【百强校】2017届三省高三上学期百校大联考数学(理)试卷(带解析)
【全国百强校word】河北省衡水中学2017届高三上学期四调考试理数试题

数学试卷(理科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{}21log A x N x k =∈<<,集合A 中至少有3个元素,则( ) A .8k > B .8k ≥ C .16k > D .16k ≥2.若()1z i i +=,则z 等于( ) A .1 B .32 C .22 D .123.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔其古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?( ) A .5 B .6 C .4 D .34.已知双曲线()2222:10 0x y C a b a b-=>>,的离心率为52,则C 的渐近线方程为( ) A .14y x =± B .13y x =± C.12y x =± D .y x =±5.执行如图所示的程序框图,则输出的结果为( )A .4B .9 C.7 D .56.已知函数()()()cos 0f x A x ωϕω=+>的部分图象如图所示,下面结论错误的是( )A .函数()f x 的最小正周期为23πB .函数()f x 的图象可由()()cos g x A x ω=的图象向右平移12π个单位得到 C.函数()f x 的图象关于直线12x π=对称D .函数()f x 在区间 42ππ⎛⎫ ⎪⎝⎭,上单调递增7.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数() 1 0 x f x x ⎧=⎨⎩,为有理数,为无理数,称为狄利克雷函数,则关于函数()f x 有以下四个命题: ①()()1f f x =; ②函数()f x 是偶函数;③任意一个非零有理数T ,()()f x T f x +=对任意x R ∈恒成立;④存在三个点()()()()()()112233 A x f x B x f x C x f x ,,,,,,使得ABC △为等边三角形. 其中真命题的个数是( )A .4B .3 C.2 D .18.某几何体的三视图如图所示,则该几何体的体积为( )A .10B .20 C.40 D .609.已知A 、B 是椭圆()222210x y a b a b +=>>长轴的两个端点,M 、N 是椭圆上关于x 轴对称的两点,直线AM 、BN 的斜率分别为()1212 0k k k k ≠,,若椭圆的离心率为32,则12k k +的最小值为( ) A .1 B .2 C.32D .3 10.在棱长为6的正方体1111ABCD A B C D -中,M 是BC 的中点,点P 是面11DCC D 所在的平面内的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -的体积最大值是( ) A .36 B .123 C.24 D .18311.已知函数()()()3ln 1 01 1 0x x f x x x -<⎧⎪=⎨-+≥⎪⎩,,,若()f x ax ≥恒成立,则实数a 的取值范围是( ) A .20 3⎡⎤⎢⎥⎣⎦, B .30 4⎡⎤⎢⎥⎣⎦, C.[]0 1, D .30 2⎡⎤⎢⎥⎣⎦,12.已知过抛物线()2:20G y px p =>焦点F 的直线l 与抛物线G 交于M 、N 两点(M 在x 轴上方),满足3MF FN =u u u u r u u u r ,163MN =,则以M 为圆心且与抛物线准线相切的圆的标准方程为( )A .2212316333x y ⎛⎫⎛⎫-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭ B .221316333x y ⎛⎫⎛⎫-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭C.()()2232316x y -+-= D .()()223316x y -+-=第Ⅱ卷(非选择题 共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若x 、y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则1y x -的最大值为 .14.在ABC △中, 3 5AB AC ==,,若O 为ABC △外接圆的圆心(即满足OA OB OC ==),则AO BC ⋅u u u r u u u r的值为 .15.已知数列{}n a 的各项均为正数,11142 n n n n a a a a a ++=-=+,,若数列11n n a a -⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n = .16.过抛物线()220y px p =>的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的的交点为B ,点A 在抛物线的准线上的射影为C ,若 48AF FB BA BC =⋅=u u u r u u u r u u u r u u u r,,则抛物线的方程为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在ABC △中,内角A 、B 、C 所对的边分别为 a b c ,,,已知 4 6 2b c C B ===,,. (1)求cos B 的值; (2)求ABC △的面积. 18. (本小题满分12分)如图所示,在三棱柱111ABC A B C -中,11AA B B 为正方形,11BB C C 为菱形,1160BB C ∠=︒,平面11AA B B ⊥平面11BB C C .(1)求证:11B C AC ⊥;(2)设点E 、F 分别是1B C ,1AA 的中点,试判断直线EF 与平面ABC 的位置关系,并说明理由; (3)求二面角1B AC C --的余弦值. 19. (本小题满分12分)如图,在平面直角坐标系xOy 中,已知()00 R x y ,是椭圆22:12412x y C +=上的一点,从原点O 向圆()()2200:8R x x y y -+-=作两条切线,分别交椭圆于P ,Q .(1)若R 点在第一象限,且直线OP ,OQ 互相垂直,求圆R 的方程; (2)若直线OP ,OQ 的斜率存在,并记为12 k k ,,求12 k k ,的值; (3)试问22OP OQ +是否为定值?若是,求出该值;若不是,说明理由. 20.(本小题满分12分)设椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,上顶点为A ,过A 与2AF 垂直的直线交x 轴负半轴于Q 点,且12220F F F Q +=u u u u r u u u u r. (1)求椭圆C 的离心率;(2)若过A 、Q 、2F 三点的圆恰好与直线330x y --=相切,求椭圆C 的方程;(3)过2F 的直线l 与(2)中椭圆交于不同的两点M 、N ,则1F MN △的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由. 21.(本小题满分12分)已知0t >,设函数()()3231312t f x x x tx +=-++.(1)存在()00 2x ∈,,使得()0f x 是()f x 在[]0 2,上的最大值,求t 的取值范围; (2)()2x f x xe m ≤-+对任意[0 )x ∈+∞,恒成立时,m 的最大值为1,求t 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-4:坐标系与参数方程已知圆锥曲线2cos :3sin x C y αα=⎧⎪⎨=⎪⎩(α为参数)和定点()0 3A ,,1F 、2F 是此圆锥曲线的左、右焦点,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系. (1)求直线2AF 的直角坐标方程;(2)经过点1F 且与直线2AF 垂直的直线l 交此圆锥曲线于M 、N 两点,求12MF NF -的值. 23.(本小题满分10分)选修4-5:不等式选讲 设()34f x x x =-+-. (1)解不等式()2f x ≤;(2)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围.2016-2017学年度高三上学期四调考试高三年级数学试卷(理科)一、选择题1-5:CCDCB 6-10:DABAA 11、12:BC二、填空题13.2 14.8 15.120 16.24y x = 三、解答题17.【答案】(1)34;(2)1574.试题解析:(1)在ABC △中,sin sin b c B C =,因为 4 6 2b c C B ===,,,所以46sin sin 2B B=,即 46sin 2sin cos B B B =,又sin 0B ≠,∴3cos 4B =. (2)由(1)知3cos 4B =,从而7sin 4B =.因此37sin sin 22sin cos 8C B B B ===,21cos cos22cos 18C B B ==-=.所以 ()()7133757sin sin sin sin cos cos sin 484816A B C B C B C B C π=--=+=+=⨯+⨯=, 所以ABC △的面积为157157462164⨯⨯⨯=. 18.证明:(1)连接1BC ,在正方形11ABB A 中,1AB BB ⊥,1B C ⊥平面1ABC ,因为1AC ⊥平面1ABC ,所以11B C AC ⊥.(2)EF ∥平面ABC ,理由如下:取BC 的中点G ,连接GE 、GA ,因为E 是1B C 的中点,所以1GE BB ∥,且112GE BB =,因为F 是 1AA 的中点,所以112AF AA =. 在正方形11ABB A 中,1111 AA BB AA BB =∥,,所以GE AF ∥,且GE AF =. ∴四边形GEFA 为平行四边形,所以EF GA ∥. 因为EF ABC ⊄平面,GA ABC ⊂平面, 所以EF ABC ∥平面.(3)在平面11BB C C 内过点B 作1Bz BB ⊥,由(1)可知:11AB BB C C ⊥平面,以点B 为坐标原点,分别以BA 、1BB 所在的直线为x 、y 轴,建立如图所示的空间直角坐标系B xyz -,设()2 0 0A ,,,则()10 2 0B ,,. 在菱形11BB C C 中,1160BB C ∠=︒,所以()0 1 3C -,,,()10 1 3C ,,. 设平面1ACC 的一个法向量为() 1x y =n ,,. 因为100n AC n CC ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u u r 即()()()() 1 2 1 30 10 2 00x y x y ⎧⋅--=⎪⎨⋅=⎪⎩,,,,,,,,, 所以320x y ⎧=⎪⎨⎪=⎩即3 0 12n ⎛⎫= ⎪ ⎪⎝⎭,,, 由(1)可知:1CB uuu r是平面1ABC 的一个法向量.所以()1113 0 10 3 327cos 731934n CB n CB n CB ⎛⎫⋅- ⎪ ⎪⋅⎝⎭<>===-⋅+⋅+u u u r u u u r u u u r ,,,,,, 所以二面角1B AC C --的余弦值为77. 19.【答案】(1)()()2222228x y -+-=;(2)12-;(3)36.试题解析:(1)由圆R 的方程知圆R 的半径22r =,因为直线OP ,OQ 互相垂直,且和圆R 相切,所以24OR r ==,即220016x y += ①又点R 在椭圆C 上,所以220012412x y += ②联立①②,解得002222x y ⎧=⎪⎨=⎪⎩,所以,所求圆R 的方程为()()2222228x y -+-=.(2)因为直线1:OP y k x =和2:OQ y k x =都与圆R 相切,所以10021221k x y k-=+,20022221k x y k -=+,化简得20122088y k k x -⋅=-,因为点()00R x y ,在椭圆C 上,所以220012412x y +=,即 22001122y x =-,所以201220141228x k k x -==--. (3)方法一(1)当直线OP 、OQ 不落在坐标轴上时,设()11 P x y ,,()22 Q x y ,, 由(2)知12210k k +=,所以121221y y x x =,故2222121214y y x x =,因为()11 P x y ,,()22 Q x y ,,在椭圆C 上,所以221112412x y +=,222212412x y +=, 即22111122y x =-,22221122y x =-,所以222212121111212224x x x x ⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭,整理得221224x x +=,所以222212121112121222y y x x ⎛⎫⎛⎫+=-+-= ⎪ ⎪⎝⎭⎝⎭,所以()()22222222221122121236OP OQ x y x y x x y y +=+++=+++=.方法(二)(1)当直线OP ,OQ 不落在坐标轴上时,设()11 P x y ,,()22 Q x y ,, 联立2212412y kx x y =⎧⎪⎨+=⎪⎩,解得22211122112424 1212k x y k k ==++,,所以()2122112124112k x y k ++=+. 同理,得()2222222224112k x y k ++=+,由(2)12210k k +=,得1212k k =-.所以()()2212222222112222122412411212k k OP OQ x y x y k k +++=+++=+++()2221112221111241224136723612121122k k k k k k ⎡⎤⎛⎫⎢⎥+- ⎪+⎢⎥⎝⎭+⎣⎦=+==++⎛⎫+- ⎪⎝⎭. (2)当直线OP 、OQ 落在坐标轴上时,显然有2236OP OQ +=. 综上:2236OP OQ +=.20.试题解析:(1)由题()0 A b ,,1F 为2QF 的中点.设()()12 0 0F c F c -,,,,则()3 0Q c -,,()3 AQ c b =--u u u r ,,()2 AF c b =-u u u u r ,,由题2AQ AF ⊥u u u r u u u u r ,即22230AQ AF c b ⋅=-+=u u u r u u u u r ,∴()22230c a c -+-=即224a c =,∴12c e a ==. (2)由题2Rt QAF △外接圆圆心为斜边2QF 的中点()1 0F c -,,半径2r c =, ∵由题2Rt QAF △外接圆与直线330x y --=相切,∴d r =,即322c c --=,即34c c +=,∴1c =,22a c ==,3b =,故所求的椭圆C 的方程为22143x y +=.(3)设()11 M x y ,,()22 N x y ,,由题12 y y ,异号,设1F MN △的内切圆的半径为R ,则1F MN △的周长为48a =,()111142F MN S MN F M F N R R =++=△, 因此要使1F MN △内切圆的面积最大,只需R 最大,此时1F MN S △也最大,112121212F MN S F F y y y y =⋅-=-△, 由题知,直线l 的斜率不为零,可设直线l 的方程为1x my =+, 由221143x my x y =+⎧⎪⎨+=⎪⎩得()2234690m y my ++-=,由韦达定理得122634m y y m -+=+,122934y y m -=+,(0m R ∆>∈⇒) ()1221212122121434F MN m S y y y y y y m +=-=+-=+△, 令21t m =+,则1t ≥,()12121211313F MN t S t t t t==≥-+△, 当1t =时,14F MN S R =△有最大值3,此时,0m =,max 34R =, 故1F MN △的内切圆的面积的最大值为916π,此时直线l 的方程为1x =. 21.解析:(1)()()()()2'331331f x x t x t x x t =-++=--,①当01t <<时,()f x 在()0 t ,上单调递增,在() 1t ,单调递减,在()1 2,单调递增, ∴()()2f t f ≥,由()()2f t f ≥,得3234t t -+≥在01t <<时无解,②当1t =时,不合题意;③当12t <<时,()f x 在()0 1,单调递增,在()1 t ,递减,在() 2t ,单调递增, ∴()()1212f f t ⎧≥⎪⎨<<⎪⎩即1332212t t ⎧+≥⎪⎨⎪<<⎩,∴523t ≤<,④当2t ≥时,()f x 在()0 1,单调递增,在()1 2,单调递减,满足条件, 综上所述:5[ )3t ∈+∞,时,存在()00 2x ∈,,使得()0f x 是()f x 在[]0 2,上的最大值. (2)()32313122x t x x tx xe m +-++≤-+对任意[0 )x ∈+∞,恒成立, 即()()3223131313122x x t t m xe x x tx x e x x t ++⎛⎫≤-+-+=-+-+ ⎪⎝⎭对任意[0 )x ∈+∞,恒成立,令()()23132x t g x e x x t +=-+-,[0 )x ∈+∞,,根据题意,可以知道m 的最大值为1,则 ()()231302x t g x e x x t +=-+-≥恒成立,由于()0130g t =-≥,则103t <≤,当103t <≤时,()()31'22x t g x e x +=-+,则()''2x g x e =-,若()''20x g x e =-=,则()'g x 在()0 ln 2,上递减,在()ln 2 +∞,上递增,则()()()max 3'ln 2212ln 202g x g t ==++->,∴()g x 在[0 )+∞,上是递增的函数.∴()()0130g x g t ≥=-≥,满足条件,∴t 的取值范围是1(0 ]3,.22.解:(1)曲线2cos :3sin x C y αα=⎧⎪⎨=⎪⎩可化为22143x y +=,其轨迹为椭圆,焦点为()1 1 0F -,,()21 0F ,. 经过()0 3A ,和()21 0F ,的直线方程为113x y +=,即330x y +-=. (2)由(1)知,直线2AF 的斜率为3-,因为2l AF ⊥,所以l 的斜率为33,倾斜角为30︒, 所以l 的参数方程为31212x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数). 代入椭圆C 的方程中,得213123360t t --=.因为 M N ,在点1F 的两侧,所以111212313MF NF t t -=+=. 23.解:(1)()72 334 1 3427 4x x f x x x x x x -<⎧⎪=-+-=≤≤⎨⎪->⎩,,,, 作函数()y f x =的图象,它与直线2y =交点的横坐标为52和92,由图象知不等式()2f x ≤的 解集为59 22⎡⎤⎢⎥⎣⎦,.(2)函数1y ax =-的图象是过点()0 1-,的直线, 当且仅当函数()y f x =与直线1y ax =-有公共点时,存在题设的x . 由图象知,a 的取值范围为()12[ )2-∞-+∞U ,,.。
