浅谈连续重整装置氯腐蚀问题分析及研究对策

合集下载

连续重整装置碱洗塔腐蚀原因分析及改进措施

连续重整装置碱洗塔腐蚀原因分析及改进措施

连续重整装置碱洗塔腐蚀原因分析及改进措施某石化80万t/a连续重整装置采用IFP技术,于1997年11月建成投用,2012年检修由60万t/a 扩容改造为80万t/a。

催化剂再生烧焦是连续重整装置催化剂活性的关键工艺。

为了保证催化剂的活性,催化剂烧焦过程中需要不断地注氯。

再生烧焦后的放空气体(再生烟气)中含HCl量为500~2500µg/g。

法国Axens公司的再生烟气处理工艺采用碱洗方式,虽运行成本低、处理后完全达标,但存在操作复杂、设备易腐蚀、碱洗塔运行效率低等问题,为了保证再生气达到环保要求和减少系统腐蚀,在再生系统设置一套洗涤系统,再生气先在静态混合器中与碱液接触中和,再进入碱洗塔进一步洗涤。

再生系统碱洗塔D305主要作用是利用除盐水清洗再生气碱洗之后存在的HCl等腐蚀性离子。

碱洗塔顶部喷洒除盐水,而经过碱洗之后再生气从底部进入,在筒体内完成气液交换,达到对再生气的洗涤作用。

存在问题该碱洗塔为立式容器,一共有5层泡罩塔盘,容积为17.5m3,其规格尺寸为φ1900mm×7 681mm×16mm。

该容器属于一类压力容器,其主要设计参数见表1。

该塔于1997年11月投用,2012年检测发现塔壁裂纹,2013年整体更换了新塔(未更换塔盘),新塔从2016年7月份开始第一次发生塔壁腐蚀穿孔泄漏,一直到2017年停工检修共发生4 次泄漏,均采用塔壁包套等临时堵漏。

运行过程中从罐底排出的废液(碱液)呈红色,类似于铁锈。

腐蚀集中于碱洗罐东、南、西3个方位,圆泡罩塔盘段如图1所示。

气体入口孔在塔的北方位,北方位没有腐蚀穿孔现象。

原因分析工艺条件分析主要工艺流程如图2所示,由于催化剂再生需要注入一定量的氯(二氯乙烷),再生循环气中含烧焦过程中产生HCl等酸性气体,碱液通过P301注入循环气中,经过混合器M308与循环气混合后经冷却器E303进入碱洗塔中下部,在碱洗塔上部注入除盐水,通过5层泡罩塔盘进一步洗去循环气中残留的碱液及少量酸性气体。

重整装置氯腐蚀及防护

重整装置氯腐蚀及防护

重整装置氯腐蚀及防护摘要:研究催化重整装置氯离子腐蚀机理,围绕催化重整装置的流程特点、操作条件、设备选材和制造等方面对重整装置的氯离子腐蚀类型和影响因素进行分析,控制催化重整氯离子腐蚀。

关键词:重整装置氯腐蚀中国石油辽阳石化分公司芳烃厂共有两套重整装置。

50万吨/年重整装置1996年建成,采用UOP的超低压重整连续反应工艺和UOP第二代再生工艺技术。

140万吨/年连续重整-歧化联合装置由中国石化工程建设公司设计,2015年建成,连续重整部分采用UOP最新一代超低压连续重整工艺技术,催化剂再生部分采用UOP CycleMax工艺技术,并采用UOP推出的Chlorsorb工艺技术。

在两套催化重整装置运行过程中,氯腐蚀给装置运行带来一定的影响,有可能出现氯化铵盐造成的换热器管程堵塞、预加氢反应器系统压降增大等故障,影响了装置的平稳运行。

一、氯的来源及影响1氯的来源原油中的氯以无机氯和有机氯的两种形式存在,无机氯一般是指原油中的无机氯盐,主要由氯化钠、氯化镁和氯化钙组成。

石油炼制过程中的电脱盐工序可以去除大部分氯化钠,但是氯化镁和氯化钙难以去除,从而水解生成氯化氢进入下道工序。

有机氯来源很多,一是原油中天然纯在的,二是采油过程中人为添加的含氯化学助剂,三是石油炼化过程中使用的化学助剂可能含有有机氯。

电脱盐工艺基本无法脱除有机氯。

另外在原油的开采输送过程中,为了提高其开采量或为降低其凝固点方便运输,会加人少量的有机氯化物如四氯化碳,这些氯化物一般存在于80~ 130℃的馏分中,随重整原料一起进人重整装置。

