北京市丰台区2016-—-2017学年度第一学期期末试卷高三数学(文科)试题及小题答案(word版)

合集下载

优质:北京市丰台区2016-2017学年高一下学期期末考试数学试题(解析版)

优质:北京市丰台区2016-2017学年高一下学期期末考试数学试题(解析版)

1.【答案】A【解析】由不等式的性质,如果,则.本题选择A选项.2.【答案】B【解析】由等比数列的性质可知,成等比数列,则:.本题选择B选项.3.【答案】B【解析】流程图等价于分段函数:,则:.本题选择B选项.【名师点睛】在画程序框图时首先要进行结构的选择.若所要解决的问题不需要分情况讨论,只用顺序结构就能解决;若所要解决的问题要分若干种情况讨论时,就必须引入条件结构;若所要解决的问题要进行许多重复的步骤,且这些步骤之间又有相同的规律时,就必须引入变量,应用循环结构.5.【答案】C【解析】由余弦定理可得:b2=a2+c2−2accosB=a2+c2−ac=ac,化为(a−c)2=0,解得a=c.又B=60°,可得△ABC是等边三角形,本题选择C选项.6.【答案】C【解析】由题意可知:一元二次方程ax2+bx+c=0的两个实数根为−2,3(a<0),则ax2+bx+c>0解为−2<x<3,故不等式的解集为{x|−2<x<3},本题选择C选项.【名师点睛】“三个二次”间关系,其实质是抓住二次函数y=ax2+bx+c(a≠0)的图象与横轴的交点、二次不等式ax2+bx+c>0(a≠0)的解集的端点值、二次方程ax2+bx+c=0(a≠0)的根是同一个问题.解决与之相关的问题时,可利用函数与方程思想、化归思想将问题转化,结合二次函数的图象来解决.7.【答案】A【名师点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.8.【答案】D【解析】设等比数列的公比为,则:,当且仅当时等号成立,即这个数列前3项的和的取值范围是.9.【答案】B【解析】阅读流程图可得,该流程图表示的是秦九韶算法,由秦九韶算法的特征结合所给多项式的特点可得计算的值共需要2n次运算,其中加法、乘法运算各n次.本题选择B选项.10.【答案】C【解析】设点A到直线的距离为,则满足题意的点位于以为轴,以位半径的圆柱上,即满足题意的点为圆柱与正方体的交点,由几何关系可得,交点的个数为个.本题选择C选项.第二部分(非选择题共60分)二、填空题共6小题,每小题4分,共24分.11.【答案】0.3【解析】由频率计算公式可得,样本的该项质量指标值落在[105,125]上的频率为.12.【答案】1【解析】题中所给的二次函数开口向下,对称轴为,则函数的最大值为:.【名师点睛】D(X)表示随机变量X对E(X)的平均偏离程度,D(X)越大表明平均偏离程度越大,说明X的取值越分散,反之,D(X)越小,X的取值越集中.14.【答案】②③【解析】由线面关系逐一考查所给的各个命题:①如果,,那么不一定有,该命题错误;②如果,,那么,该命题正确;③如果,,那么,该命题正确;④如果,,那么不一定有,该命题错误.综上,正确的结论为②③.15.【答案】【解析】由特殊三角形的特征可得:,在△ABC中应用余弦定理:.16.【答案】(1).4 (2).【解析】由递推关系可得:,两式做比值可得:,则:,由可得:,则奇数项、偶数项分别为首项为1,公比为2的等比数列,则:【名师点睛】数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.三、解答题共4小题,共36分.解答应写出文字说明,演算步骤或证明过程.17.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(1)由正弦定理结合题意可得;(2)由余弦定理结合三角形的面积公式可得.试题解析:(Ⅰ)因为以及,所以,因为所以18.【答案】(1);(2)从,,组应依次抽取名学生,名学生,名学生;(3) 第3组.【解析】试题分析:(1)由小长方形面积和为1列方程可得;(2)由分层抽样比可得从,,组应依次抽取名学生,名学生,名学生;(3)由频率分布直方图计算平均值的特点结合中点值的特征可得随机抽取学生所得测试分数的平均值在第三组.试题解析:(1)因为各组的频率之和为1,,解得(2)由频率分布直方图知,第,,组的学生人数之比为.所以,每组抽取的人数分别为:第组:;第组:;第组:.所以从,,组应依次抽取名学生,名学生,名学生.(3)第3组【名师点睛】一是在频率分布直方图中,小矩形的高表示频率/组距,而不是频率;二是利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.19.【答案】(Ⅰ)见解析;(Ⅱ)见解析(Ⅲ) 不能成立.【解析】试题分析:(1)由题意可得EO// PC,利用线面平行的判定定理可得PC//平面BDE;(2)利用题意证得PC⊥AC,PC⊥BD,结合线面垂直的判定定理即可证得结论;(3)由空间关系可知面面垂直的关系不能成立.因为EO平面,平面,所以PC//平面BDE;(Ⅱ)证明:(法一)在和中,因为,,,所以≌,又点是棱的中点,所以,所以,(法二)连接PO因为底面ABCD是正方形,所以O是BD的中点,BD⊥AC,又PB=PD,所以PO⊥BD,又PO∩AC=O,PO平面P AC,AC平面P AC 所以BD⊥平面P AC又OE平面P AC,所以BD⊥OE,因为平面平面,平面平面,平面所以平面,所以EO⊥AC,EO⊥BD,因为OE∥PC,所以PC⊥AC,PC⊥BD,又AC∩BD=O所以所以PC⊥平面ABCD.(Ⅲ) 不能成立20.【答案】(Ⅰ),;(Ⅱ)见解析.【解析】试题分析:(1)累加求和可得,结合的通项公式可得(2)由(1)的结论可知,,结合题意和(1)中的结果即可证得数列为等比数列.试题解析:(Ⅰ)由已知,当时,.又因为,所以数列的通项公式为.因为,所以,两式做差可得,且也满足此式,所以.。

2016-2017年北京市海淀区高三上学期期末数学试卷(文科)和答案

2016-2017年北京市海淀区高三上学期期末数学试卷(文科)和答案

第 5 页(共 20 页)
2016-2017 学年北京市海淀区高三 (上) 期末数学试卷 (文 科)
参考答案与试题解析
一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选 出符合题目要求的一项. 1. (5 分)复数 i(2﹣i)在复平面内对应的点的坐标为( A. (﹣2,1) B. (2,﹣1) C. (1,2) D. (﹣1,2) 【解答】解:复数 i(2﹣i)=2i+1 在复平面内对应的点的坐标为(1,2) , 故选:C. )
3. (5 分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( A. B.y=﹣x2 C.y=log2x D.y=|x|+1 =0, ( )• =2,则| |=( )
4. (5 分)已知向量 , 满足 A. B.1 C. D.2
5. (5 分)如图程序框图所示的算法来自于《九章算术》 ,若输入 a 的值为 16,b 的值为 24,则执行该程序框图的结果为( )
三、解答题共 6 小题,共 80 分.解答应写出文字说明、演算步骤或证明过程. 15. (13 分)已知数列{an} 是各项均为正数的等比数列,且 a2=1,a3+a4=6 (Ⅰ)求数列{an} 的通项公式; (Ⅱ)设数列{an﹣n} 的前 n 项和为 Sn,比较 S4 和 S5 的大小,并说明理由. 16. (13 分)已知函数 (Ⅰ)求 f(x) 的定义域及 (Ⅱ)求 f(x) 在 的值; 上的单调递增区间.
19. (13 分)已知椭圆 的右顶点 A(2,0) ,且交椭圆 G 于另一点 C (Ⅰ)求椭圆 G 的标准方程;
的离心率为
,直线 l 过椭圆 G
第 4 页(共 20 页)
(Ⅱ)若以 AC 为直径的圆经过椭圆 G 的上顶点 B,求直线 l 的方程. 20. (14 分)已知函数 .

