七年级数学下册 9.3 一元一次不等式组(第2课时) (新版)新人教版

合集下载

11.3 一元一次不等式组课件(共29张PPT) 人教版(2025)数学七年级下册

11.3  一元一次不等式组课件(共29张PPT) 人教版(2025)数学七年级下册


2( x +70)> 350 70x < 7630
这样,把两个含有同一未知数的一元一
次不等式合在一起,就组成一个一元一次不等式组.
新知讲解
试一试:解上面问题中的不等式组
2(
x
+
70
)>
350,

70
x
<
7630.

解析:解不等式①,得x>105.
解不等式②,得x<109.
新知讲解
不等式组
新知讲解
思考:怎样确定上面的不等式组中未知数的取值范围呢?
类比方程组的求解,不等式组中的各个不等式解集的公共部分, 就是不等式组中的未知数的取值范围. 归纳:我们把几个一元一次不等式解集的公共部分,叫作由
它们所组成的一元一次不等式组的解集.
求不等式组的解集的过程,叫作解不等式组.
新知讲解
例1 判断下列不等式组是否为一元一次不等式组:
新知讲解
如果设足球场的长为xm,那么它的周长就是2(x+70)m, 面积为70x m2.根据已知条件,我们知道x的取值范围要使
2(x+70)>350 和70x<7630 这两个不等式同时成立.
新知讲解
为此,我们用大括号把上述两个不等式联立起来,得
2
(
x
70
)
350,
70x
7630.
2(x+70)>350 和 70x<7630
解析:设有x 辆汽车,则这批货物共有(4x+20 )t.
依题意得
4x
208x,
4x
20>(8 x
1).
解不等式组,得5<x <7.

初一数学(人教新课标版)第九章第2节实际问题与一元一次不等式

初一数学(人教新课标版)第九章第2节实际问题与一元一次不等式

年 级 初一 学 科 数学版 本人教新课标版课程标题 第九章第2节实际问题与一元一次不等式编稿老师 巩建兵 一校 林卉二校黄楠审核王百玲一、学习目标:1. 熟练掌握一元一次不等式的解法。

2. 会分析实际问题中的数量关系,能够列一元一次不等式解决实际问题。

二、重点、难点:重点:一元一次不等式的解法。

难点:分析实际问题中的数量关系,建立不等式模型解决实际问题。

三、考点分析:运用不等式的知识解决实际问题,在历年中考中占有相当重要的地位,题型有填空题和选择题,有时该知识点还会出现在解答题中,经常与方程、函数等知识综合在一起。

以应用题的形式考查本知识将是今后中考数学命题的一个新趋向。

1. 解一元一次不等式的步骤 (1)去分母:不等式中有分母的,要通过不等式两边都乘分母的最小公倍数去分母。

(2)去括号:不等式中有括号的要按有理数中去括号的法则去括号,在去括号的过程中要注意符号的变化。

(3)移项:就是将不等式中右边含未知数的项变号后移到左边来,将左边的常数项变号后移到右边去。

(4)合并同类项:就是将原不等式整理成ax >b 或ax <b 的形式。

(5)化系数为1:就是不等式两边都除以a ,将不等式化为x >b a 或x <ba的形式,这一过程要根据a 的符号决定不等号的方向是否改变。

2. 用不等式解决实际问题根据问题中的不等关系列出不等式,把实际问题转化成数学问题,再通过解不等式得到实际问题的答案。

用不等式解决实际问题的关键是找出题中各量之间的相等和不等关系,列出正确的等式和不等式,在解题时要注意不等号的方向是否需要改变,所得的解是否符合实际意义,把不合题意的解舍去。

