TRINAMICTMC389三相步进马达驱动方案

合集下载

单片机驱动步进电机电路

单片机驱动步进电机电路
*
通过键盘,将货位(或包位)代码输入微机,启动存(或取)命令键,机械手即可在微机的控制下,作X、Y、Z三个方向的运动,完成存(或取)包操作。控制原理如图所示。
01
系统主要包括微机控制、步进电机控制、机械传动系统、光控音乐电路、工作电源、货架和柜台等七部分组成。微机根据键入的货物代码,产生相应的脉冲信号,经CH250脉冲分配器和驱动电路,输出具有一定功率的脉冲,驱动有关电机正转或反转及其步数,从而实现货物的存取。机械手行进中,光控音乐电路驱动蜂呜器发出乐曲,从而增强了工作的节奏、控制的旋律。
*
9
如果按: 001→101→100→110→010→011→001…… A CA C CB B BA A 的次序输出,就可达到反转的目的。 [练习1]仿照三相三拍的办法编出反转控制子程序。
FAN: MOV P1, #01H ;A相通电 ACALL D1MS MOV P1,#05H ;CA相通电 ACALL D1MS MOV P1,#04H ;C相通电 ACALL D1MS MOV P1,#06H ;CB相通电 ACALL D1MS MOV P1,#02H ;B相通电 ACALL D1MS MOV P1,#03H ;BA相通电 ACALL D1MS RET
9.3 应用举例——机械手的微机控制
随着科学技术的进步、工业自动化的进程,机械手将进一步取代简单而笨重的人工操作,逐步把在恶劣环境下工作的人们解放出来,这对于改善人们的工作条件、提高工作效率,具有一定的现实意义。
本例系存取邮件机械手的控制,在邮政部门和立体仓库中作自动存职包裹和货物之用。
工作原理
由软件完成脉冲分配工作
*
特点:由软件完成脉冲分配工作,不仅使线路简化,成本下降,而且可根据应用系统的需要,灵活地改变步进电机的控制方案。

