(精品整理)绝对值专题训练及答案

合集下载

绝对值专题训练及答案

绝对值专题训练及答案

绝对值专题训练及答案1.如果|a|=﹣a,那么a的取值范围是()A .a>0 B.a<0 C.a≤0 D.a≥02.如果a是负数,那么﹣a、2a、a+|a|、这四个数中,负数的个数()A .1个B.2个C.3个D.4个3.计算:|﹣4|=()A .0 B.﹣4 C.D.44.若x的相反数是3,|y|=5,则x+y的值为()A .﹣8 B.2 C.8或﹣2 D.﹣8或25.下列说法中正确的是()A.有理数的绝对值是正数B.正数负数统称有理数C.整数分数统称有理数D.a的绝对值等于a6.如图,数轴的单位长度为1,如果点A、C表示的数的绝对值相等,则点B表示的数是()A .1 B.0 C.﹣1 D.﹣27.在数轴上距﹣2有3个单位长度的点所表示的数是()A .﹣5 B.1 C.﹣1 D.﹣5或18.在﹣(﹣2),﹣|﹣7|,﹣|+3|,,中,负数有()A .1个B.2个C.3个D.4个9.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A .a B.﹣a C.±a D.﹣|a|10.已知a、b、c大小如图所示,则的值为()A .1 B.﹣1 C.±1 D.11.a,b在数轴位置如图所示,则|a|与|b|关系是()A .|a|>|b| B.|a|≥|b| C.|a|<|b| D.|a|≤|b|12.已知|a|=﹣a、|b|=b、|a|>|b|>0,则下列正确的图形是()A .B.C.D.13.有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.14.已知a、b、c在数轴上的位置如图所示,化简|a|+|c﹣b|+|a﹣c|+|b﹣a| 15.a为有理数,下列判断正确的是()A .﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数16.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A .a>|a﹣b|>b B.a>b>|a﹣b| C.|a﹣b|>a>b D.|a﹣b|>b>a17.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A .3或13 B.13或﹣13 C.3或﹣3 D.﹣3或1318.下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数19.一个数的绝对值一定是()A .正数B.负数C.非负数D.非正数20.若ab>0,则++的值为()A .3 B.﹣1 C.±1或±3 D.3或﹣121.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A .1﹣b>﹣b>1+a>a B.1+a>a>1﹣b>﹣b C.1+a>1﹣b>a>﹣b D.1﹣b>1+a>﹣b>a22.若|﹣x|=﹣x,则x是()A .正数B.负数C.非正数D.非负数23.若|a|>﹣a,则a的取值范围是()A a>0B a≥0C a<0 D自然数....24.若|m﹣1|=5,则m的值为()A .6 B.﹣4 C.6或﹣4 D.﹣6或425.下列关系一定成立的是()A .若|a|=|b|,则a=b B.若|a|=b,则a=b C.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|26.已知a、b互为相反数,且|a﹣b|=6,则|b﹣1|的值为()A .2 B.2或3 C.4 D.2或427.a<0时,化简结果为()A .B.0 C.﹣1 D.﹣2a28.在有理数中,绝对值等于它本身的数有()A .1个B.2个C.3个D.无穷多个29.已知|x|=3,则在数轴上表示x的点与原点的距离是()A .3 B.±3 C.﹣3 D.0﹣330.若|a|+|b|=|a+b|,则a、b间的关系应满足()A.b同号B.b同号或其中至少一个为零C.b异号D.b异号或其中至少一个为零31.已知|m|=4,|n|=3,且mn<0,则m+n的值等于()A .7或﹣7 B.1或﹣1 C.7或1 D.﹣7或﹣132.任何一个有理数的绝对值在数轴上的位置是()A .原点两旁B.整个数轴C.原点右边D.原点及其右边33.下列各式的结论成立的是()A.若|m|=|n|,则m>n B.若m≥n,则|m|≥|n| C.若m<n<0,则|m|>|n| D.若|m|>|n|,则m>n 34.绝对值小于4的整数有()A .3个B.5个C.6个D.7个35.绝对值大于1而小于3.5的整数有()个.A .7 B.6 C.5 D.436.若x的绝对值小于1,则化简|x﹣1|+|x+1|得()A .0 B.2 C.2x D.﹣2x37.3.14﹣π的差的绝对值为()A .0 B.3.14﹣πC.π﹣3.14 D.0.1438.下列说法正确的是()A.有理数的绝对值一定是正数C.互为相反数的两个数的绝对值相等D.如果两个数的绝对值相等,那么这两个数相等39.下面说法错误的是()A.﹣(﹣5)的相反数是(﹣5)B.3和﹣3的绝对值相等C.数轴上右边的点比左边的点表示的数小D.若|a|>0,则a一定不为零40.已知|a|>a,|b|>b,且|a|>|b|,则()A .a>b B.a<b C.不能确定D.a=b41.已知|x|≤1,|y|≤1,那么|y+1|+|2y﹣x﹣4|的最小值是_________.42.从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有_________个.43.最大的负整数是_________,绝对值最小的有理数是_________.44.最大的负整数,绝对值最小的数,最小的正整数的和是0_________.45.若x+y=0,则|x|=|y|.(_________)46.绝对值等于10的数是_________.47.若|﹣a|=5,则a=_________.48.设A=|x﹣b|+|x﹣20|+|x﹣b﹣20|,其中0<b<20,b≤x≤20,则A的最小值是_________.49.﹣3.5的绝对值是_________;绝对值是5的数是_________;绝对值是﹣5的数是_________.50.绝对值小于10的所有正整数的和为_________.51.化简:|x﹣2|+|x+3|,并求其最小值.52.若a,b为有理数,且|a|=2,|b|=3,求a+b的值.53.若|x|=3,|y|=6,且xy<0,求2x+3y的值.54.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.55.若|a|=﹣a,则数a在数轴上的点应是在()A.原点的右侧B.原点的左侧C.原点或原点的右侧D.原点或原点的左侧56.已知a=12,b=﹣3,c=﹣(|b|﹣3),求|a|+2|b|+|c|的值.57. 下列判断错误的是()A.任何数的绝对值一定是正数B.一个负数的绝对值一定是正数C.一个正数的绝对值一定是正数D.任何数的绝对值都不是负数58.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=_________.(2)设x是数轴上一点对应的数,则|x+1|表示_________与_________之差的绝对值(3)若x为整数,且|x+5|+|x﹣2|=7,则所有满足条件的x为_________.59.若ab<0,试化简++.60.小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣(﹣1)|则表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x﹣2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x与________在数轴上的距离.小刚继续研究发现:x取不同的值时,|x﹣2|+|x+3|=5有最值,请你借助数轴解决下列问题(1)当|x﹣2|+|x+3|=5时,x可取整数_________(写出一个符合条件的整数即可);(2)若A=|x+1|+|x﹣5|,那么A的最小值是_________;(3)若B=|x+2|+|x|+|x﹣1|,那么B的最小值是_________,此时x为_________;(4)写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.参考答案:1.因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=﹣a,那么a的取值范围是a≤0.故选C.2.当a是负数时,根据题意得,﹣a>0,是正数,2a<0,是负数,a+|a|=0,既不是正数也不是负数,=﹣1,是负数;所以,2a、是负数,所以负数2个.故选B.3.根据一个负数的绝对值是它的相反数,可知|﹣4|=4.故选D.4.x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选D5 A、有理数0的绝对值是0,故A错误;B、正数、0、负数统称有理数,故B错误;C、整数分数统称有理数,故C正确;D、a<0时,a的绝对值等于﹣a,故D错误.故选C.6.如图,AC的中点即数轴的原点O.根据数轴可以得到点B表示的数是﹣1.故选C.7.依题意得:|﹣2﹣x|=3,即﹣2﹣x=3或﹣2﹣x=﹣3,解得:x=﹣5或x=1.故选D.8.∵﹣(﹣2)=2,是正数;﹣|﹣7|=﹣7,是负数;﹣|+3|=﹣3是负数;=,是正数;=﹣是负数;∴在以上数中,负数的个数是3.故选C.9. 依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.10.根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选A.11.∵a<﹣1,0<b<1,∴|a|>|b|.故选A12.∵|a|=﹣a、|b|=b,∴a<0,b>0,即a在原点的左侧,b在原点的右侧,∴可排除A、B,∵|a|>|b|,∴a到原点的距离大于b到原点的距离,∴可排除C,故选D.13.∵在数轴上原点右边的数大于0,左边的数小于0,右边的数总大于左边的数可知,b<a<0,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b14.由数轴,得b>c>0,a<0,∴c﹣b<0,a﹣c<0,b﹣a>0,∴|a|+|c﹣b|+|a﹣c|+|b﹣a|=﹣a﹣(c﹣b)﹣(a﹣c)+b﹣a=﹣a﹣c+b﹣a+c+b﹣a =2b﹣3a.15.A、错误,a=0时不成立;B、错误,a=0时不成立;C、正确,符合绝对值的非负性;D、错误,a=0时不成立.故选C16.∵ab<0,且a>b,∴a>0,b<0∴a﹣b>a>0∴|a﹣b|>a>b故选C.17.∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.18.A、﹣|a|不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.故选D.19.一个数的绝对值一定是非负数.故选C.20.因为ab>0,所以a,b同号.①若a,b同正,则++=1+1+1=3;②若a,b同负,则++=﹣1﹣1+1=﹣1.故选D.21.∵a>0,∴|a|=a;∵b<0,∴|b|=﹣b;又∵|a|<|b|<1,∴a<﹣b<1;∴1﹣b>1+a;而1+a>1,∴1﹣b>1+a>﹣b>a.故选D.22.∵|﹣x|=﹣x;∴x≤0.即x是非正数.故选C.23.若|a|>﹣a,则a的取值范围是a>0.故选A.24.∵|m﹣1|=5,∴m﹣1=±5,∴m=6或﹣4.故选C.25.选项A、B、C中,a与b的关系还有可能互为相反数.故选D.26.∵a、b互为相反数,∴a+b=0,∵|a﹣b|=6,∴b=±3,|b﹣1|=2或4.故选D.27.∵a<0,∴==0.故选B28.在有理数中,绝对值等于它本身的数为所有非负有理数,而非负有理数有无穷多个.故选D.29. ∵|x|=3,又∵轴上x的点到原点的距离是|x|,∴数轴上x的点与原点的距离是3;故选A.30.设a与b异号且都不为0,则|a+b|=||a|﹣|b||,当|a|>|b|时为|a|﹣|b|,当|a|≤|b|时为|b|﹣|a|.不满足条件|a|+|b|=|a+b|,当a与b同号时,可知|a|+|b|=|a+b|成立;当a与b至少一个为0时,|a|+|b|=|a+b|也成立.故选B.31. ∵|m|=4,|n|=3,∴m=±4,n=±3,又∵mn<0,∴当m=4时,n=﹣3,m+n=1,当m=﹣4时,n=3,m+n=﹣1,故选B.32.∵任何非0数的绝对值都大于0,∴任何非0数的绝对值所表示的数总在原点的右侧,∵0的绝对值是0,∴0的绝对值表示的数在原点.故选D.33.A、若m=﹣3,n=3,|m|=|n|,m<n,故结论不成立;B、若m=3,n=﹣4,m≥n,则|m|<|n|,故结论不成立;C、若m<n<0,则|m|>|n|,故结论成立;D、若m=﹣4,n=3,|m|>|n|,则m<n,故结论不成立.故选:C34.绝对值小于4的整数有:±3,±2,±1,0,共7个数.故选D35.绝对值大于1而小于3.5的整数有:2,3,﹣2,﹣3共4个.故选D.36.∵x的绝对值小于1,数轴表示如图:从而知道x+1>0,x﹣1<0;可知|x+1|+|x﹣1|=x+1+1﹣x=2.故选B.37.∵π>3.14,∴3.14﹣π<0,∴|3.14﹣π|=﹣(3.14﹣π)=π﹣3.14.故选:C38.A∵0的绝对值是0,故本选项错误.B∵负数的相反数是正数,故本选项错误.C∵互为相反数的两个数的绝对值相等,故本选项正确.D∵如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误.故选C.39.A、﹣(﹣5)=5,5的相反数是﹣5,故本选项说法正确;B、3和﹣3的绝对值都为3,故本选项说法正确;C、数轴上右边的数总大于左边的数,故本选项说法错误;D、绝对值大于0的数可能是正数也可能是负数,故本选项说法正确.故选C.40.∵|a|>a,|b|>b,∴a、b均为负数,又∵|a|>|b|,∴a<b.故选B41.∵|x|≤1,|y|≤1,∴﹣1≤x≤1,﹣1≤y≤1,故可得出:y+1≥0;2y﹣x﹣4<0,∴|y+1|+|2y﹣x﹣4|=y+1+(4+x﹣2y)=5+x﹣y,当x取﹣1,y取1时取得最小值,所以|y+1|+|2y﹣x﹣4|min=5﹣1﹣1=3.故答案为:342.∵千位数与个位数之差的绝对值为2,可得“数对”,分别是:(0,2),(1,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),∵(0,2)只能是千位2,个位0,∴一共15种选择,∴从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有15×8×7=840个.43.最大的负整数是﹣1,绝对值最小的有理数是0.44.最大的负整数是﹣1,绝对值最小的数0,最小的正整数是1∵﹣1+0+1=0,∴最大的负整数,绝对值最小的数,最小的正整数的和是0正确.故答案为:√45.∵x+y=0,∴x、y互为相反数.∴|x|=|y|.故答案为(√)46.绝对值等于10的数是±10.47.若|﹣a|=5,则a=±5.48.由题意得:从b≤x≤20得知,x﹣b≥0 x﹣20≤0 x﹣b﹣20≤0,A=|x﹣b|+|x﹣20|+|x﹣b﹣20|=(x﹣b)+(20﹣x)+(20+b﹣x)=40﹣x,又x最大是20,则上式最小值是40﹣20=20.49.﹣3.5的绝对值是 3.5;绝对值是5的数是±5;绝对值是﹣5的数是不存在.故本题的答案是:45.51.①当x≤﹣3时,原式=2﹣x﹣x﹣3=﹣2x﹣1;②当﹣3<x<2时,原式=2﹣x+x+3=5;③当x≥2时,原式=x﹣2+x+3=2x+1;∴最小值为552.∵a,b为有理数,|a|=2,|b|=3,∴a=±2,b=±3,当a=+2,b=+3时,a+b=2+3=5;当a=﹣2,b=﹣3时,a+b=﹣2﹣3=﹣5;当a=+2,b=﹣3时,a+b=2﹣3=﹣1;当a=﹣2,b=+3时,a+b=﹣2+3=1.故答案为:±5、±1.53.∵|x|=3,|y|=6,∴x=±3,y=±6,∵xy<0,∴x=3,y=﹣6,或x=﹣3,y=6,①x=3,y=﹣6时,原式=2×3+3×(﹣6)=6﹣18=﹣12;②x=﹣3,y=6,原式=2×(﹣3)+3×6=﹣6+18=1254.∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=503004.故答案为:503004.55.∵|a|=﹣a,∴a≤0,即可得数a在数轴上的点应是在原点或原点的左侧.故选D.56. ∵a=12,b=﹣3,∴c=﹣(|b|﹣3)=﹣(3﹣3)=0,∴|a|+2|b|+|c|=12+2×3+0=18.57.根据绝对值性质可知,一个负数的绝对值一定是正数;一个正数的绝对值一定是正数;任何数的绝对值都不是负数.B,C,D都正确.A中,0的绝对值是0,错误.故选A.58.(1)|5﹣(﹣2)|=|5+2|=7;(2)|x+1|表示x与﹣1之差的绝对值;(3)∵|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x与2两数在数轴上所对的两点之间的距离,而﹣5与2两数在数轴上所对的两点之间的距离为2﹣(﹣5)=7,|x+5|+|x﹣2|=7,∴﹣5≤x≤2.故答案为7;x,﹣1;﹣5≤x≤2.59.∵ab<0,∴a和b中有一个正数,一个负数,不妨设a>0,b<0,原式=1﹣1﹣1=﹣160. ∵|x+3|=|x﹣(﹣3)|,∴|x+3|可看成x与﹣3的点在数轴上的距离;(1)x=0时,|x﹣2|+|x+3|=|﹣2|+|3|=2+3=5;(2)|x+1|+|x﹣5|表示x到点﹣1与到点5的距离之和,当﹣1≤x≤5时,A有最小值,即表示数5的点到表示数﹣1的点的距离,所以A的最小值为6;(3)|x+2|+|x|+|x﹣1|表示x到数﹣2、0、1三点的距离之和,所以当x=0时,它们的距离之和最小,即B的最小值为3,此时x=0;(4)|x+5|+|x+3|+|x+1|+|x﹣2|表示x到数﹣5、﹣3、﹣1、2四点的距离之和,所以当﹣3≤x≤﹣1时,它们的距离之和有最小值9,即|x+5|+|x+3|+|x+1|+|x﹣2|的最小值为9.。