精品解析:【全国百强校】河北省衡水中学2017届高三高考押题卷三理数试题(解析版)

2017年普通高等学校招生全国统一考试模拟试题理科数学(Ⅲ)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数,则=()A. B. C. D.【答案】C【解析】由题意可得:,则= .本题选择C选项.2. 集合,,则=()A. B.C. D.【答案】A【解析】由题意可得:,则= .本题选择A选项.3. 已知函数的最小正周期为,则函数的图象()A. 可由函数的图象向左平移个单位而得B. 可由函数的图象向右平移个单位而得C. 可由函数的图象向左平移个单位而得D. 可由函数的图象向右平移个单位而得【答案】D【解析】由已知得,则的图象可由函数的图象向右平移个单位而得,故选D.4. 已知实数,满足约束条件则的最大值为()A. 2B. 3C. 4D. 5【答案】B【解析】绘制目标函数表示的可行域,结合目标函数可得,目标函数在点处取得最大值.本题选择B选项.5. 一直线与平行四边形中的两边,分别交于、,且交其对角线于,若,,,则=()学,科,...A. B. 1 C. D. -3【答案】A【解析】由几何关系可得:,则:,即:,则= .本题选择A选项.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.6. 在如图所示的正方向中随机投掷10000个点,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为(附:若,则,.()A. 906B. 1359C. 2718D. 3413【答案】B【解析】由正态分布的性质可得,图中阴影部分的面积,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为.本题选择B选项.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.7. 某几何体的三视图如图所示,其中俯视图下半部分是半径为2的半圆,则该几何体的表面积是()A. B. C. D.【答案】B【解析】根据三视图可知几何体是棱长为4的正方体挖掉半个圆柱所得的组合体,且圆柱底面圆的半径是2、母线长是4,∴该几何体的表面积,本题选择B选项.8. 已知数列中,,.若如图所示的程序框图是用来计算该数列的第2018项,则判断框内的条件是()A. B. C. D.【答案】B学,科,...【解析】阅读流程图结合题意可得,该流程图逐项计算数列各项值,当时推出循环,则判断框内的条件是.本题选择B选项.9. 已知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为,则=()A. 3B.C.D. 4【答案】B【解析】由题意知,的可能取值为2,3,4,其概率分别为,,,所以,故选B.10. 已知抛物线:的焦点为,点是抛物线上一点,圆与线段相交于点,且被直线截得的弦长为,若=2,则=()A. B. 1 C. 2 D. 3【答案】B【解析】由题意:M(x0,2√2)在抛物线上,则8=2px0,则px0=4,①由抛物线的性质可知,,,则,∵被直线截得的弦长为√3|MA|,则,由,在Rt△MDE中,丨DE丨2+丨DM丨2=丨ME丨2,即,代入整理得:②,由①②,解得:x0=2,p=2,∴,故选:B.【点睛】本题考查抛物线的简单几何性质,考查了抛物线的定义,考查勾股定理在抛物线的中的应用,考查数形结合思想,转化思想,属于中档题,将点A到焦点的距离转化为点A到其准线的距离是关键.11. 若定义在上的可导函数满足,且,则当时,不等式的解集为()A. B. C. D.【答案】D【解析】不妨令,该函数满足题中的条件,则不等式转化为:,整理可得:,结合函数的定义域可得不等式的解集为.本题选择D选项.12. 已知是方程的实根,则关于实数的判断正确的是()A. B. C. D.【答案】C【解析】令,则,函数在定义域内单调递增,方程即:,即,结合函数的单调性有: .本题选择C选项.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.学,科,...二、填空题:本大题共4小题,每小题5分,共20分.13. 若的展开式中项的系数为20,则的最小值为_________.【答案】2【解析】试题分析:展开后第项为,其中项为,即第项,系数为,即,,当且仅当时取得最小值.考点:二项式公式,重要不等式.14. 已知中,内角,,的对边分别为,,,若,,则的面积为__________.【答案】【解析】由题意有:,则的面积为 .【答案】【解析】由题意可得,为正三角形,则,所以双曲线的离心率 .16. 已知下列命题:①命题“,”的否定是“,”;②已知,为两个命题,若“”为假命题,则“为真命题”;③“”是“”的充分不必要条件;④“若,则且”的逆否命题为真命题其中,所有真命题的序是__________.【答案】②【解析】逐一考查所给的命题:①命题“,”的否定是“,”;②已知,为两个命题,若“”为假命题,则“为真命题”;③“”是“”的必要不充分条件;④“若,则且”是假命题,则它的逆否命题为假命题其中,所有真命题的序是②.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 设为数列的前项和,且,,.(1)证明:数列为等比数列;(2)求.【答案】(1)见解析;(2).学,科,...【解析】试题分析:(1)利用题意结合等比数列的定义可得数列为首先为2,公比为2的等比数列;(2)利用(1)的结论首先求得数列的通项公式,然后错位相减可得. 试题解析:(1)因为,所以,即,则,所以,又,故数列为等比数列.(2)由(1)知,所以,故.设,则,所以,所以,所以.点睛:证明数列{a n}是等比数列常用的方法:一是定义法,证明=q(n≥2,q为常数);二是等比中项法,证明=a n-1·a n+1.若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.18. 如图所示,四棱锥,已知平面平面,,,,.(1)求证:;(2)若二面角为,求直线与平面所成角的正弦值.【答案】(1)见解析;(2).【解析】试题分析:(1)利用题意首先证得平面,结合线面垂直的定义有.(2)结合(1)的结论首先找到二面角的平面角,然后可求得直线与平面所成角的正弦值为.试题解析:(1)中,应用余弦定理得,解得,所以,所以.因为平面平面,平面平面,,所以平面,又因为平面,学,科,...所以.(2)由(1)平面,平面,所以.又因为,平面平面,所以是平面与平面所成的二面角的平面角,即.因为,,所以平面.所以是与平面所成的角.因为在中,,所以在中,.19. 某中学为了解高一年级学生身高发育情况,对全校700名高一年级学生按性别进行分层抽样检查,测得身高(单位:)频数分布表如表1、表2.表1:男生身高频数分布表表2:女生身高频数分布表(1)求该校高一女生的人数;(2)估计该校学生身高在的概率;(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设表示身高在学生的人数,求的分布列及数学期望.【答案】(1)300;(2);(3)见解析.【解析】试题分析:(1)利用题意得到关于人数的方程,解方程可得该校高一女生的人数为300;(2)用频率近似概率值可得该校学生身高在的概率为.(3) 由题意可得的可能取值为0,1,2.据此写出分布列,计算可得数学期望为 .试题解析:(1)设高一女学生人数为,由表1和表2可得样本中男、女生人数分别为40,30,则,解得.即高一女学生人数为300.(2)由表1和表2可得样本中男女生身高在的人数为,样本容量为70.所以样本中该校学生身高在的概率为.因此,可估计该校学生身高在的概率为.(3)由题意可得的可能取值为0,1,2.学,科,...由表格可知,女生身高在的概率为,男生身高在的概率为.所以,,.所以的分布列为:所以.20. 中,是的中点,,其周长为,若点在线段上,且. (1)建立合适的平面直角坐标系,求点的轨迹的方程;(2)若,是射线上不同的两点,,过点的直线与交于,,直线与交于另一点,证明:是等腰三角形.【答案】(1);(2)见解析.【解析】试题分析:(1)由题意得,以为坐标原点,以的方向为轴的正方向,建立平面直角坐标系,得的轨迹方程为,再将相应的点代入即可得到点的轨迹的方程;(2)由(1)中的轨迹方程得到轴,从而得到,即可证明是等腰三角形.试题解析:解法一:(1)以为坐标原点,以的方向为轴的正方向,建立平面直角坐标系.依题意得.由,得,因为故,所以点的轨迹是以为焦点,长轴长为6的椭圆(除去长轴端点),所以的轨迹方程为.设,依题意,所以,即,代入的轨迹方程得,,所以点的轨迹的方程为.(2)设.由题意得直线不与坐标轴平行,因为,所以直线为,与联立得,,由韦达定理,同理,所以或,当时,轴,当时,由,得,学,科,...同理,轴.因此,故是等腰三角形.解法二:(1)以为坐标原点,以的方向为轴的正方向,建立平面直角坐标系. 依题意得.在轴上取,因为点在线段上,且,所以,则,故的轨迹是以为焦点,长轴长为2的椭圆(除去长轴端点),所以点的轨迹的方程为.(2)设,,由题意得,直线斜率不为0,且,故设直线的方程为:,其中,与椭圆方程联立得,,由韦达定理可知,,其中,因为满足椭圆方程,故有,所以.设直线的方程为:,其中,同理,故,所以,即轴,因此,故是等腰三角形.21. 已知函数,,曲线的图象在点处的切线方程为. (1)求函数的解析式;(2)当时,求证:;(3)若对任意的恒成立,求实数的取值范围.【答案】(1);(2)见解析;(3).学,科,...【解析】试题分析:(1)利用导函数研究函数切线的方法可得函数的解析式为.(2)构造新函数.结合函数的最值和单调性可得.(3)分离系数,构造新函数,,结合新函数的性质可得实数的取值范围为. 试题解析:(1)根据题意,得,则.由切线方程可得切点坐标为,将其代入,得,故.(2)令.由,得,当,,单调递减;当,,单调递增.所以,所以.(3)对任意的恒成立等价于对任意的恒成立.令,,得.由(2)可知,当时,恒成立,令,得;令,得.所以的单调增区间为,单调减区间为,故,所以.所以实数的取值范围为.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题.22. 选修4-4:坐标系与参数方程在极坐标系中,曲线:,曲线:.以极点为坐标原点,极轴为轴正半轴建立直角坐标系,曲线的参数方程为(为参数).(1)求,的直角坐标方程;(2)与,交于不同四点,这四点在上的排列顺次为,,,,求的值.【答案】(1);(2).【解析】(1)因为,由,得,所以曲线的直角坐标方程为;由,得,所以曲线的极坐标方程为.(2) 不妨设四点在上的排列顺次至上而下为,它们对应的参数分别为,如图,连接,则为正三角形,所以,,把代入,得:,即,故,所以.【点睛】本题为极坐标与参数方程,是选修内容,把极坐标方程化为直角坐标方程,需要利用公式,第二步利用直线的参数方程的几何意义,联立方程组求出,利用直线的参数方程的几何意义,进而求值.学,科,...23. 选修4-5:不等式选讲.已知,为任意实数.(1)求证:;(2)求函数的最小值.【答案】(1)见解析;(2).【解析】试题分析:(1)利用不等式的性质两边做差即可证得结论;(2)利用题意结合不等式的性质可得.试题解析:(1),因为,所以.(2).即.点睛:本题难以想到利用绝对值三角不等式进行放缩是失分的主要原因;对于需求最值的情况,可利用绝对值三角不等式性质定理:||a|-|b||≤|a±b|≤|a|+|b|,通过适当的添、拆项来放缩求解.。
【全国百强校】河北省衡水中学2017届高三上学期第三次调研考试理数试题解析(解析版)

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|1log A x N x k =∈<<,集合A 中至少有3个元素,则( ) A .8k > B .8k ≥ C .16k > D .16k ≥ 【答案】C 【解析】试题分析:因为集合A 中至少有3个元素,所以2log 4k >,所以4216k >=,故选C .考点:1、集合的元素;2、对数的性质. 2.复数212ii+-的共轭复数的虚部是( ) A .35- B .35C .-1D .1 【答案】C 【解析】考点:复数的概念及运算. 3. 下列结论正确的是( )A .若直线l ⊥平面α,直线l ⊥平面β,则//αβB .若直线//l 平面α,直线//l 平面β,则//αβC .若两直线12l l 、与平面α所成的角相等,则12//l lD .若直线l 上两个不同的点A B 、到平面α的距离相等,则//l α 【答案】A 【解析】试题分析:A 中,垂直于同一直线的两平面互相平行,所以直线直线l ⊥平面α,直线l ⊥平面β,则//αβ,正确;B 中,若直线//l 平面α,直线//l 平面β,则两平面可能相交或平行,故B 错;C 中,若两直线12l l 、与平面α所成的角相等,则12l l 、可能相交、平行或异面,故C 错;D 中,若直线l 上两个不同的点A B 、到平面α的距离相等,则直线与平面可能相交或者平行,故D 错,故选A . 考点:空间直线与平面间的位置关系.【思维点睛】解答此类试题的关键是对于空间几何中的一些概念、公理、定理和推论的理解一定要结合图形,理解其本质,准确把握其内涵,特别是定理、公理中的限制条件,如公理3中“不共线的三点”,“不共线”是很重要的条件.4.等比数列{}n a 的前n 项和为n S ,已知2532a a a =,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .36 【答案】B考点:等比数列通项公式及求前n 项和公式. 【一题多解】由2532a a a =,得42a =.又47522a a +=,所以714a =,所以12q =,所以116a =,所以515(1)311a q S q-==-,故选B .5.已知实数,x y 满足21010x y x y -+≥⎧⎨--≤⎩,则22x y z x ++=的取值范围为( )A .100,3⎡⎤⎢⎥⎣⎦ B .(]10,2,3⎡⎫-∞+∞⎪⎢⎣⎭ C .102,3⎡⎤⎢⎥⎣⎦D .(]10,0,3⎡⎫-∞+∞⎪⎢⎣⎭ 【答案】D 【解析】试题分析:作出不等式组不等式的平面区域如图所示,2222x y y z x x+++==+表示的几何意义为区域内的点到点(0,2)P -的斜率k 加上2.因为(3,2)A 、(1,0)C -,所以4,23AP CP k k ==-,所以由图知43k ≥或2k ≤-,所以1023k +≥或20k +≤,即103z ≥或0z ≤,故选D .考点:简单的线性规划问题.6.若()0,0,lg lg lg a b a b a b >>+=+,则a b +的最小值为( ) A .8 B .6 C .4 D .2 【答案】C考点:1、对数的运算;2、基本不等式.7.阅读如图所示的程序框图,则该算法的功能是( )A .计算数列{}12n -前5项的和B .计算数列{}21n -前5项的和 C .计算数列{}21n -前6项的和 D .计算数列{}12n -前6项的和【答案】D 【解析】试题分析:第一次循环,得1,2A i ==;第二次循环:1+21,3A i =⨯=;第三次循环:21+21+21,4A i =⨯⨯=;第四次循环:231+2+2+2,5A i ==;第五次循环:2341+2+2+2+2,6A i ==;第六次循环:23451+2+2+2+2+2A =,76i =>,不满足循环条件,退出循环,输出23451+2+2+2+22A =+,即计算数列{}12n -前6项的和,故选D .考点:循环结构流程图.【易错点睛】应用循环结构应注意的三个问题分别为:(1)确定循环变量和初始值;(2)确定算法中反复执行的部分,即循环体;(3)确定循环的终止条件.同时依次计算出每次的循环结果,直到不满足循环条件为止是解答此类问题的常用方法.8.ABC ∆中,“角,,A B C 成等差数列”是“)sin sin cos C A A B =+”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A 【解析】考点:1、充分条件与必要条件;2、、两角和的正弦函数.9.已知a b >,二次三项式220ax x b ++≥对于一切实数x 恒成立,又0x R ∃∈,使20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D .【答案】D 【解析】试题分析:因为二次三项式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩;又o x ∃∈R ,使220oo ax x b ++=成立,所以440ab -≥,故只有440ab -=,即0,,1a a b ab >>=,所以22a b a b+-=a b -+2aba b-=2a b a b -+≥-D .考点:1、存在性命题;2、基本不等式;3、不等式恒成立问题.10.已知等差数列{}{},n n a b 的前n 项和分别为,n n S T ,若对于任意的自然数n ,都有2343n n S n T n -=-,则()3153392102a a a b b b b ++=++( )A .1941 B .1737C .715D .2041【答案】A考点:1、等差数列的性质;2、等差数列的前n 项和公式. 11.已知函数()21,g x a x x e e e ⎛⎫=-≤≤⎪⎝⎭为自然对数的底数与()2ln h x x =的图象上存在关于x 轴对称的点,则实数a 的取值范围是( ) A .211,2e ⎡⎤+⎢⎥⎣⎦ B .21,2e ⎡⎤-⎣⎦ C .2212,2e e ⎡⎤+-⎢⎥⎣⎦D .)22,e ⎡-+∞⎣ 【答案】B 【解析】试题分析:由条件知,方程22ln a x x -=-,即22ln a x x -=-在1[,]e e上有解.设2()2ln f x x x =-,则22(1)(1)()2x x f x x x x -+'=-=.因为1x e e ≤≤,所以()0f x '=在1x =有唯一的极值点.因为1()f e=212e --,2()2f e e =-,()(1)1f x f ==-极大值,又1()()f e f e <,所以方程22ln a x x -=-在1[,]e e上有解等价于221e a -≤-≤-,所以a 的取值范围为21,2e ⎡⎤-⎣⎦,故选B .考点:1、函数极值与导数的关系;2、函数函数的图象与性质.12.如图,在OMN ∆中,,A B 分别是,OM ON 的中点,若(),OP xOA yOB x y R =+∈,且点P 落在四边形ABNM 内(含边界),则12y x y +++的取值范围是( )A .12,33⎡⎤⎢⎥⎣⎦ B .13,34⎡⎤⎢⎥⎣⎦ C .13,44⎡⎤⎢⎥⎣⎦ D .12,43⎡⎤⎢⎥⎣⎦【答案】C 【解析】考点:向量的几何意义.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若实数()0,1a b ∈、,且满足()114a b ->,则a b 、的大小关系是_____________. 【答案】a b < 【解析】试题分析:因为()0,1a b ∈、,且满足()114a b ->()112a b ->,又()()112a b a b -+≥-以()1122a b -+>,即a b <.考点:基本不等式. 14.若110tan ,,tan 342ππααα⎛⎫+=∈ ⎪⎝⎭,则2sin 22cos cos 44ππαα⎛⎫++ ⎪⎝⎭的值为___________. 【答案】0 【解析】试题分析:由110tan tan 3αα+=,得(tan 3)(3tan 1)0αα--=,所以tan 3α=或1tan 3α= .因为,42ππα⎛⎫∈ ⎪⎝⎭,所以tan 3α=,所以2sin 22cos cos 44ππαα⎛⎫++ ⎪⎝⎭=22sin 2cos 222αα++2(1cos 2)2α+=22sin 22cos 222αα++=22222222sin cos cos sin 222sin cos sin cos 2αααααααα-⋅+⋅+++=22222tan 1tan 222tan 1tan 12αααα-⋅+⋅+++=22222313220231312⨯-⨯+⨯+=++. 考点:1、两角和的正弦函数公式;2、同角三角函数间的基本关系;3、二倍角. 15.一个几何体的三视图如图所示,则此几何体的体积是_____________.【答案】80 【解析】考点:空间几何体的三视图及体积.【方法点睛】名求组合体的几何,首先应该知道它是哪些简单几何体组合而成,这就要求必须掌握简单几何体(柱、锥、台、球等)的三视图,只有在掌握简单几何体三视图的基础上才能确定组合体的“组合”,同时注意三视图的作图原则:“长对正,高平齐,宽相等”,由此可确定几何体中各数据.16.已知函数()()2lg ,064,0x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,若关于x 的方程()()210f x bf x -+=有8个不同根,则实数b 的取值范围是______________. 【答案】1724b <≤ 【解析】考点:1、分段函数;2、函数的图象;3、方程的根.【方法点睛】方程解的个数问题解法:研究程)(x g 0=的实根常将参数移到一边转化为值域问题.当研究程)(x g 0=的实根个数问题,即方程)(x g 0=的实数根个数问题时,也常要进行参变分离,得到)(x f a =的形式,然后借助数形结合(几何法)思想求解;也可将方程化为形如)()(x h x f =,常常是一边的函数图像是确定的,另一边的图像是动的,找到符合题意的临界值,然后总结答案即可.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知()2sin 2f x x π⎛⎫=⎪⎝⎭,集合(){}|2,0M x f x x ==>,把M 中的元素从小到大依次排成一列,得到数列{}*,n a n N ∈. (1)求数列{}n a 的通项公式; (2)记211n n b a +=,设数列{}n b 的前n 项和为n T ,求证:14n T <. 【答案】(1)()*21n a n n N =-∈;(2)见解析. 【解析】试题分析:(1)首先根据正弦函数性质解出M 中的元素,从而得到21,x k k Z =+∈,由此可求得数列{}n a 的通项公式;(2)首先结合(1)求得n b 的表达式,然后利用放缩法与裂项法即可使问题得证.考点:1、递推数列;2、数列的通项公式;3、裂项法求数列的和.18.(本小题满分12分)已知向量2,1,cos ,cos 444x x x m n ⎫⎛⎫==⎪ ⎪⎭⎝⎭,记()f x m n =. (1)若()1f x =,求cos 3x π⎛⎫+⎪⎝⎭的值; (2)在锐角ABC ∆中,角,,A B C 的对边分别是,,a b c ,且满足()2cos cos a c B b C -=,求()2f A 的取值范围.【答案】(1)12;(2)32⎤⎥⎝⎦. 【解析】试题分析:(1)首先利用向量的数量积公式求出函数()f x 的解析式,然后利用二倍角公式求值即可;(2)首先由正弦定理将边角的混合等式化为角的等式,然后利用三角函数公式化简求出角A 的范围,从而求出三角函数值的范围.试题解析:(1)()21113sin cos cos cos sin 4442222262x x x x x x f x m n π⎛⎫==+=++=++ ⎪⎝⎭, 由()1f x =,得1sin 262x π⎛⎫+=⎪⎝⎭,所以21cos 12sin 3262x x ππ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭.............6分(2)因为()2cos cos a c B b C -=,由正弦定理得()2sin sin cos sin cos A C B B C -=,所以2sin cos sin cos sin cos A B C B B C -=,所以()2sin cos sin A B B C =+,因为A B C π++=,所以()sin sin B C A +=,且sin 0A ≠,所以1cos 2B =,又02B π<<,所以3B π=, 则22,33AC A C ππ+==-,又02C π<<,则62A ππ<<,得2363A πππ<+<,所以sin 126A π⎛⎫<+≤ ⎪⎝⎭,又因为()12sin 62f A A π⎛⎫=++ ⎪⎝⎭,故函数()2f A 的取值范围是32⎤⎥⎝⎦................12分考点:1、两角和的正弦函数;2、倍角公式;3、正弦定理;4、正弦函数的图象与性质.【思路点睛】第一问解答时,要注意分析结论中的角与条件中角的关系,合理选择变换策略达到求值的目的;第二问解答时,求得内角B 的值是关键,结合三角形形状得到函数(2)f A 的定义域,问题就容易解答了,常见的错误是不少考生由于审题不够仔细,漏掉2A π<,实在可惜.19.(本小题满分12分)如图所示,在直三棱柱111ABC A B C -中,平面1A BC ⊥侧面11A B BA ,且12AA AB ==.(1)求证:AB BC ⊥;(2)若直线AC 与平面1A BC 所成角的正弦值为12,求锐二面角1A A C B --的大小. 【答案】(1)见解析;(2)3π. 【解析】(2)解法一:连接CD ,由(1)可知AD ⊥平面1A BC ,则CD 是AC 在平面1A BC 内的射影, ∴ACD ∠即为直线AC 与平面1A BC 所成的角,因为直线AC 与平面1A BC 所成的角的正弦值为12,则6ACD π∠=,............................8分在等腰直角1A AB ∆中,12AA AB ==,且点D 是1A B 中点,∴112AD A B ==且,26ADC ACD ππ∠=∠=,∴AG =.................9分 过点A 作1AE A C ⊥于点E ,连接DE ,由(1)知AD ⊥平面1A BC ,则1AD A C ⊥,且AEAD A =,∴AED ∠即为二面角1A A C B --的一个平面角....................10分 且直角1A AC ∆中,11A A AC AE AC ===,又2AD ADE π=∠=,∴sin AD AED AE ∠===1A A C B --为锐二面角, ∴3AED π∠=,即二面角1A A C B --的大小为3π..................12分 解法二(向量法):由(1)知AB BC ⊥且1BB ⊥底面ABC ,所以以点B 为原点,以1BC BA BB 、、所在直线分别为,,x y z 轴建立空间直角坐标系B xyz -,如图所示,且设BC a =,则()()()()10,2,0,0,0,0,,0,0,0,2,2A B C a A ,()()()()11,0,0,0,2,2,,2,0,0,0,2BC a BA AC a AA ===-=.........................9分 设平面1A BC 的一个法向量()1,,n x y z =, 由111,BC n BA n ⊥⊥得:220za y z =⎧⎨+=⎩,令1y =,得0,1x z ==-,则()10,1,1n =-............10分考点:1、空间直线与直线的位置关系;2、线段垂直的性质定理;3、二面角.【技巧点睛】破解此类问题的关键在于熟练把握空间垂直关系的判定与性质,注意平面图形中的一些线线垂直关系的灵活利用,这是证明空间垂直关系的基础.由于“线线垂直”、“线面垂直”、“面面垂直”之间可以相互转化,因此整个证明过程围绕着线面垂直这个核心而展开,这是化解空间垂直关系难点的技巧所在.20.(本小题满分12分)已知函数()()()()212ln f x a x x a R =---∈.(1)若曲线 ()()g x f x x =+上点()()1,g 1处的切线过点()0,2,求函数()g x 的单调减区间; (2)若函数()y f x =在10,2⎛⎫ ⎪⎝⎭上无零点,求a 的最小值. 【答案】(1)()0,2;(2)24ln 2-. 【解析】(2)因为()0f x <在区间10,2⎛⎫ ⎪⎝⎭上恒成立不可能, 故要使函数()f x 在10,2⎛⎫ ⎪⎝⎭上无零点,只要对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立, 即对12ln 0,,221x x a x ⎛⎫∈>- ⎪-⎝⎭恒成立................................8分 令()2ln 12,0,12x I x x x ⎛⎫=-∈ ⎪-⎝⎭, 则()()()()222212ln 2ln 211x x x x x I x x x --+-'==--.................10分考点:1、函数的零点;2、导数的几何意义;3、利用导数研究函数的单调性.【方法点睛】利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,()f x a ≥恒成立,只需()min f x a ≥即可;()f x a ≤恒成立,只需max ()f x a ≤即可;(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解. 21.(本小题满分12分)已知()(),,,1p x m q x a ==+,二次函数()1f x p q =+,关于x 的不等式()()2211f x m x m >-+-的解集为()(),1,m m -∞++∞,其中m 为非零常数,设()()1f xg x x =-. (1)求a 的值;(2)若存在一条与y 轴垂直的直线和函数()()ln x g x x x Γ=-+的图象相切,且切点的横坐标0x 满足0013x x -+>,求实数m 的取值范围;(3)当实数k 取何值时,函数()()()ln 1x g x k x ϕ=--存在极值?并求出相应的极值点. 【答案】(1)2a =-;(2)12m >;(3)若0m >时,k ∈R ,函数()x ϕ极小值点为2x ;若0m <时,当k >()x ϕ极小值点为2x ,极大值点为1x (其中122k x +-=,222k x +=)【解析】试题分析:(1)首先用向量的数量积公式代入到()f x 的表达式中,然后根据所给出的不等式解集即可求得a 的值;(2)若存在这样的直线,则说明函数()x Γ的导数可为0,从而对函数()x Γ求导后解得切点横坐标0x 与m 的关系,根据不等式得到0x 的范围,进而求得实数m 的范围;(3)当函数()x ϕ存在极值时,其导数必为零点,因此先对函数求导,由于解析式中含实数k ,由此对导数进行分类讨论,从而可求得极极值以及极值点.试题解析:(1)∵()()(),,,1,1p x m q x a f x p q ==+=+, ∴二次函数()21f x x ax m =+++,..........................1分 关于x 的不等式()()2211f x m x m >-+-的解集为()(),01,m -∞++∞,也就是不等式()22120x a m x m m ++-++>的解集为()(),01,m -∞++∞,∴m 和 1m +是方程()22120x a m x m m ++-++=的两个根, 由韦达定理得:()()112m m a m ++=-+-, ∴2a =-.............................2分(3)()()()()()ln 11ln 11mx g x k x x k x x ϕ=--=-+---的定义域为()1,+∞, ∴()()()()222211111x k x k m mkx x x x ϕ-++-+'=--=---方程()2210x k x k m -++-+= (*)的判别式()()222414k k m k m ∆=+--+=+.①若0m >时,0∆>,方程(*)的两个实根为212412k k m x +-+=<,或222412k k mx +++=>,则()21,x x ∈时,()0x ϕ'<;()2,x x ∈+∞时,()0x ϕ'>, ∴函数()x ϕ在()21,x 上单调递减,在()2,x +∞上单调递增,此时函数()x ϕ存在极小值,极小值点为2,x k 可取任意实数,........................9分综上所述,若0m >时,k 可取任意实数,此时函数()x ϕ有极小值且极小值点为2x ;若0m <时,当2k m >-()x ϕ有极大值和极小值,此时极小值点为2x ,极大值点为1x (其中2212242422k k m k k mx x +++++==).......................12分考点:1、不等式的解法;2、方程的根;3、导数的几何意义;4、函数极值与导数的关系.请从下面所给的22 , 23 ,24三题中任选一题做答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-1:几何证明选讲已知四边形ABCD 为圆O 的内接四边形,且BC CD =,其对角线AC 与BD 相交于点M ,过点B 作圆O 的切线交DC 的延长线于点P .(1)求证:AB MD AD BM =;(2)若CP MD CB BM =,求证:AB BC =. 【答案】(1)见解析;(2)见解析. 【解析】考点:1、圆周角定理;2、相似三角形;3、弦切角定理. 23.本小题满分10分)选修4-4:坐标系与参数方程已知直线l的参数方程为22x m y ⎧=+⎪⎪⎨⎪=⎪⎩(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2222cos 3sin 12ρθρθ+=,且曲线C 的左焦点F 在直线l 上. (1)若直线l 与曲线C 交于,A B 两点,求FA FB 的值; (2)求曲线C 的内接矩形的周长的最大值. 【答案】(1)2;(2)16.【解析】考点:24.(本小题满分10分)选修4-5:不等式选讲 已知0x R ∃∈使不等式12x x t ---≥成立. (1)求满足条件的实数t 的集合T ;(2)若1,1m n >>,对t T ∀∈,不等式23log log m n t ≥恒成立,求m n +的最小值. 【答案】(1){}|1T t t =≤;(2)6. 【解析】试题分析:(1)由条件可知关于x 的不等式t x x ≥---|2||1|有解即可,因此只需()max12x x t ---≥,进而可求出实数t 的集合T ;(2)根据条件知道应有max 33log log t n m ≥⋅,再结合(1)的结论以及基本不等式,进而可求出n m +的最小值.试题解析:(1)令()1,11223,121,2x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩,则()11f x -≤≤,由于0x R ∃∈使不等式12x x t ---≥成立,有{}|1t T t t ∈=≤..............5分考点:1、绝对值不等式的解法;2、基本不等式.。
【全国百强校word】河北省衡水中学2017届高三上学期四调考试理数试题

其中真命题的个数是(
)
A. 4 B . 3 C.2 D
.1
8. 某几何体的三视图如图所示,则该几何体的体积为(
)
A. 10
B
.20 C.40
D
. 60
9. 已知
A 、B 是椭圆
x2 a2
y2 b 2 1 a b 0 长轴的两个端点, M 、N 是椭圆上关于 x 轴对称的两点, 直线 AM 、
BN 的斜率分别为 k1 ,k2 k1k 2 0 ,若椭圆的离心率为
D . 18 3
ln 1 x ,x 0
11. 已知函数 f x
3
,若 f x ax 恒成立,则实数 a 的取值范围是(
)
x 1 1 ,x 0
A. 0 , 2 3
B
. 0 ,3
4
C.
0 ,1
D
. 0,3
2
12. 已知过抛物线 G : y2 2 px p 0 焦点 F 的直线 l 与抛物线 G 交于 M 、 N 两点( M 在 x 轴上方),满足
x2 是椭圆 C :
y2 1 上的一点,从原点 O 向圆
24 12
2
2
R: x x0
y y0 8 作两条切线,分别交椭圆于 P , Q .
( 1)若 R 点在第一象限,且直线 OP , OQ 互相垂直,求圆 R 的方程;
( 2)若直线 OP , OQ 的斜率存在,并记为 k1 ,k2 ,求 k1 ,k2 的值;
OR
2r 4 ,即 x02 y02 16 ①
2
2
又点 R 在椭圆 C 上,所以 x0 y0 1 ②
24 12
联立①②,解得
x0
22 ,所以,所求圆
【全国百强校】江西省吉安市第一中学2017届高三上学期第一次段考试理数试题(解析版)

一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{}{}22|4,,|log 2,A x x x R B x x x Z =≤∈=≤∈,则A B = ( ) A .()0,2 B .[]0,2 C .{}0,1,2 D .{}1,2 【答案】D考点:集合运算 【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. 2.已知33cos ,4522πππαα⎛⎫+=≤< ⎪⎝⎭,则sin 2α=( ) A .45-B .45C .725-D .725【答案】D 【解析】试题分析:3187cos cos sin 1sin 2sin 2452525πααααα⎛⎫+=⇒-=⇒-=⇒= ⎪⎝⎭,选D. 考点:同角三角函数关系【方法点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数。
(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异。
①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的。
(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角。
3.执行如图所示的程序框图,若输入的{}1,2,3n ∈,则输出的s 属于( )A .{}1,2B .{}1,3C .{}2,3D .{}1,3,9 【答案】A考点:循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 4.给出下列三个命题:①“若2230x x +-≠,则1x ≠”为假命题; ②若p q ∧为假命题,则,p q 均为假命题;③命题:,20x p x R ∀∈>,则00:,20xp x R ⌝∃∈≤,其中正确的个数是( ) A .0 B .1 C .2 D .3 【答案】B考点:命题真假【名师点睛】若要判断一个含有逻辑联结词的命题的真假,需先判断构成这个命题的每个简单命题的真假,再依据“或”——一真即真,“且”——一假即假,“非”——真假相反,做出判断即可.以命题真假为依据求参数的取值范围时,首先要对两个简单命题进行化简,然后依据“p ∨q ”“p ∧q ”“非p ”形式命题的真假,列出含有参数的不等式(组)求解即可. 5.函数()1ln f x x x=+的图象大致为( ) A .B .C .D .【答案】B 【解析】试题分析:()()11,22,f f -=-≠所以不选A,C; ()110,f e e-=->所以不选D ,选B. 考点:函数图像6.已知变量,x y 满足条件23033010x y x y y +-≤⎧⎪+-≥⎨⎪-≤⎩,若目标函数z ax y =+仅在点()3,0处取得最大值,则a 的取值范围是( )A .1,2⎛⎫-∞-⎪⎝⎭ B .1,02⎛⎫- ⎪⎝⎭ C .10,2⎛⎫ ⎪⎝⎭ D .1,2⎛⎫+∞ ⎪⎝⎭【答案】D考点:线性规划【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.7.已知圆22:1C x y +=,点(),2M t 若C 上存在两点,A B 满足MA AB =,则实数t 的取值范围是( )A .[]2,2-B .[]3,3-C .⎡⎣D .[]5,5-【答案】C 【解析】试题分析:设圆心C 到直线ABM 距离为d ,2298OM d ==-,因为201d ≤≤,所以2219149OM t t ≤≤⇒≤+≤⇒≤≤,选C.考点:直线与圆位置关系 8.已知函数()cos6xf x π=,集合{}1,2,3,4,5,6,7,8,9M =,现在从M 中任取两个不同的元素,m n ,则()()0f m f n = 的概率为( )A .512 B .712 C .718 D .79【答案】A 【解析】试题分析:从M 中任取两个不同的元素共有2972A =种方法,()cos03,96xf x x π==⇒=,所以使()()0f m f n = 有2822=30⨯⨯-种方法,所求概率为305=7212,选A. 考点:古典概型概率【方法点睛】古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.9.在正三棱锥S ABC -中,M 是SC 的中点,且AM SB ⊥,底面边长AB =则正三棱锥S ABC -的外接球的体积为( )A B . C . D .6π 【答案】B考点:正三棱锥的外接球【方法点睛】(1)求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法.(2)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解. 10.已知函数()f x 与()g x 满足:()()()()22,11f x f x g x g x +=-+=-,且()f x 在区间[)2,+∞上为减函数,令()()()h x f x g x = ,则下列不等式正确的是( )A .()()24h h -≥B .()()24h h -≤C .()()04h h >D .()()04h h < 【答案】B 【解析】试题分析:()()()22f x f x f x +=-⇒关于2x =对称,()f x 在区间[)2,+∞上为减函数,所以()f x 在区间(,2]-∞上为增函数,而()()112g x g x T +=-⇒=,所以()()2=(2)|(2)|(6)|(4)|,4(4)|(4)|(2)h f g f g h f g h ---==≥-,()()04h h =,选B.考点:函数性质综合应用11.已知数列{}n a 满足()*11n a n N +=+∈,则使不等式20162016a >成立的所有正整数1a 的集合为( )A .{}*111|2016,a a a N ≥∈B .{}*111|2015,a a a N ≥∈ C .{}*111|2014,a a a N ≥∈ D .{}*111|2013,a a a N ≥∈ 【答案】A考点:等差数列定义【方法点睛】证明{a n }为等差数列的方法:(1)用定义证明:a n -a n -1=d (d 为常数,n ≥2)⇔{a n }为等差数列; (2)用等差中项证明:2a n +1=a n +a n +2⇔{a n }为等差数列; (3)通项法:a n 为n 的一次函数⇔{a n }为等差数列; (4)前n 项和法:S n =An 2+Bn12.在等腰梯形ABCD 中,//AB CD ,且2,1,2AB AD CD x ===,其中()0,1x ∈,以,A B 为焦点且过点D 的双曲线的离心率为1e ,以,C D 为焦点且过点A 的椭圆的离心率为2e ,若对任意()0,1x ∈,不等式12t e e <+恒成立,则t 的最大值是( )A B .2 D 【答案】B 【解析】试题分析:由平几知识可得1BD =,所以12121e e e e ==⇒=,因为12111e e e e +=+在()0,1x ∈上单调递减,所以12e e +>=12t e e <+恒成立,得t ≤,即tB. 考点:椭圆与双曲线离心率【思路点睛】(1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF 1|+|PF 2|>|F 1F 2|,双曲线的定义中要求||PF 1|-|PF 2||<|F 1F 2|,抛物线上的点到焦点的距离与准线的距离相等的转化.(2) 解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的定义及几何性质、点的坐标的范围等.二、填空题(每题4分,满分20分,将答案填在答题纸上)13.已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是____________.【答案】(考点:复数的模【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)+∈a bi a b R 的实部为a 、虚部为b、对应点为(,)a b 、共轭为.-a bi14.如图,已知双曲线()2222:10,0x y C a b a b-=>>的右顶点为A ,O 为坐标原点,以A 为圆心的圆与双曲线C 的某渐近线交于两点,P Q ,若060PAQ ∠=,且3OQ OP =,则双曲线的离心率为____________.【解析】试题分析:因为060PAQ ∠=,所以PAQ ∆为正三角形,设AP m =,则,OB AB m ==,其中B 为PQ的中点,所以PQb kc e a ===⇒=⇒=考点:双曲线渐近线15.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为_____________.考点:三视图 【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.16.对大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:3331373152,39,4,5171119⎧⎧⎧⎪⎪⎪⎪⎪⎪⎨⎨⎨⎪⎪⎪⎪⎪⎪⎩⎩⎩仿此,若3m 的“分裂”数中有一个是73,则m 的值为_____________. 【答案】9【解析】试题分析:732361=⨯+,23835+++= ,所以m 的值为9 考点:归纳三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,23C π=,且()(222a b c bc --=. (1)求角B 的大小;(2)若等差数列{}n a 的公差不为零,且1cos 21a B = ,且248,,a a a 成等比数列,求14n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .【答案】(1)6B π=(2)1n nS n =+11111122311n nS n n n =-+-++-=++试题解析:(1)由()(222a b c bc --=得222a b c --=,所以222cos 2b c a A bc +-==..............................3分 ∴6A π=,由23C π=,得6B π=...................6分 (2)设数列{}n a 的公差为d ,由(1)得112cos3a π==,且2425a a a =,∴()()()211137a d a d a d +=++,又0d ≠,∴2d =,∴2n a n =...............................9分∴14111n n a a n n +=-+,∴11111122311n nS n n n =-+-++-=++ ......................12分 考点:余弦定理,裂项相消法求和【方法点睛】将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎨⎧⎭⎬⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(n -1)(n +1)(n ≥2)或1n (n +2).18.(本小题满分12分)四棱锥P ABCD -中,点P 在平面ABCD 内的射影H 在棱AD 上, PA PD ⊥,底面ABCD 是梯形,//,BC AD AB AD ⊥,且1,2AB BC AD ===.(1)求证:平面PAB ⊥平面PAD ;(2)若直线AC 与PD 所成角为60°,求二面角A PC D --的余弦值. 【答案】(1)详见解析(2)13-∵,,,AB AD AD PH H AD PH ⊥=⊂ 平面PAD , ∴AB ⊥平面PAD ,又AB ⊂平面PAB ,∴平面PAB ⊥平面PAD ..................5分(2)∵AC 与PD 所成角为60°, ∴1cos ,2AC = , ∴()222a h -=,∴()()210a a --=,∵02a <<,∴1a =,∵0h >,∴1h =,∴()0,1,1P ..................7分∴()()()()0,1,1,1,1,0,1,0,1,1,1,0AP AC PC DC ===-=-,设平面APC 的法向量为(),,n x y z =, 由00n AP y z n AC x y ⎧=+=⎨=+=⎩ ,得平面APC 的一个法向量为()1,1,1n =-...............9分设平面DPC 的法向量为(),,m x y z =,由00m PC x z m DC x y ⎧=-=⎨=-=⎩ ,得平面DPC 的一个法向量为()1,1,1..................10分 ∴1cos ,3m n m n m n == , ∵二面角A PC D --的平面角为钝角, ∴二面角A PC D --的余弦值为13-...................12分考点:面面垂直判定定理,利用空间向量求二面角【思路点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.19.(本小题满分12分)某电视台举行一个比赛类型的娱乐节目,A B、两队各有六名选手参赛,将他们首轮的比赛成绩作为样本数据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将A队第六位选手的成绩没有给出,并且告知大家B队的平均分比A队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则获得“晋级”.(1)根据茎叶图中的数据,求出A队第六位选手的成绩;(2)主持人从A队所有选手成绩中随机抽取2个,求至少有一个为“晋级”的概率;(3)主持人从A B、两队所有选手成绩中分别随机抽取2个,记抽取到“晋级”选手的总人数为ξ,求ξ的分布列及数学期望.【答案】(1)20(2)35(3)ξ的分布列见解析,数学期望为2列,根据公式求数学期望()()()()22422266112211242442226611112222244222442266111112242244226660;225561;2251012;225563;225C C P C C C C C C C C P C C C C C C C C C C P C C C C C C C C P C C ξξξξ===+===++===+===()1224226664225C C P C C ξ===................................10分 ∴ξ的分布列为∴()566012342225225225225225E ξ=⨯+⨯+⨯+⨯+⨯=....................12分 考点:古典概型概率,分布列与数学期望【方法点睛】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X ~B(n ,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.20.(本小题满分12分)如图,已知椭圆()2222:10x y C a b a b +=>>经过点⎛ ⎝,点A B 、分别为椭圆C 的左、右顶点,,M N 是椭圆C 上不同于顶点的两点,且OMN ∆.(1)求椭圆C 的方程;(2)过点A 作//AP OM 交椭圆C 于点P ,求证://BP ON .【答案】(1)22142x y +=(2)详见解析+20M N N M x x y y =,即12OM ON k k =-试题解析:解:(1)由题意得22222211a b c e a a b c ⎧⎪⎪⎝⎭+=⎪⎪⎪==⎨⎪=+⎪⎪⎪⎪⎩,解得2242a b ⎧=⎨=⎩, 故椭圆C 的方程为22142x y +=..........................4分同理可得N ⎛ ⎝,............................6分 作MM x '⊥轴,NN x '⊥轴,点,N M ''是垂足,OMN OMM ONN MM N N S S S S ''∆∆∆''=--梯形()()12M N M N M M N N y y x x x y x y =+--+⎡⎤⎣⎦ ()1122M N N M x y x y =-==, 已知OMN S ∆=,化简可得12OM ON k k =- ,考点:直线与椭圆位置关系【思路点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.21.(本小题满分12分)设函数()()()2,ln 0f x x g x m x m ==>,已知()(),f x g x 在0x x =处的切线l 相同. (1)求m 的值及切线l 的方程;(2)设函数()h x ax b =+,若存在实数,a b 使得关于x 的不等式()()()1g x h x f x ≤≤+对()0,+∞上的任意实数x 恒成立,求a 的最小值及对应的()h x 的解析式.【答案】(1)2m e =,y e =-(2)a 的最小值为2,()2h x x =【解析】试题分析:(1)由导数几何意义得()()00f x g x ''=,又切点相同,所以()()00f x g x =,从而可列方程组002m x x =且200ln x m x =,解得001ln ,2x x ==,2022m x e ==,再根据点斜式得切线方程:y e x -=-(2)由题意可得()h x ax b =+为函数()()21,2ln s x x g x e x =+=的一条公切线,先求公切线,易得:22112212ln 122e x x e x x x x --==-,解得21,1,x e x ==公切线为2y x =,再证22ln 21e x x x ≤≤+恒成立试题解析:解:(1)()()2,m f x x g x x''==,①由()()1h x f x ≤+对()0,x ∈+∞恒成立,即210x ax b --+≥对()0,x ∈+∞恒成立,所以()()2410a b ∆=---+≤,解得214a b ≤-+① ....................... 6分 ②由()()g x h x ≤对()0,x ∈+∞恒成立,即设()()2ln ,0,G x e x ax b x =--∈+∞,则()22e a x e a G x a x x⎛⎫-- ⎪⎝⎭'=-=,令()0G x '=,得2e x a =, 当20,e x a ⎛⎫∈ ⎪⎝⎭时,()()0,G G x x '>单调递增; 当2,e x a ⎛⎫∈+∞ ⎪⎝⎭时,()()0,G G x x '>单调递减, 故()max 2222ln 22ln e e G x G e e b e b a a e ⎛⎫==--=-⎪⎝⎭, 则22ln 0e b a -≤,故得22ln e b a≤,② 由①②得222ln 14a eb a ≤≤-+,③)e内存在一个零点0t,故不等式22ln10t e t-++≥的解为01t t≤≤即12at≤≤,得22a t≤≤,因此a的最小值为2,代入③中得00b≤≤,故0b=,此时对应的()h x的解析式为()2h x x=....................................12分考点:导数几何意义【思路点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图所示,已知D为ABC∆的BC边上一点,1O经过点,B D,交AB于另一点E,2O经过点,C D,交AC于另一点1,F O与2O交于点G.(1)求证:EAG EFG∠=∠;(2)若2O 的半径为5,圆心2O 到直线AC 的距离为3,10,AC AG =切2O 于点G ,求线段AG 的长.【答案】(1)详见解析(2)AG =∴,AEG BDG AFG CDG ∠=∠∠=∠.........................2分又0180BDG CDG ∠+∠=,∴0180AEG AFG ∠+∠=,即,,G,F A E 四点共圆,∴EAG EFG ∠=∠......................5分(2)∵2O 的半径为5,圆心2O 到直线AC 的距离为3,∴由垂径定理知8FC ==,又10AC =.....................8分∴2AF =,∵AG 切2O 于点G ,∴221020AG AF AC ==⨯= ,∴AG =........................10分考点:四点共圆,切割线定理【名师点睛】1.解决与圆有关的成比例线段问题的两种思路(1)直接应用相交弦、切割线定理及其推论;(2)当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相似三角形→比例式→等积式”.在证明中有时还要借助中间比来代换,解题时应灵活把握.2.应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等.23.(本小题满分10分)选修4-4:坐标系与参数方程设点A 的极坐标为()1111,0,02πρθρθ⎛⎫≠<< ⎪⎝⎭,直线l 经过A 点,且倾斜角为α. (1)证明:l 的极坐标方程是()()11sin sin ρθαρθα-=-;(2)若O 点到l 的最短距离1d ρ=,求1θ与α间的关系.【答案】(1)详见解析(2)12παθ-=在OAP ∆ 中,由正弦定理得()()11sin sin ρρπθααθ=+--, 得直线l 的极坐标方程()()11sin sin ραθραθ-=-.................5分(2)依题意OA l ⊥,所以12παθ-=..........................10分 考点:直线极坐标方程24.(本小题满分10分)选修4-5:不等式选讲 已知适合不等式2435x x p x -++-≤的x 的最大值为3.(1)求p 的值;(2)求x 的范围.【答案】(1)p 8=(2){}|23x x ≤≤【解析】试题分析:(1)由不等式解集与方程根的关系得234333=5p -⨯++-,解得82p p ==-或;当8p =时,根据绝对值定义可解得不等式解集为{}|23x x ≤≤,当2p =-时,根据绝对值定义可解得不等式解集为|03x x x ⎧⎪≤≤≤≤⎨⎪⎩或,不满足题意(2)由(1)可得x 的范围考点:绝对值定义【名师点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.:。
安徽省百校论坛2017届高三上学期第二次联考理数试题 含答案

数学理试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若集合{}{}2|120,|sin 5A x Z xx B x x π=∈+-<=<,则A B 中元素的个数为()A .2B .3C .4D .52.设向量()()2,,1,1a m b ==-,若()2b a b ⊥+,则实数m 等于( ) A .2 B .4 C .6 D .—3 3。
已知正项等比数列{}na 的前n 项和为nS ,且244aa =,则425S a a +等于( )A .56B .57C .34D .794.已知命题()()32:1,,log 202xp x x ∀∈+∞+->,则下列叙述正确的是( )A .p ⌝为:()()321,,log 202xx x ∀∈+∞+-≤ B .p ⌝为:()()321,,log 202x x x ∃∈+∞+-< C.p ⌝为:(]()32,1,log 202xx x ∃∈-∞+-≤D .p ⌝是假命题5。
已知函数()f x 是偶函数,当0x >时,()21ax f x x =+。
若曲线()y f x =在点()()1,1f --处切线的斜率为—1,则实数a 的值为( )A .34- B .43C 。
32D .32-6。
若ABC ∆的内角,,A B C 所对的边分别为,,a b c ,已知2sin 23sin b A a B =,且2c b =,则a b等于( )A 22B .33C 2D 37。
已知等差数列{}na 的前n 项和为nS ,且3634aa =+,则“21a <”是“510S <"的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件8.已知4cos cos sin 236ππθθθ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,则tan 26πθ⎛⎫- ⎪⎝⎭等于( ) A .16 BC. D.9。
2017年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学三模试卷(理科)及答案
2017年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学三模试卷(理科)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设复数z满足z•(1+i)=2i(i是虚数单位),则|z|=()A.B.2C.1D.2.(5分)A={x|y=lg(x2+3x﹣4)},,则A∩B=()A.(0,2]B.(1,2]C.[2,4)D.(﹣4,0)3.(5分)下列函数中,既是偶函数,又在区间(0,+∞)单调递减的函数是()A.y=﹣x3B.y=ln|x|C.y=cosx D.y=2﹣|x|4.(5分)等比数列{a n},若a12=4,a18=8,则a36为()A.32B.64C.128D.2565.(5分)已知,且,则sin2α的值为()A.B.C.D.6.(5分)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图时,若输入a,b分别为18,27,则输出的a=()A.0B.9C.18D.547.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.8.(5分)3位男生和3位女生共6位同学站成一排,则3位男生中有且只有2位男生相邻的概率为()A.B.C.D.9.(5分)已知AB⊥AC,AB=AC,点M满足,若,则t的值为()A.B.C.D.10.(5分)中心在原点的椭圆C1与双曲线C2具有相同的焦点,F1(﹣c,0),F2(c,0),P为C1与C2在第一象限的交点,|PF1|=|F1F2|且|PF2|=5,若椭圆C1的离心率,则双曲线的离心率e2的范围是()A.B.C.(2,3)D.11.(5分)三棱锥P﹣ABC中,底面△ABC满足BA=BC,,P在面ABC 的射影为AC的中点,且该三棱锥的体积为,当其外接球的表面积最小时,P到面ABC的距离为()A.2B.3C.D.12.(5分)设函数,若曲线上存在(x0,y0),使得f(f(y0))=y0成立,则实数m的取值范围为()A.[0,e2﹣e+1]B.[0,e2+e﹣1]C.[0,e2+e+1]D.[0,e2﹣e﹣1]二、填空题(本大题共4小题,每小题5分).13.(5分)某校有男教师80人,女教师100人现按男、女比例采用分层抽样的方法从该校教师中抽取x 人参加教师代表大会,若抽到男教师12人,则x= .14.(5分)平面上,点A 、C 为射线PM 上的两点,点B 、D 为射线PN 上的两点,则有(其中S △PAB 、S △PCD 分别为△PAB 、△PCD 的面积);空间中,点A 、C 为射线PM 上的两点,点B 、D 为射线PN 上的两点,点E 、F 为射线PL 上的两点,则有= (其中V P ﹣ABE 、V P ﹣CDF 分别为四面体P﹣ABE 、P ﹣CDF 的体积).15.(5分)已知数列{a n }满足,则{a n }的前50项的和为 .16.(5分)已知圆C :x 2+y 2=25,过点M (﹣2,3)作直线l 交圆C 于A ,B 两点,分别过A ,B 两点作圆的切线,当两条切线相交于点N 时,则点N 的轨迹方程为 .三、解答题(解答应写出文字说明,证明过程或演算步骤.) 17.(12分)已知是函数f (x )=msinωx ﹣cosωx (m >0)的一条对称轴,且f (x )的最小正周期为π(Ⅰ)求m 值和f (x )的单调递增区间;(Ⅱ)设角A ,B ,C 为△ABC 的三个内角,对应边分别为a ,b ,c ,若f (B )=2,,求的取值范围.18.(12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超过x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为X,求X的分布列与数学期望.(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x 的值(精确到0.01),并说明理由.19.(12分)如图,在棱台ABC﹣FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为CE中点,.(Ⅰ)λ为何值时,MN∥平面ABC?(Ⅱ)在(Ⅰ)的条件下,求直线AN与平面BMN所成角的正弦值.20.(12分)已知椭圆的右焦点为F,过椭圆C中心的弦PQ长为2,且∠PFQ=90°,△PQF的面积为1.(Ⅰ)求椭圆C的方程;(Ⅱ)设A1、A2分别为椭圆C的左、右顶点,S为直线上一动点,直线A1S交椭圆C于点M,直线A2S交椭圆于点N,设S1、S2分别为△A1SA2、△MSN的面积,求的最大值.21.(12分)已知f(x)=e2x+ln(x+a).(1)当a=1时,①求f(x)在(0,1)处的切线方程;②当x≥0时,求证:f (x)≥(x+1)2+x.(2)若存在x0∈[0,+∞),使得成立,求实数a的取值范围.[选修4-4:坐标系与参数方程]22.(10分)已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1,(t为参数).(Ⅰ)求曲线C1上的点到曲线C2距离的最小值;(Ⅱ)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的倍,得到曲线.设P(﹣1,1),曲线C2与交于A,B两点,求|PA|+|PB|.[选修4-5:不等式选讲]23.已知x,y∈R.(Ⅰ)若x,y满足,,求证:;(Ⅱ)求证:x4+16y4≥2x3y+8xy3.2017年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学三模试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设复数z满足z•(1+i)=2i(i是虚数单位),则|z|=()A.B.2C.1D.【解答】解:由z•(1+i)=2i,得,则|z|=.故选:A.2.(5分)A={x|y=lg(x2+3x﹣4)},,则A∩B=()A.(0,2]B.(1,2]C.[2,4)D.(﹣4,0)【解答】解:A={x|y=lg(x2+3x﹣4)}={x|x2+3x﹣4>0}={x|x>1或x<﹣4},={y|0<y≤2},则A∩B=(1,2],故选:B.3.(5分)下列函数中,既是偶函数,又在区间(0,+∞)单调递减的函数是()A.y=﹣x3B.y=ln|x|C.y=cosx D.y=2﹣|x|【解答】解:A.y=﹣x3是奇函数,不是偶函数,∴该选项错误;B.x∈(0,+∞)时,y=ln|x|=lnx单调递增,∴该选项错误;C.y=cosx在(0,+∞)上没有单调性,∴该选项错误;D.y=2﹣|x|是偶函数;x∈(0,+∞)时,单调递减,∴该选项正确.故选:D.4.(5分)等比数列{a n},若a12=4,a18=8,则a36为()A.32B.64C.128D.256【解答】解:∵数列{a n}为等比数列,∴a182=a12a24,∵a12=4,a18=8,a12,a18,a24同号∴a24=16.∴由a242=a12a36,得:a36=64,故选:B.5.(5分)已知,且,则sin2α的值为()A.B.C.D.【解答】解:∵,且,∴2(cos2α﹣sin2α)=(cosα+sinα),∴cosα﹣sinα=,或cosα+sinα=0.当cosα﹣sinα=,则有1﹣sin2α=,sin2α=;∵α∈(0,),∴cosα+sinα=0不成立,故选:C.6.(5分)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图时,若输入a,b分别为18,27,则输出的a=()A.0B.9C.18D.54【解答】解:由a=18,b=27,不满足a>b,则b变为27﹣18=9,由b<a,则a变为18﹣9=9,由a=b=9,则输出的a=9.故选:B.7.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:由三视图可知,该几何体是底面为边长为2的正方形,一条侧棱垂直底面的四棱锥,高为2,故其体积V=,故选:A.8.(5分)3位男生和3位女生共6位同学站成一排,则3位男生中有且只有2位男生相邻的概率为()A.B.C.D.【解答】解:从3名男生中任取2人“捆”在一起记作A,(A共有C32A22=6种不同排法),剩下一名男生记作B,将A,B插入到3名女生全排列后所成的4个空中的2个空中,故有C32A22A42A33=432种,3位男生和3位女生共6位同学站成一排,有A66=720种,∴3位男生中有且只有2位男生相邻的概率为,故选:C.9.(5分)已知AB⊥AC,AB=AC,点M满足,若,则t的值为()A.B.C.D.【解答】解:如图所示,建立直角坐标系.A(0,0).不妨设C(3,0),B(0,3),∵点M满足,∴点M在BC上.设|AM|=a,则acos+a=3,解得a=3﹣3.∴M.∵点M满足,∴=0+(1﹣t)×3,解得t=.故选:C.10.(5分)中心在原点的椭圆C1与双曲线C2具有相同的焦点,F1(﹣c,0),F2(c,0),P为C1与C2在第一象限的交点,|PF1|=|F1F2|且|PF2|=5,若椭圆C1的离心率,则双曲线的离心率e2的范围是()A.B.C.(2,3)D.【解答】解:设椭圆的方程为+=1(a>b>0),其离心率为e1,双曲线的方程为﹣=1(m>0,n>0),其离心率为e2,|F1F2|=2c,∵有公共焦点的椭圆与双曲线在第一象限的交点为P,△PF1F2是以PF2为底边的等腰三角形,∴在椭圆中,|PF1|+|PF2|=2a,而|PF1|=|F1F2|=2c,∴|PF2|=2a﹣2c,①同理,在该双曲线中,|PF2|=2c﹣2m;②由①②可得m=2c﹣a.∵e1=∈(,),∴<<,又e2====∈(2,3).故选:C.11.(5分)三棱锥P﹣ABC中,底面△ABC满足BA=BC,,P在面ABC 的射影为AC的中点,且该三棱锥的体积为,当其外接球的表面积最小时,P到面ABC的距离为()A.2B.3C.D.【解答】解:设AC的中点为D,连接BD,PD,则PD⊥平面ABC,∵△ABC是等腰直角三角形,∴外接球的球心O在PD上,设AB=BC=a,PD=h,外接球半径OC=OP=R,则OD=h﹣R,CD=AC=a,===,∴a2=,∵V P﹣ABC∵CD2+OD2=OC2,即(h﹣R)2+a2=R2,∴R===≥3=,当且仅当即h=3时取等号,∴当外接球半径取得最小值时,h=3.故选:B.12.(5分)设函数,若曲线上存在(x0,y0),使得f(f(y0))=y0成立,则实数m的取值范围为()A.[0,e2﹣e+1]B.[0,e2+e﹣1]C.[0,e2+e+1]D.[0,e2﹣e﹣1]【解答】解:∵﹣1≤cosx≤1,∴的最大值为e,最小值为1,∴1≤y 0≤e ,显然f (x )=是增函数,(1)若f (y 0)>y 0,则f (f (y 0))>f (y 0)>y 0,与f (f (y 0))=y 0矛盾; (2)若f (y 0)<y 0,则f (f (y 0))<f (y 0)<y 0,与f (f (y 0))=y 0矛盾; ∴f (y 0)=y 0,∴y 0为方程f (x )=x 的解,即方程f (x )=x 在[1,e ]上有解, 由f (x )=x 得m=x 2﹣x ﹣lnx , 令g (x )=x 2﹣x ﹣lnx ,x ∈[1,e ], 则g′(x )=2x ﹣1﹣==,∴当x ∈[1,e ]时,g′(x )≥0, ∴g (x )在[1,e ]上单调递增,∴g min (x )=g (1)=0,g max (x )=g (e )=e 2﹣e ﹣1, ∴0≤m ≤e 2﹣e ﹣1. 故选:D .二、填空题(本大题共4小题,每小题5分).13.(5分)某校有男教师80人,女教师100人现按男、女比例采用分层抽样的方法从该校教师中抽取x 人参加教师代表大会,若抽到男教师12人,则x= 27 .【解答】解:由题意可得=,即x=27, 故答案为:2714.(5分)平面上,点A 、C 为射线PM 上的两点,点B 、D 为射线PN 上的两点,则有(其中S △PAB 、S △PCD 分别为△PAB 、△PCD 的面积);空间中,点A 、C 为射线PM 上的两点,点B 、D 为射线PN 上的两点,点E 、F 为射线PL 上的两点,则有=(其中V P ﹣ABE 、V P ﹣CDF 分别为四面体P ﹣ABE 、P ﹣CDF 的体积).【解答】解:设PM与平面PDF所成的角为α,则A到平面PDF的距离h1=PAsinα,C到平面PDF的距离h2=PCsinα,=V A﹣PBE==,∴V P﹣ABEV P﹣CDF=V C﹣PDF==,∴=.故答案为:.15.(5分)已知数列{a n}满足,则{a n}的前50项的和为1375.【解答】解:当n是奇数时,cosnπ=﹣1;当n是偶数时,cosnπ=1.则a n=(﹣1)n(n2+4n)=(﹣1)n n2+(﹣1)n×4n,{a n}的前50项的和S50=a1+a2+a3+…+a50,=(﹣12+22﹣32+42﹣…+502)+4(﹣1+2﹣3+4﹣…+50),=(1+2+3+4+…+50)+4×25,=1275+100,=1375,故答案为:137516.(5分)已知圆C:x2+y2=25,过点M(﹣2,3)作直线l交圆C于A,B两点,分别过A,B两点作圆的切线,当两条切线相交于点N时,则点N的轨迹方程为2x﹣3y﹣25=0.【解答】解:设A(m,n),N(x,y),根据圆的对称性可得N点是经过C点垂直于AB的直线与A点切线的交点∵圆x2+y2=25的圆心为C(0,0)∴切线AN的斜率为k1=﹣=﹣,得得AN方程为y﹣n=﹣(x﹣m),化简得y=﹣x+…①又∵直线MA的斜率k MA=,∴直线CN的斜率k2=﹣=,得直线CN方程为y=x…②①②联解,消去m、n得2x﹣3y+25=0,即为点N轨迹所在直线方程.故答案为:2x﹣3y+25=0.三、解答题(解答应写出文字说明,证明过程或演算步骤.)17.(12分)已知是函数f(x)=msinωx﹣cosωx(m>0)的一条对称轴,且f(x)的最小正周期为π(Ⅰ)求m值和f(x)的单调递增区间;(Ⅱ)设角A,B,C为△ABC的三个内角,对应边分别为a,b,c,若f(B)=2,,求的取值范围.【解答】解:函数f(x)=msinωx﹣cosωx(m>0)化简可得:f(x)=sin(ωx+θ),其中tanθ=﹣.∵f(x)的最小正周期为π,即T=π=,∴ω=2.又∵是其中一条对称轴,∴2×+θ=k,k∈Z.可得:θ=,则tan(kπ﹣)=﹣.m>0,当k=0时,tan=∴m=.可是f(x)的解析式为f(x)=2sin(2x﹣),令2x﹣,k∈Z,得:≤x≤,所以f(x)的单调递增区间为[,],k∈Z.(2)由f(B)=2sin(2B﹣)=2,可得2B﹣=,k∈Z,∵0<B<π,∴B=由正弦定理得:=2sinA﹣sin(A+)=sinA﹣cosA=sin(A﹣)∵0∴A﹣∈(,)∴的取值范围是(,),18.(12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超过x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为X,求X的分布列与数学期望.(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x 的值(精确到0.01),并说明理由.【解答】解:(Ⅰ)根据频率和为1,得(0.06+0.18+2a+0.42+0.52+0.11+0.06+0.03)×0.5=1,解得a=0.30;(Ⅱ)月均用水量不低于3吨的频率为(0.11+0.06+0.03)×0.5=0.1,则p=0.1,抽取的人数为X,则X的可能取值为0,1,2,3;∴P(X=0)=•0.93=0.729,P(X=1)=•0.1•0.92=0.243,P(X=2)=•0.12•0.9=0.027,P(X=3)=•0.13=0.001;∴X的分布列为数学期望为EX=0×0.729+1×0.243+2×0.027+3×0.001=0.3;(Ⅲ)由图可知,月均用水量小于2.5吨的居民人数所占的百分比为0.5×(0.06+0.18+0.3+0.42+0.52)=0.73,即73%的居民月均用水量小于2.5吨;同理,88%的居民月均用水量小于3吨;故2.5<x<3,假设月均用水量平均分布,则x=2.5+0.5×=2.9(吨),即85%的居民每月用水量不超过标准为2.9吨.19.(12分)如图,在棱台ABC﹣FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为CE中点,.(Ⅰ)λ为何值时,MN∥平面ABC?(Ⅱ)在(Ⅰ)的条件下,求直线AN与平面BMN所成角的正弦值.【解答】解:(Ⅰ)当,即M为AF中点时MN∥平面ABC.事实上,取CD中点P,连接PM,PN,∵AM=MF,CP=PD,∴MP∥AC,∵AC⊂平面ABC,MP⊄平面ABC,∴MP∥平面ABC.由CP∥PD,CN∥NE,得NP∥DE,又DE∥BC,∴NP∥BC,∵BC⊂平面ABC,NP⊄平面ABC,∴NP∥平面ABC.∴平面MNP∥平面ABC,则MN∥平面ABC;(Ⅱ)取BC中点O,连OA,OE,∵AB=AC,OB=OC,∴AO⊥BC,∵平面ABC⊥平面BCDE,且AO⊂平面ABC,∴AO⊥平面BCDE,∵OC=,BC∥ED,∴OE∥CD,又CD⊥BC,∴OE⊥BC.分别以OE,OC,OA所在直线为x轴,y轴,z轴,建立空间直角坐标系.则A(0,0,),C(0,1,0),E(1,0,0),,∴F(1,,),M(,,),N().设为平面BMN的法向量,则,取z=1,得.cos<>=.∴直线AN与平面MNB所成角的正弦值为.20.(12分)已知椭圆的右焦点为F,过椭圆C中心的弦PQ长为2,且∠PFQ=90°,△PQF的面积为1.(Ⅰ)求椭圆C的方程;(Ⅱ)设A1、A2分别为椭圆C的左、右顶点,S为直线上一动点,直线A1S交椭圆C于点M,直线A2S交椭圆于点N,设S1、S2分别为△A1SA2、△MSN的面积,求的最大值.【解答】解:(Ⅰ)弦PQ过椭圆中心,且∠PFQ=90°,则c=丨OF丨=丨PQ丨=1,﹣﹣﹣﹣﹣﹣﹣﹣(2分)不妨设P(x0,y0)(x0,y0>0),∴,△PQF的面积=×丨OF丨×2y0=y0=1,则x0=1,b=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)a2=b2+c2=2,∴椭圆方程为+y2=1;﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)设S(2,t),直线A1S:x=y﹣,则,整理(+2)y2﹣y=0,解得y1=,﹣﹣﹣﹣﹣﹣﹣﹣(7分)同理,设直线A2S:x=y+,得(+2)y2+y=0,解得y2=﹣,﹣﹣﹣﹣﹣﹣﹣﹣(8分)则==丨×丨﹣﹣﹣﹣﹣﹣﹣﹣(10分)≤×=,﹣﹣﹣﹣﹣﹣﹣﹣(11分)当且仅当t2+9=3t2+3,即t=±时取“=”﹣﹣﹣﹣﹣﹣﹣﹣(12分)21.(12分)已知f(x)=e2x+ln(x+a).(1)当a=1时,①求f(x)在(0,1)处的切线方程;②当x≥0时,求证:f (x)≥(x+1)2+x.(2)若存在x0∈[0,+∞),使得成立,求实数a的取值范围.【解答】解:(1)a=1时,f(x)=e2x+ln(x+1),f′(x)=2e2x+,①可得f(0)=1,f′(0)=2+1=3,所以f(x)在(0,1)处的切线方程为y=3x+1;②证明:设F(x)=e2x+ln(x+1)﹣(x+1)2﹣x(x≥0),F′(x)=2e2x+﹣2(x+1)﹣1F″(x)=4e2x﹣﹣2=[e2x﹣﹣]+2(e2x﹣1)+e2x>0,(x≥0),所以,F′(x)在[0,+∞)上递增,所以F′(x)≥F′(0)=0,所以,F(x)在[0,+∞)上递增,所以F(x)≥F(0)=0,即有当x≥0时,f(x)≥(x+1)2+x;(2)存在x0∈[0,+∞),使得成立⇔存在x0∈[0,+∞),使得e﹣ln(x0+a)﹣x02<0,设u(x)=e2x﹣ln(x+a)﹣x2,u′(x)=2e2x﹣﹣2x,u″(x)=4e2x+﹣2>0,可得u′(x)在[0,+∞)单调增,即有u′(x)≥u′(0)=2﹣①当a≥时,u′(0)=2﹣≥0,可得u(x)在[0,+∞)单调增,则u(x)min=u(0)=1﹣lna<0,解得a>e;②当a<时,ln(x+a)<ln(x+),设h(x)=x﹣﹣ln(x+),(x>0),h′(x)=1﹣=,另h′(x)>0可得x>,h′(x)<0可得0<x<,则h(x)在(0,)单调递减,在(,+∞)单调递增.则h(x)≥h()=0.设g(x)=e2x﹣x2﹣(x﹣),(x>0),g′(x)=2e2x﹣2x﹣1,g″(x)=4e2x﹣2>4﹣2>0,可得g′(x)在(0,+∞)单调递增,即有g′(x)>g′(0)=1>0,则g(x)在(0,+∞)单调递增,则g(x)>g(0)>0,则e2x﹣x2>x﹣>ln(x+)>ln(x+a),则当a<时,f(x)>2ln(x+a)+x2恒成立,不合题意.综上可得,a的取值范围为(e,+∞).[选修4-4:坐标系与参数方程]22.(10分)已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1,(t为参数).(Ⅰ)求曲线C1上的点到曲线C2距离的最小值;(Ⅱ)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的倍,得到曲线.设P(﹣1,1),曲线C2与交于A,B两点,求|PA|+|PB|.【解答】解:(Ⅰ)∵曲线C1:ρ=1,∴曲线C1的直角坐标方程为:x2+y2=1,∴圆心为(0,0),半径为r=1,(t为参数)消去参数t的C2:y=x+2,(2分)∴圆心到直线距离d=,(3分)∴曲线C1上的点到曲线C2距离的最小值为.(5分)(Ⅱ)∵把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的倍,得到曲线.∴伸缩变换为,∴曲线:=1,(7分)(t为参数)代入曲线,整理得.∵t1t2<0,(8分)∴|PA|+|PB|=|t1|+|t2|=|t1﹣t2|=.(10分)[选修4-5:不等式选讲]23.已知x,y∈R.(Ⅰ)若x,y满足,,求证:;(Ⅱ)求证:x4+16y4≥2x3y+8xy3.【解答】证明:(Ⅰ)利用绝对值不等式的性质得:|x|=[|2(x﹣3y)+3(x+2y)|]≤[|2(x﹣3y)|+|3(x+2y)|]<(2×+3×)=;(Ⅱ)因为x4+16y4﹣(2x3y+8xy3)=x4﹣2x3y+16y4﹣8xy3=x3(x﹣2y)+8y3(2y﹣x)=(x﹣2y)(x3﹣8y3)=(x﹣2y)(x﹣2y)(x2+2xy+4y2)=(x﹣2y)2[(x+y)2+3y2]≥0,∴x4+16y4≥2x3y+8xy3。
【全国百强校word】河北省衡水中学2017届高三上学期四调考试理数试题
数学试卷(理科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{}21log A x N x k =∈<<,集合A 中至少有3个元素,则( ) A .8k > B .8k ≥ C .16k > D .16k ≥2.若()1z i i +=,则z 等于( ) A .1 B .32 C .22 D .123.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔其古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?( ) A .5 B .6 C .4 D .34.已知双曲线()2222:10 0x y C a b a b-=>>,的离心率为52,则C 的渐近线方程为( ) A .14y x =± B .13y x =± C.12y x =± D .y x =±5.执行如图所示的程序框图,则输出的结果为( )A .4B .9 C.7 D .56.已知函数()()()cos 0f x A x ωϕω=+>的部分图象如图所示,下面结论错误的是( )A .函数()f x 的最小正周期为23πB .函数()f x 的图象可由()()cos g x A x ω=的图象向右平移12π个单位得到 C.函数()f x 的图象关于直线12x π=对称D .函数()f x 在区间 42ππ⎛⎫ ⎪⎝⎭,上单调递增7.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数() 1 0 x f x x ⎧=⎨⎩,为有理数,为无理数,称为狄利克雷函数,则关于函数()f x 有以下四个命题: ①()()1f f x =; ②函数()f x 是偶函数;③任意一个非零有理数T ,()()f x T f x +=对任意x R ∈恒成立;④存在三个点()()()()()()112233 A x f x B x f x C x f x ,,,,,,使得ABC △为等边三角形. 其中真命题的个数是( )A .4B .3 C.2 D .18.某几何体的三视图如图所示,则该几何体的体积为( )A .10B .20 C.40 D .609.已知A 、B 是椭圆()222210x y a b a b +=>>长轴的两个端点,M 、N 是椭圆上关于x 轴对称的两点,直线AM 、BN 的斜率分别为()1212 0k k k k ≠,,若椭圆的离心率为32,则12k k +的最小值为( ) A .1 B .2 C.32D .3 10.在棱长为6的正方体1111ABCD A B C D -中,M 是BC 的中点,点P 是面11DCC D 所在的平面内的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -的体积最大值是( ) A .36 B .123 C.24 D .18311.已知函数()()()3ln 1 01 1 0x x f x x x -<⎧⎪=⎨-+≥⎪⎩,,,若()f x ax ≥恒成立,则实数a 的取值范围是( ) A .20 3⎡⎤⎢⎥⎣⎦, B .30 4⎡⎤⎢⎥⎣⎦, C.[]0 1, D .30 2⎡⎤⎢⎥⎣⎦,12.已知过抛物线()2:20G y px p =>焦点F 的直线l 与抛物线G 交于M 、N 两点(M 在x 轴上方),满足3MF FN =,163MN =,则以M 为圆心且与抛物线准线相切的圆的标准方程为( ) A .2212316333x y ⎛⎫⎛⎫-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭ B .221316333x y ⎛⎫⎛⎫-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭C.()()2232316x y -+-= D .()()223316x y -+-=第Ⅱ卷(非选择题 共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若x 、y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则1y x -的最大值为 .14.在ABC △中, 3 5AB AC ==,,若O 为ABC △外接圆的圆心(即满足OA OB OC ==),则A O B C ⋅的值为 .15.已知数列{}n a 的各项均为正数,11142 n n n n a a a a a ++=-=+,,若数列11n n a a -⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n = .16.过抛物线()220y px p =>的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的的交点为B ,点A 在抛物线的准线上的射影为C ,若 48AF FB BA BC =⋅=,,则抛物线的方程为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在ABC △中,内角A 、B 、C 所对的边分别为 a b c ,,,已知 4 6 2b c C B ===,,. (1)求cos B 的值; (2)求ABC △的面积. 18. (本小题满分12分)如图所示,在三棱柱111ABC A B C -中,11AA B B 为正方形,11BB C C 为菱形,1160BB C ∠=︒,平面11AA B B ⊥平面11BB C C .(1)求证:11B C AC ⊥;(2)设点E 、F 分别是1B C ,1AA 的中点,试判断直线EF 与平面ABC 的位置关系,并说明理由; (3)求二面角1B AC C --的余弦值. 19. (本小题满分12分)如图,在平面直角坐标系xOy 中,已知()00 R x y ,是椭圆22:12412x y C +=上的一点,从原点O 向圆()()2200:8R x x y y -+-=作两条切线,分别交椭圆于P ,Q .(1)若R 点在第一象限,且直线OP ,OQ 互相垂直,求圆R 的方程; (2)若直线OP ,OQ 的斜率存在,并记为12 k k ,,求12 k k ,的值; (3)试问22OP OQ +是否为定值?若是,求出该值;若不是,说明理由. 20.(本小题满分12分)设椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F 、2F ,上顶点为A ,过A 与2AF 垂直的直线交x 轴负半轴于Q 点,且12220F F F Q +=. (1)求椭圆C 的离心率;(2)若过A 、Q 、2F 三点的圆恰好与直线330x y --=相切,求椭圆C 的方程;(3)过2F 的直线l 与(2)中椭圆交于不同的两点M 、N ,则1F MN △的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由. 21.(本小题满分12分)已知0t >,设函数()()3231312t f x x x tx +=-++.(1)存在()00 2x ∈,,使得()0f x 是()f x 在[]0 2,上的最大值,求t 的取值范围; (2)()2x f x xe m ≤-+对任意[0 )x ∈+∞,恒成立时,m 的最大值为1,求t 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-4:坐标系与参数方程已知圆锥曲线2cos :3sin x C y αα=⎧⎪⎨=⎪⎩(α为参数)和定点()0 3A ,,1F 、2F 是此圆锥曲线的左、右焦点,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系. (1)求直线2AF 的直角坐标方程;(2)经过点1F 且与直线2AF 垂直的直线l 交此圆锥曲线于M 、N 两点,求12MF NF -的值. 23.(本小题满分10分)选修4-5:不等式选讲 设()34f x x x =-+-. (1)解不等式()2f x ≤;(2)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围.2016-2017学年度高三上学期四调考试高三年级数学试卷(理科)一、选择题1-5:CCDCB 6-10:DABAA 11、12:BC二、填空题13.2 14.8 15.120 16.24y x = 三、解答题17.【答案】(1)34;(2)1574.试题解析:(1)在ABC △中,sin sin b c B C =,因为 4 6 2b c C B ===,,,所以46sin sin 2B B=,即 46sin 2sin cos B B B =,又sin 0B ≠,∴3cos 4B =. (2)由(1)知3cos 4B =,从而7sin 4B =.因此37sin sin 22sin cos 8C B B B ===,21cos cos22cos 18C B B ==-=.所以 ()()7133757sin sin sin sin cos cos sin 484816A B C B C B C B C π=--=+=+=⨯+⨯=, 所以ABC △的面积为157157462164⨯⨯⨯=. 18.证明:(1)连接1BC ,在正方形11ABB A 中,1AB BB ⊥,1B C ⊥平面1ABC ,因为1AC ⊥平面1ABC ,所以11B C AC ⊥.(2)EF ∥平面ABC ,理由如下:取BC 的中点G ,连接GE 、GA ,因为E 是1B C 的中点,所以1GE BB ∥,且112GE BB =,因为F 是 1AA 的中点,所以112AF AA =. 在正方形11ABB A 中,1111 AA BB AA BB =∥,,所以GE AF ∥,且GE AF =. ∴四边形GEFA 为平行四边形,所以EF GA ∥. 因为EF ABC ⊄平面,GA ABC ⊂平面, 所以EF ABC ∥平面.(3)在平面11BB C C 内过点B 作1Bz BB ⊥,由(1)可知:11AB BB C C ⊥平面,以点B 为坐标原点,分别以BA 、1BB 所在的直线为x 、y 轴,建立如图所示的空间直角坐标系B xyz -,设()2 0 0A ,,,则()10 2 0B ,,. 在菱形11BB C C 中,1160BB C ∠=︒,所以()0 1 3C -,,,()10 1 3C ,,. 设平面1ACC 的一个法向量为() 1x y =n ,,. 因为100n AC n CC ⎧⋅=⎪⎨⋅=⎪⎩即()()()() 1 2 1 30 10 2 00x y x y ⎧⋅--=⎪⎨⋅=⎪⎩,,,,,,,,,所以320x y ⎧=⎪⎨⎪=⎩即3 0 12n ⎛⎫= ⎪ ⎪⎝⎭,,, 由(1)可知:1CB 是平面1ABC 的一个法向量.所以()1113 0 10 3 327cos 731934n CB n CB n CB ⎛⎫⋅- ⎪ ⎪⋅⎝⎭<>===-⋅+⋅+,,,,,,所以二面角1B AC C --的余弦值为77. 19.【答案】(1)()()2222228x y -+-=;(2)12-;(3)36.试题解析:(1)由圆R 的方程知圆R 的半径22r =,因为直线OP ,OQ 互相垂直,且和圆R 相切,所以24OR r ==,即220016x y += ①又点R 在椭圆C 上,所以220012412x y += ②联立①②,解得002222x y ⎧=⎪⎨=⎪⎩,所以,所求圆R 的方程为()()2222228x y -+-=.(2)因为直线1:OP y k x =和2:OQ y k x =都与圆R 相切,所以10021221k x y k-=+,20022221k x y k -=+,化简得20122088y k k x -⋅=-,因为点()00R x y ,在椭圆C 上,所以220012412x y +=,即 22001122y x =-,所以201220141228x k k x -==--. (3)方法一(1)当直线OP 、OQ 不落在坐标轴上时,设()11 P x y ,,()22 Q x y ,, 由(2)知12210k k +=,所以121221y y x x =,故2222121214y y x x =,因为()11 P x y ,,()22 Q x y ,,在椭圆C 上,所以221112412x y +=,222212412x y +=, 即22111122y x =-,22221122y x =-,所以222212121111212224x x x x ⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭,整理得221224x x +=,所以222212121112121222y y x x ⎛⎫⎛⎫+=-+-= ⎪ ⎪⎝⎭⎝⎭,所以()()22222222221122121236OP OQ x y x y x x y y +=+++=+++=.方法(二)(1)当直线OP ,OQ 不落在坐标轴上时,设()11 P x y ,,()22 Q x y ,, 联立2212412y kx x y =⎧⎪⎨+=⎪⎩,解得22211122112424 1212k x y k k ==++,,所以()2122112124112k x y k ++=+. 同理,得()2222222224112k x y k ++=+,由(2)12210k k +=,得1212k k =-.所以()()2212222222112222122412411212k k OP OQ x y x y k k +++=+++=+++()2221112221111241224136723612121122k k k k k k ⎡⎤⎛⎫⎢⎥+- ⎪+⎢⎥⎝⎭+⎣⎦=+==++⎛⎫+- ⎪⎝⎭. (2)当直线OP 、OQ 落在坐标轴上时,显然有2236OP OQ +=. 综上:2236OP OQ +=.20.试题解析:(1)由题()0 A b ,,1F 为2QF 的中点.设()()12 0 0F c F c -,,,,则()3 0Q c -,,()3 AQ c b =--,,()2 AF c b =-,,由题2AQ AF ⊥,即22230AQ AF c b ⋅=-+=,∴()22230c a c -+-=即224a c =,∴12c e a ==. (2)由题2Rt QAF △外接圆圆心为斜边2QF 的中点()1 0F c -,,半径2r c =, ∵由题2Rt QAF △外接圆与直线330x y --=相切,∴d r =,即322c c --=,即34c c +=,∴1c =,22a c ==,3b =,故所求的椭圆C 的方程为22143x y +=.(3)设()11 M x y ,,()22 N x y ,,由题12 y y ,异,设1F MN △的内切圆的半径为R ,则1F MN △的周长为48a =,()111142F MN S MN F M F N R R =++=△, 因此要使1F MN △内切圆的面积最大,只需R 最大,此时1F MN S △也最大,112121212F MN S F F y y y y =⋅-=-△, 由题知,直线l 的斜率不为零,可设直线l 的方程为1x my =+, 由221143x my x y =+⎧⎪⎨+=⎪⎩得()2234690m y my ++-=,由韦达定理得122634m y y m -+=+,122934y y m -=+,(0m R ∆>∈⇒) ()1221212122121434F MN m S y y y y y y m +=-=+-=+△, 令21t m =+,则1t ≥,()12121211313F MN t S t t t t==≥-+△, 当1t =时,14F MN S R =△有最大值3,此时,0m =,max 34R =, 故1F MN △的内切圆的面积的最大值为916π,此时直线l 的方程为1x =. 21.解析:(1)()()()()2'331331f x x t x t x x t =-++=--,①当01t <<时,()f x 在()0 t ,上单调递增,在() 1t ,单调递减,在()1 2,单调递增, ∴()()2f t f ≥,由()()2f t f ≥,得3234t t -+≥在01t <<时无解,②当1t =时,不合题意;③当12t <<时,()f x 在()0 1,单调递增,在()1 t ,递减,在() 2t ,单调递增, ∴()()1212f f t ⎧≥⎪⎨<<⎪⎩即1332212t t ⎧+≥⎪⎨⎪<<⎩,∴523t ≤<,④当2t ≥时,()f x 在()0 1,单调递增,在()1 2,单调递减,满足条件, 综上所述:5[ )3t ∈+∞,时,存在()00 2x ∈,,使得()0f x 是()f x 在[]0 2,上的最大值. (2)()32313122x t x x tx xe m +-++≤-+对任意[0 )x ∈+∞,恒成立, 即()()3223131313122x x t t m xe x x tx x e x x t ++⎛⎫≤-+-+=-+-+ ⎪⎝⎭对任意[0 )x ∈+∞,恒成立,令()()23132x t g x e x x t +=-+-,[0 )x ∈+∞,,根据题意,可以知道m 的最大值为1,则 ()()231302x t g x e x x t +=-+-≥恒成立,由于()0130g t =-≥,则103t <≤,当103t <≤时,()()31'22x t g x e x +=-+,则()''2x g x e =-,若()''20x g x e =-=,则()'g x 在()0 ln 2,上递减,在()ln 2 +∞,上递增,则()()()max 3'ln 2212ln 202g x g t ==++->,∴()g x 在[0 )+∞,上是递增的函数.∴()()0130g x g t ≥=-≥,满足条件,∴t 的取值范围是1(0 ]3,.22.解:(1)曲线2cos :3sin x C y αα=⎧⎪⎨=⎪⎩可化为22143x y +=,其轨迹为椭圆,焦点为()1 1 0F -,,()21 0F ,. 经过()0 3A ,和()21 0F ,的直线方程为113x y +=,即330x y +-=. (2)由(1)知,直线2AF 的斜率为3-,因为2l AF ⊥,所以l 的斜率为33,倾斜角为30︒, 所以l 的参数方程为31212x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数). 代入椭圆C 的方程中,得213123360t t --=.因为 M N ,在点1F 的两侧,所以111212313MF NF t t -=+=. 23.解:(1)()72 334 1 3427 4x x f x x x x x x -<⎧⎪=-+-=≤≤⎨⎪->⎩,,,, 作函数()y f x =的图象,它与直线2y =交点的横坐标为52和92,由图象知不等式()2f x ≤的 解集为59 22⎡⎤⎢⎥⎣⎦,.(2)函数1y ax =-的图象是过点()0 1-,的直线, 当且仅当函数()y f x =与直线1y ax =-有公共点时,存在题设的x . 由图象知,a 的取值范围为()1 2[ )2-∞-+∞,,.。
【全国百强校word】河北省衡水中学2017届高三上学期四调考试理数试题
数学试卷(理科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{}21log A x N x k =∈<<,集合A 中至少有3个元素,则( ) A .8k > B .8k ≥ C .16k > D .16k ≥2.若()1z i i +=,则z 等于( ) A .1 B .32 C .22 D .123.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔其古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?( ) A .5 B .6 C .4 D .34.已知双曲线()2222:10 0x y C a b a b-=>>,的离心率为52,则C 的渐近线方程为( ) A .14y x =± B .13y x =± C.12y x =± D .y x =±5.执行如图所示的程序框图,则输出的结果为( )A .4B .9 C.7 D .56.已知函数()()()cos 0f x A x ωϕω=+>的部分图象如图所示,下面结论错误的是( )A .函数()f x 的最小正周期为23πB .函数()f x 的图象可由()()cos g x A x ω=的图象向右平移12π个单位得到 C.函数()f x 的图象关于直线12x π=对称D .函数()f x 在区间 42ππ⎛⎫ ⎪⎝⎭,上单调递增7.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数() 1 0 x f x x ⎧=⎨⎩,为有理数,为无理数,称为狄利克雷函数,则关于函数()f x 有以下四个命题: ①()()1f f x =; ②函数()f x 是偶函数;③任意一个非零有理数T ,()()f x T f x +=对任意x R ∈恒成立;④存在三个点()()()()()()112233 A x f x B x f x C x f x ,,,,,,使得ABC △为等边三角形. 其中真命题的个数是( )A .4B .3 C.2 D .18.某几何体的三视图如图所示,则该几何体的体积为( )A .10B .20 C.40 D .609.已知A 、B 是椭圆()222210x y a b a b +=>>长轴的两个端点,M 、N 是椭圆上关于x 轴对称的两点,直线AM 、BN 的斜率分别为()1212 0k k k k ≠,,若椭圆的离心率为32,则12k k +的最小值为( ) A .1 B .2 C.32D .3 10.在棱长为6的正方体1111ABCD A B C D -中,M 是BC 的中点,点P 是面11DCC D 所在的平面内的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -的体积最大值是( ) A .36 B .123 C.24 D .18311.已知函数()()()3ln 1 01 1 0x x f x x x -<⎧⎪=⎨-+≥⎪⎩,,,若()f x ax ≥恒成立,则实数a 的取值范围是( ) A .20 3⎡⎤⎢⎥⎣⎦, B .30 4⎡⎤⎢⎥⎣⎦, C.[]0 1, D .30 2⎡⎤⎢⎥⎣⎦,12.已知过抛物线()2:20G y px p =>焦点F 的直线l 与抛物线G 交于M 、N 两点(M 在x 轴上方),满足3MF FN =u u u u r u u u r ,163MN =,则以M 为圆心且与抛物线准线相切的圆的标准方程为( )A .2212316333x y ⎛⎫⎛⎫-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭ B .221316333x y ⎛⎫⎛⎫-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭C.()()2232316x y -+-= D .()()223316x y -+-=第Ⅱ卷(非选择题 共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若x 、y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则1y x -的最大值为 .14.在ABC △中, 3 5AB AC ==,,若O 为ABC △外接圆的圆心(即满足OA OB OC ==),则AO BC ⋅u u u r u u u r的值为 .15.已知数列{}n a 的各项均为正数,11142 n n n n a a a a a ++=-=+,,若数列11n n a a -⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n = .16.过抛物线()220y px p =>的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的的交点为B ,点A 在抛物线的准线上的射影为C ,若 48AF FB BA BC =⋅=u u u r u u u r u u u r u u u r,,则抛物线的方程为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在ABC △中,内角A 、B 、C 所对的边分别为 a b c ,,,已知 4 6 2b c C B ===,,. (1)求cos B 的值; (2)求ABC △的面积. 18. (本小题满分12分)如图所示,在三棱柱111ABC A B C -中,11AA B B 为正方形,11BB C C 为菱形,1160BB C ∠=︒,平面11AA B B ⊥平面11BB C C .(1)求证:11B C AC ⊥;(2)设点E 、F 分别是1B C ,1AA 的中点,试判断直线EF 与平面ABC 的位置关系,并说明理由; (3)求二面角1B AC C --的余弦值. 19. (本小题满分12分)如图,在平面直角坐标系xOy 中,已知()00 R x y ,是椭圆22:12412x y C +=上的一点,从原点O 向圆()()2200:8R x x y y -+-=作两条切线,分别交椭圆于P ,Q .(1)若R 点在第一象限,且直线OP ,OQ 互相垂直,求圆R 的方程; (2)若直线OP ,OQ 的斜率存在,并记为12 k k ,,求12 k k ,的值; (3)试问22OP OQ +是否为定值?若是,求出该值;若不是,说明理由. 20.(本小题满分12分)设椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,上顶点为A ,过A 与2AF 垂直的直线交x 轴负半轴于Q 点,且12220F F F Q +=u u u u r u u u u r. (1)求椭圆C 的离心率;(2)若过A 、Q 、2F 三点的圆恰好与直线330x y --=相切,求椭圆C 的方程;(3)过2F 的直线l 与(2)中椭圆交于不同的两点M 、N ,则1F MN △的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由. 21.(本小题满分12分)已知0t >,设函数()()3231312t f x x x tx +=-++.(1)存在()00 2x ∈,,使得()0f x 是()f x 在[]0 2,上的最大值,求t 的取值范围; (2)()2x f x xe m ≤-+对任意[0 )x ∈+∞,恒成立时,m 的最大值为1,求t 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-4:坐标系与参数方程已知圆锥曲线2cos :3sin x C y αα=⎧⎪⎨=⎪⎩(α为参数)和定点()0 3A ,,1F 、2F 是此圆锥曲线的左、右焦点,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系. (1)求直线2AF 的直角坐标方程;(2)经过点1F 且与直线2AF 垂直的直线l 交此圆锥曲线于M 、N 两点,求12MF NF -的值. 23.(本小题满分10分)选修4-5:不等式选讲 设()34f x x x =-+-. (1)解不等式()2f x ≤;(2)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围.2016-2017学年度高三上学期四调考试高三年级数学试卷(理科)一、选择题1-5:CCDCB 6-10:DABAA 11、12:BC二、填空题13.2 14.8 15.120 16.24y x = 三、解答题17.【答案】(1)34;(2)1574.试题解析:(1)在ABC △中,sin sin b c B C =,因为 4 6 2b c C B ===,,,所以46sin sin 2B B=,即 46sin 2sin cos B B B =,又sin 0B ≠,∴3cos 4B =. (2)由(1)知3cos 4B =,从而7sin 4B =.因此37sin sin 22sin cos 8C B B B ===,21cos cos22cos 18C B B ==-=.所以 ()()7133757sin sin sin sin cos cos sin 484816A B C B C B C B C π=--=+=+=⨯+⨯=, 所以ABC △的面积为157157462164⨯⨯⨯=. 18.证明:(1)连接1BC ,在正方形11ABB A 中,1AB BB ⊥,1B C ⊥平面1ABC ,因为1AC ⊥平面1ABC ,所以11B C AC ⊥.(2)EF ∥平面ABC ,理由如下:取BC 的中点G ,连接GE 、GA ,因为E 是1B C 的中点,所以1GE BB ∥,且112GE BB =,因为F 是 1AA 的中点,所以112AF AA =. 在正方形11ABB A 中,1111 AA BB AA BB =∥,,所以GE AF ∥,且GE AF =. ∴四边形GEFA 为平行四边形,所以EF GA ∥. 因为EF ABC ⊄平面,GA ABC ⊂平面, 所以EF ABC ∥平面.(3)在平面11BB C C 内过点B 作1Bz BB ⊥,由(1)可知:11AB BB C C ⊥平面,以点B 为坐标原点,分别以BA 、1BB 所在的直线为x 、y 轴,建立如图所示的空间直角坐标系B xyz -,设()2 0 0A ,,,则()10 2 0B ,,. 在菱形11BB C C 中,1160BB C ∠=︒,所以()0 1 3C -,,,()10 1 3C ,,. 设平面1ACC 的一个法向量为() 1x y =n ,,. 因为100n AC n CC ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u u r 即()()()() 1 2 1 30 10 2 00x y x y ⎧⋅--=⎪⎨⋅=⎪⎩,,,,,,,,, 所以320x y ⎧=⎪⎨⎪=⎩即3 0 12n ⎛⎫= ⎪ ⎪⎝⎭,,, 由(1)可知:1CB uuu r是平面1ABC 的一个法向量.所以()1113 0 10 3 327cos 731934n CB n CB n CB ⎛⎫⋅- ⎪ ⎪⋅⎝⎭<>===-⋅+⋅+u u u r u u u r u u u r ,,,,,, 所以二面角1B AC C --的余弦值为77. 19.【答案】(1)()()2222228x y -+-=;(2)12-;(3)36.试题解析:(1)由圆R 的方程知圆R 的半径22r =,因为直线OP ,OQ 互相垂直,且和圆R 相切,所以24OR r ==,即220016x y += ①又点R 在椭圆C 上,所以220012412x y += ②联立①②,解得002222x y ⎧=⎪⎨=⎪⎩,所以,所求圆R 的方程为()()2222228x y -+-=.(2)因为直线1:OP y k x =和2:OQ y k x =都与圆R 相切,所以10021221k x y k-=+,20022221k x y k -=+,化简得20122088y k k x -⋅=-,因为点()00R x y ,在椭圆C 上,所以220012412x y +=,即 22001122y x =-,所以201220141228x k k x -==--. (3)方法一(1)当直线OP 、OQ 不落在坐标轴上时,设()11 P x y ,,()22 Q x y ,, 由(2)知12210k k +=,所以121221y y x x =,故2222121214y y x x =,因为()11 P x y ,,()22 Q x y ,,在椭圆C 上,所以221112412x y +=,222212412x y +=, 即22111122y x =-,22221122y x =-,所以222212121111212224x x x x ⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭,整理得221224x x +=,所以222212121112121222y y x x ⎛⎫⎛⎫+=-+-= ⎪ ⎪⎝⎭⎝⎭,所以()()22222222221122121236OP OQ x y x y x x y y +=+++=+++=.方法(二)(1)当直线OP ,OQ 不落在坐标轴上时,设()11 P x y ,,()22 Q x y ,, 联立2212412y kx x y =⎧⎪⎨+=⎪⎩,解得22211122112424 1212k x y k k ==++,,所以()2122112124112k x y k ++=+. 同理,得()2222222224112k x y k ++=+,由(2)12210k k +=,得1212k k =-.所以()()2212222222112222122412411212k k OP OQ x y x y k k +++=+++=+++()2221112221111241224136723612121122k k k k k k ⎡⎤⎛⎫⎢⎥+- ⎪+⎢⎥⎝⎭+⎣⎦=+==++⎛⎫+- ⎪⎝⎭. (2)当直线OP 、OQ 落在坐标轴上时,显然有2236OP OQ +=. 综上:2236OP OQ +=.20.试题解析:(1)由题()0 A b ,,1F 为2QF 的中点.设()()12 0 0F c F c -,,,,则()3 0Q c -,,()3 AQ c b =--u u u r ,,()2 AF c b =-u u u u r ,,由题2AQ AF ⊥u u u r u u u u r ,即22230AQ AF c b ⋅=-+=u u u r u u u u r ,∴()22230c a c -+-=即224a c =,∴12c e a ==. (2)由题2Rt QAF △外接圆圆心为斜边2QF 的中点()1 0F c -,,半径2r c =, ∵由题2Rt QAF △外接圆与直线330x y --=相切,∴d r =,即322c c --=,即34c c +=,∴1c =,22a c ==,3b =,故所求的椭圆C 的方程为22143x y +=.(3)设()11 M x y ,,()22 N x y ,,由题12 y y ,异号,设1F MN △的内切圆的半径为R ,则1F MN △的周长为48a =,()111142F MN S MN F M F N R R =++=△, 因此要使1F MN △内切圆的面积最大,只需R 最大,此时1F MN S △也最大,112121212F MN S F F y y y y =⋅-=-△, 由题知,直线l 的斜率不为零,可设直线l 的方程为1x my =+, 由221143x my x y =+⎧⎪⎨+=⎪⎩得()2234690m y my ++-=,由韦达定理得122634m y y m -+=+,122934y y m -=+,(0m R ∆>∈⇒) ()1221212122121434F MN m S y y y y y y m +=-=+-=+△, 令21t m =+,则1t ≥,()12121211313F MN t S t t t t==≥-+△, 当1t =时,14F MN S R =△有最大值3,此时,0m =,max 34R =, 故1F MN △的内切圆的面积的最大值为916π,此时直线l 的方程为1x =. 21.解析:(1)()()()()2'331331f x x t x t x x t =-++=--,①当01t <<时,()f x 在()0 t ,上单调递增,在() 1t ,单调递减,在()1 2,单调递增, ∴()()2f t f ≥,由()()2f t f ≥,得3234t t -+≥在01t <<时无解,②当1t =时,不合题意;③当12t <<时,()f x 在()0 1,单调递增,在()1 t ,递减,在() 2t ,单调递增, ∴()()1212f f t ⎧≥⎪⎨<<⎪⎩即1332212t t ⎧+≥⎪⎨⎪<<⎩,∴523t ≤<,④当2t ≥时,()f x 在()0 1,单调递增,在()1 2,单调递减,满足条件, 综上所述:5[ )3t ∈+∞,时,存在()00 2x ∈,,使得()0f x 是()f x 在[]0 2,上的最大值. (2)()32313122x t x x tx xe m +-++≤-+对任意[0 )x ∈+∞,恒成立, 即()()3223131313122x x t t m xe x x tx x e x x t ++⎛⎫≤-+-+=-+-+ ⎪⎝⎭对任意[0 )x ∈+∞,恒成立,令()()23132x t g x e x x t +=-+-,[0 )x ∈+∞,,根据题意,可以知道m 的最大值为1,则 ()()231302x t g x e x x t +=-+-≥恒成立,由于()0130g t =-≥,则103t <≤,当103t <≤时,()()31'22x t g x e x +=-+,则()''2x g x e =-,若()''20x g x e =-=,则()'g x 在()0 ln 2,上递减,在()ln 2 +∞,上递增,则()()()max 3'ln 2212ln 202g x g t ==++->,∴()g x 在[0 )+∞,上是递增的函数.∴()()0130g x g t ≥=-≥,满足条件,∴t 的取值范围是1(0 ]3,.22.解:(1)曲线2cos :3sin x C y αα=⎧⎪⎨=⎪⎩可化为22143x y +=,其轨迹为椭圆,焦点为()1 1 0F -,,()21 0F ,. 经过()0 3A ,和()21 0F ,的直线方程为113x y +=,即330x y +-=. (2)由(1)知,直线2AF 的斜率为3-,因为2l AF ⊥,所以l 的斜率为33,倾斜角为30︒, 所以l 的参数方程为31212x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数). 代入椭圆C 的方程中,得213123360t t --=.林老师网络编辑整理林老师网络编辑整理 因为 M N ,在点1F 的两侧,所以111212313MF NF t t -=+=. 23.解:(1)()72 334 1 3427 4x x f x x x x x x -<⎧⎪=-+-=≤≤⎨⎪->⎩,,,, 作函数()y f x =的图象,它与直线2y =交点的横坐标为52和92,由图象知不等式()2f x ≤的 解集为59 22⎡⎤⎢⎥⎣⎦,.(2)函数1y ax =-的图象是过点()0 1-,的直线, 当且仅当函数()y f x =与直线1y ax =-有公共点时,存在题设的x . 由图象知,a 的取值范围为()12[ )2-∞-+∞U ,,.。
【全国百强校】宁夏石嘴山市第三中学2017届高三上学期第一次月考理数试题(解析版)
