第三章3.1课时作业
2017年高中数学第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念习题课件2新人教A版选修1_2

解析:由题意知(log2m)2+16≤25,即(log2m)2≤9, 1 - -3≤log2m≤3,所以 2 3≤m≤23,即8≤m≤8.
1 答案:8≤m≤8
三、解答题:每小题 15 分,共 45 分. 10.实数 m 取什么值时,复平面内表示复数 z=(m2-8m+ 15)+(m2-5m-14)i 的点. (1)位于第四象限? (2)位于第一、三象限? (3)位于直线 y=x 上?
第三章
数系的扩充与复数的引入
3. 1
数系的扩充和复数的概念
课时作复平面、实轴、虚轴等概念.②掌握复数 作业 目标 的两种几何意义,并能应用.③理解复数模的定 义及其几何意义,弄清复数的模与实数绝对值的 区别与联系. 作业 设计
限时:40 分钟 满分:90 分
一、选择题:每小题 5 分,共 30 分. 1.过原点和 3-i 对应点的直线的倾斜角是( π A.6 2π C. 3 π B.-6 5π D. 6 )
答案:D
5.设复数 z=(2t2+5t-3)+(t2+2t+2)i,t∈R,则以下结论 中正确的是( )
A.复数 z 对应的点在第一象限 B.复数 z 一定不是纯虚数 C.复数 z 对应的点在实轴上方 D.复数 z 一定是实数
解析:∵z 的虚部 t2+2t+2=(t+1)2+1 恒为正, ∴z 对应的点在实轴上方,且 z 一定是虚数,排除 D. 又 z 的实部 2t2+5t-3=(t+3)(2t-1)可为正、为零、为负, ∴选项 A、B 不正确.
可等价转化为(m2-8m+15)(m2-5m-14)>0, 即(m-3)(m-5)(m+2)(m-7)>0,
利用“数轴标根法”可得:m<-2 或 3<m<5 或 m>7,此 时复数 z 对应的点位于第一、三象限. (3)要使点 Z 在直线 y=x 上,需 m2-8m+15=m2-5m-14, 29 解得 m= 3 .此时,复数 z 对应的点位于直线 y=x 上.
2019-2020学年高中数学新教材必修一第3章 3.1.1 第2课时 函数的表示方法

28
①当点F在BG上,即x∈[0,2]时,y=12x2; ②当点F在GH上,即x∈(2,5]时,y=x+2x-2×2=2x-2; ③当点F在HC上,即x∈(5,7]时,y=S五边形ABFED=S梯形ABCD-SRt△CEF =12(7+3)×2-12(7-x)2 =-12(x-7)2+10.
栏目导航
综合①②③,得函数的解析式为 12x2,x∈[0,2],
y=2x-2,x∈2,5], -12x-72+10,x∈5,7].
29
栏目导航
图像如图所示.
30
栏目导航
31
求函数解析式的常用方法 1待定系数法:若已知fx的解析式的类型,设出它的一般形 式,根据特殊值确定相关的系数即可. 2换元法:设t=gx,解出x,代入fgx,求ft的解析式即可. 3配凑法:对fgx的解析式进行配凑变形,使它能用gx表示 出来,再用x代替两边所有的“gx”即可.
栏目导航
25
[解] (1)法一(换元法):令t= x +1,则t≥1,x=(t-1)2,代入 原式有f(t)=(t-1)2-2(t-1)=t2-4t+3,f(x)=x2-4x+3(x≥1).
法二(配凑法):f( x +1)=x+2 x +1-4 x -4+3=( x +1)2- 4( x+1)+3,
因为 x+1≥1, 所以f(x)=x2-4x+3(x≥1).
栏目导航
(2)设f(x)=ax+b(a≠0), 则f(f(x))=f(ax+b)=a(ax+b)+b=a2x+ab+b. 又f(f(x))=4x+8, 所以a2x+ab+b=4x+8,
a2=4,
a=2, a=-2,
即ab+b=8, 解得b=83
栏目导航
47
当堂达标 固双基
2023版新教材高中数学第三章函数的概念与性质-函数的概念课时作业新人教A版必修第一册

3.1.1 函数的概念必备知识基础练1.下列四个图形中,不是以x为自变量的函数的图象是( )2.已知函数f(x)=+,则f(3)=( )A.1 B.2C.3 D.43.已知函数f(x)=x,则下列函数与f(x)表示同一函数的是( )A.y=B.y=C.y=()2D.y=4.函数y=f(x)与y轴的交点个数为( )A.至少1个 B.至多一个C.有且只有一个 D.与f(x)有关,不能确定5.[2022·广东深圳高一期末]函数f(x)=的定义域为( )A.[1,2)∪(2,+∞) B.(1,+∞)C.[1,2) D.[1,+∞)6.[2022·山东青岛高一期末](多选)下面选项中,变量y是变量x的函数的是( ) A.x表示某一天中的时刻,y表示对应的某地区的气温B.x表示年份,y表示对应的某地区的GDP (国内生产总值)C.x表示某地区的学生某次数学考试成绩,y表示该地区学生对应的考试号D.x表示某人的月收入,y表示对应的个税7.函数f(x)=的定义域是________.8.已知函数f(x)=-1,且f(a)=3,则a=________.关键能力综合练1.[2022·安徽歙县高一期末]∀x∈R,[x]表示不超过x的最大整数,十八世纪,函数y=[x]被“数学王子”高斯采用,因此得名高斯函数,人们更习惯称之为“取整函数”,则[4.8]-[-3.5]=( )A.0 B.1 C.7 D.82.学习了函数的概念后,对于构成函数的要素:定义域、对应关系和值域,甲、乙、丙三个同学得出了各自的判断:甲:存在函数f(x),g(x),它们的定义域相同,值域相同,但对应关系不同;乙:存在函数f(x),g(x),它们的定义域相同,对应关系相同,但值域不同;丙:存在函数f(x),g(x),它们的对应关系相同,值域相同,但定义域不同.上述三个判断中,正确的个数是( )A.3 B.2 C.1 D.03.函数f(x)=-(x+3)0的定义域是( )A.(-∞,-3)∪(3,+∞)B. (-∞,-3)∪(-3,3)C.(-∞,-3)D.(-∞,3)4.若函数f(x)=3x-1,则f(f(1))的值为( )A.2 B.4C.5 D.145.已知函数f(x)=的定义域为R,则a的取值范围是( )A.[0,1] B.(0,+∞)C.[1,+∞) D.[0,+∞)6.(多选)下列各组函数是同一个函数的是( )A.f(x)=·与g(x)=B.f(x)= 与g(x)=xC.f(x)=与g(x)=D.f(x)=与g(x)=7.[2022·江苏盐城高一期末]函数f(x)=的定义域为________.8.