储能电站技术方案设计

储能电站技术方案设计
储能电站技术方案设计

储能电站总体技术方案

2011-12-20

目录

1.概述 (3)

2.设计标准 (4)

3.储能电站(配合光伏并网发电)方案 (6)

3.1系统架构 (6)

3.2光伏发电子系统 (8)

3.3储能子系统 (8)

3.3.1储能电池组 (8)

3.3.2 电池管理系统(BMS) (10)

3.4并网控制子系统 (14)

3.5储能电站联合控制调度子系统 (16)

4.储能电站(系统)整体发展前景 (19)

1.概述

大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。

总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。

2.设计标准

GB 21966-2008 锂原电池和蓄电池在运输中的安全要求

GJB 4477-2002 锂离子蓄电池组通用规范

QC/T 743-2006 电动汽车用锂离子蓄电池

GB/T 12325-2008 电能质量供电电压偏差

GB/T 12326-2008 电能质量电压波动和闪变

GB/T 14549-1993 电能质量公用电网谐波

GB/T 15543-2008 电能质量三相电压不平衡

GB/T 2297-1989 太阳光伏能源系统术语

DL/T 527-2002 静态继电保护装置逆变电源技术条件

GB/T 13384-2008 机电产品包装通用技术条件

GB/T 14537-1993 量度继电器和保护装置的冲击与碰撞试验

GB/T 14598.27-2008 量度继电器和保护装置第27部分:产品安全要求DL/T 478-2001 静态继电保护及安全自动装置通用技术条件

GB/T 191-2008 包装储运图示标志

GB/T 2423.1-2008 电工电子产品环境试验第2部分:试验方法试验A:低温

GB/T 2423.2-2008 电工电子产品环境试验第2部分:试验方法试验B:高温

GB/T 2423.3-2006 电工电子产品环境试验第2部分:试验方法试验Cab:恒定湿热试验

GB/T 2423.8-1995 电工电子产品环境试验第2部分:试验方法试验Ed:自由跌落

GB/T 2423.10-2008 电工电子产品环境试验第2部分:试验方法试验Fc:振动(正弦)

GB 4208-2008 外壳防护等级(IP代码)

GB/T 17626 -2006 电磁兼容试验和测量技术

GB 14048.1-2006 低压开关设备和控制设备第1部分:总则

GB 7947-2006 人机界面标志标识的基本和安全规则导体的颜色或数字标识

GB 8702-88 电磁辐射防护规定

DL/T 5429-2009 电力系统设计技术规程

DL/T 5136-2001 火力发电厂、变电所二次接线设计技术规程

DL/T 620-1997 交流电气装置的过电压保护和绝缘配合

DL/T 621-1997 交流电气装置的接地

GB 50217-2007 电力工程电缆设计规范

GB 2900.11-1988 蓄电池名词术语

IEC 61427-2005 光伏系统(PVES)用二次电池和蓄电池组一般要求和试验方法

Q/GDW 564-2010 储能系统接入配电网技术规定

QC/T 743-2006 《电动汽车用锂离子蓄电池》

GB/T 18479-2001 地面用光伏(PV)发电系统概述和导则

GB/T 19939-2005 光伏系统并网技术要求

GB/T 20046-2006 光伏(PV)系统电网接口特性

GB 2894 安全标志(neq ISO 3864:1984)

GB 16179 安全标志使用导则

GB/T 17883 0.2S 和0.5S 级静止式交流有功电度表

DL/T 448 能计量装置技术管理规定

DL/T 614 多功能电能表

DL/T 645 多功能电能表通信协议

DL/T 5202 电能量计量系统设计技术规程

SJ/T 11127 光伏(PV)发电系统过电压保护——导则

IEC 61000-4-30 电磁兼容第4-30 部分试验和测量技术——电能质量

IEC 60364-7-712 建筑物电气装置第7-712 部分:

特殊装置或场所的要求太阳光伏(PV)发电系统

3.储能电站(配合光伏并网发电)方案

3.1系统架构

在本方案中,储能电站(系统)主要配合光伏并网发电应用,因此,整个系统是包括光伏组件阵列、光伏控制器、电池组、电池管理系统(BMS)、逆变器以及相应的储能电站联合控制调度系统等在内的发电系统。系统架构图如下:

储能电站总体技术方案

储能电站总体技术方案 2011-12-20

目录 1.概述 (3) 2.设计标准 (4) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (8) 3.3储能子系统 (8) 3.3.1储能电池组 (8) 3.3.2 电池管理系统(BMS) (10) 3.4并网控制子系统 (14) 3.5储能电站联合控制调度子系统 (16) 4.储能电站(系统)整体发展前景 (19)

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。

储能系统设计方案

110KWh储能系统 技术方案

微电网:储能系统独立或与其他能源配合,给负载供电,主要解决供电可靠性问题。 本系统主要包含: * 储能变流器:1台50kW 离并网型双向储能变流器,在0.4KV交流母线并网,实现能量的双向流动。 * 磷酸铁锂电池:125KWH * EMS&BMS:根据上级调度指令完成对储能系统的充放电控制、电池SOC 信息监测等功能。