七年级数学绝对值典型试题及答案(中考重点考点试题)

七年级数学绝对值典型试题及答案(中考重点考点试题)

七年级数学绝对值典型试题及答案(中考重点考点试题)5分钟训练(预习类训练,可用于课前)1.判断题:(1)数a的绝对值就是数轴上表示数a的点与原点的距离; ()(2)负数没有绝对值; ()(3)绝对值最小的数是0; ()(4)如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大; ()(5)如果数a的绝对值等于a,那么a一定是正数. ()思路解析:(2)负数的绝对值为它的相反数.(4)可举反例如:-100的绝对值比5的绝对值大,但-100小于5.(5)还可能是0.答案:(1)√ 2)×(3)√(4)×(5)×2.填表:答案3.-3的绝对值是在_______上表示-3的点到________的距离,-3的绝对值是_________. 思路解析:根据绝对值的几何意义解题.答案:数轴原点 34.绝对值是3的数有_______个,各是________;绝对值是2.7的数有_______个,各是________;绝对值是0的数有________个,是________;绝对值是-2的数有没有?________.思路解析:根据绝对值的意义来解.答案:两±3 两±2.7 1 0 没有10分钟训练(强化类训练,可用于课中)1. (1)若|a|=0,则a=_______;(2)若|a|=2,则a=________.思路解析:根据绝对值的定义来解.答案:(1)0 (2)±22.如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m思路解析:可通过特例解答,如5>0,-6<0,5<|-6|,则-m=-5,-n=6,它们的大小关系是6>5>-5>-6,即-n>m>-m>n.答案:A3.判断题:(1)两个有理数比较大小,绝对值大的反而小; ()(2)-3.14>4; ()(3)有理数中没有最小的数; ()(4)若|x|>|y|,则x>y; ()(5)若|x|=3,-x>0则x=-3. ()思路解析:(1)若都为负数时,才有绝对值大的反而小;(2)先利用符号判断,若同号,再判断绝对值大小.显然,-3.14<4;(3)如在负数中,没有最小的数,而正数大于零,大于负数;(4)举反例,|-5|>|-4|,而-5<-4;(5)由|x|=3可知,x=±3,又-x>0,则x必为负数,故x=-3.答案:(1)×(2)×(3)√(4)×(5)√4.填空题:(1)|-112|________;(2)-(-7)________;(3)-|-7|________;(4)+|-2|_______;(5)若|x|=3,则x_________;(6)|3-π|=_______. 思路解析:由绝对值定义来解,注意绝对值外面的负号.答案:(1)112(2)7 (3)-7 (4)2 (5)3或-3 (6)π-35.把四个数-2.371,-2.37%,-2.3·7·和-2.37用“<”号连接起来.思路解析:这里都是负数,利用绝对值大的反而小来判别,另外要注意循环小数和百分数的意义.答案:-2.37<-2.371<-2.37<-2.37%快乐时光女老师竭力向孩子们证明,学习好功课的重要性.她说:“牛顿坐在树下,眼睛盯着树在思考,这时,有一个苹果落在他的头上,于是他发明了万有引力定律,你们想想看,做一位伟大的科学家多么好,多么神气啊,要想做到这一点,就必须好好学习.”班上一个调皮鬼对此并不满意.他说:“兴许是这样,可是,假如他坐在学校里,埋头书本,那他就什么也发现不了啦.”30分钟训练(巩固类训练,可用于课后)1.比较大小:(1)-2_______5,|-72|_______|+38|,-0.01________-1;(2)-45和-56(要有过程).思路解析:(1)正数大于负数,则-2<5;|-27|=27=1656,|+38|=38=2156,∴|-72|<|+38|;两个负数,绝对值大的反而小,|-1|=1,|-0.01|=0.01,而0.01<1,∴-0.01>-1(2)-45=-0.8,-56=-0.83,-0.8离原点近,∴-0.8>-0.83即-45>-56.答案:(1)<<>(2)>2.写出绝对值不大于4的所有整数,并把它们表示在数轴上.思路解析:不大于就是小于或等于.答案:±1,±2,±3,±4,0.3.填空:(1)若|a|=6,则a=_______;(2)若|-b|=0.87,则b=_______;(3)若|-1c|=49,则c=_______;(4)若x+|x|=0,则x是数________.思路解析:(1) a=±6;(2)|-b|=|b|=0. 87,∴b=±0.87;(3)|-1c|=49,∴1c=±49,c=±214;(4) x是非正数.答案:(1)±6 (2)±0.87 (3)±214(4)非正4.求下列各数的绝对值:(1)-38; (2)0.15;(3)a(a<0); (4)3b(b>0);(5)a-2(a<2); (6)a-b.思路解析:欲求一个数的绝对值,关键是确定绝对值符号内的这个数是正数还是负数,然后根据绝对值的代数定义去掉绝对值符号(6)题没有给出a与b的大小关系,所以要进行分类讨论.解:(1)|-38|=38(2)|+0.15|=0.15(3)∵a<0,∴|a|=-a(4)∵b>0,∴3b>0,|3b|=3b(5)∵a<2,∴a-2<0,|a-2|=-(a-2)=2-a(6)(), ||0(),().a b a ba b a bb a a b->⎧⎪-==⎨⎪-<⎩5.判断下列各式是否正确:(1)|-a|=|a|;()(2)||||a aa a=(a≠0); ()(3)若|a|=|b|,则a=b;()(4)若a=b,则|a|=|b|;()(5)若a>b,则|a|>|b|;()(6)若a>b,则|b-a|=a-b. ()思路解析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判断(或证明)一个结论是错误的,只要能举出反例即可.如第(1)小题中取a=1,则|a|=|1|=1,|-a|=|-1|=1,所以-|a|=|-a|.答案:(1)√ (2)√ (3)× (4)√ (5)×(6)√6.有理数m,n在数轴上的位置如图,比较大小:-m______-n,1m_______1n.思路解析:取特殊值验得:由图知,m、n都是小于0而大于-1的数,取m=-23,n=-13∴-m=23>-n=13,而1m=-32,1n=-3,∵-32>-3,∴1m>1n.答案:>>7.若|x-1| =0,则x=_______,若|1-x |=1,则x=_________.思路解析:零的绝对值只有一个零,即x-1=0;一个正数的绝对值有两个数,∴1-x=±1. 答案:-1 0或2。

(完整版)绝对值练习题(含答案)

(完整版)绝对值练习题(含答案)
10.有理数a,b,c在数轴上的位置如图所示:
试化简:│a+b│-│b-1│-│a-c│-│1-c│=___________.
三、解答题
11.计算
(1)│-6.25│+│+2.7│; (2)|-8 |-|-3 |+|-20|
12.比较下列各组数的大小:(1)-1 与- (2)- 与-0.3;
13.已知│a-3│+│-b+5│+│c-2│=0,计算2a+b+c的值.
14.如果a、b互为相反数,c、d互为倒数,x的绝对值是1,求代数式x2+(a+b)x- cd的值.
15.求| - |+| - |+…| - |的值.
16.化简│1-a│+│2a+1│+│a│(a>-2).
17.若│a│=3,│b│=4,且a<b,求a,b的值.
18.已知-a<b<-c<0<-d,且│d│<│c│,试将a,b,c,d,0这五个数由大到小用“>”依次排列出来.
7.绝对值和相反数都等于它本身的数是_________.
8.已知│a-2│+(b-3)2+│c-4│=0,则3a+2b-c=_________.
9.比较下列各对数的大小(用“)”或“〈”填空〉
(1)- _______- ;(2)-1 _______-1.167;(3)-(- )______-|- |.
2.3绝对值
一、选择题
1.下列说法中正确的个数是( )
(1)一个正数的绝对值是它本身;(2)一个非正数的绝对值是它的相反数;(3) 两个负数比较,பைடு நூலகம்对值大的反而小;(4)一个非正数的绝对值是它本身.

专题1.2 绝对值(压轴题专项讲练)(人教版)(原卷版)

专题1.2 绝对值(压轴题专项讲练)(人教版)(原卷版)

专题1.2 绝对值【典例1】结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x= ;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是 ,最小距离是 .(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|= .(1)根据数轴,观察两点之间的距离即可解决;(2)根据绝对值可得:x+1=±3,即可解答;(3)根据绝对值分别求出a,b的值,再分别讨论,即可解答;(4)根据|a+4|+|a﹣2|表示数a的点到﹣4与2两点的距离的和即可求解.解:(1)数轴上表示4和1的两点之间的距离是:4﹣1=3;表示﹣3和2两点之间的距离是:2﹣(﹣3)=5,故答案为:3,5;(2)|x+1|=3,x+1=3或x+1=﹣3,x=2或x=﹣4.故答案为:2或﹣4;(3)∵|a﹣3|=2,|b+2|=1,∴a=5或1,b=﹣1或b=﹣3,当a=5,b=﹣3时,则A、B两点间的最大距离是8,当a=1,b=﹣1时,则A、B两点间的最小距离是2,则A、B两点间的最大距离是8,最小距离是2;故答案为:8,2;(4)若数轴上表示数a的点位于﹣4与2之间,|a+4|+|a﹣2|=(a+4)+(2﹣a)=6.故答案为:6.1.(2022•高邮市模拟)若|x|+|x﹣4|=8,则x的值为( )A.﹣2B.6C.﹣2或6D.以上都不对2.(2021秋•西峡县期末)|x+8|+|x+1|+|x﹣3|+|x﹣5|的最小值等于( )A.10B.11C.17D.213.如果有理数a,b,c满足|a﹣b|=1,|b+c|=2,|a+c|=3,那么|a+2b+3c|等于( )A.5B.6C.7D.84.(2021秋•洛川县校级期末)已知:m=|a b|c+2|b c|a+3|c a|b,且abc>0,a+b+c=0.则m共有x个不同的值,若在这些不同的m值中,最大的值为y,则x+y=( )A.4B.3C.2D.15.我们知道|x|=x,(x>0)0,(x=0)―x,(x<0),所以当x>0时,x|x|=xx=1;当x<0时,x|x|=xx=―1.下列结论序号正确的是( )①已知a,b是有理数,当ab≠0时,a|a|+b|b|的值为0或±2;②已知a,b是不为0的有理数,当|ab|=﹣ab时,则2a|a|+b|b|的值为±1;③已知a,b,c是有理数,a+b+c=0,abc<0,则b c|a|+a c|b|+a b|c|=―1或3;④已知a,b,c是非零的有理数,且|abc|abc=―1,则|a|a+|b|b+|c|c的值为1或﹣3;⑤已知a,b,c是非零的有理数,a+b+c=0,则a|a|+b|b|+c|c|+abc|abc|的所有可能的值为0.A.①③④B.②③⑤C.①②④⑤D.①②④6.(2021秋•常州期末)已知x=20212022,则|x﹣2|﹣|x﹣1|+|x|+|x+1|﹣|x+2|的值是 .7.(2021秋•绵竹市期末)代数式|x+1009|+|x+506|+|x﹣1012|的最小值是 .8.(2021春•杨浦区校级期末)已知a,b,c为整数,且|a﹣b|2021+|c﹣a|2020=1,则|a﹣b|+|b﹣c|+|c﹣a|= .9.(2021秋•大田县期中)三个整数a,b,c满足a<b<c,且a+b+c=0.若|a|<10,则|a|+|b|+|c|的最大值为 .10.(2021秋•雁塔区校级期中)如果|a+3|+|a﹣2|+|b﹣4|+|b﹣7|=8,则a﹣b的最大值等于 .11.(2021秋•江岸区校级月考)设有理数a,b,c满足a>b>c,这里ac<0且|c|<|b|<|a|,则|x―a b2|+|x―b c2|+|x+a c2|的最小值为 .12.(2020秋•海曙区期末)已知a,b,c为3个自然数,满足a+2b+3c=2021,其中a≤b≤c,则|a﹣b|+|b﹣c|+|c﹣a|的最大值是 .13.设x是有理数,y=|x﹣1|+|x+1|.有下列四个结论:①y没有最小值;②有无穷多个x的值,使y取到最小值;③有x的值,使y=1.8;④使y=2.5的x有两个值.其中正确的是 (填序号).14.有理数数a,b满足|a+1|+|2﹣a|=6﹣|b+2|﹣|b+5|,a2+b2的最大值为 ,最小值为 .15.(2021秋•梁子湖区期中)已知|ab﹣2|与|b﹣2|互为相反数,求b1a1―b2a2+b3a3的值.16.(2021秋•贡井区期中)如图,数轴上的点A,B,C,D,E对应的数分别为a,b,c,d,e,且这五个点满足每相邻两个点之间的距离都相等.(1)填空:a﹣c 0,b﹣a 0,b﹣d 0(填“>“,“<“或“=“);(2)化简:|a﹣c|﹣2|b﹣a|﹣|b﹣d|;(3)若|a|=|e|,|b|=3,直接写出b﹣e的值.17.(2021秋•铜山区期中)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离记为d,请回答下列问题:(1)数轴上表示﹣3和1两点之间的距离d为 ;(2)数轴上表示x和﹣5两点之间的距离d为 ;(3)若x表示一个有理数,且x大于﹣3且小于1,则|x﹣1|+|x+3|= ;(4)若x表示一个有理数,且|x+2|+|x+3|>1,则有理数x的取值范围为 .18.x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣1997|取最小值,最小值是多少?19.(2021秋•金乡县期中)我们知道:在研究和解决数学问题时,当问题所给对象不能进行统一研究时,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”.这一数学思想用处非常广泛,我们经常用这种方法解决问题.例如:我们在讨论|a|的值时,就会对a进行分类讨论,当a≥0时,|a|=a;当a<0时,|a|=﹣a.现在请你利用这一思想解决下列问题:(1)8|8|= .3|3|= (2)a|a|= (a≠0),a|a|+b|b|= (其中a>0,b≠0)(3)若abc≠0,试求a|a|+b|b|+c|c|+abc|abc|的所有可能的值.20.(2021秋•江岸区期中)阅读下列材料.我们知道|x|=x(x>0)0(x=0)―x(x<0),现在我们可以利用这一结论来化简含有绝对值的代数式.例如:化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1和x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在有理数范围内,零点值x=﹣1和x=2可将全体有理数分成不重复且不遗漏的如下3种情况:x<﹣1;﹣1≤x<2;x≥2.从而在化简|x+1|+|x﹣2|时,可分以下三种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=(x+1)﹣(x﹣2)=3;③当x≥2时,原式=(x+1)+(x﹣2)=2x﹣1.∴|x+1|+|x﹣2|=―2x+1(x<―1)3(―1≤x<2)2x―1(x≥2),通过以上阅读,解决问题:(1)|x﹣3|的零点值是x= (直接填空);(2)化简|x﹣3|+|x+4|;(3)关于x,y的方程|x﹣3|+|x+4|+|y﹣2|+|y+1|=10,直接写出x+y的最小值为 .。