[2022·辽宁营口高一期末][x]为不超过x的最大整数,若函数f(x)=[x],x∈(a,b),f(x)的值域为{-1,0,1,2},则b-a的最大值为________.9.求下列函数的定义域:(1)y=·;(2)y=.10.已知定义域为R的函数f(x)=2x2-3和g(x)=4x,求f(g(-1)),g(f(-1)),f(f(-2)),g(g(-2))的值.核心素养升级练1.已知函数f(x)的定义域为(0,4),则函数g(x)=的定义域为( )A.(0,16) B.(-1,2)C.(-1,0)∪(0,2) D.(-2,0)∪(0,2)2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f(x)=x2,值域为{0,1}的“同族函数”共有________个.3.已知函数f(x)=.(1)求f(2)+f(),f(3)+f()的值;(2)求证:f(x)+f()是定值;(3)求f(2)+f(3)+…+f(2 022)+f()+f()+…+f()的值.3.1.1 函数的概念必备知识基础练1.答案:C解析:由函数定义:定义域内的每一个x都有唯一函数值与之对应,A、B、D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的函数值与之对应,不符合函数定义.2.答案:C解析:f(3)=+=3.3.答案:A解析:f(x)=x的定义域是R,四个选项中,B选项定义域是{x|x≠0},C选项定义域是{x|x≥0},不是同一函数,AD选项定义域都是R,D选项对应法则是y=|x|,不是同一函数,A选项化简后为y=x,是同一函数.4.答案:B解析:由函数定义可知,定义域包含x=0时,则与y轴有1个交点,当定义域不包含x=0时,则与y轴无交点,所以函数y=f(x)与y轴的交点个数最多为1个.5.答案:A解析:函数f(x)=有意义,则有,解得x≥1且x≠2,所以原函数的定义域是[1,2)∪(2,+∞).6.答案:ABD解析:ABD均满足函数的定义,C选项,同一个分数可以对应多个考试号,不满足对于任意的x,都有唯一的y与其对应,故C选项错误.7.答案:(-2,+∞)解析:x+2>0,x>-2,所以f(x)的定义域为(-2,+∞).8.答案:16解析:因为f(x)=-1,f(a)=3,所以-1=3,解得:a=16.关键能力综合练1.答案:D解析:由题意可知[4.8]-[-3.5]=4-(-4)=8.2.答案:B解析:甲:f(x)=x2,g(x)=|x|,两个函数的定义域和值域相同,但对应关系不同,故甲正确;乙:根据函数相等的定义可知,若两个函数的定义域相同,对应关系相同,值域一定相同,故乙错误;丙:f(x)=x2,x∈(1,2),g(x)=x2,x∈(-2,-1),两个函数的对应关系相同,值域相同,但定义域不同,故丙正确.3.答案:B解析:由f(x)=-(x+3)0,则,解得x<3且x≠-3,所以函数的定义域为(-∞,-3)∪(-3,3).4.答案:C解析:由f(x)=3x-1,所以f(1)=2,所以f(f(1))=f(2)=5.5.答案:D解析:由题意,函数f(x)=有意义,则满足ax2+1≥0,因为函数f(x)的定义域为R,即不等式ax2+1≥0在R上恒成立,当a=0时,1≥0恒成立,符合题意;当a>0时,ax2+1≥0恒成立,符合题意.当a<0时,不符合题意,综上可得,实数a的取值范围是[0,+∞).6.答案:CD解析:A选项,f(x)的定义域为{x|x≥1},g(x)的定义域为{x|x≤-1或x≥1},不是同一个函数.B选项,f(x)=,x≤0,f(x)==-x≠g(x),不是同一个函数.C选项,f(x)===g(x),是同一个函数.D选项,f(x)==1(x>0),g(x)==1(x>0),是同一个函数.7.答案:[1,5]解析:由-x2+6x-5≥0,得x2-6x+5≤0,(x-1)(x-5)≤0,解得1≤x≤5,所以函数的定义域为[1,5].8.答案:4解析:因为函数f(x)=[x],x∈(a,b),f(x)的值域为{-1,0,1,2},所以b最大取到3,a最小取到-1,所以b-a的最大值为3-(-1)=4.9.解析:(1)依题意⇒2≤x≤3,所以函数的定义域为[2,3].(2)依题意,解得-2≤x<2且x≠-.所以函数的定义域为[-2,-)∪(-,2).10.解析:由已知g(-1)=4×(-1)=-4,f(-1)=2×(-1)2-3=-1,同理g(-2)=-8,f(-2)=5,所以f(g(-1))=f(-4)=29,g(f(-1))=g(-1)=-4,f(f(-2))=f(5)=47,g(g(-2))=g(-8)=-32.核心素养升级练1.答案:C解析:因为f(x)的定义域为(0,4),所以0<x2<4,解得-2<x<0或0<x<2.又因为x+1>0,解得x>-1,所以g(x)的定义域为(-1,0)∪(0,2).2.答案:3解析:已知函数解析式为f(x)=x2,值域为{0,1}的“同族函数”的定义域可以为:{0,1},{0,-1},{0,-1,1},所以“同族函数”共有3个.3.解析:(1)f(x)=,f(2)+f()=+=1,f(3)+f()=+=1.(2)f(x)+f()=+=+=1.(3)f(2)+f(3)+…+f(2 022)+f()+f()+…+f()=[f(2)+f()]+[f(3)+f()]+…+[f(2 022)+f()]=2 021×1=2 021.。
2020版数学同步新导练人教B必修一课件:第三章 基本初等函数(Ⅰ) 3.1 3.1.2(二)

+1)<f(2x)的 x 的取值范围是( )
A.(-∞,-1]
B.(0,+∞)
C.(-1,0)
D.(-∞,0)
解析:D 将函数 f(x)的图象画出来,观察图象可知会有
2x<0, 2x<x+1,
解得 x<0,所以满足 f(x+1)<f(2x)的 x 的取值范围是
(-∞,0),故选 D.
二、填空题 7.若函数 f(x)=2|x-a|(a∈R)满足 f(1+x)=f(1-x),且 f(x)在 [m,+∞)单调递增,则实数 m 的最小值等于________. 解析:由 f(1+x)=f(1-x)得函数 f(x)关于 x=1 对称,故 a =1,则 f(x)=2|x-1|,由复合函数单调性得 f(x)在[1,+∞)上递增, 故 m≥1,所以实数 m 的最小值等于 1. 答案:1
值范围为( )
A.(-∞,0)
B.(-∞,1)
C.(0,1)
D.(1,+∞)
解析:C 由题意 f(x)=-f(-x),即22xx-+a1=-22- -xx+ )(2x
+
1)
=
0
,
a
=
1
,
f(x)
=
2x+1 2x-1
,由
f(x)
=
2x+1 2x-1
>3
,得
1<2x<2,0<x<1,故选 C.