固定床的半再生式催化重整装置采用的是全氯型低铂铼催化剂,在重整装置的运行过程中,为了能够很好地发挥其催化剂的活性、选择性和稳定性,要求控制好催化剂的水氯平衡环境,为此需连续不断地注水、注氯,一般使用注人二氯乙烷和乙醇的方法来控制重整催化剂的水氯平衡。

二氯乙烷的注人量一般为1. 5 mg/L ,使得重整副产氢气中有少量的氯化氢进入预加氢单元。

浅析连续重整装置预处理系统的腐蚀与防护分析

浅析连续重整装置预处理系统的腐蚀与防护分析

浅析连续重整装置预处理系统的腐蚀与防护分析连续重整装置预处理系统在工业生产中扮演着非常重要的角色,它们用于处理原材料、中间产品和成品,以确保产品质量和生产效率。

这些预处理系统经常受到腐蚀的影响,如果不得当地进行防护分析和腐蚀控制,将会带来严重的后果。

本文将对连续重整装置预处理系统的腐蚀与防护进行分析,为工业生产提供参考和指导。

一、腐蚀的原因分析连续重整装置预处理系统面临着多种腐蚀的危险,主要原因可以归结为以下几点:1. 化学腐蚀:各种化学品在高温、高压条件下容易发生腐蚀作用,而连续重整装置预处理系统中往往使用的就是这类化学品。

2. 电化学腐蚀:系统中存在不同金属之间的接触,在受到潮湿、腐蚀性气体和液体的作用下,会形成电池,导致电化学腐蚀的发生。

3. 热蚀刻蚀:高温、高压条件下,金属表面可能产生热蚀刻蚀现象,加速金属的腐蚀速度。

4. 磨擦腐蚀:系统中存在运动部件,当摩擦副受到化学环境的影响时,会出现磨擦腐蚀现象。

二、防护分析针对连续重整装置预处理系统的腐蚀问题,我们可以采取以下几种防护措施:1. 材料选择:首先要选择耐蚀材料,比如不锈钢、镍基合金等,以减少系统受到腐蚀的影响。