1、系统特点 (1)本系统主要用于峰谷套利,同时可作为备用电源、避免电力增容及改善电能质量。 (2)储能系统具备完善的通讯、监测、管理、控制、预警和保护功能,长时间持续安全运行,可通过上位机对系统运行状态进行检测,具备丰富的数据分析功能。 (2)BMS系统即跟EMS系统通信汇报电池组信息,也跟PCS采用RS485总线直接通信,在PCS的配合下完成对电池组的各种监控、保护功能。 (3)常规0.2C充放电,可离网或并网工作。 2、系统运行策略 ◇储能系统接入电网运行,可通过储能变流器的PQ模式或下垂模式调度有功无功,满足并网充放电需求。 ◇电价峰时段或负荷用电高峰期时段由储能系统给负荷放电,既实现了对电网的削峰填谷作用,又完成了用电高峰期的能量补充。 ◇储能变流器接受上级电力调度,按照峰、谷、平时段的智能化控制,实现整个储能系统的充放电管理。 ◇储能系统检测到市电异常时控制储能变流器由并网运行模式切换到孤岛(离网)运行模式。 ◇储能变流器离网独立运行时,作为主电压源为本地负荷提供稳定电电压和频率,确保其不间断供电。 3、储能变流器(PCS) 先进的无通讯线电压源并联技术,支持多机无限制并联(数量、机型)。 ●支持多源并机,可与油机直接组网。 ●先进的下垂控制方法,电压源并联功率均分度可达99%。 ●支持三相100%不平衡带载运行。 ●支持并、离网运行模式在线无缝切换。 ●具有短路支撑和自恢复功能(离网运行时)。 ●具有有功、无功实时可调度和低电压穿越功能(并网运行时)。 ●采用双电源冗余供电方式,提升系统可靠性。 ●支持多类型负载单独或混合接入(阻性负载、感性负载、容性负载)。

铅酸电池储能系统方案设计 (有集装箱)

技术方案 2014年1月

目录 1需求分析 (3) 2集装箱方案设计 (3) 2.1集装箱基本介绍 (3) 2.2集装箱的接口特性 (5) 2.3系统详细设计方案 (6) 2.4集装箱温控方案 (13) 3电池组串成组方案 (15) 3.1电池组串内部及组间连接方案 (17) 3.2系统拓扑图 (18) 4蓄电池管理系统(BMS) (19) 4.1BMS系统整体构架 (19) 4.2BMS系统主要设备介绍 (20) 4.3BMS系统保护方式 (23) 4.4BMS系统通信方案 (24)

1需求分析 集装箱式铅酸蓄电池成套设备供货范围包括铅酸蓄电池、附属设备、标准40尺集装箱、备品备件、专用工具和安装附件等。 每个标准40尺集装箱含管式胶体(DOD80 1200次以上)或富液式(DOD80 1400次以上)免维护铅酸蓄电池、电池架及附件、电池管理系统(含外电路)、电池直流汇流设备、设备间的连接电缆及电缆附件(包括铜鼻、螺栓、螺母、弹垫、平垫等)、动力及控制信号接口等。 根据标书要求,综合铅酸电池特性,对于储能系统进行如下设计: 每3个标准40尺集装箱承载2MWh,每个集装箱由336只2V1000Ah管式胶体铅酸电池串联而成,电压672V,电池串容量672kWh。每3个集装箱并联到一台500kWh 储能双向变流器。三个电池堆的总容量可达2MWh,故本方案中三个集装箱为一单元,每个单元配置一套BMS电池管理系统,可监控每颗单体电池工作情况。集装箱中另含烟感探头、消防灭火器、加热器、摄像头、温湿度监测等设备,以保证铅酸电池安全稳定的工作环境,实现远程监控。 2集装箱方案设计 2.1集装箱基本介绍 根据项目要求,同时考虑电池堆的成组方式、集装箱内辅助系统的设计、安装以及日常巡视和检修等各方面,选用40英尺标准集装箱。外部尺寸: 12192*2438*2591mm 。 本项目共需要42个40英尺标准集装箱。集装箱设计静态承重60t,最大 起吊承重45t。 集装箱的主要任务是将铅酸电池、通讯监控等设备有机的集成到1个标准的40尺集装箱单元中,该标准单元拥有自己独立的供电系统、温度控制系统、隔热系统、阻燃系统、火灾报警系统、电气联锁系统、机械连锁系统、安全逃生系统

储能电站技术方案

储能电站总体技术方案 页脚内容1

2011-12-20 目录 1.概述 (3) 2.设计标准 (4) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (8) 3.3储能子系统 (8) 3.3.1储能电池组 (8) 3.3.2 电池管理系统(BMS) (11) 3.4并网控制子系统 (15) 3.5储能电站联合控制调度子系统 (17) 4.储能电站(系统)整体发展前景 (19) 页脚内容2

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。 页脚内容3

300KW储能系统初步设计方案和配置

中山铨镁能源科技有限公司 储能系统项目 初 步 设 计 方 案 2017年06月

目录 1项目概述 (3) 2项目方案 (3) 2.1智能光伏储能并网电站 (3) 3.2储能系统 (5) 3.2.1磷酸铁锂电池 (5) 3.2.2电池管理系统(BMS (5) 3.2.3储能变流器(PCS (6) 3.2.4 隔离变压器 (9) 3.3能量管理监控系统 (9) 3.3.1微电网能量管理 (9) 3.3.2 系统硬件结构 (10) 3.3.3系统软件结构 (11) 3.3.4系统应用功能 (12)

