发酵工程——维生素C生产工艺
1.3 发酵工程及其应用 课件-2021-2022学年人教版(2019)高中生物选择性必修3

②由谷氨酸棒状杆菌发酵可以得到谷氨酸,谷氨 酸经过一系列处理就能制成味精。
(3)生产酶制剂
常用酶制剂有α-Байду номын сангаас粉酶、β-淀粉酶、果胶酶、 氨基肽酶和脂肪酶等。目前,已有50多种酶 制剂成功用于食品的直接生产、改进生产工 艺、简化生产过程、改善产品的品质和口味、 延长食品储存期和提高产品产量等方面。
获得产品
1.监测和控制温度、pH和溶解氧、罐 压、通气量、搅拌、泡沫和营养等。反 馈控制,使发酵全过程处于最佳状态。 2.随时检测培养液中的微生物数量、产 物浓度等,及时添加必需的营养组分。
1.如果发酵产品是微生物细胞本身, 可在发酵结束之后,采用过滤、沉淀 等方法将菌体分离和干燥得到产品。 2.如果产品是代谢物,可根据产物的 性质采取适当的提取、分离和纯化措 施来获得产品。
2.怎样对发酵条件进行调控以满足微生物的生长需要?
要对温度、pH、溶解氧等发酵条件进行严格控制, 使其最适合微生物的生长繁殖,同时及时添加必要 的营养组分。
3. 在产物分离和提纯方面,发酵工程与传统发酵技 术相比有哪些改进之处?
传统发酵技术获得的产物一般不是单一的组分, 而是成分复杂的混合物,很多时候不会再对产物 进行分离和提纯处理,或者仅采用简单的沉淀、 过滤等方法来分离和提纯产物。在发酵工程中使 用的分离和提纯产物的方法较多。在产物的初分 离阶段,常采用沉淀、萃取、膜分离、吸附和离 子交换等方法;在进一步纯化阶段,会采用液相层 析法、结晶法等方法。发酵工程产物无论是代谢 物还是菌体本身,都需要进行质量检查,合格后 才能成为正式产品。
灭菌 发酵工程中所用的菌种大多是单一菌种。一旦有杂菌污染,可能导
致产量大大下降。因此,培养基和发酵设备都必须经过严格的灭菌。
高中生物新人教版选择性必修3发酵工程及其应用课件(29张)

2.下列对发酵罐内发酵的相关叙述,不正确的是 ( ) A.该过程是发酵工程的中心环节 B.应随时检测培养液中微生物的种类、产物浓度等 C.要严格控制温度、pH 和溶解氧等发酵条件 D.要及时添加必需的营养成分 答案:B
[归纳提升] 影响发酵过程的因素 (1)温度 ①温度影响酶活性。在最适温度范围内,随着温度的升高,菌 体生长和代谢加快,发酵反应的速率加快。当超过最适温度范 围以后,随着温度的升高,酶很快失活,菌体衰老,发酵周期 缩短,产量降低。 ②温度影响生物合成的途径。例如:金色链霉菌在 30 ℃以下 时,合成金霉素的能力较强,当温度超过 35 ℃时,则只合成 四环素而不合成金霉素。
(3)溶解氧 氧的供应对需氧发酵来说,是一个关键因素。必须向发酵液中 连续补充大量的氧,并要不断地进行搅拌,这样可以提高氧在 发酵液中的溶解度。 (4)泡沫 ①通气搅拌、微生物的代谢过程及培养基中某些成分的分解等, 都有可能产生泡沫。 ②过多的持久性泡沫对发酵是不利的。因为泡沫会占据发酵罐 的容积,影响通气和搅拌的正常进行,甚至导致代谢异常。
时还通过摩擦产生了热能。
答案:D
3.有关谷氨酸发酵的叙述中正确的是
()
A.发酵中要不断通入空气
B.培养条件不当将不能得到产品
C.搅拌的唯一目的是使空气成为小泡
D.冷却水可使酶活性下降 解析:进行谷氨酸发酵的菌种是异养需氧型微生物,所以要在
培养过程中不断通入空气,但是必须通入的是无菌空气,普通
空气容易造成杂菌污染。搅拌不但使空气成为小气泡以增加培
(2)由谷氨酸棒状杆菌发酵可以得到谷氨酸,谷氨酸经过一系列处
理就能制成味精
(√)
(3)食品工业中经常用到的酶制剂都是通过发酵工程生产的 (×)