解析:∵f(x)为奇函数,g(x)为偶函数,又 f(x)-g(x)=12x, ∴-f(x)-g(x)=12-x,即f-xf-xg-xg=x2=-x2,x,①② 解 ∴得g(0f)(=x)=-21-,x-2g(2-x,2)g=(x-)=18- 7,2xf+ (12)2=-x-,34, ∴g(-2)<g(0)<f(1). 答案:g(-2)<g(0)<f(1)
2020-2021学年高中数学 第三章 空间向量与立体几何 3.1.1-2 空间向量及其加减运算

数乘运算课时作业含解析新人教A 版选修2_1课时作业14 空间向量及其加减运算 空间向量的数乘运算|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.空间四边形ABCD 中,M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →=( )A .2DB → B .3MG →C .3GM →D .2MG →解析:MG →-AB →+AD →=MG →+BD →=MG →+2MG →=3MG →. 答案:B2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形解析:∵AO →+OB →=DO →+OC →,∴AB →=DC →.∴AB →∥DC →且|AB →|=|DC →|.∴四边形ABCD 为平行四边形. 答案:A3.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( ) A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对解析:因为m +n =1,所以m =1-n ,所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上,即P ∈AB . 答案:A4.在下列条件中,使M 与A ,B ,C 一定共面的是( ) A.OM →=3OA →-2OB →-OC →数乘运算课时作业含解析新人教A 版选修2_1B.OM →+OA →+OB →+OC →=0C.MA →+MB →+MC →=0D.OM →=14OB →-OA →+12OC →解析:∵MA →+MB →+MC →=0, ∴MA →=-MB →-MC →, ∴M 与A ,B ,C 必共面. 答案:C5.已知正方体ABCD -A 1B 1C 1D 1中,A 1E →=14A 1C 1→,若AE →=xAA 1→+y (AB →+AD →),则( )A .x =1,y =12B .x =12,y =1C .x =1,y =13D .x =1,y =14解析:因为AE →=AA 1→+A 1E →=AA 1→+14A 1C 1→=AA 1→+14(AB →+AD →),所以x =1,y =14.答案:D二、填空题(每小题5分,共15分)6.在直三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B =________.解析:如图,A 1B →=B 1B →-B 1A 1→=B 1B →-BA →=-CC 1→-(CA →-CB →) =-c -(a -b )=-c -a +b . 答案:-c -a +b7.在平行六面体ABCD -A ′B ′C ′D ′中,若AC ′→=xAB →+y 2BC →+z3CC ′→,则x +y +z =________.解析:在平行六面体ABCD -A ′B ′C ′D ′中,AC ′→=AB →+BC →+CC ′→,又AC ′→=xAB →+y 2BC →+z3CC ′→,数乘运算课时作业含解析新人教A 版选修2_1∴⎩⎨⎧ x =1,y2=1,z3=1,∴⎩⎪⎨⎪⎧x =1,y =2,z =3,∴x +y +z =6.答案:6数乘运算课时作业含解析新人教A 版选修2_18.有下列命题:①若AB →∥CD →,则A ,B ,C ,D 四点共线;②若AB →∥AC →,则A ,B ,C 三点共线;③若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b ;④若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0.其中是真命题的序号是________(把所有真命题的序号都填上).解析:根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故①错;因为AB →∥AC →且AB →,AC →有公共点A ,所以②正确;由于a =4e 1-25e 2=-4⎝⎛⎭⎫-e 1+110e 2=-4b ,所以a ∥b .故③正确; 易知④也正确.答案:②③④三、解答题(每小题10分,共20分)9.如图,在长、宽、高分别为AB =4,AD =2,AA 1=1的长方体ABCD -A 1B 1C 1D 1中,以八个顶点中的两点分别为起点和终点的向量中.(1)单位向量共有多少个? (2)写出模为5的所有向量;(3)试写出AA 1→的相反向量.解析:(1)因为长方体的高为1,所以长方体4条高所对应的向量AA 1→,A 1A →,BB 1→,B 1B →,DD 1→,D 1D →,CC 1→,C 1C →共8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)因为长方体的左、右两侧的对角线长均为5,故模为5的向量有AD 1→,D 1A →,C 1B →,BC 1→,B 1C →,CB 1→,A 1D →,DA 1→.(3)向量AA 1→的相反向量为A 1A →,B 1B →,C 1C →,D 1D →,共4个.数乘运算课时作业含解析新人教A 版选修2_110.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N →;(3)MP →.解析:(1)∵P 是C 1D 1的中点, ∴AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)∵N 是BC 的中点,∴A 1N →=A 1A →+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c .(3)∵M 是AA 1的中点,∴MP →=MA →+AP →=12A 1A →+AP →=-12a =⎝⎛⎭⎫a +c +12a =12a +12b +c . |能力提升|(20分钟,40分)11.已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则在下列各结论中正确的结论共有( )①OA →+OD →与OB 1→+OC 1→是一对相反向量; ②OB →-OC →与OA 1→-OD 1→是一对相反向量; ③OA →+OB →+OC →+OD →与OA 1→+OB 1→+OC 1→+OD 1→是一对相反向量; ④OA 1→-OA →与OC →-OC 1→是一对相反向量. A .1个 B .2个 C .3个 D .4个解析:利用图形及向量的运算可知②是相等向量,①③④是相反向量. 答案:C12.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.解析:CD →=CB →-DB →=CB →-13AB →=CB →-13(CB →-CA →)=23CB →+13CA →,又CD →=13CA →+λCB →,所以λ=23.答案:2313.如图所示,四边形ABCD ,ABEF 都是平行四边形且不共面.M ,N 分别是AC ,BF数乘运算课时作业含解析新人教A 版选修2_1的中点.试判断CE →与MN →是否共线?解析:因为M ,N 分别是AC ,BF 的中点,四边形ABCD ,ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB → =12CA →+AF →+12(AB →-AF →) =12CA →+12AF +12AB =12(AB →+AF →-AC →). 又CE →=CA →+AF →+FE →=AF →-AC →+AB →=AB →+AF →-AC →,所以MN →=12CE →,所以MN →∥CE →,即CE →与MN →共线.14.如图,平行六面体ABCD -A 1B 1C 1D 1中,E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.(1)证明:A ,E ,C 1,F 四点共面;(2)若EF →=xAB →+yAD →+zAA 1→,求x +y +z 的值.解析:(1)证明:∵ABCD -A 1B 1C 1D 1是平行六面体, ∴AA 1→=BB 1→=CC 1→=DD 1→, ∴BE →=13AA 1→,DF →=23AA 1→,∴AC 1→=AB →+AD →+AA 1→=AB →+AD →+13AA 1→+23AA 1→=⎝ ⎛⎭⎪⎫AB →+13AA 1→+⎝ ⎛⎭⎪⎫AD →+23AA 1=AB →+BE →+AD →+DF →=AE →+AF →,由向量共面的充要条件知A ,E ,C 1,F 四点共面.数乘运算课时作业含解析新人教A 版选修2_1(2)∵EF →=AF →-AE →=AD →+DF →-(AB →+BE →)=AD →+23DD 1→-AB →-13BB 1→=-AB +AD →+13AA 1→,又EF →=xAB →+yAD →+zAA 1→,∴x =-1,y =1,z =13,∴x +y +z =13.。
HK沪科版 七年级数学 上册 同步课堂练习题作业 第三章 一次方程与方程组(全章 分课时)