初一数学《绝对值》专项练习(含答案)

初一数学《绝对值》专项练习(含答案)

绝对值姓名:__________班级:__________考号:__________一 、选择题1.已知|x|=0.19,|y|=0.99,且0<yx ,则x-y 的值为( ) A 、1.18或-1.18 B 、0.8或-1.18 C 、0.8或-0.8 D 、1.18或-0.82.已知:x <0<z ,xy >0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值( )A 、是正数B 、是负数C 、是零D 、不能确定符号3.如果|-a|=-a ,则a 的取值范围是(A 、a >OB 、a ≥OC 、a ≤OD 、a <O4.如果a 的绝对值是2,那么a 是( )A 、2B 、-2C 、±2D 、21±5.已知a 、b 互为相反数,且|a-b|=6,则|b-1|的值为( )A 、2B 、2或3C 、4D 、2或46.若|x+y|=y-x ,则有( )A 、y >0,x <0B 、y <0,x >0C 、y <0,x <0D 、x=0,y ≥0或y=0,x ≤07.下列说法,不正确的是( )A .数轴上的数,右边的数总比左边的数大B .绝对值最小的有理数是0C .在数轴上,右边的数的绝对值比左边的数的绝对值大D .离原点越远的点,表示的数的绝对值越大8.给出下面说法,其中正确的有( )(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|>m ,则m <0;(4)若|a|>|b|,则a >b ,A 、(1)(2)(3)B 、(1)(2)(4)C 、(1)(3)(4)D 、(2)(3)(4)9.一个数与这个数的绝对值相等,那么这个数是( )A 、1,0B 、正数C 、非正数D 、非负数11.若1-=x x,则x 是( )A 、正数B 、负数C 、非负数D 、非正数12.若|a-3|=2,则a+3的值为( )A 、5B 、8C 、5或1D 、8或413.如果|x-1|=1-x ,那么( )A 、x <1B 、x >1C 、x ≤1D 、x ≥114.已知|x|=5,|y|=2,且xy >0,则x-y 的值等于( )A 、7或-7B 、7或3C 、3或-3D 、-7或-315.如图,下列各数中,数轴上点A 表示的可能是( )A .2的平方B .-3.4的绝对值C .-4.2的相反数D .512的倒数16.已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是() A 、1-b >-b >1+a >aD 、1-b >1+a >-b >aC 、1+a >1-b >a >-bB 、1+a >a >1-b >-b17.a <0,ab <0,计算|b-a+1|-|a-b-5|,结果为( )A 、6B 、-4C 、-2a+2b+6D 、2a-2b-618.在-(-2),-|-7|,3-+,23-,115⎛⎫-+⎪⎝⎭中,负数有()A.1个B.2个C.3个D.4个19.若a<0,则4a+7|a|等于()A、11aB、-11aC、-3aD、3a20.有理数a,b,c在数轴上对应的点的位置如图所示,给出下面四个命题:(1)abc<0 (2)|a-b|+|b-c|=|a-c| (3)(a-b)(b-c)(c-a)>0 (4)|a|<1-bc其中正确的命题有()A、4个B、3个C、2个D、1个21.下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A、②④⑤⑥B、③⑤C、③④⑤D、③⑤⑥22.到数轴原点的距离是2的点表示的数是()A、±2B、2C、-2D、4二、填空题23.若220x x-+-=,则x的取值范围是24.23-的相反数的绝对值的倒数是25.已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c-b|-|b-a|-|a-c|= _________26.若3230x y-++=,则yx的值是多少?27.若x<2,则|x-2|+|2+x|=________________28.当x __________时,|2-x|=x-229.在数轴上表示数a的点到原点的距离是13,那么a=30.计算:3π-= ,若23x-=,则x=31.已知|x|=2,|y|=3,且xy<0,则x+y的值为 _________同可能.当a、b、c都是正数时,M= ______;当a、b、c中有一个负数时,则M= ________;当a、b、c中有2个负数时,则M= ________;当a、b、c都是负数时,M=__________ .33.若x<-2,则|1-|1+x||=______;若|a|=-a,则|a-1|-|a-2|= ________34.如图,有理数x,y在数轴上的位置如图,化简:|y-x|-3|y+1|-|x|= ________35.绝对值不大于7且大于4的整数有个,是36.2的绝对值是.37.绝对值等于2的数有个,是38.已知00x z xy y z x <<>>>,,,那么x z y z x y +++--=39.的相反数是 ;倒数是 ;绝对值是 . 40.若|a|+a=0,|ab|=ab ,|c|-c=0,化简:|b|-|a+b|-|c-b|+|a-c|= ________41.如图所示,a 、b 是有理数,则式子|a|+|b|+|a+b|+|b-a|化简的结果为 __________43.已知a ,b ,c 的位置如图,化简:|a-b|+|b+c|+|c-a|= ______________三 、解答题44.已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++-- 45.如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.46.如果3a b -+47.已知:①52a b ==,,且a b <;分别求a b ,的值48.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-49.已知x ,y ,z满足21441()02x y z -+-=,求()x z y -的值. 50.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-51.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--52.已知a a =-,0b <,化简22442(2)24323a ba b a b b a +--+++-- 53.()02b 1a 2=-++,分别求a ,b 的值54.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--绝对值答案解析一、选择题1.A2.C;由题意可知,x、y、z在数轴上的位置如图所示:所以|x+z|+|y+z|-|x-y|=x+z-(y+z)-(x-y)=03.C4.C5.D6.D;解:∵|x+y|=y-x,又当x+y≥0时,|x+y|=x+y,可得x=0,y≥0或者y=0,x≤0 又当x+y≤0时,|x+y|=-x-y,可得y=0,x≤0或x=0,y≥0 ∴x=0,y≥0或y=0,x≤0选D.7.C8.A9.D10.B11.B12.D13.C14.C15.B16.D17.A;根据已知条件先去掉绝对值即可求解.18.C19.C20.B21.B22.A二 、填空题23.2x ≤24.3227.4或-2x28.x ≥229.13a =±30.3π-,5x =或1-31.±132.当a 、b 、c 中都是正数时,M=1+1+1=3;当a 、b 、c 中有一个负数时,不妨设a 是负数,则M=-1+1+1=1;当a 、b 、c 中有2个负数时,不妨设a ,b 是负数,则M=-1-1+1=-1; 当a 、b 、c 都是负数时,M=-1-1-1=-3;故M 有4种不同结果.33.-2-x ,-134.2y+3;根据数轴图可知:x >0,y <-1,∴|y-x|=x-y ,|y+1|=-1-y ,|x|=x ;∴|y-x|-3|y+1|-|x|=x-y+3(1+y )-x=2y+3. 35.6个,5±、6±、7±237.2个,2±38.解:∵ 0x z <<,0xy > ∴0y <∵y z x >> ∴y z x ->>- ∴0x z +>,0y z +<,0x y ->∴原式=()()()0x z y z x y x z y z x y +-+--=+---+=;.40.∵|a|+a=0,|ab|=ab,|c|-c=0,∴a≤0,b≤0,c≥0,∴a+b≤0,c-b≥0,a-c≤0,∴原式=-b+a+b-c+b-a+c=b.故答案为b.41.3b-a42.【解析】根据绝对值的定义,对本题需去括号,那么牵涉到x的取值,因而分①当x<-1;②当-1≤x≤5;③当x>5这三种情况讨论该式的最小值.【答案】①当x<-1,|x+1|+|x-5|+4=-(x+1)+5-x+4=8-2x>10,②当-1≤x≤5,|x+1|+|x-5|+4=x+1+5-x+4=10,③当x>5,|x+1|+|x-5|+4=x+1+x-5+4=2x>10;所以|x+1|+|x-5|+4的最小值是10.故答案为:10.43.2a;由数轴可知a<c<0<b,所以a-b<0,b+c<0,c-a>0,则|a-b|+|b+c|+|c-a|=b-a-b-c+c-a=-2a.三、解答题44.解:∵a a=-∴0a≤∵0b<∴20a b+<,230a-<∴原式=22(2)42(2)24323a ba b a b b a-++-++++-=242222a b a b a b-+++++=42a b+45.解:如图所示,得0a b<<,01c<<∴0a b+<,10b-<,0a c-<,10c->∴原式=()(1)()(1)a b b a c c-++-+---=11a b b a c c--+-+--+=2-46.有题可知30220a ba b-+=⎧⎨+-=⎩解得4353ab⎧=-⎪⎪⎨⎪=⎪⎩3=.47.解:∵5a =,2b =∴5a =±,2b =±∵a b < ∴5a =-,2b =±48.∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=49.由题可知441020102x y y z z ⎧⎪-+=⎪+=⎨⎪⎪-=⎩,解得121412x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩,()x z y -1111()()22416=--⨯-=.50.解: ∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=51.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2a b b a b a a a b b a b a b -++-+-+=--+-++=52.解:∵a a =- ∴0a ≤ ∵0b < ∴20a b +<,230a -<∴原式=22(2)42(2)24323a b a b a b b a -++-++++-=242222a b a b a b -+++++=42a b+ 53.()02,012≥-≥+b a 可得02,01=-=+b a ;所以2,1=-=b a54.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2 -++-+-+=--+-++=a b b a b a a a b b a b a b。