知识点一:一元一次不等式的解法例1:分别解不等式2x -3≤5(x -3)和y -16-y +13>1,并比较x 、y 的大小。

思路分析:1)题意分析:本题考查一元一次不等式的解法。

2)解题思路:按照解不等式的步骤解两个不等式,再比较两个解的大小。

初中七年级下册数学92 一元一次不等式(第2课时)课件q

初中七年级下册数学92 一元一次不等式(第2课时)课件q

价的90%收费
我店累计购买50元商品后,
再购买的商品按原价的
95%收费


如果你要分别购买40元、80 元、140元、 160元商品,应该去哪家商店更优惠?
9.2 一元一次不等式/
3.初步认识一元一次不等式的应用价值,发展 分析问题、解决问题的能力. 2.培养将实际问题向数学模型转化的能力.
1.掌握用一元一次不等式解决实际问题的步骤 .
9.2 一元一次不等式/
3.有3人携带会议材料乘坐电梯,这3人的体重共210kg,每
捆材料重20kg,电梯最大负荷1 050kg,则该电梯在此3人乘
坐的情况下最多能搭载 42
捆材料.
9.2 一元一次不等式/
4.我班几个同学合影留念,每人交0.70元.已知一张彩色底片 0.68元,扩印一张相片0.50元,每人分一张,在将收来的钱 尽量用掉的前提下,这张相片上的同学最少有几人?
9.2 一元一次不等式/
某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分, 小华得分要超过120分,他至少要答对的题的个数为( C )
A.13
B.14
C.15
D.16
9.2 一元一次不等式/
基础巩固题
1.某商品原价500元,出售时标价为900元,要保持利润不低
于26%,则最低可打 ( B )
人教版 数学 七年级 下册
9.2 一元一次不等式 (第2课时)
9.2 一元一次不等式/
我店累计购买110000元商品
后,再购买的商品按原
价的90%收费
我店累计购买550元商品后,
再购买的商品按原价的
95%收费


甲商店购物款达多少元后可以优惠?

数学人教版七年级下册9.3.2一元一次不等式组第二课时同步测试题

数学人教版七年级下册9.3.2一元一次不等式组第二课时同步测试题

9.3.2一元一次不等式组的运用同步测试题一、选择题1、若不等式组的解集为,则的取值范围为()A. B. C. D.2、若关于的不等式组有3个整数解,则的值可以是()A.-2B.-1C.0 D.13、不等式的解集是,则m的取值范围是()A.m≤2 B.m≥2 C.m≤l D.m>l4、某商品的进价为120元,现打8折出售,为了不亏损,该商品的标价至少应为()A.96元;B.130元;C.150元;D.160元.5、某商品原价800元,出售时,标价为1200元,要保持利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折6、小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是()A.18千克B.22千克C.28千克D.30千克7、某旅行社某天有空房10间,当天接待了一个旅游团,当每个房间只住3人时,有一个房间住宿情况是不满也不空,若旅游团的人数为偶数,求旅游团共有多少人()A. 27B. 28C.29D.308、一家服装商场,以1 000元/件的价格进了一批高档服装,出售时标价为1 500元/件,后来由于换季,需要清仓处理,因此商场准备打折出售,但仍希望保持利润率不低于5%,那么该商场至多可以打________折.A.9B.8C.7D.69. 小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x根火腿肠,则关于x的不等式表示正确的是()A. 3×4+2x<4 B.3×4+2x≤24 C.3x+2×4≤24 D.3x+2×4≥2410. 小颖准备用21元钱买笔和笔记本,已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买几支笔()A.1 B.2 C.3 D.411. 某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折12 现用甲、乙两种运输车将46吨抗震物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排()A.4辆B.5辆C.6辆D.7辆二、填空题13、如果不等式组的解集是,那么的值为.14、若不等式组无解.则m的取值范围是______.15、已知关于x的不等式3x-a>x+1的解集如图所示,则 a的值为_________.16、某次数学测验中共有16道题目,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对___12___道题,成绩才能在60分以上.17、若干名学生分宿舍,每间4人余20人,每间8人,其中一间不空也不满,则宿舍有间。

一元一次不等式组教案

一元一次不等式组教案

一元一次不等式组教案【篇一:《一元一次不等式组》教学设计】一元一次不等式组一、课表解读在初中数学课程标准,第三学段数与代数对一元一次不等式组部分是这样描述的:1.充分感受生活中存在着大量的不等式关系,了解不等式组的意义;2.会解简单的一元一次不等式组,并会用数轴确定解集。

二、教材分析1、教材的地位和作用《一元一次不等式组》的主要内容是一元一次不等式组的解法及其简单应用。

是在学习了有理数的大小比较、等式及其性质、一元一次方程的基础上,开始学习简单的数量之间的不等关系,进一步探究现实世界数量关系的重要内容,是继一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数及进一步学习不等式的重要基础,具有承前启后的重要作用。

《一元一次不等式组》是本章的最后一节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。

2、教学目标设计依据《课程标准》对7—9年级《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:1.通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。