第3章 一次方程与方程组3.1 一元一次方程及其解法第1课时 一元一次方程和等式的基本性质一、选择题:1、下列结论正确的是( )A .若x+3=y-7,则x+7=y-11;B .若7y-6=5-2y,则7y+6=17-2y;C .若0.25x=-4,则x=-1;D .若7x=-7x,则7=-7.2、下列说法错误的是( ).A .若ay a x =,则x=y; B .若x 2=y 2,则-4x 2=-4y 2; C .若-41x=6,则x=-23; D .若6=-x,则x=-6. 3、知等式ax=ay,下列变形不正确的是( ). A .x=yB .ax+1= ay+1C .ay=axD .3-ax=3-ay4、列说法正确的是( )A .等式两边都加上一个数或一个整式,所得结果仍是等式;B .等式两边都乘以一个数,所得结果仍是等式;C .等式两边都除以同一个数,所以结果仍是等式;D .一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式;5、等式2-31-x =1变形,应得( ) A .6-x+1=3B .6-x-1=3C .2-x+1=3D .2-x-1=3 6、在梯形面积公式S=21(a+b )h 中,如果a=5cm,b=3cm,S=16cm 2,那么h=( ) A .2cm B .5cmC .4cmD .1cm 7、若关于x 的方程3(x-1)+a=b(x+1)是一元一次方程,则( ).A .a,b 为任意有理数B .a ≠0C .b ≠0D .b ≠38、方程12-x =4x+5的解是( ).A .x=-3或x=-32 B .x=3或x=32 C .x=-32 D .x=-39、下列方程①313262-=+x x ②4532x x =+ ③2(x+1)+3=x1 ④3(2x+5)-2(x-1)=4x+6.一元一次方程共有( )个. A.1 B.2C.3D.4 10.若ax +b=0为一元一次方程,则__________.11.当=m 时,关于字母x 的方程0112=--m x是一元一次方程. 12. 6.已知08)1()1(22=++--x m x m 是关于x 的一元一次方程,则m= .13.用适当的数或整式填空,使得结果仍是等式,并说明是根据等式的哪条性质,通过怎样变形得到的.(1)如果________;-8x 3,853==+那么x(2)如果-1_x _________3,123=--=那么x x ;(3)如果;__________x ,521==那么x (4)如果________.3x ,32==那么y x 14.解下列简易方程1.5223-=+x x 2.4.7-3x=113.x x +-=-32.0 4.)3(4)12(3-=+x x第2课时 利用移项解一元一次方程一、填空题1.如果,那么 .2.若代数式3(x-1)与(x-2)是互为相反数,则x=____________.3.已知方程①3x -1=2x +1 ②x x =-123 ③23231-=+xx ④413743127+-=++x x 中,解为x=2的是方程 . 4.若342=x 与x a a x 5)(3-=+有相同的解,那么_____. 5.已知2(a-b)=7,则5b-5a=__________.二、选择题6.下列各题的“移项”正确的是( )A. 由2x=3y-1得-1=3y+2xB. 由6x+4=3-x 得6x+x=3+4C. 由8-x+4x=7得-x+4x=-7-8D. 由x+9=3x-7得x-3x=-7-9.7.要是方程ax=b 的解为x=1,必须满足( )A. a=bB. a ≠0C.b ≠0 D a=b ≠0.三、解答题8.哥哥有存款300元,弟弟有存款120元,若从下月起哥哥每月存款100元,弟弟每月存款120元,那么几个月后两人的存款数相等?9.为了改善某边防中队的生活质量,我解放军后勤机关调拨一批水果,若每名军人3个水 果,则剩余20个水果;若每名军人4个水果,则还少25个水果,问有多少名军人? 多少 个水果?10.解方程:(1)2x+5=25-8x; (2)8x-2=7x-2; (3)2x+3=11-6x;(4)3x-4+2x=4x-3; (5)10y+7=12y-5-3y;(6)12x-1.5=3.5-13x; (7)20x·20%-3=50×30%+40x.3.1 一元一次方程及其解法第3课时 去括号解一元一次方程(一)选择题1.方程4(2-x )-4(x+1)=60的解是( )(A)7. (B) 76. (C) -76. (D)-7.` 2.下列方程的解法中,去括号正确的是( )(A) ,则. (B),则. (C),则. (D),则. (二)填空题3.当a=______时,方程的解等于.(三)解方程11. (x+1)-2(x-1)=1-3x12.2(x-2)-6(x-1)=3(1-x)第4课时 去分母解一元一次方程A 组(1)2x =3x-1 1512 (2)=-+x x(3)310.40.342x x -=+ (4)112[(1)](1)223x x x --=-((5)35.012.02=+--x x (6)43(1)323322x x ⎡⎤---=⎢⎥⎣⎦B 组(1)1111248x x x x -=++ (2) 12542.13-=-x x(3) x x -=+38 (4) 2x -13 =x+22 +1(5)3142125x x -+=- (6)31257243y y +-=-(7) 124362x x x -+--= (8) 301.032.01=+-+x xx x 23231423 =⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛- x x 3221221413223=-⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+3.2一元一次方程的应用第1课时 等积变形和行程问题1、用直径为4厘米的圆钢,铸造三个直径为2厘米,高为16厘米的圆柱形零件,问需要截取多长的圆钢?2、某机器加工厂要锻造一个毛胚,上面是一个直径为20毫米,高为40毫米的圆柱,下面也是一个圆柱,直径为60毫米,高为20毫米,问需要直径为40毫米的圆钢多长?3、某工厂锻造直径为60毫米,高20毫米的圆柱形瓶内装水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。
高一数学人教版必修3第三章课时提升作业 十七 3.1.3
课时提升作业十七概率的基本性质(25分钟60分)一、选择题(每小题5分,共25分)1.若A,B是互斥事件,则( )A.P(A∪B)<1B.P(A∪B)=1C.P(A∪B)>1D.P(A∪B)≤1【解析】选D.因为A,B互斥,所以P(A∪B)=P(A)+P(B)≤1.(当A,B对立时,P(A∪B)=1)2.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一炮弹击中飞机},D={至少有一炮弹击中飞机},下列关系不正确的是( )A.A⊆DB.B∩D=C.A∪C=DD.A∪B=B∪D【解析】选D.“恰有一炮弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一炮弹击中”包含两种情况:一种是恰有一炮弹击中,一种是两炮弹都击中,所以A∪B≠B∪D.3.下列各组事件中,不是互斥事件的是( )A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班的数学成绩,平均分不低于90分与平均分不高于90分C.同时投掷3枚硬币,恰有两枚正面向上与至多一枚正面向上D.检验某种产品,合格率高于70%与合格率低于70%【解析】选B.对于B,设事件A1为平均分不低于90分,事件A2为平均分不高于90分,则A1∩A2为平均分等于90分,A1,A2可能同时发生,故它们不是互斥事件. 【补偿训练】从装有十个红球和十个白球的罐子里任取2球,下列情况中是互斥而不对立的两个事件是( )A.至少有一个红球;至少有一个白球B.恰有一个红球;都是白球C.至少有一个红球;都是白球D.至多有一个红球;都是红球【解析】选B.对于A,“至少有一个红球”可能为一个红球、一个白球,“至少有一个白球”可能为一个白球、一个红球,故两事件可能同时发生,所以不是互斥事件;对于B,“恰有一个红球”,则另一个必是白球,与“都是白球”是互斥事件,而任取2个球还有都是红球的情形,故两事件不是对立事件;对于C,“至少有一个红球”为都是红球或一红一白,与“都是白球”显然是对立事件;对于D,“至多有一个红球”为都是白球或一红一白,与“都是红球”是对立事件.4.某城市2017年的空气质量状况如表所示:其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染.该城市2017年空气质量达到良或优的概率为( )A. B. C. D.【解析】选A.所求概率为++=.5.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.52,摸出白球的概率是0.28,那么摸出黑球的概率是( )A.0.2B.0.28C.0.52D.0.8【解析】选 A.本题主要考查互斥事件的概率加法公式.设“摸出红球”为事件M,“摸出白球”为事件N,“摸出黑球”为事件E,则P(M)+P(N)+P(E)=1,所以P(E)=1-P(M)-P(N)=1-0.52-0.28=0.2.二、填空题(每小题5分,共15分)6.在掷骰子的游戏中,向上的数字为5或6的概率为.【解析】记事件A为“向上的数字为5”,事件B为“向上的数字为6”,则A与B互斥.所以P(A∪B)=P(A)+P(B)=+=.答案:7.同时抛掷两枚骰子,既不出现5点也不出现6点的概率为,则5点或6点至少出现一个的概率是.【解析】记既没有5点也没有6点的事件为A,则P(A)=,5点或6点至少出现一个的事件为B.因为A∩B=∅,A∪B为必然事件,所以A与B是对立事件,则P(B)=1-P(A)=1-=.故5点或6点至少出现一个的概率为.答案:8.(2018·泰安高一检测)经统计某储蓄所一个窗口等候的人数及相应的概率如下:(1)t= .(2)至少3人排队等候的概率是.【解析】(1)因为t+0.3+0.16+0.3+0.1+0.04=1,所以t=0.1.(2)至少3人包括3人,4人,5人以及5人以上,且这三类是互斥的,所以概率为0.3+0.1+0.04=0.44.答案:(1)0.1 (2)0.44三、解答题(每小题10分,共20分)9.某保险公司利用随机抽样的方法,对投保的车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额为2 800元,估计赔付金额大于投保金额的概率.