绝对值基础练习(2)附答案

绝对值基础练习(2)附答案

绝对值基础练习(2)附答案1、判断题:⑴、|-a|=|a|.⑵、-|0|=0.⑶、|-3|=-3.⑷、-(-5)›-|-5|.⑸、如果a=4,那么|a|=4.⑹、如果|a|=4,那么a=4.⑺、任何一个有理数的绝对值都是正数.⑻、绝对值小于3的整数有2, 1, 0.⑼、-a一定小于0.⑽、如果|a|=|b|,那么a=b.⑾、绝对值等于本身的数是正数.⑿、只有1的倒数等于它本身.⒀、若|-X|=5,则X=-5.⒁、数轴上原点两旁的点所表示的两个数是互为相反数.⒂、一个数的绝对值等于它的相反数,那么这个数一定是负数.2、填空题:⑴、当a_____0时,-a›0;⑵、当a_____0时,‹0;⑶、当a_____0时,-›0;⑷、当a_____0时,|a|›0;⑸、当a_____0时,-a›a;⑹、当a_____0时,-a=a;⑺、当a‹0时,|a|=______;⑻、绝对值小于4的整数有_____________________________;⑼、如果m‹n‹0,那么|m|____|n|;⑽、当k+3=0时,|k|=_____;⑾、若a、b都是负数,且|a|›|b|,则a____b;⑿、|m-2|=1,则m=_________;⒀、若|x|=x,则x=________;⒁、倒数和绝对值都等于它本身的数是__________;⒂、有理数a、b在数轴上的位置如图所示,则|a|=___;|b|=____;⒃、-2的相反数是_______,倒数是______,绝对值是_______;⒄、绝对值小于10的整数有_____个,其中最小的一个是_____;⒅、一个数的绝对值的相反数是-0.04,这个数是_______;⒆、若a、b互为相反数,则|a|____|b|;⒇、若|a|=|b|,则a和b的关系为__________.3、选择题:⑴、下列说法中,错误的是_____A.+5的绝对值等于5 B.绝对值等于5 的数是5C.-5的绝对值是5 D.+5、-5的绝对值相等⑵、如果|a|=||,那么a与b之间的关系是A.a与b互为倒数B.a与b互为相反数C.a〮b=-1D.a〮b=1或a〮b=-1⑶、绝对值最小的有理数是_______A.1 B.0 C.-1 D.不存在⑷、如果a+b=0,下列格式不一定成立的是_______A.a= B.|a|=|b| C.a=-b D.a⑸、如果a,那么_______A.|a|‹0 B.-(-a)›0 C.|a|›0 D.-a‹0⑹、有理数a、b在数轴上的对应点的位置,分别在原点的两旁,那么|a|与|b|之间的大小关系是_______A.|a|›|b| B.|a|‹|b| C.|a|=|b| D.无法确定⑺、下列说法正确的是________A.一个数的相反数一定是负数 B.两个符号不同的数叫互为相反数C.|-(+x)|=x D.-|-2|=-2⑻、绝对值最小的整数是_______A.-1 B.1 C.0 D.不存在⑼、下列比较大小正确的是_______A. B.-(-21)‹+(-21) C.-|-10|›8 D.-|-7|=-(-)⑽、绝对值小于3的负数的个数有______A.2B.3C.4D.无数⑾、若a、b为有理数,那么下列结论中一定正确的是_____A.若a‹b,则|a|‹|b| B.若a›b,则|a|›|b|C.若a=b,则|a|=|b|D.若a≠b,则|a|≠|b|4、计算下列各题:⑴、|-8|-|-5| ⑵、(-3)+|-3| ⑶、|-9|(+5)D、15|-3|5、填表a12-a -5 7 + -(0.1)|a| 0 126、比较下列各组数的大小:⑴、-3与-;⑵、-0.5与|-2.5|;⑶、0与-|-9|; ⑷、|-3.5|与-3.57、把下列各数用“‹”连接起来:⑴、5,0,|-3|,-3,|-|,-(-8),-;⑵、1,-,0,-6;⑶、|-5|,-6,-(-5),-(-10),-|-10|⑷(|+|)(-)=-10,求O、,其中O和表示整数.8、比较下列各组数的大小:⑴、-(-9)与-(-8);⑵、|-|与50 ⑶、-与-3.14 ⑷、-与-0.273答案:1.⑴、√⑵、√⑶、×⑷、√⑸、√⑹、×⑺、×⑻、×⑼、×⑽、×⑾、×⑿、×⒀、×⒁、×⒂、×2.⑴‹⑵‹⑶‹⑷≠⑸‹⑹= ⑺-a ⑻±1,±2,±3,0⑼、>⑽3 ⑾‹⑿3或1 ⒀≧0 ⒁1 ⒂-a、b ⒃2 ⒄19 -9 ⒅±0.04 ⒆⒇相等或互为相反数3.⑴B ⑵D ⑶B ⑷A ⑸C ⑹D ⑺D ⑻C ⑼A ⑽D ⑾C4.⑴3 ⑵0 ⑶45 ⑷55a 5 0 -7 - 0.1-a - 0 -12|a| 5 7 0.16.⑴‹⑵‹⑶›⑷›7.⑴‹-3‹0‹|-|‹|-3|‹5‹-(-8);⑵-6‹-5‹0‹1;⑶-|-10|‹-6‹-|-5|‹|-5|‹-(-10);⑷5,5,1或1,1,5或-1,-1,5或-5,-5, 18.⑴›⑵‹⑶‹⑷›。

专题06 绝对值压轴题型汇总(解析版)