2017届北京市丰台区高三上学期期末练习数学(理)答案

2017届北京市丰台区高三上学期期末练习数学(理)答案

丰台区2016~2017学年度第一学期期末练习 高三数学(理科)参考答案及评分参考2017.01 一、选择题共8小题,每小题5分,共40分.二、填空题共6小题,每小题5分,共30分.9.1i -+ 10.5311. 15 12.4 13.83π; 14.2;1111,,3432⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭U 三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)解:(Ⅰ)在△ADC 中,由余弦定理,得CD AC AD CD AC C ⋅-+=2cos 222 ……………….2分2123272322=⨯⨯-+=……………….4分因为0C <<π,所以3C π=. ……………….6分 (Ⅱ)因为3C π=,所以23sin =C . ……………….8分 在△ABC 中,由正弦定理,得CABB AC sin sin =, ……………….10分 即2213=AB ,所以边AB 的长为2213. ……………….13分16.(本小题共14分)证明:(Ⅰ)取PD 中点H ,连接GH ,HC ,因为ABCD 是正方形,所以AD ‖BC ,AD BC =.因为G,H 分别是PA ,PD 中点,所以GH ‖AD ,12GH AD =. 又因为EC ‖AD 且12EC AD =, 所以GH ‖EC ,GH EC =,所以四边形GHCE 是平行四边形, ………….3分 所以EG ‖HC .又因为EG Ë平面PDCQ ,HC Ì平面PDCQ所以EG ‖平面PDCQ . ……………….5分 (Ⅱ)因为平面PDCQ ⊥平面ABCD , 平面PDCQ I 平面ABCD CD =,PD DC ^,PD Ì平面PDCQ ,所以PD ^平面ABCD . ……………….6分如图,以D 为原点,射线DA ,DC ,DP 分别为x ,y ,z 轴正方向,建立空间直角坐标系.设PD a =,则 ()()()00002201 P ,,a F ,,B ,,,,.………………7分因为PD ⊥底面ABCD ,所以平面ABCD 的一个法向量为(0,0,1)=m . ……………….8分 设平面PFB 的一个法向量为(,,)x y z =n ,()10PF ,,a u u u r =- ()120 FB ,,u u r =, 则0,=0.PF FB ⎧⋅=⎪⎨⋅⎪⎩uu u r uur n n即0+2=0x az x y -=⎧⎨⎩令x =1,得11,2z y a ==-,所以11(1,,)2a=-n . ……………….10分由已知,二面角P BF C --所以得cos <,>||||⋅===m nm n m n ……………….11分 解得a =2,所以2PD =. ……………….13分因为PD 是四棱锥P ABCD -的高,所以其体积为182433P ABCD V -=⨯⨯=.……………….14分17.(本小题共14分)解:(Ⅰ)由题意知,四所中学报名参加数独比赛的学生总人数为100名, 抽取的样本容量与总体个数的比值为30310010=, 所以甲、乙、丙、丁四所中学各抽取的学生人数分别为9,12,6,3. ………………3分 (Ⅱ)设“从30名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件A ,从30名学生中随机抽取两名学生的取法共有230435C =种, ………………5分 来自同一所中学的取法共有222291263120C C C C +++=. ………………7分所以1208()43529P A ==. 答:从30名学生中随机抽取两名学生来自同一所中学的概率为829. ………………8分 (Ⅲ)由(Ⅰ)知,30名学生中,来自甲、丙两所中学的学生人数分别为9,6.依题意得,X 的可能取值为0,1,2, ………………9分262151(0)7C P X C === ,119621518(1)35C C P X C === ,2921512(2)35C P X C ===. ……………12分 所以X 的分布列为:……………….14分18.(本小题共13分)解:(Ⅰ)因为()e e x x f x x '=+,所以(0)1f '=. ……………….2分因为()g x x a '=+,所以(0)g a '=. ……………….4分 因为()f x 与()g x 的图象在(0,0)处有相同的切线,所以(0)(0)f g ''=,所以1a =. …….5分(Ⅱ)由(Ⅰ)知, 21()2g x x x =+, 令21()()()e 2xh x f x bg x x bx bx =-=--,[1,2]x ∈,则()e e (1)(1)(e )xxxh x x b x x b '=+-+=+-. ……………….6分(1)当0b ≤时,[1,2]x ∀∈,()0h x '>,所以()h x 在上是增函数,故()h x 的最小值为3(1)=e 2h b -; ……………….7分 (2)当0b >时,由()=0h x '得,ln x b =, ……………….8分 ①若ln 1b ≤,即0e b <≤,则[1,2]x ∀∈,()0h x '>,所以()h x 在上是增函数, 故()h x 的最小值为3(1)=e 2h b -. ……………….9分 ②若1ln 2b <<,即2e e b <<,则(1,ln )x b ∀∈,()0h x '<,(ln 2)x b ∀∈,,()0h x '>,所以()h x 在(1,ln )b 上是减函数,在(ln 2)b ,上是增函数, 故()h x 的最小值为21(ln )=ln 2h b b b -; ……………….11分 ③若ln 2b ≥,即2e b ≥,则[1,2]x ∀∈,()0h x '<,所以()h x 在[1,2]上是减函数,故()h x 的最小值为2(2)=2e 4h b -. ……………….12分综上所述,当e b ≤时,()h x 的最小值为3(1)=e 2h b -, 当2e e b <<时,()h x 的最小值为21ln 2b b -, 当2e b ≥时,()h x 的最小值为22e 4b -. ……………….13分 19.(本小题共13分)解:(Ⅰ)把点(1,2)A 代入抛物线C 的方程22y px =,得42p =,解得2p =,所以抛物线C 的方程为24y x =. ……………….4分 (Ⅱ)因为2p =,所以直线2px =-为1x =-,焦点F 的坐标为(1,0) 设直线PQ 的方程为1x ty =+,211(,)4y P y ,222(,)4y Q y , 则直线OP 的方程为14y x y =,直线OQ 的方程为24y x y =. ……………….5分由14,1,y x y x ⎧=⎪⎨⎪=-⎩得14(1,)S y --,同理得24(1,)T y --. ……………….7分所以14(2,)FS y =--uu r ,24(2,)FT y =--uu u r ,则12164FS FT y y ⋅=+uu r uu u r . ……………….9分由21,4,x ty y x =+⎧⎨=⎩得2440y ty --=,所以124y y =-, ……………….11分则164(4)FS FT ⋅=+-uu r uu u r 440=-=. 所以,FS FT ⋅u u r u u u r的值是定值,且定值为0. ……………….13分20.(本小题共13分) 解:(Ⅰ)12462,,,,77777……………….4分(Ⅱ)存在满足题意的实数M , 且M 的最小值为1. 解法一:猜想10≤≤n c ,下面用数学归纳法进行证明. (1)当1n =时,101c ≤≤,结论成立.(2)假设当)(*N k k n ∈=时结论成立,即10≤≤k c , 当1+=k n 时,022k c ≤≤ ,所以1121k c -≤-≤, 即0121k c ≤-≤,所以01121k c ≤--≤, 故01121k c ≤--≤. 又因为+1=112k k c c --, 所以+101k c ≤≤,所以1+=k n 时结论也成立.综上,由(1),(2)知,10≤≤n c 成立 所以1M ≥,当112c =时,可得当2n ≥时, 1n c =,此时, M 的最小值为1 故M 的最小值为1.解法二:当2≥n 时,若存在2,3,4...,k =满足11k c -<,且1k c >. 显然1,21,01≠-k c ,则1211<<-k c 时,1221<-=-k k c c 与1>k c 矛盾; 2101<<-k c 时,121<=-k k c c 与1>k c 矛盾;所以01(2)n c n ≤≤≥ 所以1M ≥,当112c =时,可得当2n ≥时, 1n c =,此时, M 的最小值为1 故M 的最小值为1. ……………………10分(Ⅲ)2 ………………13分(若用其他方法解题,请酌情给分)。