2.了解一元一次不等式组及解集的概念。

3.会利用数轴解较简单的一元一次不等式组。

4.培养学生分析、解决实际问题的能力。

5.通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。

培养学生认真倾听,大胆回答,勤于思考、善于反思的良好学习习惯。

3、教学重点、难点:重点:理解一元一次不等式组的有关概念,会解简单的一元一次不等式组;难点:正确理解一元一次不等式组的解集。

三、学情分析1、学生特点从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力。

但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。

这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,我对本节课的设计是通过两个学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。

人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案

人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案

人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题(专题课)教案核心素养:1.使学生加深对一元一次不等式组和它的解集的理解,会用数轴确定含参数的一元一次不等式组的参数范围;2.培养学生探究、独立思考的学习习惯,感受数形结合的作用,熟悉并掌握数形结合的思想方法,提高分析问题和解决的能力;3.提升学生之间合作与交流以及对问题的探讨能力,从中发现数学的乐趣.【教学重难点】重点:含参一元一次不等式组的分类解法难点:1.一元一次不等式中字母参数的讨论2.一元一次不等式中运用数轴分析参数的范围【教学过程】1.问题引导 合作交流出示问题:请同学们解下列两个不等式(1)x-2m<0,(2)x+m >3并思考m 的取值范围. 同学们不难得出不等式(1)的解为x <2m ;(2)的解为x >3-m.引导分析m 的取值范围. 师引导,生回答:任意实数.[问题1]如果将上述两个不等式联立成不等式组⎩⎨⎧>+<-302m x m x ,你能确定不等式组的解集吗? 师提示学生画数轴 ,问:能画几种情况[问题2]如果这个不等式组无解,你能确定m 的取值范围吗?(学生分组讨论)(借助数轴)师生一起分析:如果不等式组无解,则2m <3-m ,解得m <1。

确定一下“<”要不要添加“=”(这是参数取值问题中的难点)学生借助数轴讨论.师生总结:2m 和3-m 在两个不等式的解中都不包含,所以2m 可以等于3-m ,即m ≤1.2.变式拓展 强化理解变式1:若不等式组⎩⎨⎧⋅⋅⋅⋅⋅>+⋅⋅⋅≤-②①302m x m x 无解,这时m 的取值会有变化吗?解不等式①得x ≤2m 解不等式②得x >3-m(学生分组探究)引导:虽然第一个不等式“<”改成“≤”通过数轴可以看到由于和第二个不等式的解集不包含3-m ,所以2m ≤3-m ,m 的取值范围仍然是m ≤1.变式2:如果不等式组变化为⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x ,这时m 的取值又会有改变吗?(学生分组探究)由于两个不等式都含有等号,这时2m 和3-m 可能是公共点,而要想使不等式组无解,2m 和3-m 不能重合,只能2m <3-m ,所以m 不能等于1,即m <1.3.问题反转[问题3]如果不等式组⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x 有解,怎样确定 m 的取值范围?把两个不等式的解集在数轴上表示出,同学们观察数轴 ,不难得出要想使不等式组有解,只要2m ≥3-m ,即m ≥1这样两个不等式的解集有公共部分,不等式组有解,所以m 的取值范围m ≥14.方法小结 归纳步骤解含参一元一次不等式(组)有、无解问题时注意掌握四个步骤:一解 .解不等式组,用参数分别表示出两个不等式的解集;二画.借助数轴进行视觉观察,画出有无解的情况;三验:验证端点取舍判断等号是否可取;四:列出不等式,确定取值范围5,拓展演练 题型再变[问题4]下面这种类型的一元一次不等式组如何确定字母参数取值范围?例:已知不等式组⎩⎨⎧⋅⋅⋅-<⋅⋅⋅⋅⋅⋅⋅⋅≥-②①22-10x x a x 的解集是x >1,求a 的取值范围?学生分组解出每个不等式的解集:解①得:x ≥a 解②得:x >1因为不等式的解集是x >1,(学生分组探讨):a 的位置在数轴上应该在哪个位置? 分析得出:a 在数轴上的位置应该在1的左侧.把不等式组的解集在数轴上表示出来:即a <1,[思考3]a 可不可以等于1?因为a=1时不等式组的解集仍然是x >1.所以a 可以等于1,即a 的取值范围a ≤15.基础过关1.若不等式组⎩⎨⎧≤≥-m x x 062 无解,求m 的取值范围? 2.若不等式组⎩⎨⎧>+<--xx a x x 422)2(3有解,求a 的取值范围?3.若不等式组⎩⎨⎧+>+<+1137m x x x 的解集是x >3,求m 的取值范围?。