专题06 绝对值压轴题型汇总一、单选题1.若a 是最小的正整数,b 是绝对值最小的数,c 是相反数等于它本身的数,d 是到原点的距离等于2的负数,e 是最大的负整数,则a+b+c+d+e 的值为( ) A .1 B .2 C .-1 D .-2【答案】D 【分析】根据题意求出a 、b 、c 、d 、e 的值,再代入代数式求值即可. 【详解】a 是最小的正整数,a =1;b 是绝对值最小的数,b=0;c 是相反数等于它本身的数,c=0;d 是到原点的距离等于2的负数,d=-2;e 是最大的负整数,e=-1; a +b+c+d+e=1+0+0+(-2)+(-1)=-2 故选D 【点睛】本题考查了有理数中一些特殊的数,熟练掌握这是特殊的数是解题的关键.2.当x 满足( )时,1.50.5 2.50.5 3.50.5 4.50.5 5.50.5 6.50.5x x x x x x -+-+-+-+-+-的值取得最小. A .11119x ≤≤ B .1197x ≤≤C .1175x ≤≤D .111311x ≤≤ 【答案】A 【解析】 【分析】根据绝对值的意义分类讨论即可解决问题 【详解】设y=|1.5x -0.5|+|2.5x -0.5|+|3.5x -0.5|+|4.5x -0.5|+|5.5x -0.5|+|6.5x -0.5| =0.5(|3x -1|+|5x -1|+|7x -1|+|9x -1|+|11x -1|+|13x -1|), 当x≤113时,y=0.5(1-3x+1-5x+1-7x+1-9x+1-11x+1-13x )=3-24x ,此时y 的最小值为5913,当113<x≤111时,y=2-11x ,此时y 的最小值为1, 当111≤x≤19时,y=1+12x ,此时y 的最小值=1,当19≤x <17时,y=9x ,此时y 的最小值1, 当17≤x <15时,y=16x -1,y 的最小值为97, 当15≤x <13时,y=21x -2,此时y 的最小值为115,当x≤13时,y=24x -3,此时y 的最小值5,故选A . 【点睛】本题考查了绝对值的定义,熟记绝对值的定义是解题的关键.3.下列说法:① 平方等于64的数是8;② 若a ,b 互为相反数,ab ≠0,则1ab=-;③ 若a a -=,则3()a -的值为负数;④ 若ab ≠0,则a ba b +的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为( ) A .0个 B .1个 C .2个 D .3个【答案】B 【分析】根据平方、相反数的定义、绝对值的性质依次判定各项后即可解答. 【详解】① 平方等于64的数是±8; ② 若a ,b 互为相反数,ab ≠0,则1ab=-; ③ 若a a -=,可得a≥0,则()3a -的值为负数或0;④ 若ab ≠0,当a>0,b>0时,a b a b +=1+1=2;当a>0,b<0时,a b a b +=1-1=0;当a<0,b>0时,a b a b +=-1+1=0;当a<0,b<0时,a b a b +=-1-1=-2;所以a ba b+的取值在0,1,2,-2这四个数中,不可取的值是1. 综上,正确的结论为②,故选B. 【点睛】本题考查了平方的计算、相反数的定义及绝对值的性质,熟练运用相关知识是解决问题的关键.4.数轴上A 、B 、C 三点所代表的数分别是a 、1、c ,且11c a a c ---=-.若下列选项中,有一个表示A 、B 、C 三点在数轴上的位置关系,则此选项为何?( ) A . B . C . D .【答案】A 【分析】从选项数轴上找出a 、B 、c 的关系,代入|c ﹣1|﹣|a ﹣1|=|a ﹣c|.看是否成立. 【详解】∵数轴上A 、B 、C 三点所代表的数分别是a 、1、c ,设B 表示的数为b , ∵b=1,∵|c ﹣1|﹣|a ﹣1|=|a ﹣c|. ∵|c ﹣b|﹣|a ﹣b|=|a ﹣c|.A 、b <a <c ,则有|c ﹣b|﹣|a ﹣b|=c ﹣b ﹣a+b=c ﹣a=|a ﹣c|.正确,B 、c <b <a 则有|c ﹣b|﹣|a ﹣b|=b ﹣c ﹣a+b=2b ﹣c ﹣a≠|a ﹣c|.故错误,C 、a <c <b ,则有|c ﹣b|﹣|a ﹣b|=b ﹣c ﹣b+a=a ﹣c≠|a ﹣c|.故错误.D 、b <c <a ,则有|c ﹣b|﹣|a ﹣b|=c ﹣b ﹣a+b=c ﹣a≠|a ﹣c|.故错误. 故选A . 【点睛】熟记数轴定义以及运用有理数的运算规则是解决本题关键.更应该理解掌握验证等式是否成立的方法,若等式成立则必须左边运算结果等于右边运算结果.5.如果对于某一特定范围内的任意允许值,p=|1﹣2x|+|1﹣3x|+…+|1﹣9x|+|1﹣10x|的值恒为一常数,则此值为( ) A .2 B .3C .4D .5【答案】B 【详解】分析:若P 为定值,则化简后x 的系数为0,由此可判定出x 的取值范围,然后再根据绝对值的性质进行化简. 详解:∵P 为定值,∵P 的表达式化简后x 的系数为0; 由于2+3+4+5+6+7=8+9+10;∵x 的取值范围是:1-7x≥0且1-8x≤0,即18≤x≤17;所以P=(1-2x )+(1-3x )+…+(1-7x )-(1-8x )-(1-9x )-(1-10x )=6-3=3. 故选B .点睛:能够根据P 为常数的条件判断出x 的取值范围,是解答此题的关键.6.实数a 、b 、c 在数轴上的位置如图所示,化简:||||+||a b c a b c a -----的结果是( )A .a–2cB .–aC .aD .2b–a【答案】C 【解析】由数轴上a 、b 、c 的位置关系可知:a <b ,c >a ,c >b ,a <0,∵a –b <0,c –a >0,b –c <0,∵||||+||a b c a b c a -----=b –a –(c –a )+(c –b )–(–a )=b –a –c +a +c –b +a =a .故选C .7.已知x 的取值能使|x ﹣3|+|x+2|取得最小值,则所有2x中整数有( ) A .1个 B .2个 C .3个 D .4个【答案】C 【解析】分析:由题意已知x 的取值能使32x x -++取得最小值,可以分类讨论①3x ≥;②23x -<<;③2x ,≤-求出x 的范围,然后把x 代入2x中,进行求解.详解:∵已知x 的取值能使|x −3|+|x +2|取得最小值,∵当3x ≥时,有|x −3|+|x +2|=x −3+x +2=2x −1,∵当x =3时有最小值:2×3−1=5; ∵当−2<x <3时,有|x −3|+|x +2|=3−x +x +2=5,∵其有最小值5;当2x -≤时,有|x −3|+|x +2|=3−x −x −2=1−2x ,∵当x =−2时有最小值5, ∵23x -≤≤,可以使|x −3|+|x +2|取得最小值, ∵3122x -≤≤, ∵所有2x中整数有−1,0,1,共3个,故选C.点睛:结合两个绝对值符号里面的数,分类讨论,化简绝对值是解决本题的关键.8.若存在3个互不相同的有理数a ,b ,c ,使得|1﹣a |+|1﹣3a |+|1﹣4a |=|1﹣b |+|1﹣3b |+|1﹣4b |=|1﹣c |+|1﹣3c |+|1﹣4c |=t ,则t = A .112B .34C .1D .2【分析】 【详解】存在3个互不相同的实数a ,b ,c ,使得|1-a|+|1-3a|+|1-4a|=|1-b|+|1-3b|+|1-4b|=|1-c|+|1-3c|+|1-4c|=t ,当a≥1时,原式=a -1+3a -1+4a -1=8a -3;当1/3 ≤a <1时,原式=1-a+3a -1+4a -1=6a -1;当1/4 ≤a < 时,原式=1-a -3a+1+4a -1=1;当a <1/4 时,原式=1-a+1-3a+1-4a=3-8a ,则t=1, 故选C.二、填空题9.已知m 是正整数,设()()x y x m x m =---,例如:当x =2,m =6时,(2)26(26)8y =---=,若(1)(2)(3)(2019)110y y y y +++⋅⋅⋅⋅+=,则m =____. 【答案】11 【分析】分类讨论:当x m ≥时,()()x y x m x m =---=()()x m x m ---=0; 当x m <时,()()x y x m x m =---=()()m x x m ---=() 2m x -;然后表示出()()()()1232019y y y y +++⋅⋅⋅⋅+,即可计算出m 的值.【详解】解:∵当x m ≥时,()()x y x m x m =---=()()x m x m ---=0; 当x m <时,()()x y x m x m =---=()()m x x m ---=() 2m x -; ∵()()()()1232019y y y y +++⋅⋅⋅⋅+=2(m -1)+2(m -2)+2(m -3)+……+2[m -(m -1)]+2(m -m)+0+……+0=m(m -1) ∵m(m -1)=110,m 为正整数 ∵m=11. 【点睛】本题考查了绝对值的应用,分类讨论是关键.10.已知正整数a ,b ,满足220b b -+-=,0a b a b -+-=且a b ,则ab 的值为__________.【分析】根据绝对值的定义确定b 的范围,判断出a 的范围,再确定a 、b 的值,最后相乘即可. 【详解】解:∵220b b -+-= ∵2=2b 0b --≥,即b≤2 ∵b=1或b=2 又∵0a b a b -+-= ∵b-a 0a b -=≥,即a≤b ∵ab∵b=2,a=1 所以ab=2. 【点睛】考查绝对值的相关性质;通过确定a ,b 的范围确定a 、b 的值是解决本题的难点.11.若方程22|4|221||x x x x a -+-+-+=总有解,则a 的取值范围是___.【答案】a≥5. 【分析】根据线段上的点到线段两端点的距离的和最小,求出224221x x x x -+-+-+ 的最小值,可得答案. 【详解】解:∵224221x x x x -+-+-+可以看做22221x x -+-与4x x -+的和,∵22221x x -+-可以看作数轴上表示数2x 的点与表示2, 2, 1的点之间的距离求和,故当2=2x 时,22221x x -+-取得最小值1,此时=x ;4x x -+可以看作数轴上表示数x 的点与表示4, 0的点之间的距离求和,当04x << 时,4x x -+取得最小值4∵当x 224221x x x x -+-+-+有最小值为1+4=5, ∵当a≥5时,方程22422a 1=x x x x -+-+-+总有解.∵则a 的取值范围是:a≥5 故答案为: a≥5. 【点睛】考查了绝对值的应用,利用了两点之间的距离公式,注意224221x x x x -+-+-+可以看做数轴上表示数x 或2x 的点与表示4, 2, 2, 1, 0的点之间的距离求和,求得最小值,即可得a 的取值范围.12.已知x ,y 均为整数,且|x ﹣y |+|x ﹣3|=1,则x +y 的值为_____. 【答案】5或7或8或4 【分析】由绝对值的非负性质可知|x ﹣y |和|x ﹣3|这两个非负整数一个为1,一个为0,即1x y -=,30x -=或31x -=,0x y -=,然后解绝对值方程组即可,.【详解】解:因为x ,y 均为整数,31x y x -+-=, 可得:1x y -=,30x -=或31x -=,0x y -=, ∵当30x -=,1x y -=,可得:3x =,2y =,则5x y +=; 当30x -=,1x y -=-,可得:3x =,4y =,则7x y +=; 当31x -=,0x y -=,可得:4x =,4y =,则8x y +=; 当31x -=-,0x y -=,可得:2x =,2y =,则4x y +=, 故答案为5或7或8或4. 【点睛】本题考查了绝对值性质,由非负整数和为1得出加数分别为1和0,然后分类讨论解含绝对值的方程是关键.13.代数式|1008||504||1007|x x x ++++-的最小值是_____. 【答案】2015 【分析】根据两点之间的距离用绝对值的表达式,由图形确定出所求的最小值即可. 【详解】 如图:则代数式的最小值为|1007﹣(﹣1008)|=2015. 故答案为:2015. 【点睛】本题考查了绝对值及数轴,解题的关键是理解两点间的距离表达式.14.如图,在单位长度是1的数轴上,点A 和点C 所表示的两个数互为相反数,则点B 表示的数是______.【答案】﹣2 【分析】根据图示,点A 和点C 之间的距离是6,据此求出点C 表示的数,即可求得点B 表示的数. 【详解】∵点A 和点C 所表示的两个数互为相反数,点A 和点C 之间的距离是6 ∵点C 表示的数是﹣3,∵点B 与点C 之间的距离是1,且点B 在点C 右侧, ∵点B 表示的数是﹣2 故答案为﹣2 【点睛】本题为考查数轴和相反数的综合题,稍有难度,根据题意认真分析,熟练掌握数轴和相反数的相关知识点是解答本题的关键.三、解答题15.已知2(5)-40a b ++=.(1)求出,a b 并将这两个数在数轴上所对应的点A 、B 表示出来;(2)数轴上A 、B 之间的距离记作AB .定义:AB a b =-.设点P 在数轴上对应的数为x . ① 当13PA PB +=时,直接写出x 的值 . ② 设PA PB m +=,借助数轴求出m 的最小取值及对应的x .【答案】(1)a=-5,b=4,数轴表示见解析;(2)①-7或6;②m 最小值为9,-5≤m≤4 【分析】(1)根据非负数的性质得到a 和b 的值,在数轴上表示即可;(2)①根据题意可将13PA PB +=理解为点P 到A 和到B 的距离之和为13,再通过计算得到点P 表示的数;②根据题意得到当点P 在线段AB 上时,m 值最小,从而求解. 【详解】解:(1)∵2(5)-40a b ++=,∵a+5=0,b -4=0, ∵a=-5,b=4, 数轴表示如下:(2)①∵13PA PB +=, ∵5413x x ++-=,即点P 到A 和到B 的距离之和为13, ∵AB=4-(-5)=9, (13-9)÷2=2,∵点P 表示的数为-7或6; ②∵PA PB m +=,即点P 到A 和到B 的距离之和为m , 根据数轴可知:当点P 在线段AB 上时, m 最小,且为9,此时-5≤m≤4. 【点睛】本题考查了非负数的性质,数轴上两点之间的距离,绝对值的意义,解题关键是理解题目的意思,结合数轴解决问题.16.点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB =|a ﹣b |.利用数形结合思想回答下列问题: (1)数轴上表示1和3两点之间的距离 .(2)数轴上表示﹣12和﹣6的两点之间的距离是 . (3)数轴上表示x 和1的两点之间的距离表示为 . (4)若x 表示一个有理数,则|x ﹣2|+|x +4|最小值为 .【答案】(1)2;(2)6;(3)|1|x -;(4)6 【分析】(1)依据在数轴上A 、B 两点之间的距离||AB a b =-,即可得到结果. (2)依据在数轴上A 、B 两点之间的距离||AB a b =-,即可得到结果. (3)依据在数轴上A 、B 两点之间的距离||AB a b =-,即可得到结果.(4)判断出x 的点在表示4-和2的两点之间有最小值,即可得到|2||4|x x -++的最小值值即为|42|--的值. 【详解】解:(1)数轴上表示1和3两点之间的距离为|31|2-=; (2)数轴上表示12-和6-的两点之间的距离是|6(12)|6---=;(3)数轴上表示x 和1的两点之间的距离表示为|1|x -; (4)42x -<<时|2||4|x x -++有最小值, ∴最小值|42|6=--=,故答案为:2,6,|1|x -,6. 【点睛】本题考查的是绝对值的几何意义,两点间的距离,理解绝对值的几何意义是解决问题的关键. 17.阅读下列材料:我们知道|x|的几何意义是数轴上数x 的对应点与原点之间的距离,即|x|=|x -0|,也可以说,|x|表示数轴上数x 与数0对应点之间的距离,这个结论可以推广为|x 1-x 2|表示数轴上数x 1与数x 2对应点之间的距离. 例1:已知|x|=2,求x 的值.解:在数轴上与原点距离为2的点表示的数为-2或2,所以x 的值为-2或2. 例2:已知|x -1|=2,求x 的值.解:在数轴上与1对应的点的距离为2的点表示的数为3或-1,所以x 的值为3或-1 仿照材料中的解法,求下列各式中x 的值. (1)|x|=3; (2)|x -(-2)|=4.(3)利用数轴找出所有符合条件的整数x ,使得|x +3|+|x -2|=5,这样的整数是_______. 【答案】(1)-3或3;(2)2或-6;(3)-3,-2,-1,0,1,2 【分析】(1)|x|可表示数轴上表示x 的点到原点的距离,据此求解可得; (2)|x -(-2)|可表示数轴上与-2对应的点的距离,据此求解可得;(3)由于|x+3|表示x 与-3两数在数轴上所对的两点之间的距离,|x -2|表示x 与2两数在数轴上所对的两点之间的距离,而|x+3|+|x -2|=5,则x 表示的点在-3与2表示的点之间. 【详解】(1)在数轴上与原点距离为3的点表示的数为-3和3, ∵x 的值为:-3或3;(2)在数轴上与-2对应的点的距离为4的点表示的数为2和-6, ∵x 的值为:2或-6;(3)∵|x+3|表示x 与-3两数在数轴上所对的两点之间的距离,|x -2|表示x 与2两数在数轴上所对的两点之间的距离,而-3与2两数在数轴上所对的两点之间的距离为2-(-3)=5,|x+3|+|x -2|=5, ∵-3≤x≤2.∵使得|x+3|+|x -2|=5这样的整数是:-3,-2,-1,0,1,2.故答案为:-3,-2,-1,0,1,2.【点睛】本题考查了绝对值和数轴,由数轴上点的关系,得出到一点距离相等的点有两个,到两点相等的点是这两点的中点.18.同学们都知道,│4-(-2)│表示4与-2的差的绝对值,实际上也可理解为4与-2两数在数轴上所对应的两点之间的距离;同理│x-3│也可理解为x与3两数在数轴上所对应的两点之间的距离,试探索:(l)在数轴上表示x和-1两点之间的距离表示为.如果它们的距离为3,那么x=(2)找出所有符合条件的整数x,使│x-4│+│x+2│=6成立.(3)由以上探索猜想,对于任何有理数为x,│x-3│+│x-6│是否有最小值?如果有,写出最小值;如果没有,说明理由.x+;-4或2;(2)符合条件的整数x有:-2,-1,0,1,2,3,4;(3)有,【答案】(1)1最小值为3【分析】(1)根据题干中的说明可得结果;(2)要x的整数值可以进行分段计算,令x-4=0或x+2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.【详解】解:(1)由题意可得:x+,数轴上表示x和-1两点之间的距离表示为1如果它们的距离为3,那么x=-4或2,x+;-4或2;故答案为:1(2)令x-4=0或x+2=0时,则x=4或x=-2,当x<-2时,∵-(x-4)-(x+2)=6,-x+4-x-2=6,x=-2(范围内不成立),当-2<x<4时,∵-(x-4)+(x+2)=6,-x+4+x+2=6,6=6,∵x=-1,0,1,2,3,当x>4时,∵(x-4)+(x+2)=6,2x=8,x=4,x=4(范围内不成立),∵综上所述,符合条件的整数x 有:-2,-1,0,1,2,3,4;(3)由(2)的探索,设3、6、x 在数轴上所对应的点分别为A 、B 、X ,则|x -3|+|x -6|=AX+BX ,AB=|6-3|=3,∵AX+BX≥AB ,∵|x -3|+|x -6|≥3,当X 在A 、B 之间时成立.∵对于任何有理数x ,|x -3|+|x -6|有最小值为3.【点睛】本题考查的是绝对值的概念、几何意义、数轴等知识,在解决问题的过程中用到了分类讨论及数形结合的思想,是解决本题的关键.19.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)若()2230a b -++=,计算a b 的值.(2)当a ,b 在数轴上的位置如图所示,化简a b .(3)已知0a >,()8a a a =,求a 的值.【答案】(1)6;(2)-2b ;(3)2【分析】(1)先求出a 、b 的值,再根据题目中的规定,可以求得所求式子的值;(2)根据数轴可以判断a 、b 的正负和它们绝对值的大小,从而可以解答本题;(3)先表示出a a ,再表示()a a a ,根据题意和题目中的式子可以求得a 的值. 【详解】解:(1)∵()2230a b -++=,∵a=2,b=-3 ∵a∵b=|a+b|+|a -b|,∵a b =2∵(-3)=|2+(-3)|+|2-(-3)|=1+5=6;(2)由数轴可得,b <0<a ,|b|>|a|,∵a∵b=|a+b|+|a-b|=-(a+b)+(a-b)=-a-b+a-b=-2b;(3)∵a>0,(a∵a)∵a=8,∵(|a+a|+|a-a|)∵a=8,∵2a∵a=8,∵|2a+a|+|2a-a|=8,∵3a+a=8,解得,a=2.【点睛】本题考查有理数的混合运算,解答本题的关键是理解新运算“”的法则,明确有理数混合运算的计算方法.20.观察下列每对数在数轴上的对应点间的距离4与﹣2,3与5,﹣2与﹣6,﹣4与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?(2)若数轴上的点A表示的数为x,点B表示的数为﹣1,则A与B两点间的距离可以表示为;若|x﹣6|=3,则x=.(3)结合数轴求出|x﹣2|+|x+1|的最小值为,此时符合条件的整数x为.【答案】(1)所得距离与这两个数的差的绝对值相等;(2)|x+1|;x=9或3;(3)3;-1,0,1,2【分析】(1)直接借助数轴可以得出;(2)分三种情况进行讨论.当x<-1时,距离为-x-1,当-1<x<0时,距离为x+1,当x>0,距离为x+1;若|x-6|=3,则x-6=±3,求出x即可;(3)为x为有理数,所以要分类讨论x-1与x+3的正负,再去掉绝对值符号再计算.【详解】解:(1)由观察可知:所得距离与这两个数的差的绝对值相等;故答案为:所得距离与这两个数的差的绝对值相等;(2)结合数轴,我们发现应分以下三种情况进行讨论.当x<-1时,距离为-x-1,当-1<x <0时,距离为x+1,当x >0,距离为x+1.综上,我们得到A 与B 两点间的距离可以表示为|x+1|;若|x -6|=3,则x -6=±3,x=9或3;故答案为:|x+1|;x=9或3;(3)因为x 为有理数,就是说x 可以为正数,也可以为负数,也可以为0,所以要分情况讨论.①当x <-1时,x -2<0,x+1<0,所以|x -1|+|x+3|=-(x -2)-(x+1)=-2x -1>3;②当-1≤x <2时,x -2<0,x+1≥0,所以|x -1|+|x+3|=-(x -2)+(x+1)=3;③当x≥2时,x -2≥0,x+1>0,所以|x -2|+|x+1|=(x -2)+(x+1)=2x -1≥3;综上所述,当x=-1,0,1,2,所以|x -2|+|x+1|的最小值是3.故答案为:3;-1,0,1,2.【点睛】本题考查了数轴,借助数轴可以使有关绝对值的问题转化为数轴上有关距离的问题,反之,有关数轴上的距离问题也可以转化为绝对值问题.这种相互转化在解决某些问题时可以带来方便.事实上,|A -B|表示的几何意义就是在数轴上表示数A 与数B 的点之间的距离.一、单选题 1.(已知非零实数a ,b ,c ,满足1b a c a b c ++=-,则||abc abc 等于( ) A .±1B .﹣1C .0D .1【答案】D【详解】 1b a c a b c++=-,∴a,b,c 两个是负数,一个是正数,0abc ∴>, 1abcabc ∴=.选D.点睛:(1)b a c a b c++需要分类讨论,a,b,c 同正,同负,两正一负,两负一正. (2)化简绝对值公式:|x |,0,0x x x x -<⎧=⎨≥⎩.2.式子|x ﹣1|-3取最小值时,x 等于( )A .1B .2C .3D .4 【答案】A【分析】根据绝对值非负数的性质解答即可.【详解】解:∵|x −1|≥0,∵当|x −1|=0,即x =1时式子|x −1|-3取最小值.故选A .【点睛】本题主要考查绝对值的性质.理解一个数的绝对值是非负数这一性质是解题的关键. 3.满足27218a a ++-= 的整数 a 的个数有 ( )A .9 个B .8 个C .5 个D .4 个【答案】D【解析】令2a +7=0,2a -1=0,解得,72a =-,12a =, 1)当72a ≤-时, 27218a a ---+=,72a =-.舍去. 2)7122a -<<时, 27218a a +--=,0=0,所以a 为任何数,所以a 为-3,-2,-1,0.3)12a ≥-时,27218a a ++-=, 12a = ,舍去. 综上,a 为-3,-2,-1,0.选D.点睛:绝对值问题,要“找零点,分区间,分类讨论”,也就是令绝对值内为0,然后分别讨论,去绝对值利用公式x =,0,0x x x x ≥⎧⎨-<⎩,具体问题,往往把x 看做一个式子. 4.如果a 表示有理数,那么a +1,|a +1|,(a +1),|a |+1中肯定为正数的有( ) A .1个 B .2个 C .3个 D .4个【详解】根据有理数和绝对值的意义,可根据a 的值不确定,知a+1不一定是正数,(a+1)的值不确定,但是|a|≥0,可知|a+1|是正数, |a|+1一定是一个正数.故选A.5.已知a 、b 、c 在数轴上的位置如图所示,试化简|a +b |﹣|b |+|b +c |+|c |的结果是( )A .a +bB .a +b ﹣2cC .﹣a ﹣b ﹣2cD .a +b +2c【答案】C【解析】试题分析:根据数轴上右边的数总是大于左边的数即可判断a 、b 、c 的符号和大小,根据绝对值的性质即可去掉绝对值符号,然后合并同类项即可.解:根据数轴可得b <c <0<a ,且|a |<|b |,则a +b <0,b +c <0.则原式=﹣(a +b )+b ﹣(b +c )﹣c=﹣a ﹣b +b ﹣b ﹣c ﹣c=﹣a ﹣b ﹣2c .故选C .6.如果有理数a 和它的相反数的差的绝对值等于﹣2a ,则( )A .a≤0B .a≥0C .a=0D .任意有理数【答案】A【解析】根据绝对值的定义和性质,可知|a ﹣(﹣a )|=﹣2a ,可得a≤0,故选:A .点睛:本题考查绝对值的定义以及性质,解题的关键是熟练掌握基本概念,属于中考常见题.二、填空题7.若x 是有理数,则24682018x x x x x -+-+-+-+⋯+-的最小值是________.【答案】509040【分析】首先判断出|x ﹣2|+|x ﹣4|+|x ﹣6|+…+|x ﹣|就是求数轴上某点到2、4、6、…、的距离和的最小值;然后根据某点在a 、b 两点之间时,该点到a 、b 的距离和最小,当点x 在2与之间时,到2和距离和最小;当点在4与2016之间时,到4和2016距离和最小;…,所以当x =1010之间时,算式|x ﹣2|+|x ﹣4|+|x ﹣6|+…+|x ﹣的值最小,据此求出|x ﹣2|+|x ﹣4|+|x ﹣6|+…+|x ﹣|的最小值是多少即可.解:根据分析,可得当x=1010时,算式|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣的值最小,最小值是:(﹣2)+(2016﹣4)+(2014﹣6)+…+(1010-1010)=2016+2012+2008+…+0=(2016+0)×505÷2=2016×505÷2=509040∵|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣|的最小值是509040.【点睛】此题主要考查了绝对值的几何意义:|x|表示数轴上表示x的点到原点之间的距离,要熟练掌握,解答此题的关键是要明确:|x-a|表示数轴上表示x的点到表示a的点之间的距离.8.x是有理数,则10095221221x x-++的最小值是________.【答案】15 17【分析】本题分3种情况①当x<-95221时;②当-95221≤x≤100221时;③当x>100221时进行讨论,从而得到所求的结果.【详解】解:分三种情况讨论:(1)当x<-95221时,原式=-(x-100221)-(x+95221)=-x+100221-x-95221=-2x+5221>-2⨯(-95221)+5221=195221=1517;(2)当-95221≤x≤100221时,原式=-(x-100221)+x+95221=-x+100221+x+95221=195221=1517;(3)当x>100221时,原式=x-100221+x+95221=2x-5221>2×100221-5221=95221=1517;综合(1),(2),(3),可得最小值是15 17.故答案为1517. 【点睛】本题主要考查了绝对值的运用,关键是讨论时要讨论所有的情况,不能缺少一个. 9.在学习绝对值后,我们知道,在数轴上分别表示有理数a 、b 的A 、B 两点之间的距离等于||-a b .现请根据绝对值的意义并结合数轴解答以下问题:满足1|27|x x -++=的x 的值为___________.【答案】3或4-【分析】根据两点间的距离公式,对x 的值进行分类讨论,然后求出x ,即可解答;【详解】 解:根据题意,2|1|x x -++表示数轴上x 与1的距离与x 与2-的距离之和,当2x <-时,|(1)(2)2=1|7x x x x =---+-++,解得:4x =-;当21x -≤≤时,|(1)(2)2=1|7x x x x =--++-++,此方程无解,舍去;当1x >时,|(1)(2)2=1|7x x x x =-++-++,解得:3x =;∵满足1|27|x x -++=的x 的值为:3或4-.故答案为:3或4-.【点睛】本题考查了两点之间的距离,以及绝对值的几何意义,解题的关键是熟练掌握绝对值的几何意义,正确的把绝对值进行化简.注意利用分类讨论的思想解题.10.如图A ,B ,C ,D ,E 分别是数轴上五个连续整数所对应的点,其中有一点是原点,数a 对应的点在B 与C 之间,数b 对应的点在D 与E 之间,若3a b +=则原点可能是_________.【答案】B 或E【分析】先利用数轴特点确定a ,b 的关系从而求出a ,b 的值,确定原点.【详解】解:当为A 为原点时,|a|+|b|>3,当B 为原点时,|a|+|b|可能等于3,当C为原点时,|a|+|b|<3,当D为原点时,|a|+|b|<3,当E为原点时,|a|+|b|可能等于3.故答案为:B或E.【点睛】本题主要考查的是数轴与绝对值,分类讨论是解题的关键.11.①若2a与1-a互为相反数,则a=_________.②已知|a|=3,|b-1|=4,|a-b|=b-a,则a+b=_____________.【答案】-1 8或2或-6【分析】①根据互为相反数的两数和为0,列等式求解;②根据绝对值性质求出a,b值,再根据a b b a-=-确定a≤b,根据此关系确定a,b的值求解即可.【详解】解:①∵2a与1-a互为相反数,∵2a+(1-a)=0∵a=-1.②∵|a|=3,∵a=3或a= -3;∵|b-1|=4,∵b-1=4或b-1= -4,∵b=5或b= -3.∵|a-b|=b-a,∵a-b≤0,∵a≤b.∵a=3,b=5或a= -3,b=5或a= -3,b= -3,∵a+b=3+5=8或a+b=(-3)+5=2或a+b=(-3)+(-3)= -6即a+b的值为8或2或-6故答案为:①-1;②8或2或-6【点睛】本题考查相反数和绝对值的性质以及简单代数式求值问题,掌握绝对值的性质是解答此题的关键.12.已知a、b、c满足(a+b)(b+c)(c+a)=0,且abc<0,若a b cma b c=++,n2=且m n m n+=--,则3m2n+4mn2=____.【答案】10.【分析】根据(a+b)(b+c)(c+a)=0,可知a 、b 、c 中有2个数互为相反数,另一个为正数,故1111a b c m a b c=++=+-=,由n 2=且m n m n +=--,可求出n 的值,最终2234m n mn +即可得解。