(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.【解析】(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)==0.15,P(B)==0.12,由于投保金额为2 800元,赔付金额大于投保金额的情形是赔付3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100,而赔付金额为4 000元的车辆中车主为新司机的有0.2×120=24,所以在已投保车辆中新司机获赔金额为4 000元的频率为=0.24,由频率估计概率得P(C)=0.24.10.一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率.(2)取出的1球是红球或黑球或白球的概率.【解析】(1)从12个球中任取1球得红球有5种取法,得黑球有4种取法,得红球或黑球共有5+4=9种不同取法,任取1球有12种取法.所以任取1球是红球或黑球的概率为P1==.(2)从12个球中任取1球得红球有5种取法,得黑球有4种取法,得白球有2种取法,从而得红球或黑球或白球的概率为=.【一题多解1】(利用互斥事件求概率)记事件A1={任取1球为红球},A2={任取1球为黑球},A3={任取1球为白球},A4={任取1球为绿球},则P(A1)=,P(A2)=,P(A3)=,P(A4)=.根据题意知,事件A1,A2,A3,A4彼此互斥,由互斥事件概率公式,得(1)取出1球为红球或黑球的概率为P(A1∪A2)=P(A1)+P(A2)=+=.(2)取出1球为红球或黑球或白球的概率为P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=++=.【一题多解2】(利用对立事件求概率)(1)由一题多解1知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1∪A2的对立事件为A3∪A4,所以取得1球为红球或黑球的概率为P(A1∪A2)=1-P(A3∪A4)=1-P(A3)-P(A4)=1--==.(2)A1∪A2∪A3的对立事件为A4,所以P(A1∪A2∪A3)=1-P(A4)=1-=.(20分钟40分)一、选择题(每小题5分,共10分)1.抛掷一枚骰子,记事件A为“落地时向上的点数是奇数”,事件B为“落地时向上的点数是偶数”,事件C为“落地时向上的点数是3的倍数”,事件D为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( ) A.A与B B.B与C C.A与D D.C与D【解析】选C.A与B互斥且对立;B与C有可能同时发生,即出现6,从而不互斥;A 与D不会同时发生,从而A与D互斥,又因为还可能出现2,故A与D不对立;C与D有可能同时发生,从而不互斥.2.某家庭电话,打进的电话响第一声时被接的概率为,响第二声时被接的概率为,响第三声时被接的概率为,响第四声时被接的概率为;则电话在响前四声内被接的概率为( )A. B. C. D.【解析】选B.设“电话响第一声被接”为事件A,“电话响第二声被接”为事件B,“电话响第三声被接”为事件C,“电话响第四声被接”为事件D,则A,B,C,D两两互斥,从而P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=+++=.二、填空题(每小题5分,共10分)3.甲、乙两人进行中国象棋比赛,甲赢的概率为0.5,下和的概率为0.2,则甲不输的概率为.【解析】甲不输与甲、乙两人下成和棋是互斥事件,所以根据互斥事件的概率计算公式可以知道甲不输的概率P=0.2+0.5=0.7.答案:0.74.甲射击一次,中靶概率是p1,乙射击一次,中靶概率是p2,已知,是方程x2-5x+6=0的根,且p1满足方程x2-x+=0.则甲射击一次,不中靶概率为;乙射击一次,不中靶概率为.【解析】由p1满足方程x2-x+=0知,-p1+=0,解得p1=;因为,是方程x2-5x+6=0的根,所以·=6,解得p2=,因此甲射击一次,不中靶概率为1-=,乙射击一次,不中靶概率为1-=.答案:三、解答题(每小题10分,共20分)5.(2018·济宁高一检测)人群中各种血型的人所占的比例见下表:已知同种血型的人可以输血,O型血可以给任一种血型的人输血,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血,小明是B型血,若他因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?【解析】(1)对任一人,其血型为A,B,AB,O型血的事件分别记为A′,B′,C′, D′,它们是互斥的.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.因为B,O型血可以输给B型血的人,故“可以输给B型血的人”为事件B′∪D′,根据概率的加法公式,得P(B′∪D′)=P(B′)+ P(D′)=0.29+0.35=0.64.(2)由于A,AB型血不能输给B型血的人,故“不能输给B型血的人”为事件A′∪C′,且P(A′∪C′)=P(A′)+P(C′)=0.28+0.08=0.36.【易错警示】不能由于只有四种血型就简单地认为四种情况的概率都是0.25.本题中某种血型的人所占的比例其实就是任找一人,他是该血型的概率.【补偿训练】袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率是,试求得到黑球、得到黄球、得到绿球的概率各是多少?【解析】从袋中任取一球,记事件“得到红球”、“得到黑球”、“得到黄球”、“得到绿球”分别为A,B,C,D,则P(A)=,P(B∪C)=P(B)+P(C)=,P(C∪D)=P(C)+P(D)=,P(B∪C∪D)=P(B)+P(C)+P(D)=1-P(A)=1-=.则由解得即得到黑球、得到黄球、得到绿球的概率分别为,,.6.(2018·荆州高一检测)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%. (1)确定x,y的值,并估计顾客一次购物的结算时间的平均值.(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率) 【解析】(1)由已知得,25+y+10=55,x+y=35,所以x=15,y=20,该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为:- 11 -=1.9(分钟).(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2,A 3分别表示事件“该顾客一次购物的结算时间为1分钟”“该顾客一次购物的结算时间为1.5分钟”“该顾客一次购物的结算时间为2分钟”.将频率视为概率,得 P(A 1)==,P(A 2)==, P(A 3)==.因为A=A 1∪A 2∪A 3,且A 1,A 2,A 3是互斥事件,所以P(A)=P(A 1∪A 2∪A 3)=P(A 1)+P(A 2)+P(A 3)=++=.故一位顾客一次购物的结算时间不超过2分钟的概率为.。
高二数学 3.1 第3课时第3课时 空间向量的正交分解及其坐标表示
第三章 3.1 第3课时一、选择题1.对于向量a 、b 、c 和实数λ,下列命题中真命题是( ) A .若a ·b =0,则a =0或b =0 B .若λa =0,则λ=0或a =0 C .若a 2=b 2,则a =b 或a =-b D .若a ·b =a ·c ,则b =c[答案] B[解析] a ·b =0⇒a ⊥b ,|a |2=|b |2⇒(a +b )·(a -b )=0⇒(a +b )⊥(a -b ); a ·b =a ·c ⇒a ⊥(b -c );故A 、C 、D 均错.2.长方体ABCD -A 1B 1C 1D 1中,若AB →=3i ,AD →=2j ,AA 1→=5k ,则AC 1→=( ) A .i +j +k B.13i +12j +15k C .3i +2j +5k D .3i +2j -5k[答案] C[解析] AC 1→=AB →+BC →+CC 1→=AB →+AD →+AA 1→=3i +2j +5k . 3.给出下列命题:①若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可作为空间的基底;②已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底;③A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,那么A ,B ,M ,N 共面;④已知向量组{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底.其中正确命题的个数是( ) A .1 B .2 C .3D .4[答案] D[解析] 根据基底的概念,空间中任何三个不共面的向量都可作为空间的一个基底,否则就不能构成空间的一个基底.显然②正确,③中由BA →、BM →、BN →共面且过相同点B ,故A 、B 、M 、N 共面.下面证明①④正确.①假设d 与a 、b 共面,则存在实数λ,μ,使d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使d =k c ,∵d ≠0,∴k ≠0,从而c =λk a +μkb ,∴c 与a 、b 共面与条件矛盾.∴d 与a ,b 不共面. 同理可证④也是正确的.4.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角〈a ,b 〉为( )A .30°B .45°C .60°D .以上都不对[答案] C[解析] 由题意a +b =-c ,两边平方得, |c |2=|a |2+|b |2+2|a ||b |cos 〈a ,b 〉, 即19=4+9+2×2×3cos 〈a ,b 〉, 所以cos 〈a ,b 〉=12,所以〈a ,b 〉=60°.二、填空题5.