2. 表面处理:采用表面镀层、喷涂等方法,提高金属的耐蚀性。

3. 防护层:在系统表面形成一层防护膜,阻隔化学物质对金属的腐蚀作用。

4. 控制环境:控制系统内部的温度、湿度、气体浓度等环境因素,减少腐蚀的发生。

5. 定期检测:对系统进行定期的腐蚀检测,及时发现问题并进行修复。

三、案例分析某企业的连续重整装置预处理系统遇到了严重的腐蚀问题,导致生产效率下降、产品质量不稳定。

经过对系统的腐蚀和防护进行分析后,采取了以下措施:1. 更换材料:对受腐蚀严重的部件进行了材料更换,选用了耐蚀性更好的不锈钢材料。

通过这些措施的实施,该企业的连续重整装置预处理系统的腐蚀问题得到了有效的控制,生产效率和产品质量得到了提升。

四、结论连续重整装置预处理系统的腐蚀问题是一个需要高度重视的工业生产难题,但通过科学的分析和有效的防护措施,这一问题是可以得到有效控制的。

浅析连续重整装置预处理系统的腐蚀与防护分析

浅析连续重整装置预处理系统的腐蚀与防护分析
3.2 未来研究方向
在未来的研究中,可以重点关注以下几个方面来进一步探讨连续重整装置预处理系统腐蚀与防护的问题:
1. 新型防腐涂料的研究:可以通过研发具有更好耐腐蚀性能的新型防腐涂料,来提高预处理系统的防护能力。这可能涉及到材料科学、化学工程析:可以通过对预处理系统内部的腐蚀机理进行深入研究,了解不同腐蚀因素之间的相互影响,以制定更为有效的防护策略。这需要借助工程学、材料科学等多个学科的知识来进行综合分析。
2. 正文
2.1 连续重整装置预处理系统的组成
连续重整装置预处理系统是工业生产中的一个重要组成部分,主要由进料系统、反应器、分离器、脱除器和产品处理系统等组成。其中,进料系统用于将原料物质输送至反应器进行处理,反应器是进行化学反应的主要设备,分离器用于将反应产物与废物进行分离,脱除器则用于去除反应过程中生成的副产物或废物。最后,经过产品处理系统处理后的产品可以得到纯净的化学品或物质。
研究目的:通过对连续重整装置预处理系统的腐蚀与防护进行分析,探讨在工业生产中如何有效地延长系统的使用寿命,减少维护成本,提高生产效率。具体目的包括:1.研究连续重整装置预处理系统的组成和工作原理,深入了解其结构和功能;2.分析腐蚀对系统的影响,探讨不同腐蚀程度对系统性能的影响;3.探讨涂层防护、防腐涂料和更换耐腐蚀材料等防护措施的有效性和适用性,为系统的保护提供科学依据;4.总结预处理系统腐蚀与防护的重要性,强调保护系统设备的重要性和必要性;5.探讨未来可能的研究方向,为进一步提高系统防腐性能提供思路和建议。通过本研究,旨在为工业生产中预处理系统的腐蚀问题提供有效的解决方案和科学依据,促进生产过程的可持续发展和提高生产效率。
2.3 防护措施一:涂层防护
涂层防护是一种常用的防腐蚀措施,通过在金属表面形成一层保护性涂层,可以有效阻止金属与外界介质的接触,减少腐蚀的发生。在连续重整装置预处理系统中,涂层防护的主要作用是保护系统中的金属设备和管道不被腐蚀损坏。

连续重整装置氯的作用和影响分析

连续重整装置氯的作用和影响分析

连续重整装置氯的作用和影响分析发布时间:2023-01-04T07:30:49.578Z 来源:《中国科技信息》2023年17期作者:赵刚刚[导读] 针对重整设备中氯的来源及应用,结合氯的性质系统分析了氯对重整装置和设备工作的影响,同时提出了相应的改进措施以提高催化剂的活性和最大程度上降低对设备的负面影响,对重整装置的高效平稳长周期运行具有重要的意义。

赵刚刚中国石油广西石化公司广西钦州 535000摘要:针对重整设备中氯的来源及应用,结合氯的性质系统分析了氯对重整装置和设备工作的影响,同时提出了相应的改进措施以提高催化剂的活性和最大程度上降低对设备的负面影响,对重整装置的高效平稳长周期运行具有重要的意义。

关键词:连续重整;水氯平衡;氯腐蚀问题;问题分析某公司220万吨/年连续重整装置采用UOP开发的超低压重整工艺,重整反应的催化剂采用UOP的R-254铂双功能单金属催化剂(开工初期使用的是UOP的R-234。

催化剂连续再生部分采用UOP新开发的第三代(CYCLEMAX)催化剂连续再生专利技术。

本装置以上游轻烃回收装置提供的精制石脑油为原料生产高辛烷值汽油组分,同时还副产含氢气体、C5-组分(液化气)等产品。

本文主要针对连续重整装置氯的使用和影响这一问题进行分析,并针对问题提出了管控和解决方案。

一、氯的来源1、原料中的氯近几年,在原油开采和输送过程中,为了提高原油开采量或有效地降低凝点( 方便原油运输),普遍都会选择添加有机氯化物( 以有机氯代烷化合物为主) 的降凝剂、减黏剂等有机物,致使氯含量大幅度升高。

这些有机氯化物一般主要残留在于80~130 ℃的汽油馏分中,该馏分经过预处理加氢后会转化为无机氯,之后通过预加氢脱氯、汽提塔、预分馏塔处理后其中的氯有极少的残留(精制油中氯含量<0.5ppm)、可满足重整阶段对氯的要求。

2、催化剂再生补充的氯对于本装置而言,原料中氯含量通常小于0.5ppm,因此本装置氯的主要来源是重整反应系统和催化剂再生系统中补的氯。

氯对连续重整影响及相关分析

氯对连续重整影响及相关分析

氯对连续重整影响及相关分析摘要:氯在连续重整过程中具有双重作用,一方面氯作为重整催化剂酸性功能的主要提供者,与重整过程具有密不可分的关系;另一方面,氯对设备产生强烈的腐蚀,并可能导致催化剂中毒、失活、造成环境污染等。