专题29 绝对值(基础检测)(解析版)

专题2.9 绝对值(基础检测)一、单选题1.下列各数中,绝对值为43的数是()A.34B.34-C.114-D.113-【答案】D【分析】根据绝对值的定义判断即可.【详解】解:A、34的绝对值是34,故A不符合题意;B、34-的绝对值是34,故B不符合题意;C、因为15144-=-,所以54-的绝对值是54,故C不符合题意;D、因为14133-=-,所以43-的绝对值是43,故D符合题意.故选:D.【点睛】本题考查了绝对值的定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.正确理解绝对值的定义是解题的关键.2.中国人最早使用负数,可追溯到两千年前的秦汉时期,则﹣0.5的绝对值是()A.2-B.12-C.2 D.12【答案】D【分析】由绝对值的概念即可求得.【详解】﹣0.5的绝对值为0.5,即12.故选:D.【点睛】此题考查了绝对值的求法,解题的关键是熟练掌握绝对值的概念.3.下列各数,绝对值比1小的数是()A.3-B.1-C.0 D. 2 【答案】C【分析】求出选项中数的绝对值与1进行比较即可判断.【详解】解:A 、3-的绝对值是3,31>,不符合题意;B 、1-的绝对值是1,11=,不符合题意;C 、0的绝对值是0,01<,符合题意;D 、2的绝对值是2,21>,不符合题意;故选:C .【点睛】本题考查了绝对值的定义,解题的关键是:掌握绝对值的定义.4.某公司抽检盒装牛奶的容量,超过标准容量的部分记为正数,不足的部分记为负数.从容量的角度看,以下四盒牛奶容量最接近标准的是( )A .B .C .D .【答案】C【分析】找出四个选项中,四个数的绝对值的最小者即可得. 【详解】解:0.80.8+=, 1.2 1.2-=,0.50.5-=,11+=,因为0.50.81 1.2<<<,所以从容量的角度看,这四盒牛奶容量最接近标准的是选项C ,故选:C .【点睛】本题考查了正负数在实际生活中的应用、绝对值,理解题意,掌握绝对值的性质是解题关键. 5.4-的相反数是( )A .4B .4-C .14D .14- 【答案】B【分析】先计算绝对值,再取相反数即可. 【详解】44-=,4的相反数是:-4故选B .【点睛】本题考查了绝对值的概念,相反数的概念,理解概念是解题的关键.6.在数轴上表示下列各数的点中,距离原点最远的点表示的数是( )A .3-B .0C .1D .2【答案】A【分析】到原点距离最远的点,即绝对值最大的点,首先求出各个数的绝对值,即可作出判断.【详解】解:-3、0、1、2四个点所表示的有理数的绝对值分别为3、0、1、2,其中绝对值最大的是-3. 故选:A .【点睛】本题主要考查了绝对值的定义,一个数的绝对值就是表示这个数的点到原点的距离.二、填空题7.17-=________. 【答案】17 【分析】根据绝对值的意义解答即可. 【详解】解:1177-=, 故答案为:17. 【点睛】本题考查了绝对值的意义,解题的关键是掌握负数的绝对值等于它的相反数.8.化简:34ππ-+-=________.【答案】1【分析】根据绝对值的定义即可得出答案,去掉绝对值再计算.【详解】解:|π-3|+|4-π|=π-3+4-π=1,故答案为:1.【点睛】本题主要考查了绝对值的定义,解题的关键是熟记求绝对值的法则.9.代数式|2||2|x ++-的最小值等于__________.【答案】2【分析】根据绝对值的非负性即可得出结论【详解】解:∵|2|0x +≥ ;|2|-=2∴|2||2|x ++-的最小值为2【点睛】此题考查了绝对值的非负性和绝对值的意义,熟练掌握绝对值的性质是解本题的关键. 10.写出绝对值不大于2.5的所有整数_________.【答案】0,±1,±2 【分析】根据绝对值、整数的定义直接求得结果.【详解】解:根据题意得:绝对值不大于2.5的整数有0,±1,±2, 故答案为:0,±1,±2. 【点睛】此题主要考查了绝对值的定义.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.数轴上大于2-不大于2的整数有__________.【答案】-1、0、1、2【分析】可以借助数轴,在数轴上将-2与2在数轴上标出,再确定它们之间整数的个数.同时要注意不大于2的含义.【详解】解:由题意可得:大于-2且不大于2的整数为-1、0、1、2共四个整数,故答案为:-1、0、1、2.【点睛】本题考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 12.如图,有理数a 在数轴上的对应点为A ,已知b a <,且b 为正整数,则b 的值可以是______.【答案】1【分析】根据数轴的定义可得21a -<<-,从而可得12a <<,由此即可得出答案. 【详解】解:由数轴的定义得:21a -<<-,12a ∴<<,b a <,且b 为正整数,1b ∴=,故答案为:1.【点睛】本题考查了数轴、绝对值,熟练掌握数轴的定义是解题关键.13.数轴上有A ,B 两点,A 、B 两点间的距离为3,其中点A 表示数1-,则点B 表示的数是______.【答案】2或-4【分析】根据数轴上A 、B 两点之间的距离公式AB a b b a =-=-计算即可 ;【详解】解:设点B 表示的数为x ,根据题意得:()13x --=,∴13x +=± ,解得:x =2或-4,故答案为:2或-4.【点睛】本题考查的是数轴上两点之间的距离和数的绝对值计算之间的关系,理解绝对值的意义是解题的关键.14.下列四个地方:死海(海拔400-米),卡达拉低地(海拔133-米),罗讷河三角洲(海拔2-米),吐鲁番盆地(海拔154-米).其中最低的是__________.【答案】死海【分析】两个负数比较大小,绝对值大的反而小,据此解题.【详解】4001541332-<-<-<-∴死海最低,故答案为:死海.【点睛】本题考查有理数的大小比较,是基础考点,难度容易,掌握相关知识是解题关键.三、解答题15.在数轴上把下列各数表示出来,并用“<”连接各数.132-,3--,0,-1.5,()5--,122-【答案】132-<3--<122-< 1.5-<0<()5--,表示见解析. 【分析】根据绝对值的定义,相反数的定义,逐一化解排序即可得大小关系,再根据数轴上右边的数大于左边的数表示即可得.【详解】解:13 3.52-=-;33--=-;()55--=;12 2.52-=-,由此大小关系为:132-<3--<122-< 1.5-<0<()5--,表示如下图: 【点睛】本题主要考查了数轴和有理数大小的应用;能正确化解绝对值,正确理解有理数的大小比较是解题的关键,注意在数轴上的数,右边的总比左边的大. 16.已知有理数a ,b 在数轴上对应的点如图所示.(1)当0.5a =, 2.5b =-时,求1a b a b b b -++--+的值;(2)化简:1a b a b b b -++--+.【答案】(1)1;(2)1 【分析】(1)先代入数值,再根据绝对值的代数意义化简求解即可; (2)根据绝对值的代数意义、去括号、合并即可得到结果.【详解】解:(1)当0.5a =, 2.5b =-时原式()()0.5 2.50.5 2.5 2.5 2.51=--++-----+32 2.5 1.51=+--=(2)根据如图所示数轴上点的位置可知:1b <-,01a <<∴0a b ->,0a b +<,0b <,10b +<,原式()()()1a b a b b b =--+--++1a b a b b b =---+++1=【点睛】此题考查了整式的加减、数轴、以及绝对值,解题的关键是熟练掌握各自的定义.17.|2||7||3|0a b c -+-+-=,求2a b c --的值.【答案】6-【分析】根据非负数的性质求得a 、b 、c ,代入即可求得2a b c --的值.【详解】解:∵|2||7||3|0a b c -+-+-=,∴20,70,30a b c -=-=-=,即2,7,3a b c ===,∴222736a b c --=⨯--=-.【点睛】本题考查绝对值的非负性,代数式求值.理解几个非负数(式)的和为0,那么这几个数(式)都为0是解决此题的关键.18.若4,9,a b a b a b ==-=-,求+a b 的值【答案】-5或-13【分析】依据绝对值的性质求得a 、b 的值,然后代入求解即可.【详解】∵|a|=4,|b|=9,|a-b|=a-b ,∴a=±4,b=±9,a-b≥0.∴a=±4,b=-9.当a=4,b=-9时,则a+b=4+(-9)=-5;当a=-4,b=-9时,则a+b=-4+(-9)=-13.综上所述,a+b 的值为-5或-13.【点睛】考查了绝对值的性质、有理数的加法法则,熟练掌握相关性质是解题的关键.19.出租车司机小李某天下午在东西方向的公路上载运客人,如果规定向东为正,向西为负,出发地记为点.出租车的行程如下(单位:千米):12,7,10,13,11,4,13,14+-+--+-+.(1)最后一名客人到达目的地时,小李距出车地点A 的距离是多少?(2)若汽车耗油量为0.12升/千米,那么这天下午汽车共耗油多少升?【答案】(1)4千米;(2)10.08升.【分析】(1)求出各数之和,根据计算结果判断即可;(2)求出各数绝对值之和,得出行驶里程,再乘以0.12即可得到结果.【详解】解:(1)根据题意得::(+12)+(−7)+(+10)+(−13)+(−11)+(+4)+(−13)+(+14)=−4(千米), 故最后一名客人到达目的地时,小李距出车地点A 的距离4千米;(2)这天下午行驶总里程为:|+12|+|−7|+|+10|+|−13|+|−11|+|+4|+|−13|+|+14|=84(千米),则共耗油量为:84×0.12=10.08(升);所以这天下午汽车共耗油10.08升.【点睛】本题考查了正数和负数,利用绝对值的意义求出行驶里程是解答此题的关键.20.根据如图所示的数轴,解答下面问题.(1)分别写出A 、B 两点所表示的有理数;(2)请问A 、B 两点之间的距离是多少?(3)在数轴上画出与A 点距离为2的点(用不同于A 、B 的其它字母表).【答案】(1)点A 表示1;点B 表示-2.5;(2)距离是3.5;(3)两点C 、D 分别是-1,3,图详见解析.【分析】(1)观察数轴,即可找出A 、B 两点表示的数;(2)根据两点的距离公式,即可求出A 、B 两点之间的距离;(3)设与A 点距离为2的点表示的数为x ,根据两点间的距离公式即可得出关于x 的含绝对值符号的一元一次方程,解之即可得出x 的值,将其标记在数轴上即可.【详解】解:(1)根据数轴可知点A 表示1;点B 表示-2.5;(2)依题意得:AB 之间的距离为:()1 2.5--=1+2.5=3.5;(3)设与A 点距离为2的点表示的数为x ,根据题意得:|x-1|=2,解得:x=-1或x=3.将其标记在数轴上,点C 、D 即为所求.【点睛】本题考查数轴、两点间的距离公式以及解含绝对值符号的一元一次方程,解题的关键是:(1)观察数轴,找出A 、B 两点表示的数;(2)利用两点间的距离公式求出线段AB 的长度;(3)利用两点间的距离公式列出关于x 的含绝对值符号的一元一次方程.。