一、项目概述 分布式能源具有间歇性、波动性、孤岛保护等特点,分布式能源电能质量差,分布式能源设备利用率没有被充分发掘。微电网是为整合分布式发电的优势、削弱分布式发电对电网的冲击和负面影响而提出的一种新的分布式能源组织方式和结构,能有效改善分布式能源电能质量差、分布式能源设备利用率不能被充分发掘等分布式能源的不足。 微电网通过整合分布式发电单元与配电网之间关系,在一个局部区域内直接将分布式发电单元、电力网络和终端用户联系在一起,可以方便地进行结构和配置以及电力调度的优化,优化和提高能源利用效率,减轻能源动力系统对环境的影响,推动分布式电源上网,降低大电网的负担,改善可靠安全性,并促进社会向绿色、环保、节能方向发展。微电网是当前国际国内能源和电力专家普遍认可的解决方案。 本项目拟建设一套锂电池储能系统,通过低压配电柜给部分办公楼宇负荷供电,可实现对各个设备接口采集相关信息,并通过智能配电柜对各个环节进行投切,在并网及孤岛情况下实现发电、储能及负荷的控制,保持微电网系统的平衡运行。 二、项目方案 2.1智能光伏储能并网电站 本电站系统目的在于拟建设中山铨镁能源科技有限公司储能并离网系统示范工程,通过接入办公楼宇的日常照明等真实负载,可演示离网状态下正常供电系统示范;分布式光伏多余电量进行储能示范;以及后台监控及能量调度等示范。 本项目拟建设的储能系统,系统由锂电池储能系统、控制系统、监控系统以及能量管理系统构成。其中控制系统可实现对分布式电源、负载装置和储能装置的远程控制,监控系统对分布式电源实时运行信息、报警信息进行全面的监视并进行多方面的

储能系统方案设计精编版

商用300KW储能方案 技术要求及参数 电倍率0.5C; 储能系统配置容量:300kWh。 电池系统方案 术语定义 池采集均衡单元:管理一定数量串联电池模块单元,进行电压和温度的采集,对本单元电池模块进行均衡管理。在本方案中管理计60支的电池。电池簇管理单元:管理一个串联回路中的全部电池采集均衡单元,同时检测本组电池的电流,在必要时采取保案中管理17台电池采集均衡单元。电池阵列管理单元:管理PCS下辖全部电池簇管理单元,同时与PCS和后台监控系统通信状态请求PCS调整充放电功率。在本方案中管理2个并联的电池簇。 池模块:由10支5并2串的单体电池组成。 1 电池成组示意图 电池系统集成设计方案 .1电池系统构成 照系统配置300kWh储存能量的技术需求,本储能系统项目方案共使用1台150kW的PCS。储能单元由一台PCS和2个电池簇组台电池阵列管理单元设备。每个电池簇由一台电池簇管理设备和17 个电池组组成。

.2 电池系统计算书项目单体电池模块电池组电池簇电池阵列 体电池数目 1 10 60 1020 2040 称电压(V) 3.2 6.4 38.4 652.8 652.8 量(Ah) 55 275 275 275 -- 定能量(kWh) 0.176 1.76 10.56 179.52 359.04 低工作电压(V) 2.5 5 30 510 510 高充电电压(V) 3.6 7.2 43.2 734.4 734.4 统配置裕量 (359.04kWh -300 kWh)/300 kWh =19.68% 于以上各项分析设计,300kWh 电池系统计算如下。 .3电池柜设计方案 池机柜内部主要安装电池箱和BMS主控管理系统、配套电线电缆、高低压电气保护部件等。机柜采用分组分层设计,机柜外观柜采用免维护技术、模数化组合的装配式结构,保证柜体结构具有良好的机械强度,整体结构能最大程度地满足整个系统的可。其中,三个电池架组成的示意图如图3所示,尺寸为3600mm×700mm×2300mm。

储能电站总体技术方案设计

储能电站总体技术方案 2011-12-20

目录 1.概述 (3) 2.设计标准 (4) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (7) 3.3储能子系统 (7) 3.3.1储能电池组 (8) 3.3.2 电池管理系统(BMS) (9) 3.4并网控制子系统 (12) 3.5储能电站联合控制调度子系统 (14) 4.储能电站(系统)整体发展前景 (16)

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW 风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。

光伏储能一体化充电站设计方案

光伏储能一体化充电站 设 计 方 案 : 项目名称: 项目编号: 版本: 日期: … 拟制: ^ 审阅: 批准:

目录 1 技术方案概述 (3) 1.1 项目基本情况 (3) 1.2 遵循及参考标准 (4) 1.3 系统拓扑结构 (5) 1.4 系统特点 (6) 2 系统设备介绍 (7) 2.1 250K W并离网型储能变流器 (7) 2.1.1 EAPCS250K型储能变流器特点 (7) 2.1.2 EAPCS250K型并离网逆变器技术参数 (7) 2.1.3 电路原理图 (8) 2.1.4 通讯方式 (9) 2.2 50K_DCDC变换器 (9) 2.2.1 50K_DCDC变换器特点 (9) 2.2.2 50K_DCDC变换器技术参数 (10) 2.3 光智能光伏阵列汇流箱 (11) 2.3.1汇流箱简介 (11) 2.3.2汇流箱参数 (12) 2.4 光伏组件系统 (13) 2.4.1 270Wp光伏组件 (13) 2.5 60KW双向充电桩 (15) 2.5.1 60KW充电柱概述 (15) 2.5.2 充电桩功能与特点 (15) 2.5.3 EVDC-60KW充电桩技术参数 (16) 2.6 消防系统 (17) 2.7 微网能量管理系统 (17) 2.7.1 能量管理 (18) 2.7.2 光电预测 (19) 2.7.3 负荷预测 (19) 2.7.4 储能调度 (20) 2.7.5 购售计划 (20) 2.7.6 管理策略 (20) 2.8 动环监控系统 (22) 2.9 电池系统 (23) 2.9.1 电池组 (23) 2.9.2电池模组与电池架设计 (23) 2.9.3电池系统参数表 (24) 2.10 定制集装箱 (25) 3 设备采购信息介绍 (26)

光伏电站技术方案(整理后)

光伏电站技术方案 1.系统概况 1.1项目背景及意义 系统由室外太阳电池组件阵列系统、室外太阳能电池组件汇流系统、室内控制储能系统、逆变配电装置与布线系统、室内光伏发电综合测试系统组成。用于研究不同材料电池组件的光伏阵列,采取跟踪模式和固定模式时发电的情况,以及5种相同功率不同方式的太阳能电发电的对比。本系统建成后可以作为学校光伏科研方向的重点实验室,为学校学科建设、科技创新、人才培养发挥重要作用。 1.2光伏发电系统的要求 系统是一个教学实习兼科研项目,根据要求设计一个5kWp的小型光伏电站系统,包含3kWp的并网光伏系统,2kWp的离网光伏系统,共计平均每天发电约9.5kWh,可供一个1kW的负载工作9小时左右。 2.项目概况 2.1光伏系统方案的确定 根据现场资源和环境条件,系统设计采用独立型离网光伏系统和离散型并网光伏系统方案。 太阳能光伏并网发电系统主要组成如下: (1)太阳能电池组件及其专用固定支架; (2)光伏阵列汇流箱; (3)光伏并网逆变器; (4)系统的通讯监控装置;

(5)系统的防雷及接地装置; (6)土建、配电房等基础设施; (7)系统的连接电缆及防护材料; 太阳能光伏离网发电系统主要组成如下: (1)太阳能电池组件及其双轴跟踪逐日支架; (2)光伏阵列汇流箱; (3)光伏控制器; (4)光伏离网逆变器; (5)系统的通讯监控装置; (6)系统的防雷及接地装置; (7)土建、配电房等基础设施; (8)系统的连接电缆及防护材料; 3.设计方案 3.1方案介绍 将系统分成并网和离网两个部份。并网和离网系统中用到的太阳能电池组件有3种,一是175Wp单晶硅太阳能电池板,其工作电压为35.9V,开路电压为43.6V,经过计算,6块此类电池板串联,构成1个1KW的光伏阵列。二是175Wp多晶硅太阳能电池板,其工作电压为33.7V,开路电压为42.5V, 经过计算,6块此类电池板串

储能系统技术要求

储能系统技术要求 1、电储能系统涉及的标准及规范 IEC62619:2017《含碱性或其他非酸性电解质的锂蓄电池和锂蓄电池组工业用锂蓄电池和锂蓄电池组的安全性要求》 GB/T34131-2017《电化学储能电站用锂离子电池管理系统技术规范》 2、电池储能容量按250kW*4h设计,其主要功能如下: 1)削峰填谷 即根据系统负荷的峰谷特性,在负荷低谷期储存多余的光能,同时还可以从电网吸收功率和能量;在负荷高峰期释放储能电池中储存的能量,从而减少电网负荷的峰谷差,降低电网供电负担,一定程度上还能使光伏发电在负荷高峰期发电出力更稳定。 2)平滑波动 通过储能系统快速调节,可防止负载波动、电压下跌和其他外界干扰所引起的电网波动对系统造成大的影响,保证电力输出的品质和可靠性。储能系统不仅保证系统的稳定可靠,还是解决诸如电压脉冲、涌流、电压跌落和瞬时供电中断等动态电能质量问题的有效途径。 电池储能装置的布置和安装应方便施工、调试、维护和检修,若有特殊要求应特别注明。 储能电池日历寿命需大于11年(仍然可以保持一定容量的充放电能力,整个储能系统仍然可以正常运行)。 在电池仓内环境温度控制的环境下,运行容量不小于1MWh,锂电池按照0.5C 充放电及DOD 90%设计,投标人需保证循环次数不得低于4000次。 冷却方式若为风冷,应配有风管接口。 电池在充放电过程中外部遇明火、撞击、雷电、短路、过充过放等

