过程控制系统课程设计 基于PID的上水箱液位控制系统设计

合集下载

基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计水箱液位控制系统是一种常见的自动化控制系统,通过控制水位的高低来实现水箱中水的供应与排放。

该系统常用于水处理、供水系统、工业生产等领域。

本篇毕业设计将基于可编程逻辑控制器(PLC)来设计一个水箱液位控制系统。

PLC作为控制器,能够实现对水位的监测、控制和保护。

首先,本设计将使用传感器来监测水箱的液位。

液位传感器将放置在水箱内部,在不同的液位位置测量水的高度。

传感器将通过模拟信号将液位信息传输给PLC。

PLC将读取并处理传感器的信号,得到水箱的液位信息。

其次,PLC将根据液位信息来控制水泵的运行。

当水箱的液位低于一定的阈值时,PLC将启动水泵,从水源处将水注入到水箱中。

当液位达到一定的高度时,PLC将关闭水泵,停止水的注入。

通过控制水泵的启动和停止,系统可以实现自动补水,从而保持水箱的水位在一个恰当的范围内。

此外,本系统还将具备一定的保护功能。

当水箱液位过高或过低时,PLC将触发报警装置,以便及时采取措施解决问题。

同时,系统将设置相应的安全控制,以防止水泵出现过载或短路等故障。

为了实现PLC控制系统的功能,本设计将使用PLC编程软件进行程序的编写和调试。

程序将根据液位传感器的输入信号,进行逻辑判断和控制指令的输出。

同时,本设计将与水泵、报警装置等硬件进行连接,以实现实际的控制功能。

最后,本设计将进行系统的仿真和调试。

通过模拟真实的液位变化情况,测试系统的控制性能和稳定性。

在确保系统正常运行的前提下,对系统进行各项性能指标的测试和评估。

通过该毕业设计的实施,我将能够掌握PLC水箱液位控制系统的原理和设计方法,提升自己在自动化控制领域的实践能力和工程应用能力。

同时,通过该设计的完成,也能为工业生产中的水箱液位控制问题提供一种可行的解决方案。

水箱液位控制系统设计设计

水箱液位控制系统设计设计

水箱液位控制系统设计摘要液位是工业工程中的常见变量,在各种过程控制中的应用越来越广泛。

例如在食品加工、溶液过滤、化工生产等多种行业的生产加工过程中,通常需要使用蓄液池,而蓄液池中的液位需要维持一定的高度,既不能太满溢出造成危险,也不能过少而无法满足生产需求。

因此液位高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用合适的方法对液位进行检测、控制,能收到很好的效果。

本文以实验室自制的双容水箱作为液位控制研究对象,通过上位机、研华的PCI-1710L板卡、电动调节阀、压力液位变送器组成的控制系统和压力液位变送器、变频器、水泵组成的控制系统分别实现了单容水箱的远程控制和就地控制,并在文章最后理论性的阐述了双容水箱的控制方法。

设计中以组态软件--组态王为开发工具,开发了系统的监视与控制界面,并且自己编程实现PID控制程序,使系统具备了对现场过程数据的动态监视功能、历史数据的归档功能、异常信号的报警功能以及现场操作的指导功能。