9.3 一元一次不等式组 课件1(数学人教版七年级下册)


公共部分
3<x<6
一元一次不等式组的解集 在数轴上表示不等式的解集时应注意: 大于向右画,小于向左画;有等号的画实心圆点,
无等号的画空心圆圈.
请将不等式组中各不等式的解集在数轴上 表示出来,并找出他们的公共部分
1
x 6 x 3
2
x 6 x 3
3x 6 x 3不等式组的解在数轴上表示如图,其解是什么?
源:]
[来
–2 –1
0
1
2
同大取大
x2
不等式组的解在数轴上表示如图,其解是什么?
–2
–1
0
1
2
同小取小
x 1
不等式组的解在数轴上表示如图,其解是什么?
-1
2
-1<x<2
小大,大小取中间
不等式组的解在数轴上表示如图,其解是什么?
小明想买手套
[来源:学科网ZXXK]
要低于6元
要超过 3元
如果你是商店 售货员,你会拿什么价 格的手套给他们选择呢?
X>3
X>3 X<6

X<6
不等式组
一元一次不等式组
由几个同一未知数的一元一次
不等式所组成的一组不等式, 叫做一元一次不等式组.
x 3 x 6
① ② 3 6
2
2 x 1 x 1 x 14 4 x 1
2≤-3x-7<8
-5<x≤-3
2 x 1 2 5 3
-8<x<-3.5
1、必做题:课本第141页习题9.3第1、2、3题
2、选做题: (1)解不等式3≤2x-1≤5, 你觉得该怎样思考这个问题, 你有解决的办法吗?

七年级数学下册第九章教案[人教版初一七年级] (2)

9.3 一元一次不等式组(2课时)课程目标一、知识与技能目标1.通过由学生动手操作:用各种不同长度的木棒去拼三角形,归纳出能拼出三角形的各边长之间的关系和不能拼成三角形的三边的特征,•目的是归纳出同时符合几不同条件的不等式的公共范围,即不等式组的解集.2.通过确定不等式组的解集与确定方程组的解集进行比较,•抽象出这二者中的异同,由此理解不等式组的公共解集.二、过程与方法目标通过由一元一次不等式,一元一次不等式的解集、•解不等式的概念来类推学习一元一次不等式组,一元一次不等式组的解集,解不等式组这些概念,•发展学生的类比推理能力.三、情感态度与价值观目标通过培养学生的动手能力发展学生的感性认识与理性认识,•培养学生独立思考的习惯.教材解读本节内容是在学习了不等式的解集之后的知识内容,•在此基础上提出若某数同时满足几个不等式时,如何去确定这个数的取值范围,这就是不等式组的公共解集的确定,在实际生活中同样会遇到一个数所能满足的条件不止一个的问题,这就要用到不等式去确定其解.学情分析不等式的解集已经在前一节中学习并运用其解决实际问题,•若由多个不等式构成的不等式组的解集如何确定呢?不等式的解集可类比方程的解进行求解,是否不等式组的解与方程组的解也类似呢?因此学生就会进行类比,进而可得出其解集的公共部分.第1课时一、创设情境,导入新课冬天到了,天气渐渐变冷,同学们在上学的路上未免会感觉到寒意,•尤其是骑自行车上学的同学更觉得冷,妈妈们为了他们的孩子能过得舒服一些,都会给他们的孩子准备好帽子、手套来御寒.就拿手套来说吧,贵的可达几十元钱一双,便宜的呢,只要一、二元就可买到,但其质量和保暖程度肯定不相同,便宜的可能用的时间不长,•而贵的对小孩来说不善于保护,又未免太奢侈了,作为家长肯定希望所买的东西价廉又物美,假设妈妈的要求是手套的价格不能超过6元,而小孩又不喜欢太便宜的,他们对家长的要求是所买的手套价格不能少于4元,同学们,如果你是商店售货员,你会拿什么价格的手套给他们选择呢?如果商店里的手套从每双2.5元至16元的各种价格都有,且每双不同的手套之间都是按逐渐提高0.5元的价格进行呈列的,•你能确定他们的选择有几种吗?当然可以,太简单了,要使买的手套让家长和小孩都满意可让他们从每双4•元至6元的这些物品中选,由于这档手套有4元/双,4.5元/双,5元/双,5.5元/双,6元/双共五种,故售货员只需从这五种价格的手套中取出供他们挑选,就能让母子同时满意.•这里我们所用到的数学知识就是:如何确定不等式组的公共解集.今天我们就共同来探讨不等式组吧.二、师生互动,课堂探究(一)提出问题,引发讨论在学习不等式组之前,我们来开展小组活动吧,每个小组的同学准备五根小木棒,使它们的长度依次为3cm、10cm、6cm、9cm和14cm,用这些小木棒来搭三角形,要求所搭成的三角形的三边中必须有3cm和10cm这两根木棒,请大家先想想我们还有多少种不同的搭配方式,它们都能搭出三角形吗?再动手试试,验证你们的想法.搭配方式有三种:3cm、10cm、6cm;3cm、10cm、9cm;3cm、10cm、14cm.•但并不是每种搭配方式都能搭成三角形.要构成三角形,必须有两条较短的边拼起来后要略比长边长,也即“任意两边之和大于第三边”,•将此不等式变形后成为“任意两边之差小于第三边”,这样可发现只有一种搭配方式可构成三角形,通过拼图验证可得到如课本P143中图.用不等式来解释,设第三边长为xcm,则有x>10-3又x<10+3,即x>7与x<13,这二者并不矛盾,比7大比13小的数在数轴上可表示为如图9.3-1-1的阴影部分,在这部分数中任取一个都能与10cm和3cm构成一个三角形,所给的三条边6cm、9cm、14cm中只有9cm符合要求.这就是说第三边的取值必须同时满足两个条件:比7大且比13小,•把x>7与x<13组合成一个整体即构成一元一次不等式组,即把两个不等式合起来,组成一个一元一次不等式组.•由此例可知不等式组的解集即为各个不等式的解集的公共部分.(二)导入知识,解释疑难1.教材内容讲解通过以上分析可知一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集,解不等式组就是求它的解集.例:解下列不等式组,并把解集在数轴上表示出来.(1)3150728xx x->⎧⎨-<⎩(2)21113112xxx-+>-⎧⎪⎨+-≥⎪⎩(3)224315xx+<⎧⎨-≥⎩(4)124343x xx->-⎧⎨-<⎩解:(1)由①得x>5,由②得x>-2,在数轴上表示为如图.它们的公共部分为x>5,故不等式组的解集为x>5.(2)由不等式①得x<6,由不等式②得x≥1,在数轴上表示为如图.它们的公共部分为1≤x<6,即为不等式组的解集.(3)由不等式①得x<1,由不等式②得x≥2,在数轴上表示为如图. 它们没有公共部分,故此不等式组无解.(4)由不等式①得x<-3,由不等式②得x<73,在数轴上表示为如图.它们的公共部分是x<-3,即为不等式组的解集. 由上述四例可发现不等式组的解集有四种情况:若a>b:①当x ax b>⎧⎨>⎩时,•则不等式的公共解集为x>a;②当x ax b<⎧⎨>⎩时,不等式的公共解集为b<x<a;③当x ax b<⎧⎨<⎩时,不等式的公共解集为x<b;④当x ax b>⎧⎨<⎩时,不等式组无解.练习:解下列不等式组:(1)253(2)123x xx x+≤+⎧⎪-⎨<⎪⎩(2)273(1)423133x xx x-<-⎧⎪⎨+≤-⎪⎩(3)538212323x xx x+>-⎧⎪--⎨>⎪⎩3解:(1)不等式2x+5≤3(x+2)的解为x ≥-1,不等式123x x -< 的解为x<3,•故不等式组的解集为-1≤x<3.(2)不等式2x-7<3(1-x)的解为x<2,不等式423133x x +≤-的解为x ≤-1,故不等式组的公共解集为x ≤-1.(3)不等式5x+3>8x-2的解为x<53,不等式12323x x -->的解为x<3,•故不等式组的公共解集为x<53. 2.探究活动试确定以下不等式组的解集:(1)求不等式组2(6)32151132x x x x -<-⎧⎪-+⎨-≤⎪⎩的整数解. (2)解不等式组25344(31)5(21)132x x x x x x ⎧⎪-<+⎪-<+⎨⎪-⎪≥⎩ (3) 0503010x y x x x -<⎧⎪-<⎪⎨+>⎪⎪+>⎩ 解:(1)2(x-6)<3-x 的解集为x<5, 2151132x x -+-≤的解集为x ≥-1.•不等式组的公共解集为-1≤x<5,其整数解有-1,0,1,2,3,4,故不等式组的整数解为-1,0,1,2,3,4. (2)不等式2x-5<3x+4的解集为x>-9,不等式4(3x-1)<5(2x+1)的解集为x<92,不等式132x x -≥的解集为x ≤25,不等式组的公共解集必须同时满足这三个不等式,故其解集为-9<x ≤25. (3)x-7<0的解集为x<7,x-5<0的解集为x<5,x+3>0的解集为x>-3,x+1>0的解集为x>-1,不等式组的解集必须同时满足这四个不等式,故其公共解集为-1<x<5.(三)归纳总结,知识回顾1.你是如何确定方程组的解的?方程组的解即是指同时满足各个方程的解.2.方程组的解与不等式组的解有什么异同?无论是方程组还是不等式组,它们的解均是指同时满足各个方程(不等式)•的解的公共部分,但方程组的解一般只有一组,而不等式组的解一般有很多范围可选择.3.不等式组的解的四种情形.作业设计(一)双基练习1.解不等式组:21132x xx->-⎧⎪⎨<⎪⎩2.解不等式组:20 350xx-≥⎧⎨+≤⎩3.解不等式组:321541 x xx x-<+⎧⎨+>+⎩4.解不等式组:523(1) 131522 x xx x->+⎧⎪⎨+≥-⎪⎩(二)创新提升5.是否存在实数x,使得x+3<5,且x+2>4.(三)探究拓展6.已知不等式组2123x ax b-<⎧⎨->⎩的解集为-1<x<1,则(a+1)(b-1)的值等于多少?参考答案1. 13<x<6 2.x≤-533.x<434.x>525.不存在6.a=1,b=-2,故(a+1)(b-1)•=2(-3)=-6第2课时一、创设情境,导入新课在上课之前,老师请大家来帮一个忙,帮老师来解决一道难题:•老师有一个熟人姓王,他有一个哥哥和一个弟弟,哥哥的年龄是20岁,小王的年龄的2倍加上他弟弟年龄的5倍等于97.现在小王要老师猜猜他和他弟弟的年龄各是多少?•俗话说三个臭皮匠,可抵一个诸葛亮,现在我们全班同学可抵得上很多诸葛亮,•所以老师相信大家一定有办法的.在上述已知条件中只有一个等量关系式:小王年龄的2倍+弟弟年龄的5倍=97,而小王及弟弟的年龄是未知的,他们年龄之间的等量关系也没有说出,在一个等式中有两个未知数是无法确定未知数的值,还必须再找出另一个关系式,还有已知条件即是哥哥的年龄为20岁,如何利用这个已知条件呢?只有利用一个隐含的条件哥哥、小王、弟弟三者的年龄是逐渐减小的,即是20>小王的年龄>弟弟的年龄,若设小王有x岁,弟弟为y岁,则有y<x<20,这是一个不等量,在等式中可知x=9752y-,代入不等式中得y<9752y-<20,怎么样?得到一个不等式组了!从而得出1152<y<1367,而x、y为正整数,故y=13,x=16,•也就是说不等式组也是解决实际问题的一种工具.•所以学习解不等式组是为了更好地解决实际问题.二、师生互动,课堂探究(一)提出问题,引发讨论当一个未知数同时满足几个不等关系时,我们就按这些关系分别列几个不等式,这样就得到不等式组,用不等式组解决实际问题时,•其公共解是否一定为实际问题的解呢?请举例说明.例:甲以5km/时的速度进行跑步锻炼,2小时后,乙骑自行车从同地出发沿同一条路追赶甲.但他们两人约定,乙最快不早于1小时追上甲,最慢不晚于1小时15•分追上甲.你能确定乙骑车的速度应当控制在什么范围吗?分析:甲以5km/时的速度前进,2小时后,甲前进了10km,此时,乙再开始骑自行车追赶甲,但乙追上甲的时间不早于1小时即是不能比1小时少,故乙追上甲的最少时间应多于1小时,而这段时间甲仍在前进,乙追上甲时所走的路程不止他1小时的路程,•故有不等式:v2·1≤(2+1)×5,由此得v2≤15;又因为乙追上甲的时间不晚于1小时15分(114小时),也就是乙追上甲的时间不能超过114小时,即比114小时要少,•实际上乙追上甲所走的路程要比他在114小时所走的路程少,在乙开始追甲时,•甲也在以原来的速度继续前进,实际上甲走的总时间应比(2+114)小时少,故又有不等式:v2·114≥(2+114)×5即54v2≥134×5,故v2≥13.同一个人的速度,既要比13大又要比15小,故它的速度就是不等式组2 21(21)5111(21)5 44v v ≤+⨯⎧⎪⎨≥+⨯⎪⎩的公共解集:13≤v2≤15.由于速度是一个正数,既可以是整数,也可以是分数,因此,乙的速度就是根据题意所列不等式组的公共解集.但由此一例,不能代表全体,实际上也有方程的解不全是不等式组的解的时候.(二)导入知识,解释疑难1.教材内容讲解如课本例2(P145)(请同学自己阅读,动手列不等式组进行求解,再将自己答案与课本答案进行比较)不等式组的解集为1523<x<1623,但x表示的是生产的产品件数,•不能为分数,故需取整,即x=16.又如:将若干只鸡放入若干个笼,若每个笼里放4只,则有1只鸡无笼可放;若每个笼里放5只,则有1笼无鸡可放,那么至少有多少只鸡,多少个笼?分析:根据若每个笼里放4只鸡,则有1•只鸡无笼可放这句话可得“鸡的数量为4×笼的数量+1”,若每个笼里放5只,则有一笼无鸡可放,•是否有鸡可放的笼里都放满了呢?这就有两种可能,可能最后一笼没有5只,也可能最后一笼恰好也有5只,因此可知“4×笼的数量+1”小于或等于“5×(笼的数量-1)”,但“4•×笼的数量+1”肯定比“5×(笼的数量-2)”要多,于是:设有x只鸡,y个笼,根据题意415(2)5(1)y xy x y+=⎧⎨-<≤-⎩∴5(y-2)<4y+1≤5(y-1)解此不等式组得:y≥6,x<11 故6≤y<11此不等式组的解中包括整数和分数,但y表示鸡的笼子不可能为分数,故y只能取6、7、8、9、10这五个数.而题中问至少有多少只鸡,多少个笼子,故y只能为6,允的只数为4×6+1=25只2.探究活动把16根火柴首尾相接,围成一个长方形(不包括正方形),怎样找到围出不同形状的长方形个数最多的办法呢?最多个数又是多少呢?分析:不妨假设每根火柴长为1,则16根火柴长为16,围成长方形,•则相邻两边的和为8,如果一边长为x,另一边长则为8-x,且8-x必须大于x.又x必须为大于1•的数最小等于1,于是得不等式组18xx x≥⎧⎨->⎩,解不等式组得1≤x<4,因为x为正整数,所以x所取的值为1,2,3.由此只要分别取1根火柴,2根火柴,3根火柴作相邻两边中较短的一条边,对应的邻边也分别取7根火柴,6根火柴,5根火柴,就能围成所有不同形状的长方形,•这样的长方形一共有3个.(三)归纳总结,知识回顾应用不等式组解决实际问题的步骤:1.审清题意;2.设未知数,•根据所设未知数列出不等式组;3.解不等式组;4.由不等式组的解确立实际问题的解;5.作答.(•与列方程组解应用题进行比较)作业设计(一)双基练习1.已知方程组2420x kyx y+=⎧⎨-=⎩有正整数解,则k的取值范围是_________.2.若不等式组2113x a x <⎧⎪-⎨>⎪⎩无解,求a 的取值范围. 3.当2(m-3)< 103m -时,求关于x 的不等式(5)4m x ->x-m 的解集. 4.某学校为学生安排宿舍,现有住房若干间,若每间5人还有14人安排不下,若每间7人,则有一间还余一些床位,问学校有几间房可以安排学生住宿?可以安排住宿的学生多少人?(二)创新提升5.某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,•在一次活动中,如果每人送5件,则还余8件,如果每人送7件,则最后一人还不足3件.•设该商场准备了m 件礼品,有x 名顾客获赠,请回答下列问题:(1)用含x 的代数式表示m.(2)求出该次活动中获赠顾客人数及所准备的礼品数.(三)探究拓展6.乘某城市的一种出租汽车起价是10元(即行驶路程在5km 以内都需付10元车费),达成或超过5km 后,每增加1km,加价1.2元(不足1km 部分按1km 计).现在某人乘这种出租汽车从甲地到乙地,支付车费17.2元,从甲地到乙地的路程大约是多少?参考答案1.k>-42.a ≤23.x<4m m - 4.学校准备了8,9和10间房,可供54,59或64•位学生住. 5.(1)m=5x+8 (2)有7人获礼品赠送,共有礼品43件 6.•从甲地到乙地的路程大于10km,小于或等于11km.课后习题答案习题9.31.(1)x<2 (2)x>4 (3)2<x<4 (4)无解2.(1) 12<x<2 (2)无解 (3)x<-14(4)x ≤1 (5)x<-7 (6)无集 3.略 4.125元~137元5.多抽0.4至0.55吨水6.15mg ~40mg7.x>28.x 为3和49.学生有6人,书有26本.。