2017年北京市丰台区高考数学一模练习试卷文科 含解析

2017年北京市丰台区高考数学一模练习试卷文科 含解析

2017年北京市丰台区高考数学一模试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.如果集合A={x∈Z|﹣2≤x<1},B={﹣1,0,1},那么A∩B=()A.{﹣2,﹣1,0,1}B.{﹣1,0,1}C.{0,1}D.{﹣1,0}2.在平面直角坐标系xOy中,与原点位于直线3x+2y+5=0同一侧的点是()A.(﹣3,4)B.(﹣3,﹣2)C.(﹣3,﹣4)D.(0,﹣3)3.执行如图所示的程序框图,则输出的i的值是()A.3 B.4 C.5 D.64.设命题p:∀x∈[0,+∞),e x≥1,则¬p是()A.∃x0∉[0,+∞), B.∀x∉[0,+∞),e x<1C.∃x0∈[0,+∞),D.∀x∈[0,+∞),e x<15.如果,那么()A.c>b>a B.c>a>b C.a>b>c D.a>c>b6.由一个正方体截去一个三棱锥所得的几何体的直观图如图所示,则该几何体的三视图正确的是()A.B.C.D.7.已知函数,点A(m,n),B(m+π,n)(|n|≠1)都在曲线y=f(x)上,且线段AB与曲线y=f(x)有五个公共点,则ω的值是()A.4 B.2 C.D.8.某校举行了以“重温时代经典,唱响回声嘹亮”为主题的“红歌”歌咏比赛.该校高一年级有1,2,3,4四个班参加了比赛,其中有两个班获奖.比赛结果揭晓之前,甲同学说:“两个获奖班级在2班、3班、4班中”,乙同学说:“2班没有获奖,3班获奖了”,丙同学说:“1班、4班中有且只有一个班获奖”,丁同学说:“乙说得对”.已知这四人中有且只有两人的说法是正确的,则这两人是()A.乙,丁B.甲,丙C.甲,丁D.乙,丙二、填空题共6小题,每小题5分,共30分.9.在复平面内,复数z=1﹣2i对应的点到原点的距离是.10.抛物线y2=2x的准线方程是.11.设a+b=M(a>0,b>0),M为常数,且ab的最大值为2,则M等于.12.如图,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=CD=1,P是AB的中点,则=.13.已知点A(1,0),B(3,0),若直线y=kx+1上存在点P,满足PA⊥PB,则k的取值范围是.14.已知函数(1)若a=0,x ∈[0,4],则f (x )的值域是 ;(2)若f (x )恰有三个零点,则实数a 的取值范围是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.在△ABC 中,角A ,B ,C 对应的边长分别是a ,b ,c ,且,c=4.(Ⅰ)若,求a ;(Ⅱ)若△ABC 的面积等于,求a ,b .16.已知{a n }是各项均为正数的等比数列,a 11=8,设b n =log 2a n ,且b 4=17. (Ⅰ)求证:数列{b n }是以﹣2为公差的等差数列; (Ⅱ)设数列{b n }的前n 项和为S n ,求S n 的最大值.17.如图1,平行四边形ABCD 中,AC ⊥BC ,BC=AC=1,现将△DAC 沿AC 折起,得到三棱锥D ﹣ABC (如图2),且DA ⊥BC ,点E 为侧棱DC 的中点. (Ⅰ)求证:平面ABE ⊥平面DBC ; (Ⅱ)求三棱锥E ﹣ABC 的体积;(Ⅲ)在∠ACB 的角平分线上是否存在点F ,使得DF ∥平面ABE ?若存在,求DF 的长;若不存在,请说明理由18.某校学生营养餐由A 和B 两家配餐公司配送.学校为了解学生对这两家配餐公司的满意度,采用问卷的形式,随机抽取了40名学生对两家公司分别评分.根据收集的80份问卷的评分,得到如图A 公司满意度评分的频率分布直方图和如表B 公司满意度评分的频数分布表:(Ⅰ)根据A公司的频率分布直方图,估计该公司满意度评分的中位数;(Ⅱ)从满意度高于90分的问卷中随机抽取两份,求这两份问卷都是给A公司评分的概率;(Ⅲ)请从统计角度,对A、B两家公司做出评价.19.已知P(0,1)是椭圆C:=1(a>b>0)上一点,点P到椭圆C的两个焦点的距离之和为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设A,B是椭圆C上异于点P的两点,直线PA与直线x=4交于点M,是=?若存在,求出点A的坐标;若不存在,请说否存在点A,使得S△ABP明理由.20.已知函数,A(x1,m),B(x2,m)是曲线y=f(x)上两个不同的点.(Ⅰ)求f(x)的单调区间,并写出实数m的取值范围;(Ⅱ)证明:x1+x2>0.2017年北京市丰台区高考数学一模试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.如果集合A={x∈Z|﹣2≤x<1},B={﹣1,0,1},那么A∩B=()A.{﹣2,﹣1,0,1}B.{﹣1,0,1}C.{0,1}D.{﹣1,0}【考点】交集及其运算.【分析】先分别求出集合A和B,由此利用交集定义能求出A∩B.【解答】解:∵集合A={x∈Z|﹣2≤x<1}={﹣2,﹣1,0},B={﹣1,0,1},∴A∩B={﹣1,0}.故选:D.2.在平面直角坐标系xOy中,与原点位于直线3x+2y+5=0同一侧的点是()A.(﹣3,4)B.(﹣3,﹣2)C.(﹣3,﹣4)D.(0,﹣3)【考点】二元一次不等式(组)与平面区域.【分析】二元一次不等式的表示的平面区域表示的点的特点判断即可.【解答】解:当x=0,y=0时,0+0+5>0,对于A:当x=﹣3,y=4时,﹣9+8+5>0,故满足,对于B:当x=﹣3,y=﹣2时,﹣9﹣4+5<0,故不满足,对于C:x=﹣3,y=﹣4,﹣9﹣8+5<0,故不满足,对于D:x=﹣3,y=﹣2时,0﹣6+5<0,故不满足,故选:A3.执行如图所示的程序框图,则输出的i的值是()A.3 B.4 C.5 D.6【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量i的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=2,不满足退出循环的条件,i=2;再次执行循环体后,S=6,不满足退出循环的条件,i=3;再次执行循环体后,S=14,不满足退出循环的条件,i=4;再次执行循环体后,S=30,满足退出循环的条件,故输出的i值为4,故选:B.4.设命题p:∀x∈[0,+∞),e x≥1,则¬p是()A.∃x0∉[0,+∞), B.∀x∉[0,+∞),e x<1C.∃x0∈[0,+∞),D.∀x∈[0,+∞),e x<1【考点】命题的否定.【分析】利用全称命题的否定是特称命题,可以求出¬p.【解答】解:因为命题p是全称命题,所以利用全称命题的否定是特称命题可得:¬p:∃x0∈[0,+∞),.故选:C5.如果,那么()A.c>b>a B.c>a>b C.a>b>c D.a>c>b【考点】对数值大小的比较.【分析】利用指数与对数函数的单调性即可得出.【解答】解:a=21.2>2,<1,c=2=log23∈(1,2).∴a>c>b.故选:D.6.由一个正方体截去一个三棱锥所得的几何体的直观图如图所示,则该几何体的三视图正确的是()A.B.C.D.【考点】简单空间图形的三视图.【分析】画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.依此画出该几何体的三视图.【解答】解:根据三视图的画法,可得俯视图、侧视图,故选D.7.已知函数,点A(m,n),B(m+π,n)(|n|≠1)都在曲线y=f(x)上,且线段AB与曲线y=f(x)有五个公共点,则ω的值是()A.4 B.2 C.D.【考点】y=Asin(ωx+φ)中参数的物理意义.【分析】由题意,2T=π,利用周期公式可得结论.【解答】解:由题意,2T=π,∴T=,∴ω=4,故选A.8.某校举行了以“重温时代经典,唱响回声嘹亮”为主题的“红歌”歌咏比赛.该校高一年级有1,2,3,4四个班参加了比赛,其中有两个班获奖.比赛结果揭晓之前,甲同学说:“两个获奖班级在2班、3班、4班中”,乙同学说:“2班没有获奖,3班获奖了”,丙同学说:“1班、4班中有且只有一个班获奖”,丁同学说:“乙说得对”.已知这四人中有且只有两人的说法是正确的,则这两人是()A.乙,丁B.甲,丙C.甲,丁D.乙,丙【考点】进行简单的合情推理.【分析】根据题意,假设乙的说法是正确的,分析可得丁也是正确的,那么甲丙的说法都是错误的,分析可得乙的说法相矛盾,即可得假设乙的说法是正确是错误的,从而可得丁的说法也是错误的,从而可得说法正确的是甲、丙,即可得答案.【解答】解:根据题意,由于甲乙丙丁四人中有且只有两人的说法是正确的,假设乙的说法是正确的,则丁也是正确的,那么甲丙的说法都是错误的,如果丙同学说:“1班、4班中有且只有一个班获奖”是错误的,那么1班、4班都获奖或1班、4班都没有获奖,与乙的说法矛盾,故乙的说法是错误,则丁同学说:“乙说得对”也是错误的;故说法正确的是甲、丙,故选:B.二、填空题共6小题,每小题5分,共30分.9.在复平面内,复数z=1﹣2i对应的点到原点的距离是.【考点】复数的代数表示法及其几何意义.【分析】利用复数的几何意义、两点之间的距离公式即可得出.【解答】解:复数z=1﹣2i对应的点(1,﹣2)到原点的距离d==.故答案:.10.抛物线y2=2x的准线方程是.【考点】抛物线的简单性质.【分析】先根据抛物线方程求得p,进而根据抛物线的性质,求得答案.【解答】解:抛物线y2=2x,∴p=1,∴准线方程是x=﹣故答案为:﹣11.设a+b=M(a>0,b>0),M为常数,且ab的最大值为2,则M等于2.【考点】基本不等式.【分析】由基本不等式,ab≤()2=可求ab的最大值,结合已知即可求解M【解答】解:∵a+b=M(a>0,b>0),由基本不等式可得,ab≤()2=,∵ab的最大值为2,∴=2,M>0,∴M=2,故答案为:.12.如图,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=CD=1,P是AB的中点,则=﹣1.【考点】平面向量数量积的运算.【分析】由题意可得△BCD为等腰直角三角形,求得BD的长,运用中点的向量表示和向量数量积的性质:向量的平方即为模的平方,计算即可得到所求值.【解答】解:在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=CD=1,可得△BCD为等腰直角三角形,则BD=,且P是AB的中点,可得=(+),=(+)•(﹣)=(2﹣2)=[()2﹣22]=﹣1.