各种意外因素,不应发生燃烧或爆炸。 在技术解决方案中,投标人应明确说明为保证电池各项指标的均衡性所采取的措施,避免因单体电池或电池模块电池特性差异较大而引起整组电池性能和寿命下降。 投标人需要提供的特性说明及特性曲线: ●可选的充放电方式; ●循环次数与充放电深度关系曲线(含单体电池及电池组曲线); ●循环次数与充放电功率的关系曲线(含单体电池及电池组曲线); ●不同运行功率下变流器的效率曲线; ●运行电压与温度关系曲线(含单体电池及电池组曲线); ●电池容量与温度关系曲线(含单体电池及电池组曲线); ●电池充放电倍率与容量关系曲线(含单体电池及电池组曲线); ●在一定条件下,年度电池容量衰减的保证值(单元系统的保证值); ●电池充电特性曲线(单体电池曲线); ●电池放电特性曲线(单体电池曲线); ●电池耐过充能力说明(单体电池曲线); ●电池长期正常运行后的端电压偏差范围(单体电池曲线); ●电池系统的电池巡检和保护功能; ●电池系统的电磁兼容性能测试报告; ●箱体保温、散热、防雨、防腐措施及方案及类似箱体成功运行案例。上述文件投标方需完整提供,并承诺与实际提供产品完全保持一致。 储能电池短名单厂家:宁德时代、杉杉储能、阳光电源、比亚迪、科陆电子或同等品牌。

储能电站技术方案设计

储能电站总体技术方案

2011-12-20 目录 1.概述 (2) 2.设计标准 (3) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (7) 3.3储能子系统 (7) 3.3.1储能电池组 (7) 3.3.2 电池管理系统(BMS) (8) 3.4并网控制子系统 (11) 3.5储能电站联合控制调度子系统 (13) 4.储能电站(系统)整体发展前景 (15)

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。

储能系统方案

1、方案简介 储能系统(EnergyStorageSystem,简称ESS)是一个可完成存储电能和供电的系统,具有平滑过渡、削峰填谷、调频调压等功能。可以使太阳能、风能发电平滑输出,减少其随机性、间歇性、波动性给电网和用户带来的冲击;通过谷价时段充电,峰价时段放电可以减少用户的电费支出;在大电网断电时,能够孤岛运行,确保对用户不间断供电。 储能系统是电力系统“采-发-输-配-用-储”的重要组成部分,是构建新能源微电网的基础。系统中引入储能环节后,可以有效地实现需求侧管理,消除昼夜间峰谷差,平抑负荷,不仅可以更有效地利用电力设备、降低用电成本,还可以促进可再生能源的应用,也可作为提高系统运行稳定性、参与调频调压、补偿负荷波动的一种有效手段。

储能系统包括锂离子电池、BMS系统、PCS系统、EMS系统等。其中,电池模组采用模块化设计,由若干电池串并联组成。每个电池模组配置一个电池管理单元,对单体电池的电压、温度等参数进行监测; 储能系统架构图 2.1电池 根据市场情况,储能电池选择为磷酸铁锂电池,磷酸铁锂电池具有一定的优势。 1)长循环寿命 由于风光资源的不确定性、间歇性,蓄电池经常处于部分荷电状态(PSOC)模式下运行。电池在这种状态下经常处于过充或欠充状态,

尤其是欠充状态会导致电池寿命提前终止,磷酸铁锂电池使用年限达到15年,循环次数4500次以上。 2)高能量转换效率 储能电池经常处于充放电循环,电池的能量转换效率高低对规模储能电站的经济性好坏有决定性的影响。磷酸铁锂电池改善了电池部分荷电态(PSOC)模式下的充电接受能力,充电接受能力较普通电池提升40%以上,使电池具有了优异的充放电效率(97%以上),整个储能电站的能量转换效率可达到90%以上。 3)经济性价比 寿命期内性价比是评估储能技术是否可行的一项重要指标。磷酸铁锂电池既保持了电池高能量密度,又具有快速充放电、循环寿命长、价格低等优势,收益/投资比可达2.0;相比铅碳电池、管式胶体电池、三元锂电池相比,具有更低的成本及更高的性价比,可有效的降低储能电站运行成本。 4)系统安全可靠性 储能电站具有较高的安全可靠性要求,磷酸铁锂电热峰值可达350℃-500℃而锰酸锂和钴酸锂只在200℃左右。工作温度范围宽广(-20C--+75C),有耐高温特性磷酸铁锂电热峰值可达350℃-500℃而锰酸锂和钴酸锂只在200℃左右。

电化学储能电站施工及验收规范大纲

电化学储能电站施工及验收规范 Code for construction and acceptance of electrochemical energy storage station 一、大纲编制的基本思路 1、编制内容的边界范围 一般情况下,工程建设活动有规划、勘察、设计、施工(包括安装)与监理、验收、运行、维护、拆除等组成。 本标准内容范围将集中在储能电站施工、设备安装、验收这三个环节,且应与正在编制国家标准《电化学储能电站设计规范》保持内容上的相互支撑、补充与衔接,与未来将会制定有关运维与拆除环节的标准相衔接。 2、标准的构成格式 本次大纲主要针对正文部分和补充部分。本标准要严格按照住建部出版的《工程建设标准编制指南》规定的格式。 ●前引部分(封面、扉页、公告、前言、目次)、正文部分(总则、术语、 技术内容)、补充部分(附录、标准用词说明、引用标准名录) 3、技术内容重点 ●土建工程施工的通用性技术要求; ●土建工程施工中针对储能装置等特殊需求的专业技术要求 ●储能电站中通用电气设备的安装与调试的通用技术要求; ●电化学储能装置安装与调试的专用技术要求; ●储能电站整体系统调试的技术要求; ●土建施工及设备安装调试过程中各自针对环境与水土保持的技术要求; ●土建施工及设备安装调试过程中各自针对的安全与职业健康技术管理 规定; ●设备及储能电站的整体验收技术要求。 4、需要开展研究的工作 目前,根据查询,国际上尚没有发布关于电化学储能电站施工与验收方面的技术标准。储能电站建设案例并不是很多,在运行的储能电站数量少、运行时间短,此外,储能电站建设中