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知向量()()2,1,,2a m b m ==.若存在R λ∈,使得0a b λ+=,则m =( )A. 0B. -2 C .0或2 D .2 【答案】C 【解析】考点:向量的坐标运算. 2.复数32iz i-+=+的共轭复数是( ) A. 2i + B. 2i - C .1i -+ D .1i -- 【答案】D 【解析】 试题分析:由()()()()i i i i i ii z +-=-+-+-=++-=1222323,则其共轭复数为1i --,故选项为D.考点:复数的运算.3.已知sin sin 032ππααα⎛⎫++=-<< ⎪⎝⎭,则2cos 3πα⎛⎫+= ⎪⎝⎭( ) A. 45-B. 45 C . 35- D .35【答案】B 【解析】试题分析:∵534sin 3sin -=+⎪⎭⎫⎝⎛+απα,02<<-απ,∴534cos 23sin 23-=+αα, ∴54cos 21sin 23-=+αα.∴54sin 23cos 2132sin sin 32cos cos 32cos =--=-=⎪⎭⎫⎝⎛+ααπαπαπα,故选项为B.考点:两角和与差的正余弦公式. 4.在数列{}n a 中,1112,1nn na a a a ++=-=-,则2016a =( ) A .-2 B .13- C.12D .3 【答案】D 【解析】考点:数列的函数特性.5.给出下列四个命题:其中正确命题的个数是( ) ①()sin 24f x x π⎛⎫=-⎪⎝⎭的对称轴为3,28k x k Z ππ=+∈;②函数()sin f x x x =最大值为2; ③函数()sin cos 1f x x x =-的周期为2π;④函数()sin 4f x x π⎛⎫=+⎪⎝⎭在,22ππ⎡⎤-⎢⎥⎣⎦上是增函数. A .1 B .2 C .3 D .4 【答案】B 【解析】试题分析:①由Z k k x ∈+=-,242πππ,得()Z k k x ∈+=832ππ,即()sin 24f x x π⎛⎫=- ⎪⎝⎭的对称轴为3,28k x k Z ππ=+∈,正确;②由()⎪⎭⎫ ⎝⎛+=+=3sin 2cos 3sin πx x x x f 知,函数的最大值为2,正确;③()12sin 211cos sin -=-=x x x f ,函数的周期为π,故③错误; ④函数()sin 4f x x π⎛⎫=+ ⎪⎝⎭的图象是由()x x f sin =的图象向左平移4π个单位得到的,故④错误.故选项为B.考点:三角函数的性质.6.已知()()*111,n n n a a n a a n N +==-∈,则数列{}n a 的通项公式是( )A .nB .11n n n -+⎛⎫⎪⎝⎭C .2nD .21n -【答案】A 【解析】【一题多解】当2≥n 时,11-=-n n a a n n ,2121--=--n n a a n n ,…,2323=a a ,1212=a a , 两边分别相乘得n a a n =1.又∵11=a ,∴n a n =.7.在△ABC 中,若sin()12cos()sin()A B B C A C -=+++,则△ABC 的形状一定是( )A .等边三角形B .等腰三角形C .钝角三角形D .直角三角形 【答案】D 【解析】试题分析:∵()()()C A C B B A +++=-sin cos 21sin ,∴B A B A B A sin cos 21sin cos cos sin -=-,∴1sin cos cos sin =+B A B A ,∴()1sin =+B A ,∴1sin =C .∵()π,0∈C ,∴2π=C .∴ABC ∆的形状一定是直角三角形.故选:D . 考点:两角和与差的正弦函数. 8.数列{}n a 中,11++=n n a n ,9=n S ,则=n ( )【答案】C 【解析】试题分析:由n n n n a n -+=++=111,∴)(11n S n =-++++-19=-=,所以99=n ,故选C.考点:数列求和.9.已知,sin 2cos R ααα∈+=,则tan 2α=( ) A.-34 B.34 C .43 D .-43【答案】A 【解析】考点:三角恒等式.10.设函数()cos (0)f x x ωω=>,将()y f x =的图象向右平移3π个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.5B.6 C .7 D .8 【答案】B 【解析】试题分析:()x f 的周期ωπ2=T ,函数图象平移3π个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,所以Z k k ∈⋅=,23ωππ.令1=k ,可得6=ω.故选B .考点:由()ϕω+=x A y sin 的部分图象确定其解析式.11.已知O 是ABC ∆所在平面内的一点,动点P 满足cos cos AB AC OP OA AB B AC C λ⎛⎫⎪=++ ⎪⎝⎭, (0,)λ∈+∞,则动点P 的轨迹一定通过ABC ∆的( )【答案】A 【解析】试题分析:∵+=,∴=-,即=.又∵0,∴与垂直,即⊥,∴点P 在BC 的高线上,即P 的轨迹过ABC ∆的垂心,故选A .考点:(1)向量在几何中的应用;(2)三角形五心;(3)轨迹方程.12.在等比数列{}n a 中,1401a a <<=,则能使不等式12312311110n n a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+⋅⋅⋅+-≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭成立的最大正整数n 是( ) A.5 B.6 C .7 D .8 【答案】C 【解析】试题分析:设公比为q ,则1231231111n n a a a a a a a a +++⋅⋅⋅+≤+++⋅⋅⋅+,即()111111111n n a q a q q q ⎛⎫- ⎪-⎝⎭≤--,将131a q=代入得:7n q q ≤,1,7q n >∴≤. 考点:(1)数列与不等式的综合;(2)数列求和.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.曲线2ln y x x =-在点(1,2)处的切线方程是 . 【答案】01=+-y x 【解析】试题分析:由函数2ln y x x =-知12y x '=-,把1x =代入得到切线的斜率1211k =-=,则切线方程为:21y x -=-,10x y -+=.故答案为:10x y -+=.考点:利用导数研究函数在某点处的切线方程.14.如图,嵩山上原有一条笔直的山路BC ,现在又新架设了一条索道AC ,小李在山脚B 处看索道AC ,发现张角∠ABC =120°;从B 处攀登400米到达D 处,回头看索道AC ,发现张角∠ADC =150°;从 D 处再攀登800米方到达C 处,则索道AC 的长为________米.【答案】31400 【解析】试题分析:在ABD ∆中,400=BD 米, 120=∠ABD ,∵ 30180=∠-=∠ADC ADB ,∴3030120180=--=∠DAB ,得ABD ∆中,400==BD AB ,3400120cos 222=⋅-+= BD AB BD AB AD (米),在ADC ∆中,800=DC , 150=∠ADC ,()13400150cos 800340028003400cos 2222222⨯=⨯⨯⨯-+=∠⋅⋅-+= ADC DC AD DC AD AC ,故答案为:31400米. 考点:解三角形的实际应用.15.复数1z ,2z 满足()i m m z 214-+=,()()R m i z ∈++=θλθλθ,,,sin 3cos 22,并且21z z =,则λ的取值范围是______________. 【答案】⎥⎦⎤⎢⎣⎡-7,169 【解析】试题分析:由复数相等的充要条件可得⎩⎨⎧+=-=θλθsin 34cos 22m m ,化简得θλθsin 3cos 442+=-,由此可得16983sin 4sin 3sin 4sin 3cos 4222-⎪⎭⎫ ⎝⎛-=-=--=θθθθθλ,因为[]1,1sin -∈θ,所以⎥⎦⎤⎢⎣⎡-∈-7,169sin 3sin 42θθ,故答案为⎥⎦⎤⎢⎣⎡-7,169.考点:(1)复数相等的充要条件;(2)三角函数的值域. 16.已知数列{}n a 满足递推关系式()*+∈-+=N n a a n n n 1221且⎭⎬⎫⎩⎨⎧+nn a 2λ为等差数列,则λ的值 为_________.【答案】1- 【解析】试题分析:由()*+∈-+=N n a a n n n 1221,可得111212122+++-+=n n n n n a a ,则111122222n n n n n nn n n a a a a λλ+++++-=-- 111111122222n n n λλ++++=--=-,当λ的值是1-时,数列⎭⎬⎫⎩⎨⎧+n n a 2λ是公差为21的等差数列,故答案1-.考点:数列递推式.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)在C ∆AB 中,C 6A =,4cos 5B =,C 4π=.(I )求AB 的长;(II )求cos 6A π⎛⎫- ⎪⎝⎭的值.【答案】(I )25;(II )20627-. 【解析】(II )在三角形ABC 中A B C π++=,所以().A B C π=-+ 于是cosA cos(B C)cos()cos cossin sin,444B B B πππ=-+=-+=-+又43cos ,sin ,55B B ==,故43cos 55A =-+=因为0A π<<,所以sin A ==因此1cos()cos cos sin sin 6662A A A πππ-=+=+=考点:(1)解三角形;(2)正弦定理;(3)余弦定理. 18.(本小题满分12分)设函数()22sin 23f x x x x π⎛⎫=+⎪⎝⎭. (I )求()f x 的最小正周期及其图象的对称轴方程;(II )将函数()f x 的图象向右平移3π个单位长度,得到函数()g x 的图象,求()g x 在区间63ππ⎡⎤-⎢⎥⎣⎦,上的值域.【答案】(I)π=T ,对称轴方程为()Z k k x ∈+=62ππ;(II)⎥⎦⎤⎢⎣⎡-63,33.【解析】试题解析:(1)()⎪⎭⎫⎝⎛+=+=-+=62sin 332cos 632sin 212cos 332cos 232sin 21πx x x x x x x f , 所以()x f 的最小正周期为ππ==22T . 令()Z k k x ∈+=+262πππ,得对称轴方程为()Z k k x ∈+=62ππ.(2)将函数()x f 的图象向右平移3π个单位长度, 得到函数()x x x g 2cos 33632sin 33-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=ππ的图象, 即()x x g 2cos 33-=. 当⎥⎦⎤⎢⎣⎡-∈36ππ,x 时,⎥⎦⎤⎢⎣⎡-∈32,32ππx ,可得⎥⎦⎤⎢⎣⎡-∈1,212cos x ,所以⎥⎦⎤⎢⎣⎡-∈-63,332cos 33x , 即函数()x g 在区间⎥⎦⎤⎢⎣⎡-3,6ππ上的值域是⎥⎦⎤⎢⎣⎡-63,33. 考点:(1)三角函数中恒等变换;(2)三角函数的周期;(3)复合函数的单调性.【方法点晴】本题考查三角函数的恒等变换、三角函数的周期及其求法、三角函数的图象变换等知识,熟练掌握有关基础知识解决该类题目的关键,高考中的常考知识点.于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.19.(本小题满分12分)在等比数列{}n a 中,11a =,且2a 是1a 与31a -的等差中项. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足*(1)1,()(1)n n n n a b n N n n ++=∈+.求数列{}n b 的前n 项和n S .【答案】(1)12n n a -=;(2)121nn S n =-+. 【解析】试题解析:(1)设等比数列{}n a 的公比为q ,2a 是1a 与13-a 的等差中项,即有23121a a a =-+,即为q q 2112=-+,解得2=q , 即有1112--==n n n q a a ; (2)()()()⎪⎭⎫ ⎝⎛+-+=++=+++=-1112111111n n n n a n n a n n b n n n n ),数列{}n b 的前n 项和()11211121211113121211222112n +-=+-+--=⎪⎭⎫ ⎝⎛+-++-+-+++++=-n n n n S nn n . 考点:(1)数列的求和;(2)等比数列的通项公式.【方法点晴】本题考查等差数列和等比数列的通项和求和公式的运用,考查数列的求和方法:分组求和和裂项相消求和,考查运算能力,属于中档题.由等差中项的意义可得可求出公比q ,可求出数列通项公式;常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于n n n b a c +=,其中{}n a 和{}n b 分别为特殊数列,裂项相消发类似于()11+=n n a n ,错位相减法类似于n n n b a c ⋅=,其中{}n a 为等差数列,{}n b 为等比数列等.20.(本小题满分12分)已知数列{}n a ,n S 是其前n 项和,且满足32n n a S n =+(n *∈N ). (1)求证:数列12n a ⎧⎫+⎨⎬⎩⎭是等比数列; (2)记12n n S S S T =++⋅⋅⋅+,求n T 的表达式.【答案】(1)证明见解析;(2)()()493184nn n n +T =--. 【解析】试题解析:(1)∵n S a n n +=23,∴11=a , 当2≥n 时,12311-+=--n S a n n ,即131+=-n n a a , ∴⎪⎭⎫ ⎝⎛+=++=+--21321132111n n n a a a ,∴数列⎭⎬⎫⎩⎨⎧+21n a 是首项为23,公比为3的为等比数列; (2)由(1)知,132321-⋅=+n n a ,∴21321-⨯=n n a , ∴()()32413432313132121+-⋅=---⋅=+++=n n a a a S n n n n ,∴()()()()44138923254133343221+--=++⨯-+++=+++=n n n n S S S T n n n n . 考点:(1)等比关系的确定;(2)数列的求和.21.(本小题满分12分)已知函数()()sin f x x ωϕ=A +(0A >,0ω>,2πϕ<,R x ∈)的图象的一部分如图所示.(1)求函数f(x)的解析式;(2)当26,3x ⎡⎤∈--⎢⎥⎣⎦时,求函数()(2)y f x f x =++的最大值与最小值及相应的x 的值. 【答案】(1)()⎪⎭⎫ ⎝⎛+=44sin 2ππx x f ;(2)当32-=x 时,6max =y ,当4-=x 时,22min -=y .【解析】试题解析::(1)由图象知2=A ,8=T . ∴82==ωπT .∴4πω=.图象过点()0,1-,则04sin 2=⎪⎭⎫⎝⎛+-ϕπ, ∵2πϕ<,∴4πϕ=,于是有()⎪⎭⎫⎝⎛+=44sin 2ππx x f .(2)()()⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+++⎪⎭⎫⎝⎛+=++=44os 244sin 2424sin 244sin 22πππππππππx c x x x x f x f yx x 4cos 2224sin 22πππ=⎪⎭⎫ ⎝⎛+=.∵⎥⎦⎤⎢⎣⎡--∈23,6x , ∴6423πππ-≤≤-x . 当64ππ-=x ,即32-=x 时,6max =y ; 当ππ-=x 4,即4-=x 时,22min -=y .考点:(1)由()ϕω+=x A y sin 的部分图象求其解析式;(2)正弦函数的定义域和值域.22.(本小题满分12分)设数列{}n a 的前n 项和为n S ,已知1228a a ==,,*1145,(2,)n n n S S S n n N +-+=≥∈且,n T 是数列{}2log n a 的前n 项和.(1)求数列{}n a 的通项公式; (2)求n T .(3)求满足2341111101011112013n T T T T ⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅-> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的最大整数n 的值. 【答案】(1)122-=n n a ;(2)2n n T =;(3)1. 【解析】试题分析:(1)由已知条件得()114-+-=-n n n n S S S S ,从而n n a a 41=+,由此推导出数列{}n a 是以21=a 为首项,公比为4的等比数列.从而122-=n n a ;(2)由122log 122-=-n n ,能求出数列{}n a 2log 的前n 项和;(3)n n T T T n 2111111132+=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-,令2014201321>+n n ,能求出满足条件的最大正整数n 的值. 试题解析:(1)∵当2n ≥时,*1145,(2,)n n n S S S n n N +-+=≥∈且, ∴()114-+-=-n n n n S S S S , ∴n n a a 41=+,∵8,221==a a , ∴124a a =,∴数列{}n a 是以21=a 为首项,公比为4的等比数列. ∴121242--=⋅=n n n a .考点:(1)等比数列的通项公式;(2)数列求和.:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷第1页,总8页 „„„„○„„„„外„„„„○„„„„装„„„„○„„„„订„„„„○„„„„线„„„„○„„„„ 学校:___________姓名:___________班级:___________考号:___________ „„„
„○„„„„内„„„„○„„„„装„„„„○„„„„订„„„„○„„„„线„„„„○„„„„„„„„○„„„„内„„„„○„„„„装„„„„○„„„„绝密★启用前 【百强校】2017届三省高三上学期百校大联考数学(理)试
卷(带解析) 试卷副标题 学校:___________姓名:___________班级:___________考号:___________ 题号 一 二 三 总分
得分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第I卷(选择题) 请点击修改第I卷的文字说明
评卷人 得分 一、选择题(题型注释)
1.设i为虚数单位,复数z满足21iiz,则复数z等于( ) A.1i B.1i C.1i D.1i 2.设集合2{|20}Mxxx,21{|}1Nxyx,则MN等于( )
A.(1,0] B.[1,0] C.[0,1) D.[0,1] 3.已知(,0)2x,4tan3x,则sin()x等于( ) A.35 B.35 C.45 D.45 4.从某项综合能力测试中抽取100人的成绩,统计如下,则这100个成绩的平均数为( )
A.3 B.2.5 C.3.5 D.2.75 5.已知双曲线2222:1(0,0)xyCabab的渐近线方程为34yx,且其右焦点为(5,0),则双曲线C的方程为( ) A.221916xy B.221169xy C.22134xy D.22143xy 试卷第2页,总8页 „„„„○„„„„外„„„„○„„„„装„„„„○„„„„订„„„„○„„„„线„„„„○„„„„ ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※ 订
„
„„„○„„„„线„„„„○„„„„ 6.将函数()3sincos22xxfx的图象向右平移23个单位长度得到函数()ygx的图象,则函数()ygx的一个单调递减区间是( ) A.(,)42 B.(,)2 C.(,)24 D.3(,2)2 7.设e是自然对数的底,0a且1a,0b且1b,则“log2logabe”是“01ab”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 8.某几何体的三视图如图所示,则该几何体的体积是( )
A.423 B.443 C.44 D.24 9.下边程序框图的算法思路来源于我国古代数学名著《数书九章》中的“秦九韶算法”求多项式的值.执行程序框图,若输入01a,11a,20a,31a,则输出u的值为( )
A.2 B.1 C.0 D.-1 试卷第3页,总8页 „„„„○„„„„外„„„„○„„„„装„„„„○„„„„订„„„„○„„„„线„„„„○„„„„ 学校:___________姓名:___________班级:___________考号:___________ „„„
„○„„„„内„„„„○„„„„装„„„„○„„„„订„„„„○„„„„线„„„„○„„„„„„„„○„„„„内„„„„○„„„„装„„„„○„„„„10.如图,在三棱柱111ABCABC中,底面为正三角形,侧棱垂直底面,4AB,16AA.若E,F分别是棱1BB,1CC上的点,且1BEBE,1113CFCC,则异
面直线1AE与AF所成角的余弦值为( )
A.36 B.26 C.310 D.210 11.如图,椭圆的中心在坐标原点,焦点在x轴上,1A,2A,1B,2B为椭圆的顶点,2F为右焦点,延长12BF与22AB交于点P,若12BPB为钝角,则该椭圆的离心率的
取值范围是( )
A.52(,1)2 B.52(0,)2 C.51(0,)2 D.51(,1)2 12.设函数()fx在R上存在导函数'()fx,对于任意的实数x,都有2()4()fxxfx,当(,x时,1'()42fxx.若
(1)()42fmfmm,则实数m的取值范围是( )
A.1[,)2 B.3[,)2 C.[1,) D.[2,) 试卷第4页,总8页 „„„„○„„„„外„„„„○„„„„装„„„„○„„„„订„„„„○„„„„线„„„„○„„„„ ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※ 订
„
„„„○„„„„线„„„„○„„„„ 第II卷(非选择题) 请点击修改第I卷的文字说明
评卷人 得分 二、填空题(题型注释)
13.设变量x,y满足约束条件20,320,4520.yxyxy,则目标函数2zxy的最大值为__________. 14.在矩形ABCD中,30CAB,||ACADAC,则ACAB____________.
15.61(21)()xxx的展开式中3x的系数为______________.
16.在ABC中,角A,B,C所对的边分别为a,b,c,且满足232cossin23AA,sin()4cossinBCBC,则bc____________.
评卷人 得分 三、解答题(题型注释)
17.设数列{}na是公差大于0的等差数列,nS为数列{}na的前n项和.已知39S,且12a,31a,41a构成等比数列. (1)求数列{}na的通项公式;
(2)若数列{}nb满足1*2()nnnanNb,设nT是数列{}nb的前n项和,证明6nT. 试卷第5页,总8页 „„„„○„„„„外„„„„○„„„„装„„„„○„„„„订„„„„○„„„„线„„„„○„„„„ 学校:___________姓名:___________班级:___________考号:___________ „„„
„○„„„„内„„„„○„„„„装„„„„○„„„„订„„„„○„„„„线„„„„○„„„„„„„„○„„„„内„„„„○„„„„装„„„„○„„„„18.中国乒乓球队备战里约奥运会热身赛暨选拔赛于2016年7月14日在山东威海开赛.种子选手M与1B,2B,3B三位非种子选手分别进行一场对抗赛,按以往多次比赛的
统计,M获胜的概率分别为34,23,12,且各场比赛互不影响. (1)若M至少获胜两场的概率大于710,则M入选征战里约奥运会的最终大名单,否则不予入选,问M是否会入选最终的大名单? (2)求M获胜场数X的分布列和数学期望.
19.如图,在三棱锥ABCD中,AD平面BCD,CBCD,ADDB,P,Q分别在线段AB,AC上,3APPB,2AQQC,M是BD的中点.
(1)证明://DQ平面CPM; (2)若二面角CABD的大小为3,求tanBDC.