若{a ,b ,c }是空间的一个基底,且存在实数x 、y 、z 使得x a +y b +z c =0,则x 、y 、z 满足的条件是__________________.[答案] x =y =z =0[解析] 若x ≠0,则a =-y x b -zxc ,即a 与b ,c 共面.由{a ,b ,c }是空间向量的一个基底知a 、b 、c 不共面,故x =0,同理y =z =0. 6.已知向量p 在基底{a ,b ,c }下的坐标为(2,1,-1),则p 在基底{a +b ,a -b ,c }下的坐标为__________________,在基底{2a ,b ,-c }下的坐标为__________________.[答案] (32,12,-1) (1,1,1)[解析] 由条件p =2a +b -c .设p 在基底{a +b ,a -b ,c }下的坐标为(x ,y ,z ),则 p =x (a +b )+y (a -b )+z c =(x +y )a +(x -y )b +z c , ∵a 、b 、c 不共面, ∴⎩⎪⎨⎪⎧x +y =2x -y =1z =-1,∴⎩⎪⎨⎪⎧x =32y =12z =-1.即p 在基底{a +b ,a -b ,c }下的坐标为(32,12,-1),同理可求p 在基底{2a ,b ,-c }下的坐标为(1,1,1). 三、解答题7.如图,已知正方体ABCD -A ′B ′C ′D ′,点E 是上底面A ′B ′C ′D ′的中心,取向量AB →、AD →、AA ′→为基底的基向量,在下列条件下,分别求x 、y 、z 的值. (1)BD ′→=xAD →+yAB →+zAA ′→; (2)AE →=xAD →+yAB →+zAA ′→.[解析] (1)∵BD ′→=BD →+DD ′→=BA →+AD →+DD ′→=-AB →+AD →+AA ′→,又BD ′→=xAD →+yAB →+zAA ′→, ∴x =1,y =-1,z =1.(2)∵AE →=AA ′→+A ′E →=AA ′→+12A ′C ′→=AA ′→+12(A ′B ′→+A ′D ′→)=AA ′→+12A ′B ′→+12AD →=12AD →+12AB →+AA ′→, 又AE →=xAD →+yAB →+zAA ′→,∴x =12,y =12,z =1.8.已知P A 垂直于正方形ABCD 所在的平面,M 、N 分别是AB 、PC 的三等分点且PN =2NC ,AM =2MB ,P A =AB =1,求MN →的坐标.[解析] ∵P A =AB =AD =1,且P A 垂直于平面ABCD , AD ⊥AB ,∴可设AD →=i ,AB →=j ,AP →=k .以i ,j ,k 为单位正交基底建立如图所示的空间直角坐标系. ∵MN →=MA →+AP →+PN → =-23AB →+AP →+23PC →=-23AB →+AP →+23(-AP →+AD →+AB →)=13AP →+23AD →=23i +13k . ∴MN →=(23,0,13).一、选择题1.如图,长方体ABCD -A 1B 1C 1D 1中,AB =4、BC =1、AA 1=3,已知向量a 在基底{AB →,AD →,AA 1→}下的坐标为(2,1,-3).若分别以DA →,DC →,DD 1→的方向为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则a 的空间直角坐标为( )A .(2,1,-3)B .(-1,2,-3)C .(1,-8,9)D .(-1,8,-9)[答案] D[解析] a =2AB →+AD →-3AA 1→=2DC →-DA →-3DD 1→=8j -i -9k =(-1,8,-9). 2.若A (λ+1,μ-1,3)、B (2λ,μ,λ-2μ)、C (λ+3,μ-3,9)三点共线,则λ+μ=( ) A .-2 B .-1 C .0D .1[答案] C[解析] 由条件知AB →∥AC →,由于AB →=(λ-1,1,λ-2μ-3),AC →=(2,-2,6), 所以λ-12=-12=λ-2μ-36,所以λ=0,μ=0,于是λ+μ=0.3.设O -ABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3GG 1,若OG →=xOA →+yOB →+zOC →,则(x ,y ,z )为( ) A.⎝⎛⎭⎫14,14,14 B.⎝⎛⎭⎫34,34,34 C.⎝⎛⎭⎫13,13,13 D.⎝⎛⎭⎫23,23,23[答案] A[解析] 连AG 1交BC 于E ,则E 为BC 中点, AE →=12(AB →+AC →)=12(OB →-2OA →+OC →),AG 1→=23AE →=13(OB →-2OA →+OC →),∵OG →=3GG 1→=3(OG 1→-OG →),∴OG =34OG 1,∴OG →=34OG 1→=34(OA →+AG 1→)=34(OA →+13OB →-23OA →+13OC →) =14OA →+14OB →+14OC →,故选A. 4.在正方体ABCD -A 1B 1C 1D 1中,E 是上底面A 1B 1C 1D 1的中心,则AC 1与CE 的位置关系是( )A .重合B .垂直C .平行D .无法确定[答案] B[解析] AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →).设正方体的棱长为1,于是AC 1→·CE →=(AB →+AD →+AA 1→)·(AA 1→-12AB →-12AD →)=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →,即AC 1与CE 垂直. 二、填空题5.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M 为PC 的中点,N 为AC 中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为__________________.[答案] (12,0,-12)[解析] MN →=BN →-BM →=12(BA →+BC →)-12(BP →+BC →)=12BA →-12BP →,即MN →=⎝⎛⎭⎫12,0,-12. 6.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是__________________.[答案] (12,14,10)[解析] 依题意知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10). 三、解答题7.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c . (1)用a 、b 、c 表示向量OB ′→、AC ′→;(2)设G 、H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a 、b 、c 表示GH →.[解析] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→ =OC →+OO ′→-OA →=b +c -a . (2)GH →=GO →+OH →=-OG →+OH → =-12(OB →+OC ′→)+12(OB ′→+OO ′→)=-12(a +b +c +b )+12(a +b +c +c )=12(c -b ). 8.如图所示,平行六面体ABCD -A 1B 1C 1D 1中,E 、F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.(1)证明:A 、E 、C 1、F 四点共面;(2)若EF →=xAB →+yAD →+zAA 1→,求x +y +z 的值.[解析] (1)证明:因为AC 1→=AB →+AD →+AA 1→=AB →+AD →+13AA 1→+23AA 1→=⎝⎛⎭⎫AB →+13AA 1→+⎝⎛⎭⎫AD →+23AA 1→=(AB →+BE →)+(AD →+DF →)=AE →+AF →, 所以A 、E 、C 1、F 四点共面.(2)解:因为EF →=AF →-AE →=AD →+DF →-(AB →+BE →) =AD →+23DD 1→-AB →-13BB 1→=-AB →+AD →+13AA 1→,所以x =-1,y =1,z =13,所以x +y +z =13.。
高考理数一轮总复习:第3章-3.1-任意角、弧度制及任意角的三角函数
题型考向·层级突破
练习测评·课时作业
3.下列与94π的终边相同的角的表达式中正确的是( C )
A.2kπ+45°(k∈Z)
B.k·360°+94π(k∈Z)
C.k·360°-315°(k∈Z)
D.kπ+54π(k∈Z)
解析 与94π的终边相同的角可以写成 2kπ+94π(k∈Z),但是角度制与弧
度制不能混用,∴只有 C 正确.
解析 设扇形的半径和弧长分别为 r,l, 则易得l12+lr=2r=2,6,解得lr==41,或lr==22,. 故扇形的圆心角的弧度数是 4 或 1.
夯实双基·自主梳理
题型考向·层级突破
练习测评·课时作业
考点 1.角的概念与分类2.Biblioteka 度制3.任意角的三角函 数定义
五年考情 5年2考 5年2考
5年2考
素养定位 1.角的集合表示及象限角的判定, 达成数学抽象的素养 2.扇形的弧长及面积公式,发展数 学抽象和数学运算的素养 3.三角函数的定义,提升数学抽象 和数学运算的素养 4.三角函数线、三角函数值的符号, 提升直观想象的素养
夯实双基·自主梳理
题型考向·层级突破
练习测评·课时作业
4.若角 α 同时满足 sin α<0 且 tan α<0,则角 α 一定是( D )
A.第一象限角
B.第二象限角
C.第三象限角
D.第四象限角
解析 由 sin α<0,可知 α 为第三或第四象限角.
由 tan α<0 可知 α 为第二或第四象限角.
夯实双基·自主梳理
题型考向·层级突破
练习测评·课时作业
(3)不相等的角终边一定不相同.( × ) 解析 390°的角和 30°的角不相等,但终边相同.