引入了许多新技术、新设备等,还处于不断进步与完善过程中。因此,编制标准的征求意见阶段需要安排必要的调研工作、技术测试与试验工作以及专题论证工作。 大纲准备阶段,应对上述情况给予重视。 5、参编单位的结构 为确保高质量完成标准的编制,参编单位中尽可能包含具有以下属性的单位:1、具有储能电站建设业绩的业主单位;2、具有储能电站建设施工业绩与经验的工程施工单位,3、具有储能电站设计业绩与经验的设计单位,4、储能电站核心设备与新技术装置的研发与生产单位,5、具有参与储能电站系统调试与试运经验的科研(或技术业务)单位,6、参与国家标准《电化学储能电站设计规范》编制的单位等。 二、规范编制大纲 本规范根据住房和城乡建设部《关于印发<2013年工程建设标准规范制订修订计划的通知>(建标[2013]6号)的要求,由中国电力企业联合会和中国电力科 学研究院会同有关单位共同编制完成。 牵头单位:中国电力企业联合会中国电力科学研究院 参编单位:(建议)上海电力设计院、冀北电力公司、北京输变电工程公司、浙江电力公司、福建电力公司、上海电力公司、许继集团有限公司、深圳比亚迪股份有限公司、宁德时代新能源科技有限公司、大连融科储能技术发展有限公司、北京普能世纪科技有限公司 目的:为保证电化学储能电站的工程质量,促进工程施工及验收技术水平的提高,确保电化学储能电站建设的安全可靠,制定本规范。 适用范围:本规范适用于新建、改建和扩建的固定式电化学储能电站,不适用于移动式储能电站工程。

储能电站总体技术方案

储能电站总体技术方案 目录 1.概述 (2) 2.设计标准 (3) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (7) 3.3储能子系统 (7) 3.3.1储能电池组 (7) 3.3.2 电池管理系统(BMS) (8) 3.4并网控制子系统 (11) 3.5储能电站联合控制调度子系统 (13) 4.储能电站(系统)整体发展前景 (15) 1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的

应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为 1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。 2.设计标准 GB 21966-2008 锂原电池和蓄电池在运输中的安全要求

储能系统方案设计

商用300KW储能方案 1技术要求及参数 电倍率0.5C; 储能系统配置容量:300kWh。 2电池系统方案 2.1术语定义 电池采集均衡单元:管理一定数量串联电池模块单元,进行电压和温度的采集,对本单元电池模块进行均衡管理。在本方案中串共计60支的电池。电池簇管理单元:管理一个串联回路中的全部电池采集均衡单元,同时检测本组电池的电流,在必要时。在本方案中管理17台电池采集均衡单元。电池阵列管理单元:管理PCS下辖全部电池簇管理单元,同时与PCS和后台监控据电池组状态请求PCS调整充放电功率。在本方案中管理2个并联的电池簇。 电池模块:由10支5并2串的单体电池组成。 图1 电池成组示意图 2.2电池系统集成设计方案 2.2.1电池系统构成 按照系统配置300kWh储存能量的技术需求,本储能系统项目方案共使用1台150kW的PCS。储能单元由一台PCS和2个并配备一台电池阵列管理单元设备。每个电池簇由一台电池簇管理设备和17 个电池组组成。

2.2.2 电池系统计算书项目单体电池模块电池组电池簇电池阵列 单体电池数目 1 10 60 1020 2040 标称电压(V) 3.2 6.4 38.4 652.8 652.8 容量(Ah) 55 275 275 275 -- 额定能量(kWh) 0.176 1.76 10.56 179.52 359.04 最低工作电压(V) 2.5 5 30 510 510 最高充电电压(V) 3.6 7.2 43.2 734.4 734.4 系统配置裕量(359.04kWh -300 kWh)/300 kWh =19.68% 基于以上各项分析设计,300kWh 电池系统计算如下。 2.2.3电池柜设计方案 电池机柜内部主要安装电池箱和BMS主控管理系统、配套电线电缆、高低压电气保护部件等。机柜采用分组分层设计,机柜。机柜采用免维护技术、模数化组合的装配式结构,保证柜体结构具有良好的机械强度,整体结构能最大程度地满足整个系统全性。其中,三个电池架组成的示意图如图3所示,尺寸为3600mm×700mm×2300mm。

光伏电站试点工程储能变流器技术规范

国家新能源示范城市吐鲁番示范区屋顶光伏电站暨微电网试点工程 储能双向变流器 招标文件 (技术规范书) 招标人:龙源吐鲁番新能源有限公司 设计单位:龙源(北京)太阳能技术有限公司 二零一二年七月

