁、锌等磷酸盐溶液中经过化学处理,表面生成一层难溶于水的磷酸盐保护膜,作为喷涂底层,防止铁件生锈。该类废水中的主要污染物为:pH、SS、PO43-、COD、Zn2+等。 可参考以下处理工艺进行处理: 废水→调节池→一级混凝反应池→沉淀池→二级混凝反应池→二沉池→过滤池→排放 4.铝的阳极氧化废水所含污染物主要为pH、COD、PO43-、SS等,因此可采用磷化废水处理工艺对阳极氧化废水进行处理。 二、电镀废水 电镀生产工艺有很多种,由于电镀工艺不同,所产生的废水也各不相同,一般电镀企业所排出的废水包括有酸、碱等前处理废水,氰

重金属废水的微生物废水处理工艺

重金属废水的微生物废水处理工艺 一、微生物法治理电镀废水技术 1.主要技术内容 (1)基本原理用从电镀污泥中获得的SR系列复合功能菌,高效还原六价铬为三价铬,三价铬、锌、铜、镍和镉等二价金属离子被菌体富集,再经固液分离,废水被净化,污泥中金属再用微生物或化学法回收,固液分离的上清液可以回用。 (2)技术关键本技术的关键是菌体的培养和“菌废比”的合理调控,这是保证处理水质达到排放标准或回用的重要条件。一般采用厌氧技术培养菌体,培养液可以是生活污水,粪便,高浓度有机废水,也可以人工配制。采用中温发酵技术。根据废水中的金属离子的浓度和培养的菌体的浓度决定“菌废比”,具体情况具体决定。 (3)工艺流程微生物治理电镀废水工艺流程见图9-24。 2.主要技术指标 (1)净化能力本技术对废水成分变化的适应性强,各金属离子浓度的范围为:铬1mg/L~1000mg /L,锌1mg/L~1000mg/L,铜1mg/L~1000mg/L,镍1mg/L~500mg/L,镉1mg/L~500mg/L。本技术不仅能处理单一的金属废水,也可处理混合的金属废水。废水的pH值可在4~8范围内变化。每天处理废水量可达1m3~1000m3以上。 (2)特点利用微生物高效快速还原六价铬,无二次污染,能回收菌泥中的金属,因此,使用周期长,管理方便。如果能利用生活污水、食品加工废水等培养微生物,可以实现以废治废。 (3)出水水质处理后排放水中六价铬、总铬、锌、铜、镍、镉等金属低于国家GB8978-1996污水综合排放标准,见表9-15。

3.投资分析对于日处理100t废水的规模而言,1992年价格为总投资30万元,其中土建15万元,设备10万元,其他5万元。 本技术主要设备使用期可达40年,运行费用约为每吨废水0.20元。 4.主要设备微生物法治理电镀废水技术的主要设备有培菌池,生物反应器,调节池,泵房,沉淀池,消毒池,主控室,化验室等。 二、硫酸盐生物还原法处理含锌废水 硫酸盐生物还原法处理含锌废水其原理是利用硫酸盐还原菌SRB在厌氧条件下产生硫化氢,硫化氢和废水中的重金属反应,生成金属硫化物沉淀以去除重金属离子。 1.废水处理工艺流程见图9-25。

重金属污染物的来源及处理办法

重金属污染物的危害、来源及处理方法研究 [摘要]随着工业排污量急剧增加,大量重金属污染排向了物环境中。在一定条件下,某些重金属(例如汞)还能在某些微生物的作用下转化为毒性更大的有机物质。另外,有毒重金属可以长期停留与积累在环境中,通过食物链逐级富集,最终进入人体,甚至通过遗传或母乳使婴儿受害,主要表现为富集在人体某些器官内形成慢性中毒。因此,重金属污染物的处理技术成为一个研究的热点,其成果有着重大的现实意义。 [关键词] 重金属工业污染离子交换电解吸附 一、引言 随着社会的不断发展,人们比以往任何时候都更加崇尚工业与自然环境的和谐发展,这种理念已不断渗透到各学科之中,在治理污染技术的开发上也应该寻求这种绿色产业。充分发挥自然界的天然自净化功能,是在污染治理与环境修复领域开发绿色环保技术的体现,更是完整地利用天然自净化功能的反应。本文阐述了重金属的危害、来源及其存在形式,并重点论述了处理重金属污染物的方法。 二、废水中重金属污染物的来源 1.铅的来源。铅常被用作原料应用于蓄电池、电镀、颜料、橡胶、农药、燃料等制造业。铅板制作工艺中排放的酸性废水(pH3=铅浓度最高,电镀废液产生的废水铅浓度也很高。 2.镉的来源。镉是一种灰白色的金属,自然界中主要以二价形式存在。镉电镀可以为钢、铁等提供一种抗腐蚀性的保护层,具有吸附性好且镀层均匀光洁等特点,因此工业上90%的福用于电镀、颜料、塑料稳定剂、合金及电池等行业,含镉废水的来源还包括金属矿山的采选、冶炼、电解、农药、医药、电镀、纺织印染等行业的生产过程中。 3.镍的来源。废水中镍的来源废水中的镍主要以二价离子存在,比如硫酸镍、硝酸镍以及与许多无机和有机络合物生成的镍盐。含镍废水的工业来源很多,其中主要是电镀业,此外,采矿、冶金、石油化工、纺织等工业,以及钢铁厂、印刷等行业排放的废水中也含有镍。

重金属废水治理技术

重金属废水治理技术 电镀是利用化学和电化学方法在金属或在其它材料表面镀上各种金属。电镀技术广泛应用于机器制造、轻工、电子等行业。 电镀废水的成分非常复杂,除含氰(CN-)废水和酸碱废水外,重金属废水是电镀业潜在危害性极大的废水类别。根据重金属废水中所含重金属元素进行分类,一般可以分为含铬(Cr)废水、含镍(Ni)废水、含镉(Cd)废水、含铜(Cu)废水、含锌(Zn)废水、含金(Au)废水、含银(Ag)废水等。电镀废水的治理在国内外普遍受到重视,研制出多种治理技术,通过将有毒治理为无毒、有害转化为无害、回收贵重金属、水循环使用等措施消除和减少重金属的排放量。随着电镀工业的快速发展和环保要求的日益提高,目前,电镀废水治理已开始进入清洁生产工艺、总量控制和循环经济整合阶段,资源回收利用和闭路循环是发展的主流方向。1、电镀重金属废水治理技术的现状 1.1化学沉淀 化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等。 1.1.1中和沉淀法 在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。中和沉淀法操作简单,是常用的处理废水方法。实践证明在操作中需要注意以下几点[1]:(1)中和沉淀后,废水中若pH值高,需要中和处理后才可排放;(2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH值,实行分段沉淀;(3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过预处理;(4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成。 1.1.2硫化物沉淀法 加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀除去的方法。

相关文档
最新文档