阜阳市九中七年级数学上册第三章一元一次方程3.1从算式到方程3.1.1一元一次方程第2课时一元一次
第2课时一元一次方程1.理解一元一次方程、方程的解的概念.2.掌握检验某个值是不是方程的解的方法.重点寻找等量关系,列出方程.难点对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力.一、情境引入师出示问题:问题:小雨、小思的年龄和是25,小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?在学生回答的基础上,教师加以引导:小思的年龄可以用两个不同的式子25-x和2x -8来表示,这说明许多实际问题中的数量关系可以用含字母的式子来表示.由于这两个不同的式子表示的是同一个量,因此我们可以写成:25-x=2x-8.这样就得到了一个方程.二、尝试探究师:让学生尝试解决例1,对于基础比较差的学生,教师可以作如下提示:(1)选择一个未知数,设为x.(2)对于这三个问题,分别考虑:用含x的式子分别表示正方形的周长;用含x的式子表示这台计算机x个月的使用时间;用含x的式子分别表示男生和女生的人数.(3)找一个问题中的相等关系列出方程.学生讨论完成后交流.师:让学生观察并讨论所列方程等号两边式子的关系,师生归纳:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.简单地说:列方程就是用两种不同的方法表示同一个量.学生讨论交流:以上各题,你还能用两种不同的方法来表示另一个量,再列出方程吗?让学生在学习小组内讨论,然后分组汇报交流:如(2)题中,选“已使用的时间”可列方程:2450-150x=1700.选“还可使用的时间”可列方程:150x=2450-1700.解题书写过程(略).三、探究概念学生讨论交流.在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的指数都是1,这样的方程叫做一元一次方程式.“一元”:一个未知数,“一次”:未知数的次数是一次. 引导学生归纳:从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示:实际问题――→设未知数 列方程一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.列出方程后,还必须解这个方程,求出未知数的值,对于简单的方程,我们可以采用估算的方法.①问题:你认为该怎样进行估算?可以采用“尝试—发现—归纳”的方法:让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.可以用列表的方法进行尝试,也可以像下面的示意图那样按程序进行尝试.②在此基础上给出概念:能使方程左右两边相等的未知数的值,叫做方程的解,求方程解的过程,叫做解方程.一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代入方程,看方程左右两边是否相等.四、练习与小结练习:教材练习第3题. 小结:1.谈谈你对一元一次方程的认识. 2.谈谈你对列方程的认识. 3.如何进行估算? 五、布置作业习题3.1第6,7,8题.学生在小学已经对方程有初步认识,但这个过程没有给“一元一次方程”这样准确的理性的概念.本节课是基于学生在小学已经学习的基础上来进行的.继续对有关方程的一些初步知识,并能通过对多个熟悉的实际问题的分析,由学生结合已有知识,得出一元一次方程,并能给出一元一次方程的简单概念及一些相关概念.1.通过具体实例认识旋转.2.理解旋转前后两个图形的对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.3.能够按照要求作出简单平面图形旋转后的图形.重点图形的旋转的基本性质及其应用.难点图形的旋转的基本性质及其应用.一、创设情境,问题引入复习上节课的内容,什么叫旋转?什么叫旋转中心?什么叫旋转角?什么叫旋转的对应点?二、探索问题,引入新知如图,若旋转中心在△ABO的外面点O处,逆时针转动45°,将整个△ABO旋转到△A′B′O′的位置.观察上图,旋转中心是点O,点A,B都是绕着点O旋转45°角到对应点A′,B′,则OA=______,OB=________,AB=________,∠AOB=________,∠A=________,∠B =________.∠AOA′=________=45°.△ABO和△A′B′O′的形状、大小有何变化?你发现了什么?如图,若旋转中心在△ABC的外面点O处,逆时针转动60°,将整个△ABC旋转到△A′B′C′的位置.观察上图,旋转中心是点O,点A,B,C都是绕着点O旋转60°角到对应点A′,B′,C′,则OA=________,OB=________,OC=________,AB=________,BC=______,CA=______,∠CAB=______,∠ABC=________,∠BCA=________.∠AOA′=________=________=60°.△ABC和△A′B′C′的形状、大小有何变化?你发现了什么?结论:图中每一点都绕着旋转中心按同一旋转方向旋转了同样的角度;对应点到旋转中心的距离相等;对应线段长度相等,对应角相等;对应点与旋转中心的连线所成的角彼此相等;图形的形状与大小不变.【例1】 如图,△ABC 中,∠B =15°,∠ACB =25°,AB =4 cm ,△ABC 逆时针旋转一定角度后与△ADE 重合,且点C 恰好成为AD 的中点.(1)指出旋转中心,并求出旋转的度数; (2)求出∠BAE 的度数和AE 的长.分析:(1)先利用三角形内角和计算出∠BAC=140°,然后根据旋转的定义求解; (2)根据旋转的性质得∠EAD=∠BAC=140°,AE =AC ,AD =AB =4,则可利用周角定义可计算出∠BAE=80°,然后计算出AC ,从而得到AE 的长.解:(1)∠BAC=180°-∠B-∠ACB=180°-15°-25°=140°,即∠BAD=140°,所以旋转中心为点A ,旋转的度数为360°-140°=220°;(2)∵△ABC 逆时针旋转一定角度后与△ADE 重合,∴∠EAD =∠BAC=140°,AE =AC ,AD =AB =4,∴∠BAE =360°-140°-140°=80°,∵点C 恰好成为AD 的中点,∴AC =12AD =2,∴AE =2.点评:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形的形状与大小不变.【例2】 如图,将△ABC 绕点B 顺时针旋转60°后得到△DBE(点A 对应点为D),线段AC 交线段DE 于点F ,求∠EFC 的度数.分析:由旋转性质可得∠A=∠D,根据∠1=∠2可得∠EFC=∠DFA=∠ABD=60°.解:如图,∵△ABC 绕点B 顺时针旋转60°后得到△DBE,∴∠A =∠D,又∵∠1=∠2,∴∠DFA =∠ABD=60°,∴∠EFC =∠DFA=60°.点评:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形的形状与大小不变是解题的关键.三、巩固练习1.在图形旋转中,下列说法错误的是( ) A .图形上的每一点到旋转中心的距离相等 B .图形上的每一点转动的角度相同 C .图形上可能存在不动点D .图形上任意两点的连线与其对应两点的连线相等2.△ABC绕点A按顺时针方向旋转了60°得△AEF,则下列结论错误的是( )A.∠BAE=60°B.AC=AFC.EF=BC D.∠BAF=60°3.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是________.4.如图,△ABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到△A′B′C′,且点A在A′B′上,则旋转角为________.5.如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.四、小结与作业小结引导学生从以下几个方面进行小结:(1)这节课你学到了什么?(2)对自己的学习情况进行评价.作业1.教材第122页“练习”.2.完成练习册中本课时练习.在教学的全过程中,教师始终以提问、指导学生操作等方式引导学生发现规律;所有的特征都是通过让学生回顾自己的操作过程和观察自己的画图作品,体会、归纳得出.这样可以有效地培养学生的合作交流、独立思考问题、解决问题的能力. 在练习的设计上,遵循由浅入深的原则,循序渐进地让学生逐步熟练应用旋转特征,解决生活上的实际问题,从而体现数学的价值;同时,不同难度的习题可以满足不同层次学生的需要,让不同的人在数学上得到不同的发展.用字母代替数的求值法纵观历届各类数学竞赛题,总有一些数据大、关系复杂的计算题.它令人望而生畏、无从着手.但只要我们善于观察其数据特点、探究其数据规律,掌握把问题由静态转化为动态的思维方法(即用字母代替数),便能使问题化繁为简.现举例如下.-解设1995=a,则原式=(a+1)(108a+104a+a)-a[108(a+1)+104(a+1)+(a+1)]=0.例2 计算解设19931992=a,则例3 计算综上所述,在数值计算中,将字母代替数,构成代数式,再化简代数式,从而使解题化繁为易.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[学业水平训练] 1.(2014·景德高二检测)变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则( ) A.r2C.r2<0解析:选C.对于变量Y与X而言,Y随X的增大而增大,故Y与X正相关,即r1>0;对于变量V与U而言,V随U的增大而减小,故V与U负相关,即r2<0,所以有r2<0.