目录 1 总则 (1) 2 工程概况 (3) 3 储能系统储能双向变流器技术规范 (6) 3.1相关概念及定义 (6) 3.2设计和运行条件 (6) 3.3规范和标准 (7) 3.4技术要求 (9) 3.4.1 储能双向变流器技术要求 (9) 3.4.2 变流器通讯设置要求 (15) 3.4.3设备及元器件品质承诺 (16) 3.5包装、装卸、运输与储存 (16) 3.5.1 概述 (16) 3.5.2 包装 (16) 3.5.3 装运及标记 (17) 3.5.4 装卸 (19) 3.5.5 随箱文件 (19) 3.5.6 储存 (19) 3.5.7 质量记录 (19) 3.6性能表(投标人细化填写) (20) 4 安装、调试、试运行 (21) 4.1安装 (21) 4.2设备调试 (22) 4.3设备试运行 (22) 5 质量保证和试验 (22) 5.1质量保证 (22)

5.2试验 (23) 5.3型式试验 (23) 5.4工厂试验FAT (23) 5.5现场试验SAT (24) 5.5.1 现场调试 (24) 5.5.2 现场试验 (24) 5.6整体考核验收 (24) 附录1 技术差异表 (26) 附录2 供货范围 (27) 附录3 技术资料及交付进度 (29) 附录4 设备检验和性能验收试验 (35) 附录5 技术服务和设计联络 (38) 附录6 投标文件附图 (42) 附录7 运行维护手册 (43) 附录8 投标人需要说明的其他技术问题 (44)

风光互补发电系统技术方案

风光互补发电系统技术方案 五寨县恒鑫科技发展有限公司 2017年04月20日

项目背景: 本项目产品小型风力发电机组是离网用户最佳的独立电源系统。 风光互补独立供电系统是目前最广泛应用独立电源系统。风光互补独立供电系统的广泛应用在于它的合理性。 太阳能是地球上一切能源的来源,太阳照射着地球的每一片土地。风能是太阳能在地球表面的另一种表现形式,由于地球表面的不同形态(如沙土地面、植被地面和水面)对太阳光照的吸热系数不同,在地球表面形成温差,地表空气的温度不同形成空气对流而产生风能。因此,太阳能与风能在时间上和地域上都有很强的互补性。白天太阳光最强时,风很小,晚上太阳落山后,光照很弱,但由于地表温差变化大而风能加强。在夏季,太阳光强度大而风小,冬季,太阳光强度弱而风大。太阳能和风能在时间上的互补性使风光互补发电系统在资源上具有最佳的匹配性,风光互补发电系统是资源条件最好的独立电源系统。单独的风机或太阳能发电系统由于受资源条件的限制,对蓄电池组充电时间较短,蓄电池组长时间处于亏电状态而导致蓄电池组的损坏。而风光互补发电系统充电时间较均衡,可以保证蓄电池组处于浮充状态,提高蓄电池组的充电质量并延长了蓄电池组的寿命。 风力发电机和太阳能电池的充电特性不一样,风机的充电特性较硬,而光伏电池的充电特性较软,风光互补电对激活离子运动,防止蓄电池极板硫化有好处,可延长蓄电池组的寿命。 风机和太阳能电池的储能和逆变系统可以共用,且风机的单位造价只有太阳能电池的三分之一左右,所以风光互补发电系统的整体造价可以降低。同时,由于风机和太阳能电池的发电时间上互补,可以减少储能的蓄电池组容量,使发电系统造价降低。经济上更趋于合理,随着我国4G通信网的开通,可实现大范围的无线传输图像资料,风光互补监控系统将在森林防火、防盗猎监控、城市乡村的防犯罪监控、古墓群的防盗墓监控、边防地区的防偷渡监控、生态保护区的防盗猎监控、旅游地区的安全监控和矿产资源的防乱开采监控等领域得到广泛的应用,这种监控系统体系不仅能大大降低管理成本,而且能实现有效及时和安全的防护体系。对降低森林火灾,减少资源破坏,提高破案率都有非常极的意义。技术的进步可以促进社会管理手段的进步,同时,新技术的广泛应用才能进一步促进新技术产业的发展。

储能电站,功率变换,技术规范

竭诚为您提供优质文档/双击可除储能电站,功率变换,技术规范 篇一:储能电站总体技术方案 储能电站总体技术方案 20xx-12-20 目录 1.概述................................................. .. (3) 2.设计标准................................................. . (4) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构................................................. (6) 3.2光伏发电子系

统................................................. (7) 3.3储能子系统... ................................................... (7) 3.3.1储能电池组................................................. .. (8) 3.3.2电池管理系统(bms).............................................. . (9) 3.4并网控制子系统................................................. . (12) 3.5储能电站联合控制调度子系统................................................. .14 4.储能电站(系统)整体发展前景 (1) 6 1.概述 大容量电池储能系统在电力系统中的应用已有20多年

