数形结合必考题型全梳理!(附例题)
数形结合,例题解析

利用数形结合思想解题,不但是一种重要的解题方法,更是一种重要的思维方法。
对于应用数形结合思想解题,大家并不陌生,但如何应用却是值得我们深究的问题。
数形结合的主要方法有:图像法、几何法,主要途径是转化,常见转化有:构造函数实现转化、构造图形实现转化。
一、构造函数,实现转化把研究数的问题转化为研究图像的问题,这类方法一般适用于解方程或不等式的问题。
例1:方程x+log2x=2和方程x+log3x=2的根分别是α、β,那么α、β的大小关系是()a.α<βb.α=βc.α>βd.无法确定■分析:由x+log2x=2得log2x=2-x,由x+log3x=2得log3x=2-x,分别构造函数y=log2x,y=log3x及y=2-x,并作出它们的图像,由图易得答案为a。
例2:方程■-|ax|=0(a∈r)解的个数是()a.4个b.2个c.0个d.与a的取值有关■分析:原方程可化为■=|ax|,分别作函数y=■与y=|ax|的图像,由图知,应选b。
二、构造几何图形,实现转化在解题时,我们常通过构造几何图形,实现问题转化,如把a转化为距离,把a2或ab 转化为面积,a2 +b2+ab转化为余弦定理,把sinα转化为直角三角形中边角关系等。
例3:若锐角α、β、γ满足cos2α+cos2β+cos2γ=1,求证tgαtgβtgγ≤2■。
分析:由已知条件可设α、β、γ为一长方形的一条对角线与过同一顶点的三条棱所成的角,从而命题容易得证。
■证明:如图,设长方形体abcd-a1b1c1d1的长、宽、高为a,b,c,∵cos2α+cos2β+cos2γ=1,∴可设∠d1ba=α,∠d1bc=β,∠d1bb1=γ,连结bd1,则tgα=■,同理tgβ=■,tgγ=■,tgαtgβtgγ=■·■·■≤■=2■,当且仅当a=b=c时取等号,故命题成立。
例4:设x>0,y>0,z>0,求证:■+■>■。
■分析:注意到■=■表示以x、y为两边,夹角为60°的三角形第三边,另两边也有同样意义。
数形结合初中数学题

数形结合初中数学题
数形结合是初中数学中一个重要的概念,是指将数与形结合起来进行思考和推理。
以下是一些数形结合的初中数学题:
1. 一个圆的半径是2,它的面积是多少?
2. 一根长度为6cm的棒,它的周长是多少?
3. 一张桌子上有n个苹果,它们的重量之和是20千克,每个苹果的重量是多少?
4. 一个矩形的长和宽相等,高是4cm,它的面积是多少?
5. 一个三角形的三个底之和等于12,求这个三角形的高的值。
6. 一根长度为10cm的棒,它的重心在它的5cm直径的截面的中心,那么这个棒的质量是多少?
7. 一个正方形的边长是5cm,它的周长是多少?
8. 一个圆的半径是3cm,它在平面上的位置是A,它在立体空间的坐标是多少?