故答案为:﹣1.13.已知点A(1,0),B(3,0),若直线y=kx+1上存在点P,满足PA⊥PB,则k的取值范围是.【考点】直线的一般式方程与直线的垂直关系.【分析】以AB为直径圆的方程为:(x﹣1)(x﹣3)+y2=0,把y=kx+1代入上述方程可得:(1+k2)x2+(2k﹣4)x+4=0,根据直线y=kx+1上存在点P,满足PA⊥PB,可得△≥0,解出即可得出.【解答】解:以AB为直径圆的方程为:(x﹣1)(x﹣3)+y2=0,把y=kx+1代入上述方程可得:(1+k2)x2+(2k﹣4)x+4=0,∵直线y=kx+1上存在点P,满足PA⊥PB,∴△=(2k﹣4)2﹣16(1+k2)≥0,化为:3k2+4k≤0.解得0,则k的取值范围是.故答案为:.14.已知函数(1)若a=0,x∈[0,4],则f(x)的值域是[﹣1,1] ;(2)若f(x)恰有三个零点,则实数a的取值范围是(﹣∞,0).【考点】函数零点的判定定理;函数的值.【分析】(1)求出f(x)在[﹣4,4]上的单调性,利用单调性求出最值即可得出值域;(2)对x讨论,分别求出f(x)的零点,令其零点分别在对应的定义域上即可.【解答】解:(1)a=0时,f(x)=,∴f(x)在[0,1]上单调递减,在(1,4]上单调递增,∵f(0)=0,f(1)=﹣1,f(4)=1,∴f(x)在[0,1]上的值域是[﹣1,0],在(1,4]上的值域是(0,1],∴f(x)在[0,4]上的值域是[﹣1,1].(2)当x≤1时,令f(x)=0得x=2a或x=a,当x>1时,令f(x)=0得=1﹣a,∴x=(1﹣a)2(1﹣a>1),∵f(x)恰好有三个解,∴,解得a<0.故答案为:[﹣1,1];(﹣∞,0).三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.在△ABC中,角A,B,C对应的边长分别是a,b,c,且,c=4.(Ⅰ)若,求a;(Ⅱ)若△ABC的面积等于,求a,b.【考点】余弦定理;正弦定理.【分析】(Ⅰ)由已知及正弦定理即可计算得解a的值.(Ⅱ)由已知及三角形面积公式可求ab=16,利用余弦定理可得,16=a2+b2﹣ab,联立即可解得a,b的值.【解答】(本小题共13分)解:(Ⅰ)由正弦定理可知:,从而求得…(Ⅱ)由△ABC的面积等于,可知,从而ab=16①,由余弦定理c2=a2+b2﹣2abcosC可得,16=a2+b2﹣ab②,联立①②得a=b=4.…16.已知{a n}是各项均为正数的等比数列,a11=8,设b n=log2a n,且b4=17.(Ⅰ)求证:数列{b n}是以﹣2为公差的等差数列;(Ⅱ)设数列{b n}的前n项和为S n,求S n的最大值.【考点】等差数列与等比数列的综合.【分析】(Ⅰ)利用等比数列以及对数的运算法则,转化证明数列{b n}是以﹣2为公差的等差数列;(Ⅱ)求出数列的和,利用二次函数的性质求解最大值即可.【解答】(本小题共13分)解:(Ⅰ)证明:设等比数列{a n}的公比为q,则b n﹣b n=log2a n+1﹣log2a n==log2q,+1因此数列{b n}是等差数列.又b11=log2a11=3,b4=17,又等差数列{b n}的公差,即b n=25﹣2n.即数列{b n}是以﹣2为公差的等差数列.…(Ⅱ)设等差数列{b n}的前n项和为S n,则n==(24﹣n)n=﹣(n﹣12)2+144,于是当n=12时,S n有最大值,最大值为144.…17.如图1,平行四边形ABCD中,AC⊥BC,BC=AC=1,现将△DAC沿AC折起,得到三棱锥D﹣ABC(如图2),且DA⊥BC,点E为侧棱DC的中点.(Ⅰ)求证:平面ABE⊥平面DBC;(Ⅱ)求三棱锥E﹣ABC的体积;(Ⅲ)在∠ACB的角平分线上是否存在点F,使得DF∥平面ABE?若存在,求DF的长;若不存在,请说明理由【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;平面与平面垂直的判定.【分析】(Ⅰ)证明AE⊥CD;结合AC⊥BC,AD⊥BC,推出BC⊥平面ACD.得到AE⊥BC;证明AE⊥平面BCD,即可推出平面ABE⊥平面BCD.(Ⅱ)利用V E﹣ABC =V B﹣ACE,结合BC是三棱锥的高,求解.(Ⅲ)取AB中点O,连接CO并延长至点F,使CO=OF,连接AF,DF,BF.说明射线CO是角∠ACB的角分线.正面OE∥DF,推出DF∥平面ABE.然后最后求解DF即可.【解答】(本小题共14分)解:(Ⅰ)证明:在平行四边形ABCD中,有AD=BC=AC,又因为E为侧棱DC的中点,所以AE ⊥CD ;又因为AC ⊥BC ,AD ⊥BC ,且AC ∩AD=A ,所以BC ⊥平面ACD . 又因为AE ⊂平面ACD ,所以AE ⊥BC ; 因为BC ∩CD=C , 所以AE ⊥平面BCD , 又因为AE ⊂平面ABE , 所以平面ABE ⊥平面BCD .…(Ⅱ)解:因为V E ﹣ABC =V B ﹣ACE ,BC ⊥平面ACD ,所以BC 是三棱锥的高,故,又因为BC=1,,,所以,所以有…(Ⅲ)解:取AB 中点O ,连接CO 并延长至点F ,使CO=OF ,连接AF ,DF ,BF .因为BC=AC ,所以射线CO 是角∠ACB 的角分线.又因为点E 是的CD 中点,所以OE ∥DF , 因为OE ⊂平面ABE ,DF ⊄平面ABE , 所以DF ∥平面ABE . 因为AB 、FC 互相平分,故四边形ACBF 为平行四边形,有BC ∥AF . 又因为DA ⊥BC ,所以有AF ⊥AD ,又因为AF=AD=1,故.…18.某校学生营养餐由A 和B 两家配餐公司配送.学校为了解学生对这两家配餐公司的满意度,采用问卷的形式,随机抽取了40名学生对两家公司分别评分.根据收集的80份问卷的评分,得到如图A公司满意度评分的频率分布直方图和如表B公司满意度评分的频数分布表:(Ⅰ)根据A公司的频率分布直方图,估计该公司满意度评分的中位数;(Ⅱ)从满意度高于90分的问卷中随机抽取两份,求这两份问卷都是给A公司评分的概率;(Ⅲ)请从统计角度,对A、B两家公司做出评价.【考点】众数、中位数、平均数;古典概型及其概率计算公式.【分析】(Ⅰ)设出中位数,根据频率分布直方图求出中位数的值即可;(Ⅱ)意度高于9的问卷共有6份,其中4份评价A公司,设为a1,a2,a3,a4,2份评价B公司,设为b1,b2,求出满足条件的个数,求出满足条件的概率即可;(Ⅲ)根据A公司得分的中位数低于B公司得分的中位数,A公司得分的平均数数低于B公司得分的平均数,得出结论即可.【解答】解:(Ⅰ)设A公司调查的40份问卷的中位数为x,则有0.015×10+0.025×10+0.03×(x﹣70)=0.5解得:x≈73.3所以,估计该公司满意度得分的中位数为73.3 …(Ⅱ)满意度高于9的问卷共有6份,其中4份评价A公司,设为a1,a2,a3,a4,2份评价B公司,设为b1,b2.从这6份问卷中随机取2份,所有可能的结果有:(a1,a2),(a1,a3),(a1,a4),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,b1),(a2,b2),(a3,a4),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(b1,b2),共有15种.其中2份问卷都评价A公司的有以下6种:(a1,a2),(a1,a3),(a1,a4),(a2,a3),(a2,a4),(a3,a4).设两份问卷均是评价A公司为事件C,则有.…(Ⅲ)由所给两个公司的调查满意度得分知:A公司得分的中位数低于B公司得分的中位数,A公司得分集中在[70,80)这组,而B公司得分集中在[70,80)和[80,90)两个组,A公司得分的平均数数低于B公司得分的平均数,A公司得分比较分散,而B公司得分相对集中,即A公司得分的方差高于B公司得分的方差.…19.已知P(0,1)是椭圆C:=1(a>b>0)上一点,点P到椭圆C的两个焦点的距离之和为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设A,B是椭圆C上异于点P的两点,直线PA与直线x=4交于点M,是=?若存在,求出点A的坐标;若不存在,请说否存在点A,使得S△ABP明理由.【考点】圆锥曲线的存在性问题;椭圆的标准方程;直线与椭圆的位置关系.【分析】(Ⅰ)由椭圆C:过点P(0,1)可得b=1,然后求解a,即可求解椭圆的方程.(Ⅱ)设A(m,n),直线PA的方程为:,求出M,通过等价于且点A在y轴的右侧,党的,求出A(,),可得结果.【解答】(本小题共14分)解:(Ⅰ)由椭圆C:过点P(0,1)可得b=1,又点P到两焦点距离和为,可得,所以椭圆C的方程.…(Ⅱ)设A(m,n),依题意得:直线PA的斜率存在,则直线PA的方程为:,令x=4,,即M,又等价于且点A在y轴的右侧,从而,因为点A在y轴的右侧,所以,解得,由点A在椭圆上,解得:,于是存在点A(,),使得.…20.已知函数,A(x1,m),B(x2,m)是曲线y=f(x)上两个不同的点.(Ⅰ)求f(x)的单调区间,并写出实数m的取值范围;(Ⅱ)证明:x1+x2>0.【考点】利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,得到m的范围即可;(Ⅱ)问题转化为证f(x1)<f(﹣x1),只需证(x1∈(﹣1,0)),令h(x)=(x﹣1)e2x+x+1<0,则h'(x)=(2x﹣1)e2x+1,根据函数的单调性证明即可.【解答】解:f(x)的定义域为R.(Ⅰ),由f'(x)=0得,x=0,由f'(x)>0得,x<0,由f'(x)<0得,x>0,所以f(x)的单调增区间为(﹣∞,0),单调减区间为(0,+∞),m的取值范围是(0,1).…(Ⅱ)由(Ⅰ)知,x1∈(﹣1,0),要证x2>﹣x1>0,只需证f(x2)<f(﹣x1)因为f(x1)=f(x2)=m,所以只需证f(x1)<f(﹣x1),只需证,只需证(x1∈(﹣1,0))令h(x)=(x﹣1)e2x+x+1<0,则h'(x)=(2x﹣1)e2x+1,因为(h'(x))'=4xe2x<0,所以h'(x)在(﹣1,0)上单调递减,所以h'(x)>h'(0)=0,所以h(x)在(﹣1,0)上单调递增,所以h(x)<h(0)=0,所以,故x1+x2>0…2017年4月15日。

北京市丰台区2016-2017学年度第二学期一模练习高三数学文科试题Word版含答案

北京市丰台区2016-2017学年度第二学期一模练习高三数学文科试题Word版含答案

丰台区2017年高三年级第二学期综合练习(一)数 学(文科)2017. 03(本试卷满分共150分,考试时间120分钟)注意事项:1. 答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔填写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好条形码。

2. 本次考试所有答题均在答题卡上完成。

选择题必须使用2B 铅笔以正确填涂方式将各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项。

非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、字迹清楚。

3. 请严格按照答题卡上题号在相应答题区内作答,超出答题区域书写的答案无效,在试卷、草稿纸上答题无效。

4. 请保持答题卡卡面清洁,不要装订、不要折叠、不要破损。

第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 如果集合{}21A x x =∈-≤<Z ,{}101B =-,,,那么A B = (A ){}2101--,,, (B ){}101-,, (C ){}01, (D ){}10,-2. 在平面直角坐标系xOy 中,与原点位于直线3+250x y +=同一侧的点是 (A )(34)-,(B )(32)--,(C )(34)--,(D )(03)-,3. 执行如图所示的程序框图,则输出的i 值是 (A )3 (B )4 (C )5(D )64. 设命题p :[0)x ∀∈+∞,,e 1x ≥,则p ⌝是 (A )0[0)x ∃∉+∞,,0e 1x <(B )[0)x ∀∉+∞,,e 1x < (C )0[0)x ∃∈+∞,,0e 1x <(D )[0)x ∀∈+∞,,e 1x <5.如果 1.20.3212()2log 2a b c ===,,(A )c b a >> (B )c a b >> (C )a b c >>(D )a c b >>6. 由一个正方体截去一个三棱锥所得的几何体的直观图如图所示,则该几何体的三视图正确的是(A)(B )(C )(D )7. 已知函数π()sin()3f x x ω=-,点()A m n ,,(π)B m n +,(||1)n ≠都在曲线()y f x =上,且线段AB 与曲线()y f x =有五个公共点,则ω的值是 (A )4(B )2(C )12(D )148. 某校举行了以“重温时代经典,唱响回声嘹亮”为主题的“红歌”歌咏比赛. 该校高一年级有1,2,3,4四个班参加了比赛,其中有两个班获奖. 比赛结果揭晓之前,甲同学说:“两个获奖班级在2班、3班、4班中”,乙同学说:“2班没有获奖,3班获奖了”,丙同学说:“1班、4班中有且只有一个班获奖”,丁同学说:“乙说得对”. 已知这四人中有且只有两人的说法是正确的,则这两人是 (A )乙,丁(B )甲,丙(C )甲,丁(D )乙,丙第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分.正视图侧视图.正视图侧视图.D.俯视图侧视图侧视图俯视图.9. 在复平面内,复数12i z =-对应的点到原点的距离是 . 10. 抛物线22y x =的准线方程是 .11. 设(00)a b M a b +=>>,,M 为常数,且ab 的最大值为2,则M 等于 . 12. 如图,在直角梯形ABCD 中,AD ∥BC ,=90ADC ∠︒,=2AD ,==1BC CD ,P 是AB 的中点,则DP AB uu u r uu u rg = . 13. 已知点(10)A ,,(30)B ,,若直线1y kx =+上存在点P ,满足PA PB ⊥,则k 的取值范围是 .14.已知函数(2)()1()1 1.x a a x x f x a x --≤⎧⎪=->,,,(1)若0a =,[04],x ∈,则()f x 的值域是________;(2)若()f x 恰有三个零点,则实数a 的取值范围是_________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)在ABC △中,角A ,B ,C 对应的边长分别是a ,b ,c ,且3C π=,4c =. (Ⅰ)若3sin 4A =,求a ; (Ⅱ)若ABC △的面积等于a ,b .16.(本小题共13分)已知{}n a 是各项均为正数的等比数列,118a =,设2log n n b a =,且417b =. (Ⅰ)求证:数列{}n b 是以-2为公差的等差数列; (Ⅱ)设数列{}n b 的前n 项和为n S ,求n S 的最大值.17.(本小题共14分)如图1,平行四边形ABCD 中,AC BC ⊥,1BC AC ==,现将△DAC 沿AC 折起,得到三棱锥D ABC -(如图2),且DA BC ^,点E 为侧棱DC 的中点.(Ⅰ)求证:平面ABE ⊥平面DBC ; (Ⅱ)求三棱锥E ABC -的体积;(Ⅲ)在ACB ∠的角平分线上是否存在点F ,使得DF ∥平面ABE ?若存在, 求DF 的长;若不存在,请说明理由.18.(本小题共13分)某校学生营养餐由A 和B 两家配餐公司配送. 学校为了解学生对这两家配餐公司的满意度,采用问卷的形式,随机抽取了40名学生对两家公司分别评分. 根据收集的80份问卷的评分,得到A 公司满意度评分的频率分布直方图和B 公司满意度评分的频数分布表:图1图2A公司B公司(Ⅰ)根据A公司的频率分布直方图,估计该公司满意度评分的中位数;(Ⅱ)从满意度高于90分的问卷中随机抽取两份,求这两份问卷都是给A公司评分的概率;(Ⅲ)请从统计角度,对A、B两家公司做出评价.19.(本小题共14分)已知(01)P,是椭圆C:22221(0)x ya ba b+=>>上一点,点P到椭圆C的两个焦点的距离之和为(Ⅰ)求椭圆C的方程;(Ⅱ)设A,B是椭圆C上异于点P的两点,直线P A与直线4x=交于点M,是否存在点A,使得12ABP ABMS S∆∆=?若存在,求出点A的坐标;若不存在,请说明理由.20.(本小题共13分)已知函数1()e xxf x+=,A1()x m,,B2()x m,是曲线()y f x=上两个不同的点.(Ⅰ)求()f x的单调区间,并写出实数m的取值范围;(Ⅱ)证明:120x x+>.(考生务必将答案答在答题卡上,在试卷上作答无效)丰台区2016~2017学年度第二学期一模练习高三数学(文科)参考答案及评分参考2017.03一、选择题共8小题,每小题5分,共40分.二、填空题共6小题,每小题5分,共30分.910. 12x =- 11.12.1- 13.4[0]3-, 14.[11]-,;(0)-∞,. 三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分) 解:(Ⅰ)由正弦定理sin sin a cA C =可知:34a =,从而求得a = ……………………6分(Ⅱ)由ABC ∆的面积等于1sin 2ABC S ab C ∆=== 从而16ab =①, 由余弦定理2222cos c a b ab C =+-可得,2216=a b ab +-②,联立①②得4a b ==. ……………………13分16.(本小题共13分)解:(Ⅰ)设等比数列{}n a 的公比为q ,则1n n b b +-=212log log n n a a +-12log n na a +==2log q , 因此数列{}nb 是等差数列. 又11211log 3b a ==,417b =, 又等差数列{}n b 的公差11427b b d -==-, 即252n b n =-.即数列{}n b 是以-2为公差的等差数列. ……………………6分(Ⅱ)设等差数列{}n b 的前n 项和为n S ,则1()2n n b b S +=(23252)2n n+-=(24)n n =-2(12)144n =--+,于是当12n =时,nS 有最大值,最大值为144. ……………………13分 17.(本小题共14分)解:(Ⅰ)证明:在平行四边形ABCD 中,有AD BC AC ==,又因为E 为侧棱DC 的中点,所以AE CD ⊥; 又因为AC BC ⊥,AD BC ⊥,且AC AD A = ,所以BC ⊥平面ACD . 又因为AE ⊂平面ACD ,所以AE BC ⊥; 因为BC CD C = ,所以AE ⊥平面BCD , 又因为AE ⊂平面ABE , 所以平面ABE ⊥平面B. ……………………5分(Ⅱ)解:因为E ABC B ACE V V --=,BC ⊥平面ACD ,所以BC 是三棱锥的高,故13B ACE ACE V BC S -∆=⨯⨯,又因为=1BC ,CD ,AE =,所以11111=22224ACE S AE CD ∆=⨯⨯,所以有11=312B ACE ACE V BC S -∆=⨯⨯ ……………………9分(Ⅲ)解:取AB 中点O ,连接CO 并延长至点F ,使CO OF =,连接AF ,DF ,BF .因为BC AC =,所以射线CO 是角ACB ∠的角分线.FOADECB又因为点E 是的CD 中点,所以OE ∥DF , 因为OE ⊂平面ABE , DF ⊄平面ABE ,所以DF ∥平面ABE . 因为AB 、FC 互相平分,故四边形ACBF 为平行四边形,有BC ∥AF . 又因为DA BC ⊥,所以有AF AD ⊥, 又因为1A F A D==,故DF ……………………14分18.(本小题共13分)解:(Ⅰ)设A 公司调查的40份问卷的中位数为x则有0.015100.025100.03700.5x ⨯⨯⨯-++=() 解得:73.3x ≈ 所以,估计该公司满意度得分的中位数为73.3 ……………………4分(Ⅱ)满意度高于90分的问卷共有6份,其中4份评价A 公司,设为1234a a a a ,,,,2份评价B 公司,设为12b b ,.从这6份问卷中随机取2份,所有可能的结果有:12()a a ,,13()a a ,,14()a a ,,11()a b ,,12()a b ,,23()a a ,,24()a a ,,21()a b ,,22()a b ,,34()a a ,,31()a b ,,32()a b ,,41()a b ,,42()a b ,,12()b b ,,共有15种.其中2份问卷都评价A 公司的有以下6种:12()a a ,,13()a a ,,14()a a ,,23()a a ,,24()a a ,,34()a a ,.设两份问卷均是评价A公司为事件C ,则有62()155P C ==. ……………………9分 (Ⅲ)由所给两个公司的调查满意度得分知:A 公司得分的中位数低于B 公司得分的中位数,A 公司得分集中在[)70,80这组,而B 公司得分集中在[)70,80和[)80,90两个组,A 公司得分的平均数数低于B 公司得分的平均数,A 公司得分比较分散,而B 公司得分相对集中,即A 公司得分的方差高于B 公司得分的方差. ……………………13分(注:考生利用其他统计量进行分析,结论合理的同样给分.) 19.(本小题共14分) 解:(Ⅰ)由椭圆C :22221(0)x y a b ab+=>>过点P (0,1)可得b =1,又点P到两焦点距离和为a =,所以椭圆C的方程2212xy +=. ……………………4分(Ⅱ)设A (m ,n ),依题意得:直线P A 的斜率存在, 则直线P A 的方程为:11n y x m-=+ ,令x =4,441n y m -=+,即M 4441n m -+⎛⎫⎪⎝⎭,, 又12ABP ABM S S ∆∆=等价于13PAPM=且点A 在y 轴的右侧,从而143A PM Px x m x x =-=-, 因为点A 在y 轴的右侧,所以143m = , 解得 43m =,由点A 在椭圆上,解得:13n =±,于是存在点A (43,13±),使得12ABP ABM S S ∆∆=. ……………………14分20.(本小题共13分)解: ()f x 的定义域为R .(Ⅰ)()e x xf x '=-,由()0f x '=得,0x =,由()0f x '>得,0x <,由()0f x '<得,0x >,所以()f x 的单调增区间为(-∞,0),单调减区间为(0,+∞). m 的取值范围是(. ……………………6分 (Ⅱ) 由(Ⅰ)知,1(1,0)x ∈-,要证210x x >->,只需证21()()f x f x <-因为12()()f x f x m ==,所以只需证11()()f x f x <-, 只需证111111e e x x x x -+-+<,只需证1211(1)e 10x x x -++<(1(1,0)x ∈-) 令2()(1)e 10x h x x x =-++<,则2()(21)e 1x h x x '=-+, 因为2(())4e 0x h x x ''=<,所以()h x '在(1,0)-上单调递减,所以()(0)0h x h ''>=, 所以()h x 在(1,0)-上单调递增,所以()(0)0h x h <=, 所以21e 01x x x ++>-,故120x x +> ……………………13分(若用其他方法解题,请酌情给分)。

北京市丰台区2016-2017学年度第二学期一模练习高三数学文科试题Word版含答案

北京市丰台区2016-2017学年度第二学期一模练习高三数学文科试题Word版含答案

丰台区2017年高三年级第二学期综合练习(一)数学(文科)2017. 03(本试卷满分共150分,考试时间120分钟) 注意事项:1. 答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔填写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好条形码。

2. 本次考试所有答题均在答题卡上完成。

选择题必须使用2B铅笔以正确填涂方式将各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项。

非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、字迹清楚。

3•请严格按照答题卡上题号在相应答题区内作答,超出答题区域书写的答案无效,在试卷、草稿纸上答题无效。

4•请保持答题卡卡面清洁,不要装订、不要折叠、不要破损。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分•在每小题列出的四个选项中,选出符合题目要求的一项.1. 如果集合A」..x Z - 2 空x:::1^, B-—1,0,1},那么A B =(A)〈-2, -1,0,r ( B)〈-1,0,1? (C) \0,v( D)〈-1,0?2. 在平面直角坐标系xOy中,与原点位于直线(A) (-3,4)(D) (0, -3)3. 执行如图所示的程序框图,则输出的i值是(A ) 3(C) 54. 设命题p:一[0,二),e x -1,则一p 是(A)X。

订0, ::) , e x0::1(B)~x[0,::) , e x::1(C)X0[0,::) , e x°-1(D)-x[0,::) ,e x.13x+2y • 5=0同一侧的点是(B) (-3, -2) ( C ) (-3, -4) / 输/。

2016年1月丰台区高三期末理科数学试题与答案

丰台区 2015 —2016学年度第一学期期末练习高三数学(理科)2016.01第一部分(选择题共40分)一、选择题共 8 小题,每题 5 分,共 40 分。

在每题列出的四个选项中,选出切合题目要求的一项。

1. 复数(1 i)(1ai) 是实数,则实数 a 等于(A)2(B)1(C)0(D)-12.“ x2 0 ”是“ x 0 ”的( A )充足而不用要条件( B )必需而不充足条件( C)充足必需条件( D )既不充足也不用要条件3. 已知数列{ a n}中,a11,计算该数1,a n 1,若利用下边程序框图开始1a n列的第2016 项,则判断框的条件是n=1,A=1( A )n2014( B )n2016n=n+1( C)n2015( D )n20171A= x1cos是A+1(为参数)上一点,则点 P 与坐标原点的?4. 若点P为曲线1siny否输出A最短距离为(A)21( B )2+1( C)2(D )2结束5. 函数f (x)=sin 2x+ 3 cos2 x 在区间 [0, ] 上的零点之和是(A)2(B)7( C )7(D)4 312636. 若a2222x dx , b xdx, c log 2 xdx ,则a,b, c的大小关系是111( A)c b a( B )b c a( C)c a b( D )a b cx2y2x y7. 若F(c ,0 )为椭圆C:22 1(a b 0)的右焦点,椭圆 C 与直线1交于A,B两点,a b a b线段 AB 的中点在直线x c 上,则椭圆的离心率为( A)31( C)2( D )3( B )22238. 在以下命题中:①存在一个平面与正方体的12 条棱所成的角都相等;②存在一个平面与正方体的6 个面所成较小的二面角都相等;③存在一条直线与正方体的 12 条棱所成的角都相等;④存在一条直线与正方体的 6 个面所成的角都相等 . 此中真命题的个数为(A )1(B )2 (C )3 (D )4第二部分 (非选择题共 110 分)二、填空题共 6 小题,每题5 分,共 30 分。

北京市丰台区2017届高三数学上学期期末考试试题理

丰台区2016—2017学年度第一学期期末练习高三数学(理科)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{(2)(1)0}A x x x =∈+-<Z ,{2,B =-1}-,那么AB 等于(A ){2101},,,--(B ){210},,--(C ){21},--(D ){1}-2.已知0a b >>,则下列不等式一定成立的是(A )a b <(B )11a b> (C )11()()22ab>(D )ln ln a b >3.如果平面向量(20),=a ,(11),=b ,那么下列结论中正确的是(A )=a b (B)⋅=a b (C )()-⊥a b b(D )//a b4.已知直线m ,n 和平面α,如果n α⊂,那么“m n ⊥”是“m α⊥”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件5.在等比数列}{n a 中,31=a ,123+=a a a +9,则456+a a a +等于(A )9(B )72(C )9或72(D ) 9或-726.如果函数()sin f x x x ωω=的两个相邻零点间的距离为2,那么(1)(2)(3)(9)f f f f ++++的值为 (A )1(B )-1(C(D)7.中国历法推测遵循以测为辅、以算为主的原则.例如《周髀算经》和《易经》里对二十四节气的晷(guǐ)影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.下表为《周髀算经》对二十四节气晷影长的记录,其中4115.16寸表示115寸416分(1寸=10分).已知《易经》中记录的冬至晷影长为130.0寸,夏至晷影长为14.8寸,那么《易经》中所记录的惊蛰的晷影长应为 (A )72.4寸(B )81.4寸(C )82.0寸(D )91.6寸8.对于任何集合S ,用|S |表示集合S 中的元素个数,用()n S 表示集合S 的子集个数. 若集合A ,B 满足条件:|A|=2017,且()()()n A n B n A B +=,则|A B |等于(A )2017(B )2016(C )2015(D )2014第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9. i 是虚数单位,复数2i1i-= . 10. 设椭圆C :222+1(0)16x y a a =>的左、右焦点分别为1F ,2F ,点P 在椭圆C 上,如果12||+||10PF PF =,那么椭圆C 的离心率为 .11.在261()x x-的展开式中,常数项是 (用数字作答).12.若,x y 满足202200,,,x y x y y -≤⎧⎪+-≥⎨⎪≥⎩+则=2z x y -的最大值为 .13.如图,边长为2的正三角形ABC 放置在平面直角坐标系xOy 中,AC 在x 轴上,顶点B 与y 轴上的定点P 重合.将正三角形ABC 沿x 轴正方向滚动,即先以顶点C 为旋转中心顺时针旋转,当顶点B 落在x 轴上时,再以顶点B 为旋转中心顺时针旋转,如此继续.当△ABC 滚动到△111A B C 时,顶点B 运动轨迹的长度为 ;在滚动过程中,OB OP ⋅的最大值为 .14.已知()f x 为偶函数,且0≥x 时,][)(x x x f -=(][x 表示不超过x 的最大整数).设()()()g x f x kx k k =--∈R ,若1k =,则函数()g x 有____个零点;若函数()g x 三个不同的零点,则k 的取值范围是DCBA____.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)如图,在△ABC 中,D 是BC 上的点,3AC =,2CD =,AD =sin B = (Ⅰ)求角C 的大小; (Ⅱ)求边AB 的长.16.(本小题共14分)如图所示的多面体中,面ABCD 是边长为2的正方形,平面PDCQ ⊥平面ABCD ,PD DC ,E F G ,,分别为棱,,BC AD PA 的中点.(Ⅰ)求证:EG ‖平面PDCQ ; (Ⅱ)已知二面角P BF C, 求四棱锥PABCD 的体积.17.(本小题共14分)数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如下表所示:为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.CBPGF DE QA(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X 表示抽得甲中学的学生人数,求X 的分布列.18.(本小题共13分)已知函数()e x f x x =与函数21()2g x x ax =+的图象在点(00),处有相同的切线. (Ⅰ)求a 的值;(Ⅱ)设()()()()h x f x bg x b =-∈R ,求函数()h x 在[12],上的最小值.19.(本小题共13分)已知抛物线C :22(0)y px p =>的焦点为F ,且经过点(12),A ,过点F 的直线与抛物线C 交于P ,Q 两点.(Ⅰ)求抛物线C 的方程;(Ⅱ)O 为坐标原点,直线OP ,OQ 与直线2px =-分别交于S ,T 两点,试判断FS FT ⋅是否为定值?若是,求出这个定值;若不是,请说明理由.20.(本小题共13分)已知无穷数列{}n c 满足1112n n c c +=--. (Ⅰ)若117c =,写出数列{}n c 的前4项; (Ⅱ)对于任意101c ≤≤,是否存在实数M ,使数列{}n c 中的所有项均不大于M ?若存在,求M 的最小值;若不存在,请说明理由;(Ⅲ)当1c 为有理数,且10c ≥时,若数列{}n c 自某项后是周期数列,写出1c 的最大值.(直接写出结果,无需证明)丰台区2016~2017学年度第一学期期末练习 高三数学(理科)参考答案及评分参考2017.01 一、选择题共二、填空题共6小题,每小题5分,共30分.9.1i -+ 10.5311. 15 12.4 13.83π;.2;1111,,3432⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)解:(Ⅰ)在△ADC 中,由余弦定理,得CDAC AD CD AC C ⋅-+=2cos 222 ……………….2分2123272322=⨯⨯-+=……………….4分因为0C <<π,所以3C π=. ……………….6分 (Ⅱ)因为3C π=,所以23sin =C . ……………….8分 在△ABC 中,由正弦定理,得CABB AC sin sin =, ……………….10分 即2213=AB ,所以边AB 的长为2213. ……………….13分 16.(本小题共14分)证明:(Ⅰ)取PD 中点H ,连接GH ,HC , 因为ABCD 是正方形,所以AD ‖BC ,ADBC .因为G,H 分别是PA ,PD 中点,所以GH ‖AD ,12GH AD . 又因为EC ‖AD 且12EC AD , 所以GH ‖EC ,GHEC ,所以四边形GHCE 是平行四边形, ………….3分 所以EG ‖HC . 又因为EG平面PDCQ ,HC平面PDCQ所以EG ‖平面PDCQ . ……………….5分 (Ⅱ)因为平面PDCQ ⊥平面ABCD , 平面PDCQ平面ABCDCD ,PDDC ,PD 平面PDCQ ,所以PD 平面ABCD . ……………….6分如图,以D 为原点,射线DA ,DC ,DP 分别为x ,y ,z 轴正方向,建立空间直角坐标系.设PDa ,则 00002201P ,,a F ,,B ,,,,.………………7分因为PD ⊥底面ABCD ,所以平面ABCD 的一个法向量为(0,0,1)=m . ……………….8分 设平面PFB 的一个法向量为(,,)x y z =n ,10 PF ,,a 120 FB ,,,则0,=0.PF FB ⎧⋅=⎪⎨⋅⎪⎩n n即0+2=0x az x y -=⎧⎨⎩令x =1,得11,2z y a ==-,所以11(1,,)2a=-n . ……………….10分由已知,二面角PBF C, 所以得cos <,>||||⋅==m nm n m n (11)分解得a =2,所以2PD . ……………….13分因为PD 是四棱锥PABCD 的高,所以其体积为182433P ABCD V -=⨯⨯=. ……………….14分17.(本小题共14分) 解:(Ⅰ)由题意知,四所中学报名参加数独比赛的学生总人数为100名, 抽取的样本容量与总体个数的比值为30310010=, 所以甲、乙、丙、丁四所中学各抽取的学生人数分别为9,12,6,3. ………………3分(Ⅱ)设“从30名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件A ,从30名学生中随机抽取两名学生的取法共有230435C =种, ………………5分 来自同一所中学的取法共有222291263120C C C C +++=. ………………7分所以1208()43529P A ==. 答:从30名学生中随机抽取两名学生来自同一所中学的概率为829. ………………8分 (Ⅲ)由(Ⅰ)知,30名学生中,来自甲、丙两所中学的学生人数分别为9,6.依题意得,X 的可能取值为0,1,2, ………………9分262151(0)7C P X C === ,119621518(1)35C C P X C === ,2921512(2)35C P X C ===. ……………12分 所以X 的分布列为:……………….14分18.(本小题共13分)解:(Ⅰ)因为()e e xxf x x '=+,所以(0)1f '=. ……………….2分因为()g x x a '=+,所以(0)g a '=. ……………….4分 因为()f x 与()g x 的图象在(0,0)处有相同的切线,所以(0)(0)f g ''=,所以1a =. …….5分(Ⅱ)由(Ⅰ)知, 21()2g x x x =+, 令21()()()e 2xh x f x bg x x bx bx =-=--,[1,2]x ∈,则()e e (1)(1)(e )xxxh x x b x x b '=+-+=+-. ……………….6分(1)当0b ≤时,[1,2]x ∀∈,()0h x '>,所以()h x 在[1,2]上是增函数,故()h x 的最小值为3(1)=e 2h b -; ……………….7分 (2)当0b >时,由()=0h x '得,ln x b =, ……………….8分①若ln 1b ≤,即0e b <≤,则[1,2]x ∀∈,()0h x '>,所以()h x 在[1,2]上是增函数,故()h x 的最小值为3(1)=e 2h b -. ……………….9分 ②若1ln 2b <<,即2e e b <<,则(1,ln )x b ∀∈,()0h x '<,(ln 2)x b ∀∈,,()0h x '>,所以()h x 在(1,ln )b 上是减函数,在(ln 2)b ,上是增函数, 故()h x 的最小值为21(ln )=ln 2h b b b -; ……………….11分 ③若ln 2b ≥,即2e b ≥,则[1,2]x ∀∈,()0h x '<,所以()h x 在[1,2]上是减函数,故()h x 的最小值为2(2)=2e 4h b -. ……………….12分 综上所述,当e b ≤时,()h x 的最小值为3(1)=e 2h b -, 当2e e b <<时,()h x 的最小值为21ln 2b b -, 当2e b ≥时,()h x 的最小值为22e 4b -. ……………….13分19.(本小题共13分)解:(Ⅰ)把点(1,2)A 代入抛物线C 的方程22y px =,得42p =,解得2p =,所以抛物线C 的方程为24y x =. ……………….4分(Ⅱ)因为2p =,所以直线2px =-为1x =-,焦点F 的坐标为(1,0) 设直线PQ 的方程为1x ty =+,211(,)4y P y ,222(,)4y Q y , 则直线OP 的方程为14y x y =,直线OQ 的方程为24y x y =. ……………….5分 由14,1,y x y x ⎧=⎪⎨⎪=-⎩得14(1,)S y --,同理得24(1,)T y --. ……………….7分所以14(2,)FS y =--,24(2,)FT y =--,则12164FS FT y y ⋅=+. ……………….9分 由21,4,x ty y x =+⎧⎨=⎩得2440y ty --=,所以124y y =-, ……………….11分 则164(4)FS FT ⋅=+-440=-=. 所以,FS FT ⋅的值是定值,且定值为0. ……………….13分20.(本小题共13分) 解:(Ⅰ)12462,,,,77777……………….4分 (Ⅱ)存在满足题意的实数M , 且M 的最小值为1. 解法一:猜想10≤≤n c ,下面用数学归纳法进行证明. (1)当1n =时,101c ≤≤,结论成立.(2)假设当)(*N k k n ∈=时结论成立,即10≤≤k c ,当1+=k n 时,022k c ≤≤ ,所以1121k c -≤-≤, 即0121k c ≤-≤,所以01121k c ≤--≤, 故01121k c ≤--≤. 又因为+1=112k k c c --, 所以+101k c ≤≤,所以1+=k n 时结论也成立.综上,由(1),(2)知,10≤≤n c 成立 所以1M ≥,当112c =时,可得当2n ≥时, 1n c =,此时, M 的最小值为1 故M 的最小值为1.解法二:当2≥n 时,若存在2,3,4...,k =满足11k c -<,且1k c >.aa 显然1,21,01≠-k c ,则 1211<<-k c 时,1221<-=-k k c c 与1>k c 矛盾; 2101<<-k c 时,121<=-k k c c 与1>k c 矛盾; 所以01(2)n c n ≤≤≥所以1M ≥,当112c =时,可得当2n ≥时, 1n c =,此时, M 的最小值为1 故M 的最小值为1.……………………10分 (Ⅲ)2 ………………13分(若用其他方法解题,请酌情给分)欢迎您的下载,资料仅供参考!。

2016-2017学年北京市丰台区高一数学下期末考试试题

丰台区2016 —2017学年度第二学期期末练习高一数学
2017.07
第一部分(选择题共40分)
一、选择题共10小题,每小题4分,共40分•在每小题列出的四个选项中,选出符
合题目要求的一项.
1. 如果■■■-,那么下列不等式中一定成立的是
A. m I 「'匕「
B. . o - ■. b
C. 7 ■ r h
D. 了b'
【答案】A
【解析】由不等式的性质,如果::i - i-,则J I「'匕-c .
本题选择A选项.
2. 等比数列伯}中,1 丄,4 2 ,则程
A. 2 2
B. 4
C. 4 - 2
D. 8
【答案】B
2 2
【解析】由等比数列的性质可知,“佔斗弘成等比数列,则:
« 1
本题选择B选项•
3. 执行如图所示的程序框图,如果输入的工-?,则输出的y等于
A. 2
B. 4
C. 6
D. 8
【答案】B
f(x)
I 3x,x < 1 ]4X-
X2T X > 1
【解析】流程图等价于分段函数:。