9-2一元一次不等式第2课时(课件)-2022-2023学年七年级数学下册同步精品课堂(人教版)

解:设小明家每月用水x立方米. ∵5×1.8=9<15, ∴小明家每月用水超过5立方米, 则超出(x-5)立方米,按每立方米2元收费, 列出不等式为:5×1.8+(x-5)×2≥15, 解不等式得:x≥8.
答:小明家每月用水量至少是8立方米.
课堂检测
2.小明用的练习本可以到甲、乙两家商店购买,已知两商店
课后作业
解:设购买x台电脑,到甲商场比较合算,则 6000+6000(1-25%)(x-1)<6000(1-20%)x 去括号,得:6000+4500x-4500<4800x 移项且合并同类项,得:-300x<-1500 不等式两边同除以-300,得:x>5 ∵x为整数,∴x≥6
答:至少要购买6台电脑时,选择甲商场更合算.
例3 甲、乙两商场以同样的价格出售同样的商品,并且又 各自推出不同的优惠方案:在甲商场累计购买100元后,超出 100元的部分按90%收费;在乙商场累计购买超过50元后,超过 50元的部分按95%收费.顾客到哪家商场购物花费少?
分析:在甲商场购物超过100元后享受优惠,在乙商场购 物超过50元后享受优惠.因此,我们需要分三种情况讨论: (1)累计购物不超过50元; (2)累计购物超过50元而不超过100元; (3)累计购物超过100元.
设这次购买《西游记》m本,则购买《水浒传》 (50+40+m-60-30)= m本,《三国演义》(50+40+m)= (90+m)本, 《红楼梦》(50+40+m)= (90+m)本,
依题意得:60m +60m +50 (90+m)+70 (90+m)≤32000, 解得:m 88 1 . ∵m为整数,3 ∴m可以取的最大值为88. 答:这次最多购买《西游记》88本.

9.3 一元一次不等式组 课件(人教版七年级下)


受了8折.应先算出原价,然后除以单价, 方案一: 购进甲种商品48件, 乙种商品52件; 得出数量. (1)设该商场能购进甲种商品x件,
方案二: 购进甲种商品49件, 乙种商品51件; 方案三: 购进甲种商品50件, 乙种商品50件.
根据题意,得15x+35(100-x)=2700, (3)根据题意,得 解得x=40. 乙种商品:100-40=60(件). (2)设该商场购进甲种商品a件,则购进 乙种商品(100-a)件. 根据题意,得
第一天只购买甲种商品不享受优惠条件,故 200÷20=10(件); 第二天只购买乙种商品有以下两种情况: 情况一:购买乙种商品打九折,324÷90% ÷45=8(件); 情况二:购买乙种商品打八折,324÷80% ÷45=9(件). 故一共可购买甲、乙两种商品10+8=18 (件)或10+9=19(件).
10x+8y<7000, x=60, (1) 解得 2x+5y>4120, y=800,
所以每台电脑机箱和液晶显示器进价分别是60 元、800元. (2)设购机箱z台,则显示器(50-z)台,
60z+800(50 - z)<22240, ∴24≤z≤26. 10z+160(50 z)>4100,
组.
3x - 2>0, 1 D. x + 1 < x
答案:A
例2.解集在数轴上表示为如图所 示的不等式组的是( ).
例3.解下列一元一次不等式组:
3( x - 2)+8>2 x, x -1 (1) x+1 x . 3 2 2( x+2)>3x+3, (2) x x+1 > . 3 4
x - a 0, 1.已知关于x的不等式组 只有 5 2x > 1
四个整数解, 则a的取值范围是_______.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档