这些题目通过将数形结合,提供了更多的思考方法和解决问题的思路。
学生可以通过理解这些题目,掌握数形结合的概念和技巧,提高自己的数学思维能力。
数形结合的典型例题初中

数形结合的典型例题初中示例文章篇一:哎呀,一提到数形结合,这可真是初中数学里超级有趣又超级重要的一部分呢!就说那次,老师在黑板上出了一道题:已知一个二次函数图像经过点(1,0)、(3,0)和(0,3),求这个二次函数的解析式。
我一开始看着题目直发懵,心里想着:“这可咋整啊?”同桌小明倒是很快有了思路,他悄悄跟我说:“你看,这几个点不就是关键线索嘛!”我还是一脸茫然。
老师看到大家都有点不知所措,就笑着说:“同学们,咱们来画画图呀,这不就是数形结合嘛!”于是,我们在纸上画出了坐标系,把那几个点标了上去。
这一标,我好像突然开窍了!这不就像是在地图上找宝藏的标记一样嘛,这些点就是我们寻找函数解析式这个“宝藏”的线索。
我赶紧和旁边的小红讨论起来:“你说,这几个点连起来像不像一个三角形?”小红白了我一眼说:“别瞎想啦,咱们得正经解题。
”经过一番琢磨,我发现通过这几个点的位置关系,可以设出二次函数的一般式y = ax² + bx + c ,然后把点的坐标代进去,就能算出a、b、c 的值啦!这就好像是搭积木,每个点就是一块积木,我们得把它们巧妙地组合起来,才能搭出完整的“函数大厦”。
还有一次,有道题是比较两个数的大小,一个是根号5,一个是2。
这可把我难住了,这两个数看起来没啥直接的联系呀!这时候,老师又提醒我们:“画画图呀!”我恍然大悟,在数轴上把根号5 的大概位置标了出来,一下子就看出来它比2 大啦!数形结合就像是给我们开了一扇神奇的窗户,让原本抽象的数学变得清晰可见。
它能让我们在数学的世界里畅行无阻,就像有了导航一样,再也不怕迷路啦!总之,数形结合在初中数学里可太重要啦,它能帮我们轻松解决好多难题,让数学变得有趣又简单,难道不是吗?示例文章篇二:哎呀,说到数形结合,这在咱们初中数学里可太重要啦!就比如说,有这么一道题,让咱们求一个函数图象与坐标轴围成的面积。
光看数字和公式,是不是觉得脑袋都大啦?可要是把数和形结合起来,那就完全不一样喽!老师在黑板上画出那个函数图象的时候,就好像给我们打开了一扇神奇的大门。
二次函数中的数形结合训练及解析(原创题)

二次函数中的数形结合如图,已知抛物线C:y 1=−(x −ℎ)2+k 经过原点,直线l:y 2=x +4与x 轴,y 轴分别交于点A 、B.(1)用含h 的代数式表示k ;(2)若抛物线C 与直线l 有唯一公共点,求h 的值;(3)我们将横纵坐标均为整数的点称为“整数点”,设△AOB 内部(不含边界)的整数点有n 个;当抛物线C 与x 轴围成的区域内部(不含边界)的整数点个数为n-1时,求出此时h 的取值范围.解:(1)将(0,0)代入y 1=−(x −ℎ)2+k 得k =ℎ2;(2)当抛物线与直线有唯一公共点时,考虑方程−(x −ℎ)2+ℎ2=x +4,整理得x 2+(1−2ℎ)x +4=0△=(1−2ℎ)2−16=0,解得ℎ1=−32,ℎ2=52(3)由直线y 2=x +4可得A(-4,0)和B(0,4),所以△AOB 内部的整数点有三个,即n=3; ①当抛物线对称轴在y 轴左侧时;当抛物线经过(-1,1)时,求出h=-1,抛物线解析式为y =−x 2−2x ,此时区域内部没有整数点;当抛物线经过点(-2,1)时,求出ℎ=−54,抛物线解析式为y =−x 2−52x ,此时区域内有1个整数点;当抛物线经过(-1.2)时,求出ℎ=−32;抛物线解析式为y =−x 2−3x ,此时区域内有2个整数点,同时抛物线还经过点(-2,-2);当抛物线经过(-3,1)时,求出ℎ=−53,抛物线解析式为y =−x 2−103x ,此时区域内有4个整数点;因此−32≤ℎ<−54;②抛物线对称轴在y 轴右侧时当抛物线经过(1,1)时,求出h=1,抛物线解析式为y =−x 2+2x ,此时区域内部没有整数点; 当抛物线经过点(2,1)时,求出ℎ=54,抛物线解析式为y =−x 2+52x ,此时区域内有1个整数点;当抛物线经过(1.2)时,求出ℎ=32;抛物线解析式为y =−x 2+3x ,此时区域内有2个整数点,同时抛物线还经过点(2,2);当抛物线经过(3,1)时,求出ℎ=53,抛物线解析式为y =−x 2+103x ,此时区域内有4个整数点;因此54<ℎ≤32; (也可由抛物线对称性得到)综上所述,−32≤ℎ<−54;54<ℎ≤32。