储能电站技术要求概要

性能要求 2.1 总体要求 2.1.1 2.1.2 测。 2.1.3 电池储能系统的监控系统及其子系统(包括电池管理系统、变流装电池储能系统要求能够自动化运行,运行状态可视化程度高。交直流回路及监控软件须能够对交直流各回路进行电流和电压监 置就地控制器、储能系统配套升压变及高低压配电装置监控单元等)所采用的通讯协议应向客户完全开放,且需符合国际通用标准及客户要求。 2.1.4 电池组的布置和安装应方便施工、调试、维护和检修,若有特殊要 求应特别注明;变流器应安装简便,无特殊性要求。 2.1.5 电池储能系统设备均为室内布置。投标方所提供的设备尺寸和数量 (考虑了检修和巡视通道后)应满足房间尺寸要求,不得大于该房间尺寸。 2.2 环境条件 表2.1 环境条件参数表 环境项目 海拔高度(m)安装地点 最高温度(℃)最低温度(℃) 户外环境温度 最大日温差(K)最高日平均气温(℃) 耐地震能力 (按IEC61166进行试验,安全系数1.67) 水平加速度 g 垂直加速度 招标人要求值≯1600m 户内 投标人保证值 2.3 技术参数与指标 2. 3.1 投标方应提供的技术数据表 投标文件中应包含如下数据(按2MW电池储能系统填写)及所依据的计算方法,并保证供货设备的性能特性与提供的数据一致。 表2.2 磷酸铁锂电池储能系统(以2MW为单元) 序号 1 额定放电功率

名称 招标人要求值 2MW 投标人保证值投标人填写 备注 性能应达到1.5倍放 电功率 额定充电功率 2MW 8MWh(第一包填写) 3 额定储能容量 12MWh(第二包填写) 投标人填写 即2MW×6h 投标人填写 投标人填写即2MW×4h 4 储能能量效率—投标人填写 以35kV侧出线侧为考核点 5 6 7 8 充放电转换时间单体电池数量电池串并联方式柜体或台架材料外形尺寸<1s ——— 投标人填写额定功率时投标人填写投标人填写投标人填写 9 (长×深×高,mm) 10 11 12 13 14 15 15.1 15.2 重量(kg)防护等级(户内)噪音 —投标人填写 — IP2X 65dB 投标人填写投标人填写投标人填写投标人填写投标人填写 投标人填写投标人填写投标人填写投标人填写投标人填写 距离设备1m处 20~200Ah 运行环境温度(户内)℃~+35℃待机损耗防雷能力标称放电电流残压额定容量(Ah)额定电压 <3% >25kA <1kV 投标人填写—— 16

工商业并离网储能系统典型设计方案精编版

工商业并离网储能系统典型设计方案 太阳能并离网储能系统广泛应用于工厂、商业等峰谷价差较大、或者经常停电的场所。系统由太阳电池组件组成的光伏方阵、汇流箱,太阳能并离网一体机、蓄电池组、风力发电机、负载、电网等构成。光伏方阵在有光照的情况下将太阳能转换为电能,通过太阳能控制逆变一体机给负载供电,同时给蓄电池组充电,多余的电还可以送入电网;在无光照时,由电网给负载供电;当电网停电时,由蓄电池通过逆变一体机给负载供电。 并离网光伏储能发电系统示意图 一、系统主要组成 (1) 太阳电池组件 是太阳能供电系统中的主要部分,也是太阳能供电系统中价值最高的部件,其作用是将太阳的辐射能量转换为直流电能;

(2) 太阳能并离网一体机 主要功能分为2部分,MPPT太阳能控制器和双向DC/AC变流器,其作用是对太阳能电池组件所发的电能进行调节和控制,对蓄电池进行充电,并对蓄电池起到过充电保护、过放电保护的作用。同时把组件和蓄电池的直流电逆变成交流电,给交流负载使用,在适当的时候,电网也可以向蓄电池充电。 (3) 蓄电池组:其主要任务是贮能,以便在电网停电时保证负载用电。 二、主要组成部件介绍 2.1 太阳电池组件介绍 单晶硅 Mono-Crystalline多晶硅 Poly Crystalline薄膜 Thin film 太阳电池组件是将太阳光能直接转变为直流电能的阳光发电装置。根据用户对功率和电压的不同要求,制成太阳电池组件单个使用,也可以数个太阳电池组件经过串联(以满足电压要求)和并联(以满足电流要求),形成供电阵列提供更大的电功率。太阳电池的发电量随着日照强度的增加而按比例增加。随着组件表面的温度升高而略有下降。随着温度的变化,电池组件的电流、电压、功率也将发生变化,组件串联设计时必须考虑电压负温度系数。

储能电站技术方案设计

储能电站总体技术案

2011-12-20 目录 1.概述 (2) 2.设计标准 (3) 3.储能电站(配合光伏并网发电)案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (7) 3.3储能子系统 (7) 3.3.1储能电池组 (7) 3.3.2 电池管理系统(BMS) (8) 3.4并网控制子系统 (11)

3.5储能电站联合控制调度子系统 (13) 4.储能电站(系统)整体发展前景 (15) 1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配

合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设期短;绿色环保,促进环境友好;集约用地,减少资源消耗等面。 2.设计标准 GB 21966-2008 锂原电池和蓄电池在运输中的安全要求 GJB 4477-2002 锂离子蓄电池组通用规 QC/T 743-2006 电动汽车用锂离子蓄电池 GB/T 12325-2008 电能质量供电电压偏差 GB/T 12326-2008 电能质量电压波动和闪变 GB/T 14549-1993 电能质量公用电网谐波 GB/T 15543-2008 电能质量三相电压不平衡

相关文档
最新文档