关键词:水箱液位;PID控制;组态王;变频器;The design of the tank level control systemAbstractThe liquid level is one of the common variables in Industrial Engineering, the process control is more and more widely used. For example, in the production process of food processing, filtering solution, chemical production and other industries, liquid storage tank is usually used, and making the liquid level of liquid storage tank at a certain height is very important, neither too overflow to risk nor too short not to meet the production demand. Therefore, the height of liquid level in the industrial control process is one of the important parameters, especially in the dynamic condition. If adopt the appropriate method for the control of the liquid level detection, we can get good effect.The research object is based on the self-made double tank level control system, through the host computer, the Advantech PCI-1710L card, the electric control valve, the pressure liquid level transmitter, the frequency converter and the water pump we get two different kinds of the cascade control system for the single water tank of the liquid level control, respectively realized the effect of the remote control and local control. And at last, this article expounds the theory of double water tank control method.Choose the design of configuration software – King view for development tools, we have had the development of the system to monitor and control interface, and also have programmed PID control procedures that made the system has a field process data, dynamic monitoring historical data archiving function, abnormal signal of the alarm function and the guidance function of the on-site operation.Keywords: Tank level; PID control; King view;Frequency converter;目录摘要 (I)Abstract .......................................................................................................................... I I 第一章绪论 (1)1.1选题背景及意义 (1)1.2 液位控制系统的发展现状 (2)1.3 本文的主要工作 (3)第二章控制对象及算法简介 (5)2.1被控制变量的选择 (5)2.2 执行器的选择 (5)2.3 压力液位变送器的选择 (5)2.4 研华板卡PCI-1710L简介 (6)2.4.1模拟量输入连接 (8)2.5 PID控制算法概述 (9)2.5.1 PID控制器的应用与发展 (9)2.5.2 PID算法类型[1] (10)2.5.3 PID两种控制方式 (11)第三章基于组态王的单容水箱液位控制系统 (13)3.1组态王简介[8] (13)3.1.1组态王软件的组成 (13)3.1.2 制作工程的一般步骤 (14)3.1.3 组态王与外部设备通信 (14)3.2控制方案选取 (15)3.3 上位机组态软件的开发 (16)3.3.1监控画面 (16)3.3.2构造数据库 (17)3.3.3数据通信 (19)3.3.4 命令语言的编写 (20)3.3.5 实时曲线 (21)3.3.6 历史报警查询[11] (21)3.3.7 历史曲线 (23)3.4 参数整定 (25)第四章基于变频器的单容液位控制系统 (26)4.1 变频调速基础 (26)4.2 三菱通用变频器FR-D700简要介绍 (27)4.2.1 FR-D700简介 (27)4.2.2 三菱变频器FR-D740-1.5K-CHT常规介绍 (28)4.2.3控制电路接线端极端子功能介绍 (29)4.2.4 操作面板及其功能介绍 (31)4.3 变频器的作用 (31)4.4 控制系统调试 (32)4.4.1 操作步骤 (33)4.4.2 参数整定 (33)第五章双容水箱液位控制系统 (35)5.1串级控制 (35)5.1.1 串级控制概念 (35)5.1.2 水箱液位控制方法 (36)5.1.4 串级控制的特点 (36)5.2 串级控制系统的设计 (36)5.2.1 变量的选择 (36)5.2.2主副控制器的控制规律 (37)5.2.3 主副控制器正反作用的选择 (37)5.3串级控制系统的工业应用 (38)5.4 本章小结 (38)总结 (39)参考文献 (40)附录 (41)致谢 (43)第一章绪论1.1选题背景及意义液位是工业生产过程控制中很重要的被控变量。

液位控制系统——过程控制课程设计

液位控制系统——过程控制课程设计
通过对控制器程序的设计,使我掌握了运用SIMATIC S7-200型PLC实现PID算法控制以及单闭环液位控制系统的设计方法,使我对小型液位控制系统的硬件及软件设计具备了综合分析和独立思考的能力。
参考文献
[1]林锦国.过程控制.第3版.南京.东南大学出版社.2011
[2]范永久.化工测量及仪表.北京.化工工业出版社.2002
2个中间结果参数:PVn-1为上一次的归一化测量值;Mx是计算中的中间参量,是积分之和。可见,9个参数中有:1个输出变量,1个输入变量,5个常数,2个中间变量。设定值SPn、采样时间Ts和3个PID参数共5个常数应事先确定,并在程序初始化时、或在每次执行PID模块指令前,存放到数值存储区,以供调用。
[7]潘新民.微型计算机控制技术.第2版.北京.电子工业出版社.2011
[8]廖常初.PLC编程及应用.北京.机械工业出版社.2002
MOVR0.0,VD124//关闭微分作用
MOVB 100, SMB34 //100ms放入特殊内存字节SMB34,用于控制中断0的时间间隔
ATCH INT_0, 10//调用中断程序
ENI//全局性启用中断
INT0
LD SM0.0//RUN模式下,SM0.0=1
ITDAIW0, AC0//模拟量输入映像寄存器AIW0的数转双精度数存入AC0寄存器
可得到:Mn = Kc*(SPn-PVn)+Kc*(Ts/Ti)* (SPk-PVk)
+Kc*(Td/Ts)*[(SPn—PVn)-(SPn-PVn-1)]
=Kc*(SPn-PVn)+Kc*(Ts/Ti)*(SPn-PVn)
+Kc*(Td/Ts)*[PVn-1—PVn]+Mx

毕业设计-水箱液位控制系统设计

毕业设计-水箱液位控制系统设计

济南铁道职业技术学院毕业设计题目:水箱液位控制系统设计系别:电气工程系专业:电气自动化班级:0631班****:*******:**目录任务书 (2)摘要 (3)1 绪论 (4)1.1 过程控制的定义 (4)1.2 过程控制的目的 (4)1.3 过程控制的特点 (5)1.4 过程控制的发展与趋势 (5)2 水箱液位控制系统的原理 (6)2.1 人工控制与自动控制 (6)2.2 水箱液位控制系统的原理框图 (7)2.3 水箱液位控制系统的数学模型 (8)3 水箱液位控制系统的组成 (11)3.1 被控制变量的选择 (11)3.2 执行器的选择 (11)3.3 PID控制器的选择 (15)3.4 液位变送器的选择 (17)4 PID控制规律 (18)4.1 比例控制 (18)4.2 积分控制 (21)4.3 微分控制 (21)4.4 比例积分控制 (21)4.5 比例积分微分控制 (22)5 应用实例 (22)5.1 液位控制在厕所中的应用 (22)5.2 液位控制在汽车上的应用 (23)总结 (24)致谢 (25)参考文献 (25)济南铁道职业技术学院毕业设计(论文)任务书摘要在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题, 例如居民生活用水的供应, 饮料、食品加工, 溶液过滤, 化工生产等多种行业的生产加工过程, 通常需要使用蓄液池, 蓄液池中的液位需要维持合适的高度, 既不能太满溢出造成浪费, 也不能过少而无法满足需求。

因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。

PID控制(比例、积分和微分控制)是目前采用最多的控制方法。

本文主要是对一水箱液位控制系统的设计过程,涉及到液位的动态控制、控制系统的建模、PID算法、传感器和调节阀等一系列的知识。

作为单容水箱液位的控制系统,其模型为一阶惯性函数,控制方式采用了PID算法,调节阀为电动调节阀。

水箱液位控制系统设计设计

水箱液位控制系统设计设计

水箱液位控制系统设计设计一、系统概述水箱液位控制系统是一个智能化的系统,用于控制水箱液位并保持在设定的范围内。

该系统由传感器、控制器和执行器组成,通过传感器检测水箱液位,并将液位信号传输给控制器,控制器根据设定的参数进行判断和控制,最终通过执行器完成控制动作。

二、系统组成1.传感器:使用浮球传感器或超声波传感器来检测水箱液位。

传感器将液位转化为电信号,并传输给控制器。

2.控制器:控制器是系统的核心部分,它接收传感器的信号,并进行处理和判断。

控制器可以根据设定的参数来判断液位是否达到目标范围,并通过输出信号来控制执行器的动作。

此外,控制器还需要具备人机界面,方便用户进行参数设置和监测。

3.执行器:执行器根据控制器的控制信号,完成相应的动作。

例如,当液位过高时,执行器可以控制水泵关闭或排水阀打开,以降低液位;当液位过低时,执行器可以控制水泵开启或进水阀打开,以提高液位。

4.电源:为整个系统提供电能。

三、系统设计思路1.确定液位控制的范围:根据实际需求,确定水箱液位的上限和下限。

一般情况下,液位控制范围应在50%至85%之间。

2.选择合适的传感器:根据水箱的结构和液位控制要求,选择合适的传感器。

浮球传感器适用于小型水箱,超声波传感器适用于大型水箱。

3.设计控制器:控制器的主要功能是接收传感器的信号、处理和判断液位,并输出控制信号。

在设计控制器时,需要考虑如下几个方面:-信号处理:传感器的信号可能存在噪声,需要进行滤波处理,保证信号的准确性。

-参数设置:控制器应提供人机界面,方便用户根据实际需求设置参数,例如液位上下限、启停时间等。

-控制算法:根据设定的参数,控制器需要实现相应的控制算法,例如比例控制、积分控制等。

-控制输出:控制器根据判断结果输出控制信号,控制执行器的动作。

4.选用适配的执行器:根据液位控制要求,选择适合的执行器,例如水泵、进水阀、排水阀等。

5.系统集成与调试:将传感器、控制器和执行器进行连接和集成,进行系统调试和性能测试。

过程控制实验报告5(上水箱液位和流量串级系统)