数形结合的典型例题

数形结合思想一、数学结合思想所谓的数形结合思想,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想。
数学结合思想的应用包括以下几个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,变抽象思维有形象思维,提示数学问题的本质;(2)“以数助形”,把直观图形数量化,使形更加精确。
二、运用数形结合需要熟练掌握“数”、“形”及其相互转化:1.“数”:主要是指数和数量关系。
中学阶段的“数”有以下几类:(1)复数;(2)代数式;(3)函数; (4)不等式;(5)方程;(6)向量。
2.“形”:主要是指图形,有点、线、面、体等。
中学阶段的“形”有以下几类:(1)数轴;(2)Venn图;(3)函数图象;(4)单位圆;(5)方程的曲线;(6)平面几何的图形; (7)立体几何图形;(8)可行域;三、数形结合思想应用的关键:1 .由“数”联想到“形”;2 .由“图”想“数”。
四、数形结合思想解决的问题类型:1.运用数轴、Venn图解决不等(组)的解集、集合的运算问题;2.运用平面直角坐标系和函数的图象解决1函数问题、不等式问题、方程问题; 3.三角函数与解三角形问题; 4.立体几何问题; 5.可行域求最优解问题; 6.数列问题;7.方程曲线与曲线方程等解析几何问题; 8.复数问题。
数形结合思想的典型试题 以形助数探索解题思路例6:(改编题)已知函数îíì>££=)1(log )10(sin )(2011x x x x x f p ,若,,a b c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是( C )A .)2011,1(B .)2012,1(C .)2012,2(D .]2012,2[例7.设120x x p <<<,试比较11sin x a x =和22sin xb x =的大小.【分析及解】由式子sin x x 的结构可知, sin xx的的几何意义是连接两点()0,0O(),sin T x x 的直线的斜率,于是,可以画出sin y x =的图象,研究两点()11,sin A x x 和()22,sin B x x 与()0,0O 连线的斜率,由图象可知,OA OB k k >,即a b >.12011xy ca b O y)sin ,(11x x A)sin ,(22x x B变式: 已知函数x x x f sin )(=。
中考数学题型全归纳——数形结合9大题型

中考数学题型全归纳——数形结合9大题型
中考数学题型全归纳——数形结合9大题型
题型一:配方求长度、面积最值
题型二:找对称点求长度最值
题型三:动点与等腰三角形
题型四:动点与相似三角形结合
题型五:动点与直角三角形结合
题型六:动点与平行四边形结合
题型七:动点与矩形结合
题型八:动点与菱形结合
题型九:动点与圆结合
数形结合高中数学例题
例题1.关于x 的方程2x 2-3x -2k =0在(-1, 1)内有一个实根,则k 的取值范围是什么?
分析:原方程变形为2x 2-3x =2k 后可转化为函数
y =2x 2-3x 。
和函数y =2k 的交点个数问题.
解:作出函数y =2x 2-3x 的图像后,用y =2k 去截抛
物线,随着k 的变化,易知2k =-8
9或-1≤2k <5时只有一个公共点.∴ k =-169或-21≤k <2
5. 点拨解疑:方程(组)解的个数问题一般都是通过相
应的函数图象的交点问题去解决.这是用形(交点)解决
数(实根)的问题.
例题3.已知s =
1
322+-t t ,则s 的最小值为 。
分析:等式右边形似点到直线距离公式.
解:|s |=1
|32|2+-t t , 则|s |可看成点(0, 0)到直线tx +y +2t -3=0的距离,又直线tx +y +2t -3=0变形为:(x +2)t +y
-3=0后易知过定点P (-2,3),从而原点到直线 tx +y +2t
-3=0的最短距离为|OP |=13, ∴ -13≤s ≤13.