2.(2014·厦门高二检测)观察两个相关变量的如下数据: x -1 -2 -3 -4 -5
y -0.9 -2 -3.1 -3.9 -5.1
x 5 4 3 2 1 y 5 4.1 2.9 2.1 0.9 则两个变量间的回归直线方程为( )
A.y^=0.5x-1 B.y^=x C.y^=2x+0.3 D.y^=x+1 解析:选B.x=110(-1-2…-5+5+4+…+2+1)=0,
y=110(-0.9-2-…-5.1+5+…+0.9)=0. 由回归直线方程过样本中心点(x,y)知B正确.
3.工人工资(元)依劳动生产率变化的回归直线方程为y^=80x+50,下列判断正确的是( ) A.劳动生产率为1时,工资为80元 B.劳动生产率提高1时,工资提高80元 C.劳动生产率提高1时,工资提高130元 D.当月工资为250元时,劳动生产率为2
解析:选B.回归直线斜率为80,所以x每增加1,y^增加80,即劳动生产率提高1时,
工资提高80元.根据线性回归直线方程,相应于x=1的估计值y=130,故A错,应选B. 4.设两个变量x和y之间具有线性相关关系,它们的相关系数是r,y与x的回归直线的斜率为b,纵截距为a,则必有( ) A.b与r的符号相同 B.a与r的符号相同 C.b与r的符号相反 D.a与r的符号相反 解析:选A.线性回归方程为y=bx+a,b>0时,x与y正相关,b<0时,x与y负相关,因此b与r的符号相同,故选A. 5.(2014·宁德高三检测)为了表示n个点与相应直线在整体上的接近程度,我们常用的表示法为( )
A.i=1n (yi-yi^) B.i=1n (yi^-yi)
C.i=1n (yi-yi^)2 D.i=1n (yi-y)2 解析:选C.由回归直线方程y^=a^+b^x可知,y^为一个量的估计值,而yi为它的实际值,
在最小二乘估计中(yi-a-bxi)2,即(yi-yi
^
)2. 6.(2014·武汉调研)在a^=y-b^ x中,(x,y)称为________;ei^=________,被称为________. 答案:样本点的中心 yi-yi^ 残差 7.在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的
散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=12x+1上,则这组样本数据的样本相关系数为________. 解析:根据样本相关系数的定义可知,当所有样本点都在直线上时,相关系数为1. 答案:1 8.(2014·青岛高二检测)甲、乙、丙、丁四位同学各自对A,B两变量的线性相关性进
行分析,并用回归分析的方法分别求得相关指数R2与残差平方和Q(a^,b^)如下表: 甲 乙 丙 丁 R2 0.67 0.61 0.48 0.72
Q(a^+b^) 106 115 124 103 则能体现A,B两个变量有更强的线性相关性的为________. 解析:丁同学所求得的相关指数R2最大,残差平方和Q(a^,b^)最小.此时,A,B两变量线性相关性更强. 答案:丁 9.针对下表中某工厂某种产品产量x(103件)与单位成本y(元/件)的资料进行线性回归分析,并指出产品产量与单位成本之间的变化关系. 月份 产量x(103件) 单位成本y(元/件) x2 xy 1 2 73 4 146 2 3 72 9 216 3 4 71 16 284 4 3 73 9 219 5 4 69 16 276 6 5 68 25 340 合计 21 426 79 1 481
解:设回归直线方程为y^=b^x+a^,
x=3.5,y=4266=71,
i=16x2i=79,i=1
6xiyi
=1 481,代入公式,
得b^=i=1nxiyi-n x yi=1nx2i-n x2=1 481-6×3.5×7179-6×3.52
=-105.5≈-1.82,
a^=71-(-1.82)×3.5=77.37.
故回归直线方程为y^=77.37-1.82x. 由于回归系数b^为-1.82,由回归系数b^的意义可知:产量每增加1 000件,单位成本下降1.82元. 10.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据: 单价x(元) 8 8.2 8.4 8.6 8.8 9 销量y(件) 90 84 83 80 75 68
(1)求回归直线方程y^=b^x+a^,其中b^=-20,a^=y^-b^x-; (2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
解:(1)x=16(8+8.2+8.4+8.6+8.8+9)=8.5,y=16(90+84+83+80+75+68)=80, 从而a^=y+20x=80+20×8.5=250, 故y^=-20x+250. (2)由题意知,工厂获得利润z=(x-4)y=-20x2+330x-1 000=-20x-3342+361.25, 所以当x=334=8.25时,zmax=361.25(元), 即当该产品的单价定为8.25元时,工厂获得最大利润. [高考水平训练] 1.如果某地的财政收入x与支出y满足线性回归方程y=bx+a+e(单位:亿元),其中b=0.8,a=2,|e|≤0.5,如果今年该地区财政收入为10亿元,则年支出预计不会超过( ) A.10亿 B.9亿 C.10.5亿 D.9.5亿
解析:选C.∵x=10时,y=0.8×10+2+e=10+e. 又∵|e|≤0.5,∴y≤10.5. 2.面对竞争日益激烈的消费市场,众多商家不断扩大自己的销售市场,以降低生产成本.某白酒酿造企业市场部对该企业9月份的产品销量(单位:千箱)与单位成本(单位:元)的资料进行线性回归分析,结果如下:
x=72,y=71,i=16x2i=79,i=16xiyi=1 481. 则销量每增加1 000箱,单位成本下降________元. 解析:由题意知b^=1 481-6×72×7179-6×722≈-1.818 2,
a^=71-(-1.818 2)×72≈77.36,y^=-1.818 2x+77.36,销量每增加1千箱,则单位成
本下降1.818 2元. 答案:1.818 2 3.假设关于某设备的使用年限x年和支出的维修费用y(万元),有如下表的统计资料: 使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.0 若由资料知y对x呈线性相关关系,试求:
(1)线性回归方程y^=b^x+a^; (2)估计使用年限为10年时,维修费用是多少? (3)计算总偏差平方和、残差平方和及回归平方和; (4)求R2并说明模型的拟合效果.
解:(1)将已知条件制成下表: i 1 2 3 4 5 合计
xi 2 3 4 5 6 20 yi 2.2 3.8 5.5 6.5 7.0 25 xiyi 4.4 11.4 22.0 32.5 42.0 112.3 x2i 4 9 16 25 36 90
x=4;y=5;i=15x2i=90;i=15xiyi
=112.3
于是有b^=i=15xiyi-5x yi=15x2i-5x2=112.3-5×4×590-5×42=1.23, a^=y-b^ x=5-1.23×4=0.08, 回归直线方程是y=1.23x+0.08. (2)当x=10时,y=1.23×10+0.08=12.38(万元), 即估计使用10年时维修费用是12.38万元.
(3)总偏差平方和i=15 (yi
-y)2=15.78,
残差平方和y^1=2.46+0.08=2.54,y^2=3.77, y^3=5,y^4=6.23,y^5=7.46,i=15 (yi-y^i)2=0.651,
回归平方和:15.78-0.651=15.129.
(4)R2=1-i=15 yi-y^i2i=15 yi-y2=1-0.65115.78=0.958 7, 模型的拟合效果较好,使用年限解释了95.87%的维修费用支出. 4.(2014·高考课标全国卷Ⅱ)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9 (1)求y关于t的线性回归方程; (2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为: