离心机工作原理及结构示意图
离心机原理图

离心机原理图
离心机是一种利用离心力来分离混合物中不同组分的设备,它在化工、制药、
食品等领域有着广泛的应用。
离心机的原理图是离心机工作原理的图示,通过它可以清晰地了解离心机的结构和工作过程。
首先,我们来看离心机的结构。
离心机主要由转鼓、主轴、电机、底座、液压
系统等部件组成。
转鼓是离心机的核心部件,它是一个圆筒形的容器,内部装有筛网或滤网,用来容纳待分离的混合物。
主轴通过电机驱动转动转鼓,产生离心力,使混合物中的不同组分分离。
底座是离心机的支撑结构,液压系统用来控制离心机的启停和转速。
其次,我们来了解离心机的工作原理。
当离心机启动后,电机驱动主轴带动转
鼓高速旋转,混合物随之一起旋转。
由于不同组分的密度、粘度不同,它们在旋转过程中受到的离心力也不同,从而实现分离。
重组分通常沉积在转鼓的壁面或底部,而轻组分则留在转鼓内部。
通过控制离心机的转速和时间,可以实现对混合物中不同组分的精确分离。
离心机的原理图通过图示的方式直观地展现了离心机的结构和工作原理,有助
于我们更好地理解离心机的工作过程。
在实际应用中,离心机的原理图还可以用来指导设备的安装、维护和操作,提高工作效率和安全性。
总之,离心机原理图是离心机工作原理的图示,它通过清晰的图示和简明的文字,帮助人们更好地了解离心机的结构和工作原理,指导离心机的安装、维护和操作。
离心机作为一种重要的分离设备,在化工、制药、食品等领域有着广泛的应用,离心机的原理图对于提高设备的使用效率和安全性具有重要意义。
医学课件离心式分油机的原理和结构

2、检查所有密封圈是否需要更换,安装时各密封 面要涂抹润滑脂。
3、注意安装时,按照各个组装零件上的标记安装 到位,部件上都有定位马克。
•将供给泵的供油量调至适当位置,并控制分油机出口压力约为 0.2Mpa;
•如果分油机出现故障必须马上停止的情况下,可将 “Emergency Stop”按钮拍下。分油结束时,按下“Program 0”,分油机将自动运行停止程序; •分油机停稳后,停止供油泵,并将操作过的各阀门恢复到原来 位置。
拆装时的注意事项:
滑动活塞
重力盘
分离筒结构
分离片
二、分油机的工作原理
分油机的内部图解
待分离油进入 水封水
净油排出
分离水排出
分离水 油渣
滑动活塞
离心式分 油机是利 用不同比 重的液体, 所受离心 力不同来 进行分离 工作的
密封水
三、分油机的工作程序图解
预分离时油 打循环回流 到有油舱
分油机的工作程序图解
内容目录
分油机的应用
现代的船舶等用油的大型生产场所,分 油机的应用非常广泛,因为燃料油中含有水 分和杂质,不去掉这些东西,燃油就无法正 常燃烧,或者即使使用燃烧的工况也会很差, 严重影响设备的正常运行。分油机就是利用 油、水、和固体杂质等不同比重的物质,在 相同的转速下所受的离心力不同,把燃料油 中的水分和杂质用物理的方式去掉,得到纯 净的燃油。
•检查制动器置于释放状态; •检查所有的连接螺栓及机盖是否上紧; •检查淡水管线是否开启,检查分油机的进出口阀是否开启。
二、运行:
•首先启动供给泵,观察其运行情况正常。 •调整温控阀,将柴油温度控制在25~55℃之间; •供给泵运行正常后启动分油机,并观察其运行状况。 •300秒钟后(确认运行电流正常),按下“program 1”,分 油机将按设定程序自动运行;
离心式压缩机工作原理及结构图

离心式压缩机工作原理及结构图一、工作原理汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。
而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进汽部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。
气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。
如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。
级间的串联通过弯通,回流器来实现。
这就是离心式压缩机的工作原理。
二、基本结构离心式压缩机由转子及定子两大部分组成,结构如图1所示。
转子包括转轴,固定在轴上的叶轮、轴套、平衡盘、推力盘及联轴节等零部件。
定子则有气缸,定位于缸体上的各种隔板以及轴承等零部件。
在转子与定子之间需要密封气体之处还设有密封元件。
各个部件的作用介绍如下。
1、叶轮叶轮是离心式压缩机中最重要的一个部件,驱动机的机械功即通过此高速回转的叶轮对气体作功而使气体获得能量,它是压缩机中唯一的作功部件,亦称工作轮。
叶轮一般是由轮盖、轮盘和叶片组成的闭式叶轮,也有没有轮盖的半开式叶轮。
2、主轴主轴是起支持旋转零件及传递扭矩作用的。
根据其结构形式。
有阶梯轴及光轴两种,光轴有形状简单,加工方便的特点。
3、平衡盘在多级离心式压缩机中因每级叶轮两侧的气体作用力大小不等,使转子受到一个指向低压端的合力,这个合力即称为轴向力。
轴向力对于压缩机的正常运行是有害的,容易引起止推轴承损坏,使转子向一端窜动,导致动件偏移与固定元件之间失去正确的相对位置,情况严重时,转子可能与固定部件碰撞造成事故。
平衡盘是利用它两边气体压力差来平衡轴向力的零件。
它的一侧压力是末级叶轮盘侧间隙中的压力,另一侧通向大气或进气管,通常平衡盘只平衡一部分轴向力,剩余轴向力由止推轴承承受,在平衡盘的外缘需安装气封,用来防止气体漏出,保持两侧的差压。
离心技术与离心机

第二节 常用的离心方法
差速离心法原理示意图
操作过程一般是在 离心后用倾倒的办法 把上清液与沉淀分开, 然后将上清液加高转 速离心,分离出第二 部分沉淀,如此反复 加高转速,逐级分离 出所需要的物质(如 左图所示)。
上一页 下一页
第二节 常用的离心方法
差
优
1.操作简单,离心后用倾倒法即可将上清液与沉淀分开;
梯度液在离心过程中以及离心完毕后,取样时起着支持 介质和稳定剂的作用,避免因机械振动而引起已分层的粒 子再混合,常用的梯度液有Ficoll、Percoll及蔗糖。
上一页 下一页
第二节 常用的离心方法
此离心法须严格控制离心时间,使得既能使各种粒子在 介质梯度中形成区带,又要把时间控制在任一粒子达到沉 淀前。若离心时间过长,所有的样品全部都到达离心管底 部;若离心时间不足,则样品还没有分离。
分离后
下一页
第二节 常用的离心方法
1.分辨率高,分离效果好,可一次获得较纯颗粒;
密
优 2.适用范围广,既能分离沉淀系数差的颗粒,又能分离有
度
一定浮力密度的颗粒; 点
梯
3.颗粒不会积压变形,能保持其活性,并可防止已形成的
度
区带由于对流而引起混合。
离
缺 1.离心时间较长;需要制备成梯度液;
心 法
点 2.操作严格,不宜掌握。
上一页
第一节 离心技术的基础理论
一、离心机工作原理 二、离心力与相对离心力 三、液体中的微粒在重力场中的分离 四、液体中的微粒在离心力场中的沉降
返回节标题
第一节 离心技术的基础理论
一、离心机工作原理
离心是利用旋转运动的离 心力以及物质的沉降系数或 浮力密度的差异进行分离、 浓缩和提纯生物样品的一种 方法。悬浮液在高速旋转下, 由于巨大的离心力作用,使 悬浮的微小颗粒(细胞器、 生物大分子的沉淀等)以一 定的速度沉降,从而使溶液 得以分离、浓缩和提纯,颗 粒的沉降速度取决于离心机 的转速、颗粒的质量、大小 和密度。
离心机的典型结构及工作原理分析

• 分为:⑴ 螺旋卸料式沉降离心机(有:卧式;立式) • ⑵ 刮刀卸料卧式沉降离心机 • ⑶ 三足式沉降离心机
(1)螺旋卸料式沉降离心机 广泛用于:
化工、石油、冶金、制药、轻工、食品、污水处理等 用来处理颗粒粒度 d<10μm 的悬浮液。
工作特点:连续加料、分离、卸料,全速运转,转速较高
n=7000~8000rpm。
定义:由液体和悬浮于其中的一种或数种其它液体所组成的系统, 称为乳浊液。 其中: 主液体相为连续相。 其它液体相为副液相,或叫:分散相,非连续相。
乳浊液主要是指液—液相组成的非均匀混合物。 如:油水混合物,形成水包油时,水为主液相,油为分散相。 分散相液珠直径:一般:0.1< d <0.4~0.5 m 液珠直径再大时会分层。
结构:
转鼓,螺旋输送器,变速器,进料管,带轮,外壳,过载保护装 置,液位调节装置等。 转鼓转速为 n b——由电机直接带动,转鼓上只有卸料口。
螺旋输送器转速 n S——由转鼓驱动行星差速器带动,转向与转鼓 相同。
n S >n b n S <n b
为正差转速(一般机型)
为负差转速。
两者转差率:
ns nb a 100% 0.2 ~ 3% nb
5.2 过滤式离心机
5.2.1 过滤式离心机
依靠滤网和离心力作用的离心机为过滤离心机。 结构特点:滤网、转鼓。 共有五种类型。 三足式过滤离心机
上悬式离心机 卧式刮刀卸料离心机
卧式活塞卸料离心机
离心惯性力卸料式离心机
范围: 固体颗粒较大 的悬浮液 (d >10μm)
过滤式离心机原理:
转鼓壁上有许多小孔,壁内有过滤网(滤布),悬浮液在 转鼓内旋转,靠离心力把液相甩出筛网,而固相颗粒被筛 网截留,形成滤饼,从而实现固、液分离。
离心机的原理与应用PPT课件

半径
相对离心力
转速
方法:三点一线,左对左,右对右
第19页/共35页
2、转子离心管及选择 ⑴ 离心管
❖ 玻璃离心管质虽硬、但脆,不能承受超离心的压力。 ❖ 超离心机离心管:塑料管及不锈钢管。 ❖ 注意离心管的平衡 ❖ 离心时样品一般应装满离心管,否则将可能因有气泡而
使管的外部受压不均,造成离心管破裂,使转子不平衡 产生事故
• 检查合格后,将盛有离心液的两个试管分别放入套管 中,然后连套管一起分置于粗天平的两侧,通过往离 心管与套管之间滴加水来调节两边的重量使之达到平 衡。
第26页/共35页
• 3.将已平衡的两只装有离心管的套管,分别放入离心机相 互对应的两插孔内。
• 盖上离心机盖。打开电源开关。逐档扭动旋钮,缓慢增加 离心机转速,直至所需数值。
• 离心加速度的大小取决于转子的转速和颗粒的旋转半径: αc=ω2r 式中ω:转子的角速度(rad/s);r:旋转半 径,即颗粒到旋转轴中心的距离(cm)。
第16页/共35页
• 若转速以惯用的每分钟转数(r/min)来表示,则 ω=2πn/60
• 代入上式,得到:αc =ω2r =4π2n2r /3600 • 式中 n:转子每分钟转数(r/min)。 • 在说明离心条件时,低速离心通常以转子每分钟的
• 差速离心所得到的沉降物含有 较多杂质,需经过重新悬浮和 再离心若干次,才能获得较纯 的分离产物。
• 差速离心主要用于分离大小和 密度差异较大的颗粒。操作简 单方便,但分离效果较差。
第7页/共35页
• 举例:
已破碎的细胞 500g,10’
沉淀 (细胞核)
上清液 10 000g,10’
上清液
100 000g,3h
离心机的典型结构及工作原理

Fr ↑及Fk↑方法 ω↑ 转鼓转速提高(当结构一定时, ω↑ 效果更好)
(2) .物料产生的离心压力
任意半径处离心压力:
Fc
1 2
2
r2
r12
pa ( N m2 )
转鼓壁上离心压力:r = R (离心压力最大,R为转鼓内径)
Fc
1 2
颗粒的表示方法:颗粒尺寸,颗粒分布,颗粒形状。
1.颗粒尺寸: 常用粒径 d 表示
d > 50 m 粗颗粒
5< d <50 m 中等颗粒
d < 5 m
细颗粒
粒径的测量方法有:当量球径;当量圆径;统计直径。
2.粒度分布:
用不同粒径的颗粒在颗粒群中各自所占的比例或百分数表示。
粒度分布表达方式:⑴ 用总粒度数表示。 ⑵ 用单位长度上的粒度数表示。 ⑶ 用单位面积上的粒度数表示。 ⑷ 用单位体积内的粒度数表示。
悬浮液分类:
按固体颗粒大小和浓度分(可用重量百分数、体积百分表示)
⑴ 粗颗粒悬浮液:粒径 d > 50 m ⑵ 高浓度悬浮液:浓度 >10% ⑶ 细颗粒悬浮液:粒径 d < 50 m ⑷ 低浓度悬浮液:浓度 <10%
选用过滤式离心机 选用沉降式离心机或过滤机
过滤式离心机
沉降式离心机
• (二).乳浊液
此离心机分类:① 单级活塞推料式离心机。 ②多级活塞推料式离心机——每级转鼓短,推渣容
易,滤渣层薄,滤渣停留时间长,有利于脱水和洗涤。
(5) 离心惯性力卸料式离心机
——锥篮型离心机
(5)离心惯性力卸料式离心机
又称:锥篮离心机。 此离心机种类:立式锥篮型;卧式锥篮型。
离心机工作原理及结构示意图

工作原理及结构示意图:本机由转筒、螺旋推料器,差速器及动力、机架主要部分组成。
转筒、螺旋推料器同向高速旋转,转筒、螺旋推料器在差速器作用下速差为10-30转/分。
分离原液经进料口进入高速转动的转筒内,在离心力的作用下液体中质量大的悬浮物迅速地向筒壁积聚。
已分离的滤液由水层内圈之出水孔经出液口排出。
沉渣由螺旋推料器推送到转筒的圆锥端经出渣口排出。
污水处理工艺流程是用于某种污水处理的工艺方法的组合。
通常根据污水的水质和水量,回收的经济价值,排放标准及其他社会、经济条件,经过分析和比较,必要时,还需要进行试验研究,决定所采用的处理流程。
一般原则是:改革工艺,减少污染,回收利用,综合防治,技术先进,经济合理等。
在流程选择时应注重整体最优,而不只是追求某一环节的最优。
现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。
一级处理,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。
经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。
一级处理属于二级处理的预处理。
二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。
三级处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。
主要方法有生物脱氮除磷法,混凝沉淀法,砂率法,活性炭吸附法,离子交换法和电渗分析法等。
整个过程为通过粗格删的原污水经过污水提升泵提升后,经过格删或者筛率器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工作原理及结构示意图:
本机由转筒、螺旋推料器,差速器及动力、机架主要部分组成。
转筒、螺旋推料器同向高速旋转,转筒、螺旋推料器在差速器作用下速差为10-30转/分。
分离原液经进料口进入高速转动的转筒内,在离心力的作用下液体中质量大的悬浮物迅速地向筒壁积聚。
已分离的滤液由水层内圈之出水孔经出液口排出。
沉渣由螺旋推料器推送到转筒的圆锥端经出渣口排出。
污水处理工艺流程是用于某种污水处理的工艺方法的组合。
通常根据污水的水质和水量,回收的经济
价值,排放标准及其他社会、经济条件,经过分析和比较,必要时,还需要进行试验研究,决定所采用的处理流程。
一般原则是:改革工艺,减少污染,回收利用,综合防治,技术先进,经济合理等。
在流程选择时应注重整体最优,而不只是追求某一环节的最优。
现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。
一级处理,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。
经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。
一级处理属于二级处理的预处理。
二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。
三级处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。
主要方法有生物脱氮除磷法,混凝沉淀法,砂率法,活性炭吸附法,离子交换法和电渗分析法等。
整个过程为通过粗格删的原污水经过污水提升泵提升后,经过格删或者筛率器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。
二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。
以上是污水处理厂处理工艺的基本流程,流程图见下页图一。
二.各个处理构筑物的能耗分析
1.污水提升泵房
进入污水处理厂的污水经过粗格删进入污水提升泵房,之后被污水泵提升至沉砂池的前池。
水泵运行要消耗大量的能量,占污水厂运行总能耗相当大的比例,这与污水流量和要提升的扬程有关。
2.沉砂池
沉砂池的功能是去除比重较大的无机颗粒。
沉砂池一般设于泵站前、倒虹管前,以便减轻无机颗粒对水泵、管道的磨损;也可设于初沉池前,以减轻沉淀池负荷及改善污泥处理构筑物的处理条件。
常用的沉砂池有平流沉砂池、曝气沉砂池、多尔沉砂池和钟式沉砂池。
沉砂池中需要能量供应的主要是砂水分离器和吸砂机,以及曝气沉砂池的曝气系统,多尔沉砂池和钟式沉砂池的动力系统。
3.初次沉淀池
初次沉淀池是一级污水处理厂的主题处理构筑物,或作为二级污水处理厂的预处理构筑物设在生物处理构筑物的前面。
处理的对象是SS和部分BOD5,可改善生物处理构筑物的运行条件并降低其BOD5负荷。
初沉池包括平流沉淀池,辐流沉淀池和竖流沉淀池。
初沉池的主要能耗设备是排泥装置,比如链带式刮泥机,刮泥撇渣机,吸泥泵等,但由于排泥周期的影响,初沉池的能耗是比较低的。
图一城市污水处理典型流程
4.生物处理构筑物
污水生物处理单元过程耗能量要占污水厂直接能耗相当大的比例,它和污泥处理的单元过程耗能量之和占污水厂直接能耗的60%以上。
活性污泥法的曝气系统的曝气要消耗大量的电能,其基本上是联系运行的,且功率较大,否则达不到较好的曝气效果,处理效果也不好。
氧化沟处理工艺安装的曝气机也是能耗很大的设备。
生物膜法处理设备和活性污泥法相比能耗较低,但目前应用较少,是以后需要大力推广的处理工艺。
5.二次沉淀池
二次沉淀池的能力消耗主要是在污泥的抽吸和污水表明漂浮物的去除上,能耗比较低。
6.污泥处理
污泥处理工艺中的浓缩池,污泥脱水,干燥都要消耗大量的电能,污泥处理单元的能量消耗是相当大的,这些设备的电耗功率都很大。
三.针对各个处理构筑物的节能途径
1.污水提升泵房
污水提升泵房要节省能耗,主要是考虑污水提升泵如何进行电能节约,正确科学的选泵,让水泵工作在高效段是有效的手段,合理利用地形,减少污水的提升高度来降低水泵轴功率N也是有效的办法,定期对水泵进行维护,减少摩擦也可以降低电耗。
2.沉砂池
采用平流沉砂,避免采用需要动力设备的沉砂池,如平流沉砂池。
采用重力排砂,避免使用机械排砂,这些措施都可大大节省能耗。
3.初次沉淀池
初次沉淀池的能耗较低,主要能量消耗在排泥设备上,采用静水压力法无疑会明显降低能量的消耗。
4.生物处理构筑物
国外的学者通过能耗和费用效益分析比较了生物处理工艺流程,他们认为处理设施大部分的能量消耗是发
生在电机这类单一的设备上,因而节能应从提高全厂功率因数、选择高效机电设备及减少高峰用电要求等方面入手。
他们提出的节能措施既包括改善电机的电气性能,也包括解决运转的工艺问题,还包括污水厂产物中的能量回收(Energy
Recovery)。
曝气系统的能耗相当大,对曝气系统能耗能效的研究总是涉及到曝气设备的改造和革新。
新型的曝气设备虽然层出不穷,但目前仍然可划分为2类:第1种是采用淹没式的多孔扩散头或空气喷嘴产生空气泡将氧气传递进水溶液的方法,第2种是采用机械方法搅动污水促使大气中的氧溶于水的方法。
微孔曝气,曝气扩散头的布局和曝气系统的调节这些都是节能的有效措施。
在传统活性污泥处理厂曝气池中辟出前端厌氧区,
用淹没式搅拌器混合的节能、生物除磷方案。
这一简单的改造可以节省近20%的曝气能耗,如果算上混合用能,节能也达到12%。
自动控制系统的应用于污水处理节能,曝气系统进行阶段曝气,溶解氧存在浓度梯度,既减少了能耗,又可以改善处理效果,减少污泥量。
生物膜法处理工艺采用厌氧处理可以明显降低能量的消耗。
5.二次沉淀池
二次沉淀池中对排泥设备的研究和排泥方式的改善是降低能耗的有效方法。
6.污泥处理
污泥处理系统节能研究主要集中于污泥处理的能量回收。
从污水污泥有机污染物中回收能量用于处理过程早在上世纪初就已投入实践,但能源危机之前一直不受重视。
目前有两种回收途径:一是污泥厌氧消化气利用,一是污泥焚烧热的利用。
消化气性质稳定、易于贮存,它可通过内燃机或燃料电池转化为机械能或电能,废热还可回收于消化污泥加热。
因此利用消化气能解决污水厂不同程度的能量自给问题。
林荣忱等人比较了沼气发电机和燃料电池两种利用形式,认为燃料电池能量利用率高,具有很好的发展前途。
对消化气的最大化利用是提高能效的主要方式。
沼气发电机组并网发电的研究和应用在国内已有应用实例,是大型污水处理厂的沼气综合利用的可行途径。
另外一种能量回收方式是将城市固体废物焚烧场建在污水处理厂旁,将固废与污水污泥一起焚烧,获得的电能用于处理厂的运转。
城市污水处理的能耗分析研究与节能技术和手段的发展往往并不同步。
由于污水处理能量平衡分析方法研究的欠缺,节能措施的制订和实施常常超前。
而多数节能途径和手段常常由处理厂的操作管理人员结合各处理设施实际情况提出,具有经验性和个别性,不一定能适用于其他污水厂甚至是工艺相似的污水厂;另一方面,从广义上说,污水处理学科领域的技术创新、新材料和新设备的使用都蕴涵着节能增效的潜力,因而节能的途径和手段往往是很宽泛的。
四.结论
污水处理是能源密集(energy intensity)型的综合技术。
一段时期以来,能耗大、运行费用高一定程度上阻碍了我国城市污水处理厂的建设,建成的一些处理厂也因能耗原因处于停产和半停产状态。
在今后相当长的一段时期内,能耗问题将成为城市污水处理的瓶颈。
能否解决耗污水厂的能耗问题,合理进行能源分配,已经成为决定污水处理厂运行效益好坏的关键因素。
能耗是否较低,也是未来新的污水处理厂可行性分析的决定性因素,开发能效较高的污水处理技术,合理设计及运行污水处理厂,必将是未来污水处理厂设计和运行的必由之路。