过程控制实验报告5(上水箱液位和流量串级系统)

过程控制实验报告5(上水箱液位和流量串
级系统)
班级:082班座号:姓名成绩:
课程名称:过程控制工程实验项目:上水箱液位和流量串级系统
一、实验目的:
通过实验掌握串级控制系统的基本概念,掌握串级控制系统的组成结构,即主被控参数、
三、实验步骤:
1、打开计算机组态王软件的工程管理器,选中“串级实验”,点击运行,进入串级实验界面。

2、点击“自动/手动”按钮,使系统在自动状态,点击“PID设定按钮”,调出PID设定界面。

PID设定1框图是副回路流量参数,PID设定2框图是主回路液位参数。

3、投入参数,观察液位和流量的曲线,调整参数观察计算机控制的效果。

待系统稳定后,给定加个阶跃信号,观察其液位的变化曲线。

4、再等系统稳定后,给系统下水箱加干扰信号,观察下水箱液位变化的曲线。

四、计算机控制的参数设置:
五、实验报告:
1、根据试验结果编写实验报告。

2、按5-2衰减曲线调节器参数计算表填写表格中的数据
3、整理并附上记录仪的下列过渡过程曲线:
(1)整定副调节器时得到的4:1衰减曲线。

(2)整定主调节器时得到的4:1衰减曲线。

(3)主副调节器参数整定后,干扰作用于上水箱中,主变量H1的过渡过程曲线。

(4)主副调节器参数整定后,干扰作用于流量中,主变量H1的过渡过程曲线。

4、列表比较控制质量:
-全文完-。

上水箱液位 PID 整定实验实验报告

《控制工程实验》实验报告实验题目:上水箱液位 PID 整定实验课程名称:《控制工程实验》姓名:学号:专业:年级:院、所:日期: 2019.04.12实验一上水箱液位 PID 整定实验一、实验目的1.了解单容液位定值控制的结构与组成。

2.掌握单容液位定值控制调节器参数的整定和投运方法。

3.研究调节器相关参数的变化对系统静、动态性能的影响。

4.了解 P、PI、PD 和 PID 四种调节器分别对液位控制的作用。

5.掌握控制系统的实现过程。

二、实验设备1. 实验装置对象及控制柜 1套2. 装有Step7、WinCC等软件的计算机 1台3. CP5621专用网卡及MPI通讯线各1个三、实验原理本实验系统结构图和方框图如图1所示。

被控量为上水箱(也可采用中水箱或下水箱)的液位高度,实验要求上水箱的液位稳定在给定值。

将压力传感器 LT1 检测到的上水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制上水箱液位的目的。

为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为 PI 或 PID 控制。

图 1 上水箱单容液位定值控制(a)结构图 (b)方框图四、实验内容与步骤本实验选择上水箱作为被控对象。

实验之前先将储水箱中贮足水量,然后将阀门 F1-1、F1-6、F1-10、F1-11 全开,将中水箱出水阀门 F1-9 开至适当开度(50%左右),其余阀门均关闭。

1.用 MPI 通讯电缆线将 S7-300PLC 连接到计算机 CP5621 专用网卡,并按照控制柜接线图连接实验系统。

2.接通总电源空气开关,合上单相,打开钥匙开关,给系统上电,将相应旋钮开关打至开,给 S7-300PLC 及电动调节阀上电。

3.打开 Step 7 软件,并打开“S7-300PLC”程序进行下载,然后将S7-300PLC 置于运行状态,然后运行 WinCC 组态环境,打开“S7-300PLC 控制系统”工程,然后进入 WinCC 运行环境,在主菜单中点击“实验三、上水箱液位 PID 整定实验”,进入实验三的监控界面。

基于PLC的水箱液位PID控制

基于PLC的水箱液位PID控制摘要本设计的课题是基于PLC的水箱液位PID控制。

在设计中,主要是数学模型的建立和控制算法的设计,因此在论文设计中用到的PID算法较多,而在PLC方面的知识较少。

本文的主要内容包括:PLC的产生和定义、过程控制的发展、水箱的特性确定与实验曲线分析, FX2系列可编程控制器的硬件掌握,PID参数的整定及各个参数的控制性能的比较,应PID控制算法所得到的实验曲线分析,整个系统各个部分的介绍和讲解PLC的过程控制指令PID指令来控制水箱水位。

关键词:FX2系列PLC,控制对象特性,PID控制算法,扩充临界比例法,PID指令,实验。

The liquid level control system based on PLCThe subject of graduation design is based on PLC, liquid level control system design. In the design, the author is mainly responsible for the mathematical model and control algorithm design, so the design used in the paper referred to was more PID algorithm, PLC in less knowledge.Main contents of this article: PLC creation and definition, process control, development, and water tanks and experiment to determine the characteristics curve analysis, FX2 series PLC hardware control, PID tuning parameters and various parameters of the control performance comparison, the application PID control algorithm obtained experimental curve analysis, the entire system, introduce and explain the various parts of the PLC process control commands to control the tank level PID instruction.Keywords:FX2 series PLC, the control object characteristics, PID control algorithm, to expand the critical proportion method, PID instruction, experimental.目录中文摘要 (1)英文摘要 (2)1 绪论 (5)1.1 PLC的产生、定义及现状 (5)1.1.1PLC的产生、定义 (5)1.1.2PLC的发展现状 (5)1.2过程控制的发展 (6)1.3本文研究的目的、主要内容 (6)1.3.1本文研究的目的、意义 (7)1.3.2本文研究的主要内容 (7)2 FX2系列PLC和控制对象介绍 (8)2.1 三菱PLC控制系统 (8)2.1.1 CPU模块 (8)2.1.2 I/O模块 (9)2.1.3电源模块 (9)2.2 过程建模 (9)2.2.1 一阶单容上水箱对象特性 (9)2.2.2 二阶双容下水箱对象特性 (14)3 PID调节及串级控制系统 (17)3.1 PID调节的各个环节及其调节过程 (17)3.1.1比例控制及其调节过程 (18)3.1.2比例积分调节 (19)3.1.3比例积分微分调节 (19)3.2 串级控制 (20)3.2.1串级控制系统的结构 (20)3.2.2串级控制系统的特点 (21)3.2.3串级控制系统的设计 (21)3.3 扩充临界比例度法 (23)3.4 三菱FX2系列PLC中PID指令的使用 (24)3.5在PLC中的PID控制的编程 (25)3.5.1回路的输入输出变量的转换和标准化 (25)3.6变量的范围 (27)4 控制方案设计 (29)4.1 系统设计 (28)4.1.1上水箱液位的自动调节 (28)4.1.2上水箱下水箱液位串级控制系统 (30)4.2 硬件设计 (30)4.2.1检测单元 (31)4.2.2执行单元 (31)4.2.3控制单元 (31)4.3软件设计 (32)5 运行 (33)5.1 上水箱液位比例调节 (33)5.2 上水箱液位比例积分调节 (33)5.3 上水箱液位比例积分微分调节 (34)结论 (34)参考文献 (35)致谢词 (36)1.绪论1.1 PLC的产生、定义及现状1.1.1 PLC的产生、定义一、可编程控制器的产生20世纪60年代,在世界技术改造的冲击下,要求寻找一种比继电器更可靠、功能更齐全、响应速度更快的新型工业控制器。

上水箱液位简单PID控制实验

实验二上水箱液位简单PID 控制实验一.实验目的1. 通过实验熟悉单回路反馈控制系统的组成和工作原理。

2. 分析分别用P 、PI 和PID 调节时的过程图形曲线。

3. 定性地研究P 、PI 和PID 调节器的参数对系统性能的影响。

二.实验原理图3-1为单回路上水箱液位控制系统,单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。

本系统所要保持的恒定参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。

根据控制框图,这是一个闭环反馈单回路液位控制,采用工业智能仪表控制。

当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。

因此,当一个单回路系统组成好以后,如何整定好控制器参数是一个很重要的实际问题。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

一般言之,用比例(P )调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。

比例积分(PI )调节器,由于积分的作用,PID 控制器电动调节阀上小水箱液位变送器+ ─给定液位图3-1、实验原理图扰动不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。

比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。

在单位阶跃作用下,P、PI、PID 调节系统的阶跃响应分别如图3-2中的曲线①、②、③所示。

图3-2、P、PI和PID调节的阶跃响应曲线三.实验设备AE2000A型过程控制实验装置、上位机软件、计算机、RS232-485转换器1只、串口线1根、万用表一只四.实验内容和步骤1、设备的连接和检查:1)将AE2000A 实验对象的储水箱灌满水(至最高高度)。

基于BP神经网络PID算法的水箱液位控制系统设计

基于BP神经网络PID算法的水箱液位控制系统设计陈怀忠【摘要】针对水箱液位这样一个多干扰、大惯性、高度非线性系统控制性能优化较困难,传统的控制策略在控制精度、灵敏度以及系统稳定性均存在缺陷,充分利用神经网络具有非线性函数逼近能力,构造神经网络PID自整定控制器,在解决高度非线性和严重不确定系统方面具有较好控制能力.解决了传统PID控制算法难以保证系统在任何工况条件下始终具有最佳控制性能的难题.仿真结果表明,该控制能使系统达到较好的控制效果.%For the problem of controlling the liquid level of water tank with multi- interference, large inertia and highly nonlinear, the traditional control strategy has disadvantages in control precision, sensitivity and system stability. BP neural network control makes full use of neural network approximation capability to construct neural network self-tuning PID controller, having better control in resolving the highly nonlinear seriously uncertain systems. It overcomes the shortcoming of traditional PID controller which can not assure optimal control performance for system in any working condition. Simulated result indicates this control is able to make system reach satisfied control effect.【期刊名称】《实验技术与管理》【年(卷),期】2012(029)012【总页数】4页(P81-84)【关键词】BP神经网络;液位控制;PID算法整定【作者】陈怀忠【作者单位】浙江工业职业技术学院电气工程学院,浙江绍兴312000【正文语种】中文【中图分类】TP27常规PID控制算法对于大部分工业过程的被控对象可取得较好的控制效果,但是对于液位控制的滞后问题,在控制液位跟踪变化曲线时存在振荡和精度低的缺点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过程控制系统课程设计 基于PID的上水箱液位控制系统设计 一、课程设计任务书 1.设计内容 针对某厂的液位控制过程与要求实现模拟控制,其工艺过程如下:用泵作为原动力,把水从低液位池抽到高液位池,实现对高液位池液位高度的自动控制。具体设计内容是利用西门子S7-200PLC作为控制器,实现对单容水箱液位高度的定值控制,同时利用MCGS组态软件建立单容水箱液位控制系统的监控界面,实现实时监控的目的。

2.设计要求 1、以RTGK-2型过程控制实验装置中的单个水箱作为被控对象、PLC作为控制器、静压式压力表作为检测元件、电动调节阀作为执行器构成一个单容水箱单闭环控制系统,实现对水箱液位的恒值控制。 2、PLC控制器采用PID算法,各项控制性能满足要求:超调量20%,稳态误差≤±0.1;调节时间ts≤120s; 3、组态测控界面上,实时设定并显示液位给定值、测量值及控制器输出值;实时显示液位给定值实时曲线、液位测量值实时曲线和PID输出值实时曲线; 4、选择合适的整定方法确定PID参数,并能在组态测控界面上实时改变PID参数; 5、通过S7-200PLC编程软件Step7实现PLC程序设计与调试; 6、分析系统基本控制特性,并得出相应的结论; 7、设计完成后,提交打印设计报告。

3.参考资料 1.邵裕森,戴先中主编.过程控制工程(第2版).北京:机械工业出版社.2003 2.崔亚嵩主编.过程控制实验指导书(校内) 3.廖常初主编.PLC编程及应用(第2版).北京:机械工业出版社.2007 4.吴作明主编.工业组态软件与PLC应用技术.北京:北京航空航天大学出版社.2007 4.设计进度(2010年12月27日至2011年1月9日) 时间 设计内容

2010年12月27日 布置设计任务、查阅资料、进行硬件系统设计 2010年12月28日~2010年12月29日 编制PLC控制程序,并上机调试;

2010年12月30日~2010年12月31日

利用MCGS组态软件建立该系统的

工程文件

2011年1月2日~2011年1月4日 进行MCGS与PLC的连接与调试 进行PID参数整定 2011年1月5日~2011年1月6日 系统运行调试,实现单容水箱液体定值控制 2011年1月7日~2011年1月9日 写设计报告书