因此,研究连续重整过程中氯的影响具有重要的意义。

主题词:连续重整水氯平衡催化剂功能氯腐蚀结盐1.重整装置概述1.1重整装置的意义催化重整是炼油和石油化工重要的工艺之一,除生产高辛烷值汽油和芳烃外,还副产大量低成本氢气。

近几年连续重整工艺对于汽油质量升级、增产苯和二甲苯等基础有机化工原料及缓解氢气资源紧张状况起到举足轻重的作用,尤其是随着汽油标准的提高,进一步凸显了连续重整装置的重要地位。

表1 汽油质量标准与汽油产品质量对比项目国IV 京V 催化汽油重整汽油辛烷值90/93/97 89/92/95 91 102 硫含量,ppm wt 50 10 500 0.5苯含量, V% ≤1.0 ≤1.0 0.60 0.63烯烃含量, V% ≤25 ≤25 40 01.2催化重整简介1.2.1概念“重整”是指烃类分子重新排列成新的分子结构。

通俗的说就是烃类分子的重新排列与整理,分为热重整和催化重整。

所谓的“催化重整”是以石脑油(直馏和各类加氢石脑油)为原料,在催化剂的存在下,烃类分子重新排列,环化为富含芳烃的高辛烷值汽油组分,并副产含氢气体等产品的工艺,因此是炼油工业中最重要的生产工艺之一。

1.2.2主要化学反应 (一)芳构化反应1.六元环脱氢反应CH3CH 33H 2目的反应RONC :74.8 RONC :120 ΔRONC=+45.2所需催化剂功能:金属功能 2.五元环烷烃异构脱氢反应CH33H 2目的反应RONC :92.3 RONC :106 ΔRONC=+13.7所需催化剂功能:金属功能和酸性功能 3.烷烃环化脱氢反应3H 2n-C 7H 16CH 3CH 3目的反应RONC :0 RONC:120 ΔRONC=+120所需催化剂功能:金属功能和酸性功能 (二)异构化反应n-C 7H 16i-C 7H 16 目的反应RONC :0 RONC :92 ΔRONC=+92所需催化剂功能:酸性功能 (三)加氢裂化反应n-C 7H 16H 2n-C 3H 8i-C 4H 10不利反应 H 3CH 2CH 2CH CH 3CH 3CH 3不利反应CH CH 3CH 3H 2C 3H 8不利反应控制反应速率的催化剂功能:酸性功能(四)缩合生焦反应在重整条件下,烃类还可以发生叠合和缩合等分子增大的反应,最终缩合成焦炭,覆盖在催化剂表面,使其失活。

催化重整装置氯腐蚀问题分析及处理方法

催化重整装置氯腐蚀问题分析及处理方法摘要:氯腐蚀是重整装置常见的腐蚀原因,这是因为氯具有很高的电子亲合力和迁移性,易与金属离子反应,且常随工艺气体向下游迁移,对设备造成严重的腐蚀并阻塞管道,严重时会导致装置被迫停工检修。

因此,研究氯腐蚀分布及防护措施对保障装置运行稳定性和操作安全性非常重要。

基于此,本文结合某催化重整装置氯腐蚀问题实例,就重整装置氯来源、腐蚀方式及分布情况进行了详细分析,并对当前主流的氯腐蚀防护技术进行了详细阐述。

关键词:催化重整装置;氯腐蚀;脱氯处理0前言重整装置是将石脑油转化为在高辛烷值汽油、芳烃及氢气等产品的关键生产装置。

氯腐蚀是重整装置常见的腐蚀原因,这是因为氯具有很高的电子亲合力和迁移性,易与金属离子反应,且常随工艺气体向下游迁移,对设备造成严重的腐蚀并阻塞管道,严重时会导致装置被迫停工检修。

因此,研究氯腐蚀分布及防护措施对保障装置运行稳定性和操作安全性非常重要。

1重整装置氯的种类及来源石脑油中氯的存在形式有无机氯和有机氯两类,其中无机氯和大部分有机氯在上游化工装置得到去除,重整装置中氯的来源有两种,一是在重整装置运行过程中,针对催化剂运行情况和生产负荷,加入全氯乙烯或甲基氯仿等有机氯化物调整催化剂的酸性功能以维持活性,二是开采原油过程中的加入了含氯助剂,这部分氯在原油中绝大部分集中在汽油馏分中,经过加氢裂化和加氢处理后随着原料进入重整装置。