绝对值专项训练及其答案

绝对值专项训练及其答案1、如果a a 22-=-,则a 的取值范围是2.7=x ,则______=x ; 7=-x ,则______=x .3.如果3>a ,则______3=-a ,______3=-a .4、(1)如果m=-1,那么-(-│m │)=________.(2)若│a-b │=b-a ,则a ,b 的大小关系是________.5.若│a │=5,│b │=4,且a>0,b<0,则a=______,b=_______.6、若22x x --=-1,求x 的取值范围 。

7、若│a │=8,│b │=5,且a+b>0,那么a-b 的值是 。

8、a<0时,化简||3a a a+结果为 9、已知│a-2│+(b-3)2+│c-4│=0,则3a+2b-c=_________.10、已知│a-3│+│-b+5│+│c-2│=0,计算2a+b+c 的值.11、已知│a-3│+│b-4│=0,求a b ab+的值.12、已知│x-4│+│y-2│=0,求x+y 的相反数。

13、如果│x-4│+│2y+6│=0,求x 、y 。

总结:若几个非负数的和等于零,则这几个非负数同时为零14、│a │=a ,则a=15、│a │=-a ,则a=易错总结 :一个非负数的绝对值等于它本身,解题时容易只考虑到正数,将0忽略。

16、如果a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是1,求代数式x 2+(a+b)x-•cd 的值.17、(1)求|110-111|+|111-112|+…|149-150|的值.(2)化简100211003120021200312003120041-++-+-18、化简│1-a │+│2a+1│+│a │(a<-2).19、已知-a<b<-c<0<-d,且│d │<│c │,试将a,b,c,d,0•这五个数由大到小用“>”依次排列出来.20、若a 、b 互为相反数,表示有理数m 的点到原点的距离为1,求a+b a+b+2+m 的值。

中考数学复习---《有理数之绝对值》知识点总结与专项练习题(含答案)

中考数学复习---《有理数之绝对值》知识点总结与专项练习题(含答案) 知识点总结1. 圆锥的母线与高:连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高。

2. 圆锥的侧面展开图:圆锥的侧面展开图是一个扇形。

扇形的半径等于原来圆锥的母线长,扇形的弧长等于原来圆锥的底面圆的周长。

3. 圆锥的侧面积计算:lr r l S ππ=⋅⋅=221侧(l 是圆锥的母线长,r 是圆锥底面圆半径) 4. 圆锥的全面积:2r lr S ππ+=全(l 是圆锥的母线长,r 是圆锥底面圆半径)5. 圆锥的体积:高底面积圆锥⨯⨯=31V6. 圆锥的母线长,高,底面圆半径的关系:构成勾股定理。