5.设计时间及地点 设计时间:周一~周五,上午:8:00~11:00 下午:1:00~4:00 设计地点:新实验楼,过程控制实验室(310) 电气工程学院机房(320)

二、评语及成绩 评分项目 评分标准 量化 分数 1.独立分析与解决问题的能力

很强 较强 一般 不

能 10

2组态界面设计、PLC程序编制及系统调试

界面 程序 硬件 分析 调

试 35

3.报告撰写情况 规范 整洁 逻辑 杂乱

错误 25

4.辅导答疑 积极 认真 应付 消极 10

5.设计态度 积极 认真 应付 消极 10

7.出勤 全勤 缺勤次数 10

附加评语 量化总分 课程设计成绩: 指导教师:

过程控制系统课程设计报告 班 级: 姓 名: 学 号: 指导教师: 撰写日期:

目录 第一章 绪论 ................................................................................................. 1 第二章 系统组态设计 ....................................................................................... 3 2.1 MCGS组态软件概述 ....................................................................... 3 2.2 新建工程 .............................................................................................. 4 2.3 设备配置 .............................................................................................. 5 2.4新建画面 ............................................................................................... 5 2.5 定义数据对象 ...................................................................................... 9 2.6设备连接 ............................................................................................. 12 2.7 控制面板的设计 ................................................................................ 14 第三章 PLC设计 ............................................................................................ 18 3.1 PLC概述 ............................................................................................ 18 3.2系统设计PLC程序 ........................................................................... 20 第四章 课设总结 ............................................................................................. 25 参考文献 ........................................................................................................... 26 附录................................................................................................................... 27 第一章 绪论

1 第一章 绪论 可编程控制器(Programmable Controller)是计算机家族中的一员,是为 工业控制应用而设计制造的。早期的可编程控制器称作可编程逻辑控制器(Programmable Logic Controller),简称PLC,它主要用来代替继电器实现逻辑控制。随着技术的发展,这种装置的功能已经大大超过了逻辑控制的范围,因此,今天这种装置称作可编程控制器,简称PC。但是为了避免与个人计算机(Personal Computer)的简称混淆,所以将可编程控制器简称PLC, PLC自1966年出现,美国,日本,德国的可编程控制器质量优良,功能强大。” 基于PLC的液位控制系统可以很好的满足工业中的液位控制系统的要求,为控制带来便捷与准确,在现在讲求效率的社会里具有重要的实用价值。在以前的工业中,液位控制的实现方法莫过于人为的去看然后去调,或者通过固定的液位开关,当液位达到一定的高度后液位开关自动闭合或断开来控制液位的。随着自动化不断地发展,在工业中很多时候需要我们连续的去控制液位,时刻的去观察液位的高度,而且越来越多的时候需要在计算机上进行监测液位和控制液位,这就是本设计的目的。 液位是过程控制中的一项重要参数,他对生产的影响不容忽视。为了保证安全生产以及产品的质量和数量,对液位进行及时有效地控制是非常必要的。水箱液位控制是液位控制系统中的一个重要问题,它在工业过程中普遍存在,具有代表性而且非常典型实用[1]。 PLC在工业自动化中应用的十分广泛。PID控制经过很长时间的发展,已经成为工业中重要的控制手段。本设计就是基于PLC的PID算法对液位进行控制。PLC经传感电路进行液位高度的采第一章 绪论 2 集,然后经过自动调节方式来确定完PID参数后,通过控制直流泵的工作时间来实现液位的控制。MCGS(监视与控制通用系统)是用于快速构造上位机监控系统的组态软件系统,系统的监测环节就是通过MCGS来设计的。这样我们就可以通过组态画面对液位高度和泵的起停情况进行监测,而且可以对PLC进行启动、停止、液位高度设置等控制。整个系统运行稳定、简单实用,MCGS与PLC通信流畅。 过程控制是指对温度、压力、流量等模拟量的闭环控制。作为工业控制计算机,PLC能编制各种各样的控制算法程序,完成闭环控制。PID调节是一般闭环控制系统中用得较多的调节方法。大中型PLC都有PID模块,目前许多小型PLC也具有此功能模块。PID处理一般是运行专用的PID子程序。过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。

相关文档
最新文档