2重整装置氯腐蚀分布及方式2.1预加氢部分预加氢的作用是除去原料油中的硫、氮、氯及氧等杂质以保护重整催化剂。

预加氢部分的氯腐蚀主要容易发生在预加氢反应器后,分布在换热器、蒸发塔、调节阀等处[1],主要因为在原料的加氢精制过程中,反应生成的NH3和HCl在各自分压作用下,在气相发生反应,生成NH4Cl。

NH4Cl大约在213℃时升华,低于213℃变成固体NH4Cl 沉积在金属表面,NH4Cl吸水性强,在NH4Cl垢层之下与金属接触处形成一个溶解层,发生水解反应:NH4C1→NH4+Cl-在金属表面产生盐酸,它和FeS膜争夺Fe2+,发生下列反应:FeS+HCI→FeCl2+H2SFe+HCl→FeCl2+H2盐酸破坏FeS膜,使金属表面暴露出来,新的表面继续与盐酸反应发生腐蚀,两者互相促进,加剧腐蚀,这种腐蚀体系的腐蚀速度要比单纯的HCl或H2S腐蚀更加强烈,最终导致设备因孔蚀而报废。

氯对连续重整装置的影响及对策

中国石油长庆石化分公司60万吨/年连续重整采用法国IFB技术,以直馏石脑油、加氢裂化重石脑油和少量柴油加氢重石脑油为原料,生产高辛烷值汽油调和组分、液化气、氢气、苯。

为满足反应需要,催化剂必须具备酸性和金属性,其中酸性活性中心由氯提供,因此为保证催化剂的反应活性需要,长期注氯化剂。

从装置的反应单元到分馏再到下游苯抽提单元,氯对连续重整的影响都是非常重大的。

1氯对反应单元的影响长庆石化连续重整装置反应器填装的催化剂为铂———锡双金属催化剂。

此种催化剂活性和选择性较好,温度对烷烃脱氢环化反应的速率影响大于加氢裂化速率,比固定床半再生重整的铂———铼催化剂性能更优越,能在0.2-0.3MPa的超低压和510°C高温下长期运转。

催化剂采用的氯化剂为四氯乙烯,在平稳生产时氯化剂注在再生器的氧氯化段。

该剂能够在再生器氧氯化段分解成氯组分,与催化剂载体Al2O2的氧桥发生交换反应[1],使氯被固定在载体表面上。

氯的补充使得催化剂同时具备了金属性和酸性功能。

酸性功能催化烃类的重排反应,含氧氯化铝提供的酸性功能通过羰离子机理在异构化和加氢裂化中接到结合或断开C-C键的重要作用。

实际生产催化剂的氯含量在0.9-1.1%之间。

如果环境中水含量高,或者再生循环气中水含量较高(一般水含量控制在50ppm以下)催化剂的水氯平衡被破坏,氯就很容易流失。

重整反应中流失的氯会被反应产物带走。

一方面由于氯的大量流失使得正常注氯量不能及时补充,催化剂的酸性功能减弱,影响重整反应特别是异构化和加氢裂解反应的进行;另一方面,催化剂再生中流失的氯存在于再生气中,与水结合形成具有强腐蚀性的盐酸,给流经的设备造成严重的腐蚀,事实上从装置大检修期间腐蚀最严重的部位外观特点来看,主要就是氯引起的。

2氯对装置的腐蚀影响2.1对再生电加热器腐蚀催化剂经提升流动同管线磨损,比表面积下降,持氯能力减弱。

为了良好的重整反应深度和转化率,就必须提高注氯量,保证催化剂氯含量。

连续重整装置反应再生设备腐蚀特征分析与防腐措施研究

连续重整装置反应再生设备腐蚀特征分析与防腐措施研究摘要:连续重整装置采用原料C6~C11石脑油馏分进料,进料组分存在硫,氮,氯等杂质,催化剂再生注氯和反应再生的特定工艺环境对连续重整装置反应再生设备造成腐蚀。

本文主要分析连续重整装置反应再生设备的腐蚀机理以及腐蚀特征,并提出了相应的防护措施.,保证了连续重整装置的长周期运行。

关键词:连续重整装置;反应再生设备;腐蚀一、氯腐蚀所谓重整装置的氯腐蚀,是指重整催化剂上流失的氯或者重整原料中的氯化物经加氢处理后形成的氯进入重整氢或者循环氢中,引起循环氢中氯含量偏高,从而使连续重整装置反应再生设备发生的腐蚀。

重整装置的氯来源通常有两个:(1)原料本身带入的氯。

随着采油技术的变化与发展,油田采用了化学处理手段来提高采收率,其中有的采用了氯化物,从而造成原油中的氯含量升高,这部分氯在原油中绝大部分集中在汽油馏分,经加氢处理后氯进入循环氢中,引起循环氢中氯含量;(2)重整催化剂水氯平衡需要所带来的氯。

为了充分发挥催化剂的性能,要求催化剂在运转过程中必须保持一定的氯含量。

但循环气中含有一定量的水,使催化剂上的氯不断流失,同时水又起着使催化剂上的氯分布均匀的作用,为此重整催化剂必须注水、注氯实现水氯平衡控制。

但有的装置因反应苛刻度高或气中水含量较高,导致了补氯量增多,循环氢中氯含量升高。

如果没有合适的脱氯措施,就会产生氯腐蚀。

氯离子基于其半径小、穿透能力强的特点,因此能优先地选择吸附在钝化膜上,把氧原子排挤掉,然后和钝化膜中的阳离子结合成可溶性氯化物,结果在新露出的基底金属的特定点上生成小蚀坑,进而造成对设备的腐蚀。

氯离子长期在水溶液中可以加速促进腐蚀反应,容易穿透金属表面的保护膜,造成缝隙腐蚀和孔蚀。

特别是对奥氏体不锈钢等金属会造成开裂危害,加速设备在短期内报废的可能。

因此,预防氯离子对金属设备的腐蚀势在必行。

预防和控制氯腐蚀的措施有:(1)要选用耐腐蚀材料,优化金属设备材质,完善和改进金属设备的防腐功能;(2)严格监控进料氯含量和系统注氯量,合理使用脱氯剂,减少或消除重整反应再生系统中的剩余氯;(3)在装配时,尽量减少应力集中,并使其与介质接触部分具有最小的残余应力,防止磕碰划伤,严格遵守焊接工艺规范;(4)通过加入缓蚀剂,可以增加钝化膜的稳定性,进而达到控制腐蚀的目的,同时有利于受损钝化膜得以再钝化:;(5)无机防腐涂料可以有效预防氯离子对不锈钢的腐蚀,它具有高强度,高韧性,耐温高、耐冲磨,耐老化,耐酸碱盐腐蚀,附着力强等特点,应用范围十分广泛。

连续重整装置氯腐蚀问题分析及对策


损坏及时更换,确保曝气效果。
动的能力大为增强,降低了环境风险。
参考文献:
[1]郭晓红.污水装置工艺手册[M].昆明:云南天安化 工有限公司,2013.1—3.
5技改效果
污水装置经过上述技术改造后,处理能力大 为提升。当煤气化废水氨氮质量浓度<200 m∥L 时,可处理废水100 m3/h;当煤气化废水氨氮质量
Abstract:
ming unit in
The paper introduced the main pmblems in ope阳tion f而m 201 1 to 2014 of catalytic refo卜 Chlorine cormsion problem was analyzed and summarized.7rhe taken rectifi-
问题,但气相的氯腐蚀解决办法却不多。建议采
取以下措施进行控制。 1)搞好日常重整反应系统的水氯平衡工作,严 格控制进料中的水含量,尽量减少催化剂的氯损失; 2)搞好重整催化剂比表面积和氯含量分析, 定期检测重整循环氢的水和Hcl含量,根据催化 剂比表面积下降趋势和催化剂氯损失情况决定催 化剂的更换周期; (下转第60页)
was
Synthetic砌monia,sewage
unit,treatment
capacity
零零牙迎孓g艮祭撰苔她孓祭祭{孓苔警器琴g譬雾零雾弛孓祭零祭苔灌祭g电器零零祭努譬莽祭零祭雾祭祭雾零祭零苕沁莽
(上接第54页) 3)做好重整生成油脱氯罐使用效果的跟踪 工作,优化操作条件,保证重整生成油脱氯剂脱氯
于腐蚀导致内漏严重。2012年11月重新更换了
北京三聚生产的JX一5D脱氯剂,使用至2013年 12月,重整生成油脱氯罐脱氯较果变差,脱氯剂 更换为江苏昆山精细化工研究所有限公司所生产 的型号为KT406I的低温液相脱氯剂。 国内的其他装置如福建炼化、天津石化、高桥 石化、广州石化等重整装置采用的各种国内外液
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈连续重整装置氯腐蚀问题分析及研究对策
本文主要对连续重整装置氯腐蚀情况进行了分析,找到了腐蚀产生的原因和来源,针对出现的问题制定有效的解决措施,对连续重整装置氯腐蚀问题进行科学合理的控制。

标签:连续重整装置;氯腐蚀;
重整催化剂属于双金属催化剂的一种,只有催化剂在运转的过程中氯含量为0.9%~1.1%时,才能充分发挥出催化剂的酸性功能。

运转过程中催化剂表面积随着进料中的水含量增加而不断下降,导致催化剂上的氯含量也随着下降,这样的情况下就要对氯含量进行补充。

重整反应系统的氢气和催化剂上的氯产生反应生成氯化氢,氯化氢又和氨产生反应生成铵盐,铵盐经常分布在重整反应低温区域,随着铵盐数量的增加,很容易对循环氢压缩机的入口和内部造成堵塞,堵塞会造成循环氢流量下降,增加压缩机机体的轴位移和轴振动,对设备的运行产生一定的影响。

同时催化剂上流失的氯随着生成的产物一起流入到油路系统中,会对油路系统产生影响,主要表现在对油路系统的管线和设备产生腐蚀,或者对塔盘筛孔造成堵塞,分离精度下降。

1.重整装置分馏系统设备腐蚀分析
1.1 腐蚀介质的来源
氯的来源一方面来自于原料中的氯。

在预加氢反应条件下,原料中的含硫、含氮、含氧和含氯等化合物在临氢系统中进行加氢分解,生成H2S、H2O、NH3和HCl,大部分经过拔头油气提塔脱除,保证预加氢生成油各项指标达到重整进料的要求。

一般情况下,有机氯不会对设备和管线造成腐蚀,但是经预加氢反应器后,有机氯转化成无机氯后就变成了活性的Cl-,从而对金属产生腐蚀。

HCl 在干态下很稳定,当系统中有H2S和H2O存在时,HCl便和他们形成腐蚀性很强的HCl-H2S-H2O体系,加速了对设备、管线的腐蚀。

另一方面,更主要的来自于催化剂再生补充的氯。

重整反应和催化剂再生过程中氯会发生流失。

根据水氯平衡的原理,如果环境中水含量高,催化剂的水氯平衡被打破,氯就很容易流失。

重整反应中流失的氯会被重整产物带走,重整产物经过再接触冷却后进入脱戊烷塔,并主要集中在脱戊烷塔塔顶部分,容易造成空冷等设备和管线的腐蚀泄漏以及机泵机械密封失效。

催化剂再生部分需要进行注氯操作,但增加的氯量不能完全被催化剂所吸收,大量的氯进入再生烟气中,在低温部位沉积,造成局部腐蚀。

1.2 腐蚀的原因
氯的危害主要表面在两个方面,一方面为生成的氯化氢对设备和管道产生腐蚀的作用,另一方面就是铵盐对设备和管路造成的堵塞。

氯化氢在气态的状态下
对和设备和管线的腐蚀效果并不明显,但是一旦气态的氯化氢和水结合生成盐酸后,就会对设备和管线产生严重的腐蚀效果。

同时石脑油中的有机氯化物和氢反应生成氯化氢,有机氮化物和氫反应生成氨,氯化氢和氨又产生反应生成氯化铵,氯化铵在设备和管线的低温区域会析出,很容易堵塞设备和管线。

2.氯腐蚀解决措施
想要避免重整生成油中氯对分馏系统产生腐蚀,就要优化生产工艺,在分馏系统之前增加脱氯罐,从而有效的实现重整生成油中的氯元素脱离,避免对设备和管线产生腐蚀。

2.1 氯化物的脱除机理
我们对原料烃中氯化物进行脱除的方法主要分为物理吸附法和化学吸收法两种,物理吸附法在使用的过程中经常因为净化度和氯含量等因素受到一定的限制,所以比较常用的还是化学吸收法脱除氯化物。

2.2 气路氯腐蚀解决措施
为了保障重整装置的运行正常,避免腐蚀装置的分馏系统和堵塞设备、管线,就要对重整油脱氯罐的脱氯剂进行更换,保证进入分馏系统的生成油氯含量控制在指标范围内。

重整反应会生成大量的氢气,而这部分氢气中氯含量较高,氯含量的高会造成下游用氢装置换热器、空冷器、水冷器等设备腐蚀,同时氯化氢与生成氨结合生成铵盐,造成堵塞,致使加氢反应器压降过大。

减少重整氢气中氯含量最有效的方法是在氢气出装之前增加气相脱氯罐,目前也是最主要的方法。

2.3 合理控制注氯量
连续重整反应过程中催化剂的氯含量是一项重要的指标,催化剂上的氯含量会随着连续重整反应而降低,造成这一现象的影响因素主要有反应温度、水含量、催化剂比表面积等。

氯含量的分析和检测是一个重要的项目,需要我们定期的对待生催化剂、再生催化剂的氯含量进行检测,如果检测的结果表示氯含量较低,就会造成重整反应温降逐渐下降、催化剂积碳升高的情况,这样的情况下装置的运行可能出现问题,所以了解催化剂中氯含量,并对氯含量进行科学合理的控制是十分重要的。

2.4 工艺流程
对现有的工艺流程进行完善,增加重整生成油脱氯罐,重整生成油在经过再接触罐后直接进入到重整生成油脱氯罐中。

经过脱氯罐后的重整生成油再进入到分馏系统中,脱氯罐可以串联操作也可以并联操作,在每个脱氯罐的出口处安装采样口。

对脱氯罐出口的流量进行控制,保障脱氯罐流量的平稳,运行阶段前要进行冲液,因此在设计时考虑到增加带视镜的充液线。

2.5 苯抽提溶剂脱氯处理
原料油中的氯离子在进入到苯抽提装置后,再生塔就不能再对环丁砜进行减压蒸馏脱除,只能使用离子交换技术将环丁送入树脂再生设施进行换热冷却,脱除氯离子后循环使用。

离子交换的方法能够在裂化产生的过程中脱除环丁砜中携带的氯离子,形成磺酸类物质,使其性质转变。

环丁砜质量、性能和环丁砜再生系统的运行状态有着直接的影响。

3.装置氯腐蚀控制措施
重整装置中通过使用脱氯罐基本能够解决油路中腐蚀的问题,但是有效解决气路中氯腐蚀的措施并不多,主要采取以下几个方面进行控制:(1)一定要做好重整装置中水氯的平衡状态,尤其是水含量严格的控制,避免催化剂中氯的下降;(2)实时分析和研究重整催化剂比表面积和氯含量,根据催化剂损失情况和比表面积下降趋势制定科学合理的催化剂更换周期;(3)对进料中的氮和氯的含量一定要严格的控制,避免在低温区域形成铵盐,造成堵塞。

4.总结
连续重整装置中氯离子是为催化剂提供酸性的重要来源,有效的提升了催化剂的活性,保障了产品的质量,缺点就是氯离子很容易对重整装置产生腐蚀,尤其是下游阶段的加氢装置,会对整个装置的运行产生影响。

因此在重整装置运行中,要合理的控制注氯量,使用正确的氢气脱氯剂以及液相脱氯罐,避免氯对重整装置的腐蚀,降低加氢装置氯化铵结晶的概率,保障整个炼厂的安全有序运行。

参考文献:
[1]刘延平.连续重整装置长周期运行存在的问题及对策[J].化工管理,2017(08):53.
[2]任研研,郭建波,汤帅.连续重整装置催化剂再生系统运行问题分析及对策[J].当代化工,2014,43(06):1072-1075.
[3]李江山.催化重整装置氯腐蚀预防优化[J].广东化工,2019,46(10):143-144+156.
[4]徐幸.重整装置分馏系统氯腐蚀研究及工艺改进[J].化工设计通讯,2019,45(05):107+130.。

相关文档
最新文档