北京市丰台区2016-2017学年高一下学期期末练习数学Word版含答案

北京市丰台区2016~2017学年度第二学期期末练习高一数学第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 如果,那么下列不等式中一定成立的是A. B. C. D.2. 等比数列中,,,则A. B. 4 C. D. 83. 执行如图所示的程序框图,如果输入的,则输出的等于A. 2B. 4C. 6D. 84. 某几何体的三视图如图所示,其中俯视图是等腰三角形,那么该几何体的体积是A. 96B. 128C. 140D. 1525. 在△中,角,,的对边分别为,,,且,,则△一定是A. 直角三角形B. 钝角三角形C. 等边三角形D. 等腰直角三角形6. 二次函数的部分对应值如下表:则一元二次不等式的解集是A. B.C. D.7. 在数列中,,且,则A. B. C. D.8. 已知各项均为正数的等比数列中,如果,那么这个数列前3项的和的取值范围是A. B. C. D.9. 已知n次多项式,在求值的时候,不同的算法需要进行的运算次数是不同的.例如计算(k=2,3,4,…,n)的值需要k-1次乘法运算,按这种算法进行计算的值共需要9次运算(6次乘法运算,3次加法运算).现按右图所示的框图进行运算,计算的值共需要次运算.A.B.C.D.10. 如图,在正方体中,点在正方体表面运动,如果,那么这样的点共有A. 2个B. 4个C. 6个D. 无数个第二部分 (非选择题 共60分)二、填空题共6小题,每小题4分,共24分.11. 从某企业生产的某种产品中抽取100件样本,测量这些样本的一项质量指标值,由测量结果得如下频数分布表:则样本的该项质量指标值落在[105,125]上的频率为_____. 12. 函数的最大值是_____.13. 如图,样本数为的三组数据,它们的平均数都是,频率条形图如下,则标准差最大的一组是_____.14. 已知两条不重合的直线和两个不重合的平面,,给出下列命题:①如果,,那么;②如果,,那么; ③如果,,那么;④如果,,那么.上述结论中,正确结论....的序号是_____(写出所有正确结论的序号). 15. 如图,为了测量河对岸两点之间的距离.观察者找到了一个点,从可以观察到点;找到了一个点,从可以观察到点;找到了一个点,从可以观察到点.并测量得到图中一些数据,其中,,,,,,则_____.16. 数列满足,,其前项和为,则(1)_______;(2)_______.三、解答题共4小题,共36分.解答应写出文字说明,演算步骤或证明过程.17. 在△中,角,,的对边分别为,,,且,.(Ⅰ)求的值;(Ⅱ)如果,求的值及△的面积.学¥科¥网...18. 某校在“普及环保知识节”后,为了进一步增强环保意识,从本校学生中随机抽取了一批学生参加环保基础知识测试.经统计,这批学生测试的分数全部介于75至100之间.将数据分成以下组:第1组,第2组,第3组,第4组,第5组,得到如图所示的频率分布直方图.(Ⅰ)求a的值;(Ⅱ)现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生座谈,求每组抽取的学生人数;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计随机抽取学生所得测试分数的平均值在第几组(只需写出结论).19. 如图,在四棱锥中,底面为正方形,点是棱的中点,,平面平面.(Ⅰ)求证://平面;(Ⅱ)求证:平面;(Ⅲ) 设,试判断平面⊥平面能否成立;若成立,写出的一个值(只需写出结论).20. 设数列满足,;数列的前项和为,且.(Ⅰ)求数列和的通项公式;(Ⅱ)把数列和的公共项...从小到大排成新数列,试写出,,并证明为等比数列.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

丰台区2016—2017学年度第一学期期末练习
高三数学(理科)
2017.01

第一部分
(选择题 共40分)

一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1
.已知集合{(2)(1)0}AxxxZ,{2,B1},那么ABU等于

( )

(A){2101},,, (B){210},, (C){21}, (D)
{1}
2
.已知0ab,则下列不等式一定成立的是

(A)ab (B)11ab (C)11()()22ab (D)
lnlnab

3
.如图,矩形ABCD中,24ABAD,22MNPQ,向该矩形内随机投一质点,则直线落在四边形

MNQP
内的概率为

(A)13 (B)38 (C)23 (D)
3
4
4.已知直线m,n和平面,如果n,那么“mn”是“m”的

(A)充分而不必要条件 (B)必要而不充分条件
(C)充分必要条件 (D)既不充分也不必要条件
5
.如果平面向量(,1),(1,),(2,4)xyabc,如果//bc且()abc,那么实数,xy的值分别是

(A)2,2 (B)
2,2
(C)
1
22,
(D)

11

22
,

6
.在ABC中,π4C,2AB,6AC,则cosB的值为

(A)12 (B)32 (C)12或32 (D)12或
1
2

7
.学校计划在周一至周四的艺术节上展演《雷雨》、《茶馆》,《天籁》和《马蹄声碎》四部话剧,每天一部,受

多种因素影响,话剧《雷雨》不能在周一和周四上演;《茶馆》不能在周一和周三上演;《天籁》不能在周三
和周三上演;《马蹄声碎》不能在周一和周四上演,那么下列说法正确的是
(A)《雷雨》只能在周二上演 (B)《茶馆》可能在周二或周四上演
(C)周三可能上演《雷雨》或《马蹄声碎》 (D)四部话剧都可能在周二上演
8
.已知函数()ln()sinfxxax,给出下列命题:

①当0a时,(0,e)x,都有()0fx;
②当ea时,(0,+)x,都有()0fx;
③当1a时,0(2,)x,使得
0

()0fx
.

其中真命题的个数是
(A)0 (B)1 (C)2 (D)
3

第二部分
(非选择题 共110分)

二、填空题共6小题,每小题5分,共30分.
9. i是虚数单位,复数21i= .

10. 设双曲线C:2221(0)16xyaa的左、右焦点分别为1F,2F,点P在双曲线C上,如果12||||10PFPF,那
么该双曲线的渐近线方程为 .

11.若,xy满足202200,,,xyxyy+ 则=2zxy的最大值为 .
12.已知过点(1,0)P的直线l交圆22:1Oxy于,AB两点,2AB,则直线l的方程为 .
11.中国历法推测遵循以测为辅、以算为主的原则,例如《周脾算经》和《易经》里对二十四节气的晷(guǐ)影长
的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.下
表为《周脾算经》对二十四节气晷影长的记录,其中4115.16寸表示115寸416分(1寸=10分).

已知《易经》中记录的冬至晷影长为130.0寸,夏至晷影长为14.8寸,那么《易经》中所记录的惊蛰的晷影
长为 寸.
14.如图,边长为2的正三角形ABC放置在平面直角坐标系xOy中,AC在x轴上,顶点B与y轴上的定点P
重合.将正三角形ABC沿x轴正方向滚动,即先以顶点C为旋转中心顺时针旋转,当顶点B落在x轴上时,
再以顶点B为旋转中心顺时针旋转,如此继续.当△ABC滚动到△111ABC时,顶点B运动轨迹的长度

为 ;在滚动过程中,OBOPuuuruuur的最大值为 .

节气 冬至 小寒 (大雪) 大寒 (小雪) 立春 (立冬) 雨水 (霜降) 惊蛰 (寒露) 春分 (秋分) 清明 (白露) 谷雨 (处暑) 立夏 (立秋) 小满 (大暑) 芒种
(小暑)
夏至

晷影长
(寸)
135 5125.6 4115.16 3105.26 295.36 285.46 75.5 566.56 455.66 345.76 235.86 125.96 16.0

P
OyxB1C1A1C(B)A
三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.
15.(本小题共13分)
已知函数()sin(cos3sin)fxxxx

(Ⅰ)求π()6f的值;

(Ⅱ)求函数()fx在区间π0,2上的最值.

16.(本小题共14分)
已知等差数列na满足424aa,38a.

(Ⅰ)求数列na的通项公式;
(Ⅱ)数列nb满足(2)nanb,求数列nb的前8项和.

17.(本小题共14分)
如图,三棱柱111ABCABC中,ACBC,1ABAA,160AAB,D是AB的中点.

(Ⅰ)求证:1//BC平面1ACD;
(Ⅱ)求证:AB平面1ACD;
(Ⅲ)若2ABAC,16AC,求三棱柱111ABCABC的体积.
18.(本小题共13分)
近几年,“互联网+”已经影响了多个行业,在线教育作为现代信息技术同教育相结合的产物,也引发了教育领域

的变革.目前在线教育主要包括在线测评、在线课堂、自主学习、线下延伸四种模式.为了解学生参与在线教育情
况,某区从2000名高一学生中随机抽取了200名学生,对他们参与的在线教育模式进行调查,其调查结果整理
如下:(其中标记“√”表示参与了该项在线教育模式).
教育模式
人数(人)
在线测评 在线课堂 自主学习 线下延伸

25 √ √

45 √
40 √ √
30 √
√ √

40 √

20 √ √

(Ⅰ)试估计该区高一学生中参与在线课堂教育模式的人数;
(Ⅱ)在样本中用分层抽样的方法从参与自主学习的学生中抽取5人,现从这5人中随机抽取2人,求这2
人都参与线下延伸教育模式的概率.

C
D
B

A

B
1

C
1

A

1
19.(本小题共13分)

已知椭圆2222:1(0)xyCabab的右焦点为(1,0)F,离心率为12.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F且斜率为1的直线交椭圆于,MN两点,P是直线4x上任意一点.
求证:直线,,PMPFPN的斜率成等差数列.

20.(本小题共14分)
已知函数3()3()fxxaxaR.

(Ⅰ)求曲线()yfx在点(0,(0))f处的切线方程;
(Ⅱ)若函数()fx在区间(1,2)上仅有一个极值点,求实数a的取值范围;
(Ⅲ)若1a,且方程()fxax在区间,0a上有两个不相等的实数根,求实数a的最小值.
丰台区2016~2017学年度第一学期期末练习
高三数学(文科)
参考答案及评分参考

2017.01
一、选择题共8小题,每小题5分,共40分.
题号
1 2 3 4 5 6 7 8
答案
B D B B A D C B

二、填空题共6小题,每小题5分,共30分.
9.1i 10.45yx 11. 4

12.1yx或1yx 13.82.0寸 14.83;23
三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.
15.(本小题共13分)
16.(本小题共14分)
17.(本小题共14分)

18.(本小题共13分)
19.(本小题共13分)
20.(本小题共13分)

(若用其他方法解题,请酌情给分)

相关文档
最新文档