微生物发酵制药

• 此后,利用微生物生产疫苗的研究获得了蓬勃的发展。
• 1928年Fleming偶然发现了青霉素,但当时人们 认为动物试验结果不能指导人的医学实践。
• 直到l0年后,才打破了这个框框,通过动物试 验,把青霉素从细菌学家的好奇物质转变为医学 上具有活力的物质。
• 成品检验:包括性状及鉴别试验、安全试验、降压试验、热 源试验、无菌试验、酸碱度试验、效价测定、水分测定等。
• 成品包装:合格成品进行包装,为原料药。制剂由制剂车长与产物生成偶联型(coupling model),
菌体的生长与产物生成直接关联,生长期与生产期 是一致的。产物往往是初级代谢的直接产物。
• 随着细胞融合技术和基因工程的问世,为 微生物制药来源菌的获得提供了一种有效 的手段。工程菌和融合子经发酵后能生产 原来微生物所不能产生的药物或提高生产 效率。同时近年来发酵工艺及其控制方面 的研究也得到了发展,利用计算机在线控 制以及固定化细胞技术为微生物发酵制药 工业带来了新的发展空间。
• 我国微生物发酵制药工业起步较晚,建国后,在发 展原料药为主的方针指导下,于1953年5月l日在上 海第三制药厂正式投产了青霉素,1958年建设了以 生产抗生素为主的华北制药厂,投产了青霉素、链 霉素、土霉素和红霉素等品种、随着全国陆续建立 起—批微生物发酵药厂,在1957午我国开始了氨基 酸发酵的研究,其中谷氨酸的发酵于1964年获得了 成功,并投入生产。
• (2)糖类 主要有氨基糖、糖胺、核糖、环多醇和氨 基环多醇等,形成抗生素有氨基糖苷类抗 生素,如链霉素、庆大霉素、卡那霉素、 潮霉素等。它们的共同前体是葡萄糖 ,合
发酵工程的发展史

发酵工程的发展史如下是有关发酵工程的发展史:发酵的定义是通过微生物(或动植物细胞)的生长培养和化学变化,大量产生和积累专门的代谢产物的反应过程。
近百年来,随着科学技术的进步,发酵技术发生了划时代的变革,已经从利用自然界中原有的微生物进行发酵生产的阶段进入到按照人的意愿改造成具有特殊性能的微生物以生产人类所需要的发配产品的新阶段。
现代意义上的发酵工程是一个由多学科交叉、融合而形成的技术性和应用性较强的开放性的学科。
约9000年前,我们的祖先就会利用微生物将谷物、水果等发酵成酒精饮料。
一、传统(古老)发酵技术的追溯在几千年前,人们就开始从事酿洒、酱、醋,奶酪的发酵生产,并积累了许多有关发酵的经验,但当时人们是知其然而不知所以然。
据考古发掘证我国在龙山文化(跟今4000-4200年)已有酒器出现先秦的《周礼天宫》一书中记载有主管王室、官用造酒事的“酒正”、“酒人”等官职说明酿酒已成为专门的职业。
3000年前,中国已有用长霉的豆腐治疗皮肤病的记载,我们今天知道,这可能是抗生素的缘故。
国外酿酒的传说则可推溯到更早,相传埃及和中亚两河流域在公元前40-30世纪就已开始酿酒,烘制面包。
二、纯培养技术的建立1857年,巴斯德通过著名的曲颈瓶试验,彻底否定了生命的自然发生说。
在此基础上,他提出了加热灭菌法,后来被人们称为巴氏消毒法成功地解决了当时困扰人们的牛奶、酒类变质问题。
巴斯德还研究了酒精发酵、乳酸发酵、醋酸发酵等,并发现这些发酵过程都是由不同的发酵菌引起的,从而奠定了初步的发酵理论。
1897年德国的毕希纳进一步发现腐碎了的酵母仍能使精发酵而形成酒精,并将此具有发酵能力的物质称为酶,揭开了发酵现象的本质。
1905年德国的罗伯特·柯赫等首先应用固体培养基分离培养出炭疽芽孢杆菌、结核芽孢杆菌、霍乱芽孢杆菌等病原细菌,建立。
一套研究微生物纯培养的技术方法此后,随着纯种微生物的分离及培养技术的建立,以及密闭式发酵罐的设计成功,使人们能够利用某种类型的微生物,在人工控制的环境条件下。
第十二章微生物发酵ppt

第十二章微生物发酵ppt
•四、微生物发酵的基本特征
发酵过程中环境条件的变化,不仅会影响菌种的
生长繁殖,而且会影响菌种代谢产物的形成。为了使发酵
过程能顺利进行,要随时取样,检测培养液中的细菌数目、
产物浓度,同时还要及时为发酵菌提供必需的营养,并严
格控制温度、pH、溶氧、通气量与转速等发酵条件。
第十二章微生物发酵ppt
• 五、分离提纯
发酵结束后,要对发酵液或生物细胞进行分离和提取精 制,将发酵产物制成合乎要求的产品。对发酵产品的 要求不同,分离提纯的方法也相应有些区别。利用发 酵工程生产的产品有菌种代谢产物和菌种本身(如酵 母菌和细菌)两大类,如果产品是菌种,分离方法一 般是通过过滤、沉淀从培养液中分离出;如果产品是 代谢产物,则采用蒸馏、萃取、离子交换等方法提取。 分离提纯后的产品,还要经过质量检查合格后,才能 成为正式产品。
年代,微生物学家开始用紫外线、激光、化学诱变剂等处理
菌种,使菌种产生突变,以筛选出符合要求的优良菌种。随
着细胞工程、基因工程等技术的日益成熟,科学家开始构建
工程细胞或工程菌,用它们进行发酵,甚至能生产出一般微
生物所不能生产的产品。
第十二章微生物发酵ppt
•二、菌种培养基的配制
培养基是选择出的菌种生活的环境,对菌种有多方面的影响, 所以至关重要。一般来说,培养基的配方要经过反复的实验才 能确定。另外,发酵工程中所用的菌种多要求是纯培养的,即 整个发酵过程不能混有杂菌,否则将导致产量大大下降,甚至 得不到产品。例如,如果青霉素生产过程中污染了杂菌,这些 杂菌会分泌青霉素酶,将形成的青霉素分解掉。因此,培养基 和发酵设备都必须经过严格的灭菌。
发酵工程

• 开拓发酵原料时期: 石油发酵,醋酸生产谷氨酸 • 基因工程阶段: 采用酶学的方法,将不同来源的DNA进行体外 重组,再把重组DNA设法转入受体细胞内,并 进行繁殖和遗传下去。人们能够根据自己的意 愿将微生物以外的基因件导入微生物细胞中, 从而达到定向地改变生物性状与功能创新的物 种,使发酵工业能够生产出自然界微生物所不 能合成的产物。
发酵工业简介
• • • • • • • • • 发酵食品 有机酸 氨基酸 核酸类物质 酶制剂 医药工业(抗生素…) 饲料工业(单细胞蛋白 环境工程(废物处理) 其它 (冶金工业…) • • • • • •
Fermentation Industry
Fermented Foods Organic Acids Amino Acids Nucleotides Enzymes Pharmaceutical (Antibiotics…) • Feedstuff (eg. SCP) • Environmental Application (Waste Treatment) • Others (eg. Metallurgical industry)
六、发酵方法的类别与流程
• 1、类别: 根据对氧的需要区分: 厌氧和有氧发酵 根据培养基物理性状区分: 液体和固体发酵 根据从微生物生长特性区分: 分批发酵和连续发酵
2、发酵的流程
空气
空气净化处理 保藏菌种 斜面活化 碳源、氮源、无机 盐等营养物质
扩大培养
种子罐 灭菌
主发酵
产物分离纯化
成品
2. 工业发酵步骤和工艺流程
• Ancient times
History of applied microbiology
– food preservation (vinegar, cheese)
发酵工程电子版
发酵工程电子版(总53页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--发酵工艺原理(发酵工程)讲义适用生物工程、生物技术、制药工程及生物科学专业用王莘第一章绪论发酵工业应用:生物生物学一、发酵定义:从工业微生物角度的发酵:利用培养微生物来获得产物的有氧或厌氧的任何过程,现在有扩大到培养生物细胞(含有动物、植物和微生物)获得产物的所有过程。
从发酵工业角度的发酵:借助微生物在有氧和无氧条件下的生命活动来制备微生物体本身,或共同直接代谢产物或次级代谢产物的过程统称为发酵。
传统发酵:酱油、醋、酒、长毛豆腐。
新兴发酵:有机酸、酶制剂、抗生素。
发酵工业的划分:食品工业(酿造工业)和非食品工业(发酵工业)发酵工业:利用生物的生命活动生产的酶对无机或有机原料进行酶加工获得产品的工业。
二、发酵工业具备的条件:①要有某种适宜的微生物。
②要保证或控制微生物进行代谢的各种条件(培养基组成,温度,溶氧浓度,酸碱度等)。
③要有进行微生物发酵的设备。
④要有将菌体或代谢产物提取出来精制成产品的方法和设备。
三、发酵工业的改革1.天然发酵阶段特点:1)家庭作坊式生产;2)容易感染细菌; 3)厌氧发酵;4)非纯种培养;5)凭经验传授技术; 6)产品质量不稳定。
2.纯培养技术的建立阶段纯培养阶段特点:(1).多为好氧产品;(2)、均为表面培养;(3)、产品生产过程简单;(4)、设备要求不高;(5)、生产规模不大。
3.通气搅拌发酵技术的建立阶段第二次世界大战爆发,1929年英国人费莱明发现青霉素,迅速形成工业大规摸生产。
1940年英国人费洛里精制分离青霉素医治战伤药物。
发酵工业新篇章:发酵现象→酿造食品工业→非食品工业→青霉素→抗菌素发酵工业→氨基酸,核酸发酵(代谢控制发酵)→基因工程菌→动物细胞大规模培养→植物细胞大规模培养→藻类细胞大规模培养→转基因动物。
发酵工程产业化发展:发酵工程技术给人类社会生产力的发展带来了巨大的潜力,涉及到解决人类所面临的食品与营养、健康与环境、资源与能源等重大问题。
发酵工程原理与技术
发酵产品及分离提纯工艺
固液分离技术、细胞破碎技术、浓缩分离技术、精制技术、结 晶技术等
四、发酵工程的发展历史
发酵现象→酿造食品工业→非食品工业→青霉素→抗 菌素发酵工业→氨基酸,核酸发酵(代谢控制发酵) →基因工程菌→动物细胞大规模培养→植物细胞大规 模培养→藻类细胞大规模培养→转基因动物
发酵罐试验
摇瓶试验
三、发酵工业生产流程
发酵过程的操作方式
三种模式:间歇发酵、连续发酵和流加发酵 间歇发酵又称分批发酵,在发酵过程中,除气体进出外,与外
界没有其它的物料交换。分批发酵是一种操作简单并且广泛使 用的发酵方式。
连续发酵是指以一定的速度向培养系统内添加新鲜的培养基, 同时以相同的速度流出培养液,从而使培养系统内培养液的体 积维持恒定,使微生物细胞处于近似恒定状态下生长的微生物 发酵方式。
一般采用无菌空气作为氧气来源,高空采风,经空 气压缩机加压后采用加热灭菌或过滤除菌。
微生物种子的制备
一般都是由保存于冷冻管及砂土管或冰箱中的斜面 菌种开始,在正式使用前要先转接到新鲜斜面培养 基上活化后,再用于种子扩大培养。
扩大培养的方法可以根据需要采用固体培养或液体 培养两级不同方式。
菌种筛选
成品
三、发酵工业生产流程 发酵原料的预处理 原料不同处理方法也有所差异。 1.淀粉——利用前需变成糊精或葡萄糖。 方法:酸水解(高压、耐酸)、酶水解法 2.糖蜜——加热杀菌和用水冲稀,也可加酸处
理后再补充无机盐。 3.碳氢化合物:石油脱蜡——一定馏分的石油
经冷却脱蜡而获得的凝固点在-10℃的油,加 入适量无机盐进行接种发酵。
细菌是单细胞原核生物,具有环状DNA染 色体,以典型的二分分裂方式繁殖。 根据形态可分为三类:
发酵生产的过程及控制
死亡期
2、补料分批培养
在分批培养过程中补入新鲜的料液,以克服营养不足而导致 的发酵过早结束的缺点。 在此过程中只有料液的加入没有料液的取出,所以发酵结束 时发酵液体积比发酵开始时有所增加。在工厂的实际生产中 采用这种方法很多。
简单的过程,培养基中接入菌种以后,没有物料的加入和取出, 除了空气的通入和排气。整个过程中菌的浓度、营养成分的浓 度和产物浓度等参数都随时间变化。
优点: 操作简单,周期短,染菌机会少,生产过程和产品质量 容易掌握 缺点: 产率低,不适于测定动力学数据
分批培养中微生物的生长
迟滞期 对数生长期
稳 定期
发酵级数确定的依据
级数受发酵规模、菌体生长特性、接种量的影响。
级数大,难控制、易染菌、易变异,管理困难,一 般2-4级。
在发酵产品的放大中,反应级数的确定是非常重要 的一个方面。
3、接种量的确定
移入种子的体积 接种量= —————————
接种后培养液的体积
过大过小都不好,最终以实践定,如大多数抗生素为7-15%。 但是一般认为大一点好。
7 种子的质量标准
• 菌丝形态、菌体浓度和培养基外观(色素、颗粒等); • pH; • 糖氮代谢速度; • 其它参数,如接种前的抗生素含量、某种酶活等。
8 影响种子质量的因素:
1)原材料的质量:
一般选择一些有利于孢子发芽和菌丝生长的培养基,在营养 上容易被菌体直接吸收利用,营养成分要适当地丰富和完全, 氮源和维生素含量较高,这样可以使菌丝粗壮,并且具有较 强的活力。
另一方面,种子培养基中的营养成分要尽可能和发酵培养基 接近以适合发酵的需要,这样的种子移入发酵罐后能比较容 易适应发酵罐的培养条件如微量元素Mg、Ca、Ba能刺激孢子 的生长。 2)、培养温度:过低?过高?
发酵工程制造技术及应用
发酵工程制造技术及应用发酵工程制造技术及应用是指将微生物发酵原理和工艺与工程技术相结合,通过发酵设备和相关工艺,进行微生物的培养与利用,从而实现特定产物的生产。
发酵工程制造技术及应用广泛应用于食品、医药、化工等领域,对提高产品质量、提高资源利用率、降低能耗等具有重要意义。
一、发酵工程制造技术的基本原理发酵工程制造技术的基本原理是将选择的发酵菌株培养在合适的发酵条件下,通过适当的培养基供给养分,为发酵过程提供合适的环境。
发酵过程中,细菌或酵母等微生物利用有机物质进行代谢,产生有机酸、醇类、氨基酸、酶、维生素等产物。
发酵技术包括发酵微生物的筛选和培养、培养基组成优化、发酵参数的控制等。
二、发酵工程制造技术的应用领域1. 食品工业:发酵工程制造技术广泛应用于食品工业中。
例如,酸奶、乳酸菌饮料和奶酪的生产,都是利用乳酸杆菌进行发酵。
此外,发酵工程制造技术还可用于制造豆豉、豆腐、酱油、酱乳等发酵食品,提高食品品质和口感。
2. 医药工业:微生物发酵工程制造技术在医药工业中的应用非常广泛。
制药工艺中利用微生物进行培养和发酵,生产各类药物,如抗生素、酶制剂、抗生物素等。
发酵技术还可用于生产抗体和蛋白质药物,提高药物纯度和生产效率。
3. 化工工业:发酵工程制造技术在化工工业中可用于生产有机溶剂、酒精、染料等产品。
例如,乙醇作为一种重要的化工原料,可以通过微生物发酵技术从玉米、蔗糖等原料中生产。
4. 环保工业:发酵工程制造技术在环保工业中也有应用。
例如,利用微生物发酵技术处理生活污水和工业废水,可以有效去除废水中的有机物,降低污染物的浓度。
5. 能源工业:利用微生物发酵制造生物燃料,如生物乙醇和生物柴油,已成为可再生能源的重要组成部分。
发酵工程制造技术可以将生物质转化为可燃性气体和液体燃料,减少对化石能源的依赖。
三、发酵工程制造技术的发展趋势1. 新型菌株的研发:随着基因工程和生物技术的进步,研究人员正在开发新的菌株,以改善产物的质量和产量。