点拨解疑:由数的形式联想到数的几何意义也即形,从而以形辅数解决问题.类似地如n bx m ay --联想到斜率,1cx d b
++联想到定比分点公式,(x -a )2+(y -b )2
联想到距离,|z 1-z 2|联想到两点间距离等.。
三角函数中的数形结合例题及其解法Word版
三角函数中的数形结合例题及其解法在三角函数中,利用数形结合的思想解决一些问题可以带来极大的方便,也容易理解,使一些抽象的问题形象化。
【例1】函数f(x)=sinx+2sinx,x∈[0,2π]的图象与直线y=k有且仅有2个不同的交点,则k的取值范围是.【分析】本题根据函数解析式,画出图象,可以直观而简明地得出答案,在有时间限制的高考中就能大大地节约时间,提高考试的效率.解:函数f(x)=由图象可知:1<k<3.【例2】若sinα+cosα=tanα(0<α<),则α∈().解:令f(x)=sinx+cosx=sin(x+ )(0<α<),g(x)=tanx,画出图象,从图象上看出交点P的横从标xP>.再令α=,则sin+cos=≈1.366,tan=≈1.732>1.367,由图象知xP应小于.故选C.【点评】本题首先构造函数f(x),g(x),再利用两个函数的图象的交点位置确定α>,淘汰了A、B两选项,然后又用特殊值估算,结合图象确定选项C,起到了出奇制胜的效果.【例3】已知函数f(x)是定义在(-3,3)上的奇函数,当0<x<3时f(x)图象如下图所示,那么不等式f(x)cosx<0的解集是().解:函数f(x)定义在(-3,3)上,且是奇函数,根据奇函数图象性质可知,f(x)在(-3,0)上的图象如图所示,若使f(x)cosx<0,只需f(x)与cosx异号,即图象须分别分布在x轴上下侧,由图可知,有三部分区间符合条件要求,即(-,-1)∪(0,1)∪(,3),故选B.【点评】已知函数的一部分图象,根据函数的性质可得到函数的另一部分图象,利用数形结合的思想,可以先画出完整的函数图象,再研究有关问题.另外,单位圆在求值域、定义域等问题中也有广泛应用。
用单位圆理解问题十分实用,是三角函数中必须掌握的。
在此就不多举例了。
(完整)高中数学的数形结合思想方法_全(讲解+例题+巩固+测试)
4. 与定义有关的问题 【例 4】求抛物线 y2=4x 上到焦点 F 的距离与到点 最小的点 P 的坐标,并求这个最小值 .
A ( 3, 2)的距离之和为
【分析】要求 PA+PF 的最小值,可利用抛物线的定义,把 PF 转化为点 P 到
准线的距离,化曲为直从而借助数形结合解决相关问题
.
2
高中数学的数形结合思想方法
形转化;第三是正确确定参数的取值范围。
二、 解题方法指导
1.转换数与形的三条途径 :
① 通过坐标系的建立,引入数量化静为动,以动求解。
② 转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平
面上两点间的距离等。
③ 构造,比如构造一个几何图形,构造一个函数,构造一个图表等。
解: P′是抛物线 y 2=4x 上的任意一点,过 P′作抛物线的准线 l 的垂线,垂足为 D,连 P′(FF 为抛物 线的焦点),由抛物线的定义可知:
.
过 A 作准线 l 的垂线,交抛物线于 P,垂足为 Q,显然,直线 AQ 之长小于折线 AP′D之长,因而 所求的点 P 即为 AQ 与抛物线交点 .
.
2. 解不等式 【例 11】已知 f( x)是R上的偶函数,且在[0,+
∞)上是减函数, f( a)=0( a>0),那么不
等式 xf ( x) <0 的解集是( ) .
A . { x|0<x<a }
B . {x|-a<x<0 或 x>a}
C . { x|-a<x<a }
D . { x|x<-a 或 0<x<a }
中.
【例 6】确定函数 y=
专题11数形结合(必讲)
专题10 数形结合数形结合思想是数学中的重要思想,“数”与“形”就好比数学中的“左右腿”。
全面理解数形结合思想,就需要从“以数助形”和“以形助数”两个方面来体会。
一、以数助形从“以数助形”的角度来看“数形结合”思想主要有以下两个结合点:(1)利用数轴、平面直角坐标系把几何问题进行代数化;(2)利用面积、距离、角度等几何量来解决几何问题,例如:利用勾股定理证明直角、利用线段比例证明相似等。
数轴上任意两点间距离:||||A B x x AB -=例1. 已知数轴上三点A 、B 、C 的坐标分别为4、-2、-6.求||AB 、||BC 、||AC解:6|4)2(|||=--=AB 4|)2()6(|||=---=BC 10|)6(4|||=--=AC2、平面上任意两点间距离:在直角坐标系内,已知两点),(111y x P 、),(222y x P ,则21221221)()(||y y x x P P -+-=例2. 在直角坐标系内,已知两点)4,6(-A 、)2,2(--B ,求这两点间距离||AB .解:172464))4(2()62(||22=+=---+--=AB例3 两只小虫A 、B 躺在数轴上睡大觉,已知它们之间的距离为10个单位长度,其中 小虫A 躺在数+4对应的点上,小虫B 所在的位置绝对值大于6,则小虫B 所在的位置表示的数是本题旨在着重考察数轴上两点之间的距离公式:数轴上点A 代表数1x ,点B 代表数2x ,则A 、B 两点之间的距离21x x d -=。
这个两点之间的距离公式不论是它的推导还是运用都恰到好处的将相关的几何问题进行了代数化。
例4 两直线之间的位置关系包括:平行、相交、重合。
在初中数学中研究这种位置关系一般是通过几何作图来研究。
但是如果知道两直线的函数解析式该如何通过代数的方法来研究这两条直线的位置关系呢?例如:直线1l :11b x a y +=,直线2l :b x a y +=2,利用代数的方法研究直线1l 、2l 之间的位置关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学:数形结合必考题型全梳理!(附例题)
一、数形结合的三个原则
一、等价性原则
在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.首先,由代数式、方程、不等式构造函数时一要注意变量(包括自变量和因变量)的取值范围。
二、双向性原则
既要进行几何直观分析,又要进行相应的代数抽象探求,直观的几何说明不能代替严谨的代数推理.另一方面,仅用直观分析,有时反倒使问题变得复杂,比如在二次曲线中的最值问题,有时使用三角换元,反倒简单轻松.
三、简单性原则
不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,确定好主元;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线(直线中含有参数)与定二次曲线.
二、数形结合的应用
一、利用数轴、韦恩图求集合
利用数形结合的思想解决集合问题,常用的方法有数轴法、韦恩图法等。
当所给问题的数量关系比较复杂,不好找线索时,用韦恩图法能达到事半功倍的效果。
二、数形结合在解析几何中的应用
解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的.
构建解析几何中的斜率、截距、距离等模型研究最值问题;
如果等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的方法来解题,即所谓的几何法求解,比较常见的对应有:
(一)与斜率有关的问题
(二)与距离有关的问题
三、数形结合在函数中的应用
(一)利用数形结合解决与方程的根有关的问题
【点拨】数形结合可用于解决方程的根的问题,准确合理地作出满足题意的图象是解决这类问题的前提.
(二)利用数形结合解决函数的单调性问题
(三)利用数形结合解决比较数值大小的问题(四)函数的最值问题
(五)利用数形结合解决抽象函数问题
四、运用数形结合思想解不等式(一)解不等式
(二)求参数的取值范围
五、运用数形结合思想解决三角函数问题
时间,提高考试效率,起到事半功倍的效果.
六、借助向量的图象解决几何问题
利用向量可以解决线段相等,直线垂直,立体几何中空间角(异面直线的角、线面角、二面角)和空间距离(点线距、线线距、线面距、面面距),利用空间向量解决立体几何问题,将抽象的逻辑论证转化为代数计算,以数助形,大大降低了空间想象能力,是数形结合的深化。
七、构造几何图形解决代数问题
构造几何图形解决代数与三角形问题,并利用图形特征、规律来解决问题,可以化抽象为直观,使题目露出问题的内在联系,借助几何的直观性,还可以避免复杂的计算和字母讨论。
坐标法解几何题的基本思路是,首先根据几何题的特点建立适当的坐标系,然后将几何问题转化为代数问题,经过计算和推理,获得有关的代数结论,然后再通过坐标系将代数结论转化为几何结论,从而解决问题。