练习题1、(2022•东营)用一张半圆形铁皮,围成一个底面半径为4cm 的圆锥形工件的侧面(接缝忽略不计),则圆锥的母线长为( )A .4cmB .8cmC .12cmD .16cm【分析】求得半圆形铁皮的半径即可求得围成的圆锥的母线长.【解答】解:设半圆形铁皮的半径为rcm ,根据题意得:πr=2π×4,解得:r=8,所以围成的圆锥的母线长为8cm,故选:B.2、(2022•济宁)已知圆锥的母线长8cm,底面圆的直径6cm,则这个圆锥的侧面积是()A.96πcm2B.48πcm2C.33πcm2D.24πcm2【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式进行计算.【解答】解:∵底面圆的直径为6cm,∴底面圆的半径为3cm,∴圆锥的侧面积=×8×2π×3=24πcm2.故选:D.3、.(2022•牡丹江)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是()A.90°B.100°C.120°D.150°【分析】根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:圆锥侧面展开图的弧长是:2π×1=2π,设圆心角的度数是n度.则=2π,解得:n=120.故选:C.4、(2022•柳州)如图,圆锥底面圆的半径AB=4,母线长AC=12,则这个圆锥的侧面积为()A.16πB.24πC.48πD.96π【分析】先求出弧AA′的长,再根据扇形面积的计算公式进行计算即可.【解答】解:弧AA′的长,就是圆锥的底面周长,即2π×4=8π,所以扇形的面积为×8π×12=48π,即圆锥的侧面积为48π,故选:C.5、(2022•广安)蒙古包可以近似地看作由圆锥和圆柱组成.下图是一个蒙古包的示意图,底面圆半径DE=2m,圆锥的高AC=1.5m,圆柱的高CD=2.5m,则下列说法错误的是()A.圆柱的底面积为4πm2B.圆柱的侧面积为10πm2C.圆锥的母线AB长为2.25mD.圆锥的侧面积为5πm2【分析】利用圆的面积公式对A选项进行判断;利用圆柱的侧面积=底面圆的周长×高可对B选项进行判断;根据勾股定理可对C选项进行判断;由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式可对D选项进行判断.【解答】解:∵底面圆半径DE=2m,∴圆柱的底面积为4πm2,所以A选项不符合题意;∵圆柱的高CD=2.5m,∴圆柱的侧面积=2π×2×2.5=10π(m2),所以B选项不符合题意;∵底面圆半径DE=2m,即BC=2m,圆锥的高AC=1.5m,∴圆锥的母线长AB==2.5(m),所以C选项符合题意;∴圆锥的侧面积=×2π×2×2.5=5π(m2),所以D选项不符合题意.故选:C.6、(2022•大庆)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是()A.60πB.65πC.90πD.120π【分析】先利用勾股定理求出圆锥侧面展开图扇形的半径,利用侧面展开图与底面圆的关系求出侧面展开图的弧长,再利用扇形面积公式即可求出圆锥侧面展开图的面积.【解答】解:圆锥侧面展开图扇形的半径为:=13,其弧长为:2×π×5=10π,∴圆锥侧面展开图的面积为:=65π.故选:B.7、(2022•赤峰)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形,则它的母线长为()A.10cm B.20cm C.5cm D.24cm【分析】根据弧长公式列方程求解即可.【解答】解:设母线的长为R,由题意得,πR=2π×12,解得R=24,∴母线的长为24cm,故选:D.8、(2022•无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为()A.12πB.15πC.20πD.24π【分析】运用公式s=πlr(其中勾股定理求解得到的母线长l为5)求解.【解答】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB===5,由已知得,母线长l=5,半径r为4,∴圆锥的侧面积是s=πlr=5×4×π=20π.故选:C.6、(2022•西藏)已知Rt△ABC的两直角边AC=8,BC=6,将Rt△ABC绕AC所在的直线旋转一周形成的立体图形的侧面积为(结果保留π).【分析】利用勾股定理求得母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:由勾股定理得AB=10,∵BC=6,∴圆锥的底面周长=12π,旋转体的侧面积=×12π×10=60π,故答案为:60π.7、(2022•郴州)如图,圆锥的母线长AB=12cm,底面圆的直径BC=10cm,则该圆锥的侧面积等于cm2.(结果用含π的式子表示)【分析】由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则根据扇形的面积公式可计算出该圆锥的侧面积.【解答】解:根据题意该圆锥的侧面积=×10π×12=60π(cm2).故答案为:60π.8、(2022•云南)某中学开展劳动实习,学生到教具加工厂制作圆锥.他们制作的圆锥,母线长为30cm,底面圆的半径为10cm,这种圆锥的侧面展开图的圆心角度数是.【分析】根据题意可知,圆锥的底面圆的周长=扇形的弧长,即可列出相应的方程,然后求解即可.【解答】解:设这种圆锥的侧面展开图的圆心角度数是n°,2π×10=,解得n=120,即这种圆锥的侧面展开图的圆心角度数是120°,故答案为:120°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值专题训练及答案1.如果|a|=﹣a,那么a的取值范围是()A .a>0 B.a<0 C.a≤0 D.a≥02.如果a是负数,那么﹣a、2a、a+|a|、这四个数中,负数的个数()A .1个B.2个C.3个D.4个3.计算:|﹣4|=()A .0 B.﹣4 C.D.44.若x的相反数是3,|y|=5,则x+y的值为()A .﹣8 B.2 C.8或﹣2 D.﹣8或25.下列说法中正确的是()A.有理数的绝对值是正数B.正数负数统称有理数C.整数分数统称有理数D.a的绝对值等于a6.如图,数轴的单位长度为1,如果点A、C表示的数的绝对值相等,则点B表示的数是()A .1 B.0 C.﹣1 D.﹣27.在数轴上距﹣2有3个单位长度的点所表示的数是()A .﹣5 B.1 C.﹣1 D.﹣5或18.在﹣(﹣2),﹣|﹣7|,﹣|+3|,,中,负数有()A .1个B.2个C.3个D.4个9.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A .a B.﹣a C.±a D.﹣|a|10.已知a、b、c大小如图所示,则的值为()A .1 B.﹣1 C.±1 D.11.a,b在数轴位置如图所示,则|a|与|b|关系是()A .|a|>|b| B.|a|≥|b| C.|a|<|b| D.|a|≤|b|12.已知|a|=﹣a、|b|=b、|a|>|b|>0,则下列正确的图形是()A .B.C.D.13.有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.14.已知a、b、c在数轴上的位置如图所示,化简|a|+|c﹣b|+|a﹣c|+|b﹣a| 15.a为有理数,下列判断正确的是()A .﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数16.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A .a>|a﹣b|>b B.a>b>|a﹣b| C.|a﹣b|>a>b D.|a﹣b|>b>a17.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A .3或13 B.13或﹣13 C.3或﹣3 D.﹣3或1318.下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数19.一个数的绝对值一定是()A .正数B.负数C.非负数D.非正数20.若ab>0,则++的值为()A .3 B.﹣1 C.±1或±3 D.3或﹣121.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A .1﹣b>﹣b>1+a>a B.1+a>a>1﹣b>﹣b C.1+a>1﹣b>a>﹣b D.1﹣b>1+a>﹣b>a22.若|﹣x|=﹣x,则x是()A .正数B.负数C.非正数D.非负数23.若|a|>﹣a,则a的取值范围是()A a>0B a≥0C a<0 D自然数....24.若|m﹣1|=5,则m的值为()A .6 B.﹣4 C.6或﹣4 D.﹣6或425.下列关系一定成立的是()A .若|a|=|b|,则a=b B.若|a|=b,则a=b C.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|26.已知a、b互为相反数,且|a﹣b|=6,则|b﹣1|的值为()A .2 B.2或3 C.4 D.2或427.a<0时,化简结果为()A .B.0 C.﹣1 D.﹣2a28.在有理数中,绝对值等于它本身的数有()A .1个B.2个C.3个D.无穷多个29.已知|x|=3,则在数轴上表示x的点与原点的距离是()A .3 B.±3 C.﹣3 D.0﹣330.若|a|+|b|=|a+b|,则a、b间的关系应满足()A.b同号B.b同号或其中至少一个为零C.b异号D.b异号或其中至少一个为零31.已知|m|=4,|n|=3,且mn<0,则m+n的值等于()A .7或﹣7 B.1或﹣1 C.7或1 D.﹣7或﹣132.任何一个有理数的绝对值在数轴上的位置是()A .原点两旁B.整个数轴C.原点右边D.原点及其右边33.下列各式的结论成立的是()A.若|m|=|n|,则m>n B.若m≥n,则|m|≥|n| C.若m<n<0,则|m|>|n| D.若|m|>|n|,则m>n 34.绝对值小于4的整数有()A .3个B.5个C.6个D.7个35.绝对值大于1而小于3.5的整数有()个.A .7 B.6 C.5 D.436.若x的绝对值小于1,则化简|x﹣1|+|x+1|得()A .0 B.2 C.2x D.﹣2x37.3.14﹣π的差的绝对值为()A .0 B.3.14﹣πC.π﹣3.14 D.0.1438.下列说法正确的是()A.有理数的绝对值一定是正数C.互为相反数的两个数的绝对值相等D.如果两个数的绝对值相等,那么这两个数相等39.下面说法错误的是()A.﹣(﹣5)的相反数是(﹣5)B.3和﹣3的绝对值相等C.数轴上右边的点比左边的点表示的数小D.若|a|>0,则a一定不为零40.已知|a|>a,|b|>b,且|a|>|b|,则()A .a>b B.a<b C.不能确定D.a=b41.已知|x|≤1,|y|≤1,那么|y+1|+|2y﹣x﹣4|的最小值是_________.42.从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有_________个.43.最大的负整数是_________,绝对值最小的有理数是_________.44.最大的负整数,绝对值最小的数,最小的正整数的和是0_________.45.若x+y=0,则|x|=|y|.(_________)46.绝对值等于10的数是_________.47.若|﹣a|=5,则a=_________.48.设A=|x﹣b|+|x﹣20|+|x﹣b﹣20|,其中0<b<20,b≤x≤20,则A的最小值是_________.49.﹣3.5的绝对值是_________;绝对值是5的数是_________;绝对值是﹣5的数是_________.50.绝对值小于10的所有正整数的和为_________.51.化简:|x﹣2|+|x+3|,并求其最小值.52.若a,b为有理数,且|a|=2,|b|=3,求a+b的值.53.若|x|=3,|y|=6,且xy<0,求2x+3y的值.54.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.55.若|a|=﹣a,则数a在数轴上的点应是在()A.原点的右侧B.原点的左侧C.原点或原点的右侧D.原点或原点的左侧56.已知a=12,b=﹣3,c=﹣(|b|﹣3),求|a|+2|b|+|c|的值.57. 下列判断错误的是()A.任何数的绝对值一定是正数B.一个负数的绝对值一定是正数C.一个正数的绝对值一定是正数D.任何数的绝对值都不是负数58.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=_________.(2)设x是数轴上一点对应的数,则|x+1|表示_________与_________之差的绝对值(3)若x为整数,且|x+5|+|x﹣2|=7,则所有满足条件的x为_________.59.若ab<0,试化简++.60.小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣(﹣1)|则表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x﹣2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x与________在数轴上的距离.小刚继续研究发现:x取不同的值时,|x﹣2|+|x+3|=5有最值,请你借助数轴解决下列问题(1)当|x﹣2|+|x+3|=5时,x可取整数_________(写出一个符合条件的整数即可);(2)若A=|x+1|+|x﹣5|,那么A的最小值是_________;(3)若B=|x+2|+|x|+|x﹣1|,那么B的最小值是_________,此时x为_________;(4)写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.参考答案:1.因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=﹣a,那么a的取值范围是a≤0.故选C.2.当a是负数时,根据题意得,﹣a>0,是正数,2a<0,是负数,a+|a|=0,既不是正数也不是负数,=﹣1,是负数;所以,2a、是负数,所以负数2个.故选B.3.根据一个负数的绝对值是它的相反数,可知|﹣4|=4.故选D.4.x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选D5 A、有理数0的绝对值是0,故A错误;B、正数、0、负数统称有理数,故B错误;C、整数分数统称有理数,故C正确;D、a<0时,a的绝对值等于﹣a,故D错误.故选C.6.如图,AC的中点即数轴的原点O.根据数轴可以得到点B表示的数是﹣1.故选C.7.依题意得:|﹣2﹣x|=3,即﹣2﹣x=3或﹣2﹣x=﹣3,解得:x=﹣5或x=1.故选D.8.∵﹣(﹣2)=2,是正数;﹣|﹣7|=﹣7,是负数;﹣|+3|=﹣3是负数;=,是正数;=﹣是负数;∴在以上数中,负数的个数是3.故选C.9. 依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.10.根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选A.11.∵a<﹣1,0<b<1,∴|a|>|b|.故选A12.∵|a|=﹣a、|b|=b,∴a<0,b>0,即a在原点的左侧,b在原点的右侧,∴可排除A、B,∵|a|>|b|,∴a到原点的距离大于b到原点的距离,∴可排除C,故选D.13.∵在数轴上原点右边的数大于0,左边的数小于0,右边的数总大于左边的数可知,b<a<0,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b14.由数轴,得b>c>0,a<0,∴c﹣b<0,a﹣c<0,b﹣a>0,∴|a|+|c﹣b|+|a﹣c|+|b﹣a|=﹣a﹣(c﹣b)﹣(a﹣c)+b﹣a=﹣a﹣c+b﹣a+c+b﹣a =2b﹣3a.15.A、错误,a=0时不成立;B、错误,a=0时不成立;C、正确,符合绝对值的非负性;D、错误,a=0时不成立.故选C16.∵ab<0,且a>b,∴a>0,b<0∴a﹣b>a>0∴|a﹣b|>a>b故选C.17.∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.18.A、﹣|a|不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.故选D.19.一个数的绝对值一定是非负数.故选C.20.因为ab>0,所以a,b同号.①若a,b同正,则++=1+1+1=3;②若a,b同负,则++=﹣1﹣1+1=﹣1.故选D.21.∵a>0,∴|a|=a;∵b<0,∴|b|=﹣b;又∵|a|<|b|<1,∴a<﹣b<1;∴1﹣b>1+a;而1+a>1,∴1﹣b>1+a>﹣b>a.故选D.22.∵|﹣x|=﹣x;∴x≤0.即x是非正数.故选C.23.若|a|>﹣a,则a的取值范围是a>0.故选A.24.∵|m﹣1|=5,∴m﹣1=±5,∴m=6或﹣4.故选C.25.选项A、B、C中,a与b的关系还有可能互为相反数.故选D.26.∵a、b互为相反数,∴a+b=0,∵|a﹣b|=6,∴b=±3,|b﹣1|=2或4.故选D.27.∵a<0,∴==0.故选B28.在有理数中,绝对值等于它本身的数为所有非负有理数,而非负有理数有无穷多个.故选D.29. ∵|x|=3,又∵轴上x的点到原点的距离是|x|,∴数轴上x的点与原点的距离是3;故选A.30.设a与b异号且都不为0,则|a+b|=||a|﹣|b||,当|a|>|b|时为|a|﹣|b|,当|a|≤|b|时为|b|﹣|a|.不满足条件|a|+|b|=|a+b|,当a与b同号时,可知|a|+|b|=|a+b|成立;当a与b至少一个为0时,|a|+|b|=|a+b|也成立.故选B.31. ∵|m|=4,|n|=3,∴m=±4,n=±3,又∵mn<0,∴当m=4时,n=﹣3,m+n=1,当m=﹣4时,n=3,m+n=﹣1,故选B.32.∵任何非0数的绝对值都大于0,∴任何非0数的绝对值所表示的数总在原点的右侧,∵0的绝对值是0,∴0的绝对值表示的数在原点.故选D.33.A、若m=﹣3,n=3,|m|=|n|,m<n,故结论不成立;B、若m=3,n=﹣4,m≥n,则|m|<|n|,故结论不成立;C、若m<n<0,则|m|>|n|,故结论成立;D、若m=﹣4,n=3,|m|>|n|,则m<n,故结论不成立.故选:C34.绝对值小于4的整数有:±3,±2,±1,0,共7个数.故选D35.绝对值大于1而小于3.5的整数有:2,3,﹣2,﹣3共4个.故选D.36.∵x的绝对值小于1,数轴表示如图:从而知道x+1>0,x﹣1<0;可知|x+1|+|x﹣1|=x+1+1﹣x=2.故选B.37.∵π>3.14,∴3.14﹣π<0,∴|3.14﹣π|=﹣(3.14﹣π)=π﹣3.14.故选:C38.A∵0的绝对值是0,故本选项错误.B∵负数的相反数是正数,故本选项错误.C∵互为相反数的两个数的绝对值相等,故本选项正确.D∵如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误.故选C.39.A、﹣(﹣5)=5,5的相反数是﹣5,故本选项说法正确;B、3和﹣3的绝对值都为3,故本选项说法正确;C、数轴上右边的数总大于左边的数,故本选项说法错误;D、绝对值大于0的数可能是正数也可能是负数,故本选项说法正确.故选C.40.∵|a|>a,|b|>b,∴a、b均为负数,又∵|a|>|b|,∴a<b.故选B41.∵|x|≤1,|y|≤1,∴﹣1≤x≤1,﹣1≤y≤1,故可得出:y+1≥0;2y﹣x﹣4<0,∴|y+1|+|2y﹣x﹣4|=y+1+(4+x﹣2y)=5+x﹣y,当x取﹣1,y取1时取得最小值,所以|y+1|+|2y﹣x﹣4|min=5﹣1﹣1=3.故答案为:342.∵千位数与个位数之差的绝对值为2,可得“数对”,分别是:(0,2),(1,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),∵(0,2)只能是千位2,个位0,∴一共15种选择,∴从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有15×8×7=840个.43.最大的负整数是﹣1,绝对值最小的有理数是0.44.最大的负整数是﹣1,绝对值最小的数0,最小的正整数是1∵﹣1+0+1=0,∴最大的负整数,绝对值最小的数,最小的正整数的和是0正确.故答案为:√45.∵x+y=0,∴x、y互为相反数.∴|x|=|y|.故答案为(√)46.绝对值等于10的数是±10.47.若|﹣a|=5,则a=±5.48.由题意得:从b≤x≤20得知,x﹣b≥0 x﹣20≤0 x﹣b﹣20≤0,A=|x﹣b|+|x﹣20|+|x﹣b﹣20|=(x﹣b)+(20﹣x)+(20+b﹣x)=40﹣x,又x最大是20,则上式最小值是40﹣20=20.49.﹣3.5的绝对值是 3.5;绝对值是5的数是±5;绝对值是﹣5的数是不存在.故本题的答案是:45.51.①当x≤﹣3时,原式=2﹣x﹣x﹣3=﹣2x﹣1;②当﹣3<x<2时,原式=2﹣x+x+3=5;③当x≥2时,原式=x﹣2+x+3=2x+1;∴最小值为552.∵a,b为有理数,|a|=2,|b|=3,∴a=±2,b=±3,当a=+2,b=+3时,a+b=2+3=5;当a=﹣2,b=﹣3时,a+b=﹣2﹣3=﹣5;当a=+2,b=﹣3时,a+b=2﹣3=﹣1;当a=﹣2,b=+3时,a+b=﹣2+3=1.故答案为:±5、±1.53.∵|x|=3,|y|=6,∴x=±3,y=±6,∵xy<0,∴x=3,y=﹣6,或x=﹣3,y=6,①x=3,y=﹣6时,原式=2×3+3×(﹣6)=6﹣18=﹣12;②x=﹣3,y=6,原式=2×(﹣3)+3×6=﹣6+18=1254.∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=503004.故答案为:503004.55.∵|a|=﹣a,∴a≤0,即可得数a在数轴上的点应是在原点或原点的左侧.故选D.56. ∵a=12,b=﹣3,∴c=﹣(|b|﹣3)=﹣(3﹣3)=0,∴|a|+2|b|+|c|=12+2×3+0=18.57.根据绝对值性质可知,一个负数的绝对值一定是正数;一个正数的绝对值一定是正数;任何数的绝对值都不是负数.B,C,D都正确.A中,0的绝对值是0,错误.故选A.58.(1)|5﹣(﹣2)|=|5+2|=7;(2)|x+1|表示x与﹣1之差的绝对值;(3)∵|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x与2两数在数轴上所对的两点之间的距离,而﹣5与2两数在数轴上所对的两点之间的距离为2﹣(﹣5)=7,|x+5|+|x﹣2|=7,∴﹣5≤x≤2.故答案为7;x,﹣1;﹣5≤x≤2.59.∵ab<0,∴a和b中有一个正数,一个负数,不妨设a>0,b<0,原式=1﹣1﹣1=﹣160. ∵|x+3|=|x﹣(﹣3)|,∴|x+3|可看成x与﹣3的点在数轴上的距离;(1)x=0时,|x﹣2|+|x+3|=|﹣2|+|3|=2+3=5;(2)|x+1|+|x﹣5|表示x到点﹣1与到点5的距离之和,当﹣1≤x≤5时,A有最小值,即表示数5的点到表示数﹣1的点的距离,所以A的最小值为6;(3)|x+2|+|x|+|x﹣1|表示x到数﹣2、0、1三点的距离之和,所以当x=0时,它们的距离之和最小,即B的最小值为3,此时x=0;(4)|x+5|+|x+3|+|x+1|+|x﹣2|表示x到数﹣5、﹣3、﹣1、2四点的距离之和,所以当﹣3≤x≤﹣1时,它们的距离之和有最小值9,即|x+5|+|x+3|+|x+1|+|x﹣2|的最小值为9.。

相关文档
最新文档