TMC428型3轴步进电机控制器的原理及应用

TMC428型3轴步进电机控制器的原理及应用

摘要:TMC428是TRINAMIC公司最新开发的步进电机运动控制器,它可减少电机控制软件设计的工作量,降低开发成本。

以它为核心(包括TMC236型步进电机驱动器)构成的3轴步进电机驱动控制系统具有尺寸小、控制简单的优点,可同时控制3个两相步进电机。

关键词:步进电机控制器 TMC4281 主要性能特点TMC428是小尺寸、高性价比的二相步进电机控制芯片。

它带有二个独立的SPI口,可分别与微处理器和带有SPI接口的步进电机驱动器相连以构成完整的系统。

其控制指令可由微处理器通过SPI接口给定。

TMC428提供了所有与数字运动控制有关的功能,包括位置控制、速度控制及微步控制等步进电机常用的控制功能。

这些功能如果让微处理器来完成,则需占用大量的系统资源,所以它的使用可将微处理器解放出来,以把资源用在接口的扩展和对步进电机的更高层次的控制上。

此外,TMC236也是TRINAMIC公司开发的带有串行接口的步进电机驱动器。

3个TMC236连结构成的菊花链(Daisychain)结构便是一种基于串行通讯的网络结构,可以使多个具有串行通信接口的设备以接力的方式传递数据。

TMC428可以通过SPI接口与它们相连接,以同时控制3个二相步进电机。

TMC428的主要特点如下:·根据不同的应用提供有SSOP16、SOP24、DIL20三种封装可选形式。

·可以同时对3个二相步进电机进行控制,所有电机可独立工作。

·根据微处理器给定的电机运动参数(位置,速度、加速度),依照梯形或三角形的速度由线产生驱动脉冲波形和顺序,来对电机进行位置和速度控制。

它有4种工作模式。

其中位置控制有RAMP模式和SOFT模式,速度控制有VELOCITY模式和HOLD模式。

·可微步控制。

采用6位分辨率的微步细分。

包括满步、半步直至64细分。

每个电机可分别选择其需要的微步分辨率。

满步频率最高达20kHz。

·通过可编程电流比例捉控制,可以使电机在不同的工作状态下采用大小不同的工作电流。

步进电机驱动国产方案

步进电机驱动国产方案

步进电机驱动国产方案引言步进电机作为一种常见的电动机类型,广泛应用于各种机械设备中。

为了实现步进电机的精确控制和驱动,需要选择合适的驱动方案。

本文将介绍一种国产的步进电机驱动方案,包括其原理、特点和应用案例。

原理步进电机驱动方案的核心原理是使用脉冲信号来控制电机的运动。

通过控制脉冲信号的频率和脉冲数量,可以精确控制步进电机的旋转角度和速度。

国产的步进电机驱动方案通常采用的是开环控制方式,即只根据输入的脉冲信号进行驱动,没有反馈控制。

特点国产步进电机驱动方案具有以下几个特点:1.成本低廉:相比于进口的步进电机驱动方案,国产方案的成本更低,可以降低设备制造成本。

2.可靠稳定:国产步进电机驱动方案采用优质的电子元器件和可靠的电路设计,保证了驱动的稳定性和可靠性。

3.易于使用:国产步进电机驱动方案提供了简洁明了的接口和控制方式,用户可以轻松实现步进电机的控制。

4.良好的兼容性:国产步进电机驱动方案通常支持多种不同规格的步进电机,具有较好的兼容性和扩展性。

应用案例以下是一些国产步进电机驱动方案的应用案例:自动化设备国产步进电机驱动方案广泛应用于各种自动化设备中,如机床、印刷机、包装机等。

通过精确控制步进电机的运动,可以实现高精度的工件加工或物料包装。

3D打印机3D打印机是一种利用步进电机控制喷头位置来实现的设备。

国产步进电机驱动方案可以提供稳定的驱动能力和精确的位置控制,实现高质量的3D打印。

智能家居国产步进电机驱动方案也可以应用于智能家居领域。

比如驱动窗帘的电机、旋转电机等。

通过对步进电机的控制,可以实现自动开关窗帘、调整窗帘的开合程度等功能。

总结国产步进电机驱动方案基于脉冲信号控制步进电机的运动,具有成本低廉、可靠稳定、易于使用和良好的兼容性的特点。

它在自动化设备、3D打印机和智能家居等领域具有广泛的应用。

国产步进电机驱动方案在不断的发展和创新,为各种机械设备的控制提供了可靠的解决方案。

步进电机的应用—三相混合式步进电机驱动器使用说明书

步进电机的应用—三相混合式步进电机驱动器使用说明书

三相混合式步进电机驱动器使用说明书1.特点★AC80~220V交流供电,能适应恶劣的电网环境★双极恒相流细分驱动★最大输出驱动电流6A/相(有效值,峰值达8A)★最大30000步/转的十六种细分模式可★过压、过流保护★输入信号光电隔离★可适应共阳、共阴、单/双脉冲多种模式★脱机保持功能★提供节能的自动半电流锁定功能2.性能指标供电电源80V~220VAC,容量0.8KVA输出电流有效值6A/相(峰值可达8A)(输出电流可由面板拨码开关设定)驱动方式恒相流PWM控制励磁方式400步/转,500步/转,600步/转,750步/转,1000步/转1500步/转,2000步/转,2500步/转,3000步/转,3750步/转5000步/转,6000步/转,7500步/转,10000步/转,15000步/转30000步/转绝缘电阻在常温常压下>500MΩ绝缘强度在常温常压下1KV,1分钟3.使用环境及参数冷却方式强制风冷使用环境场合尽量避免粉尘、油雾及腐蚀性气体温度0℃~+50℃湿度<80%RH,无凝露,无结霜震动 5.9m/s2Max保存温度-20℃~+65℃外形尺寸187×116×81mm重量 1.3Kg4.功能及使用★电源电压驱动器内部的开关电源设计保证了其可以适应较宽的电压范围,推荐使用80~220VAC,提高电压对提高电机的高速力矩有效,但是同时会加大运行噪音。

由于电机电磁感应回导致电机外壳生出一定的电荷,为确保使用者安全,请务必使用线径2mm2以上的机壳保护线和驱动器的机壳接地端子与保护大地可靠连接,并采用隔离变压器为驱动器供电★输出电流选择本驱动器采用双极恒流方式,最大输出电流值为6A/相(有效值),通过驱动器侧板第7,8四位开关的不同组合可以方便的选择4种电流值,从2A到6A(详见电流选择表),(注意:这里所说的电流是指驱动器每相输出电流的有效值,使用串电流表的方式不能得到正确的读数。

三相步进电机驱动器设计毕业设计

三相步进电机驱动器设计毕业设计

毕业设计(论文)题目:三相步进电机驱动器设计学院:机电工程学院专业班级:机械工程及自动化03 班指导教师:职称:学生姓名:学号:摘要步进电动机是一种将电脉冲信号变换成角位移或线位移的精细履行元件,具有快速起动和停止的特色。

其驱动速度和指令脉冲能严格同步 , 拥有较高的重复定位精度 , 并能实现正反转和光滑速度调理。

它的运行速度和步距不受电源电压颠簸及负载的影响 , 因此被宽泛应用于数模变换、速度控制和地点控制系统。

本文在剖析了步进电机的驱动特征、斩波恒流细分驱动原理和混淆式步进电机驱动芯片ULN2003AN的性能、构造的基础上,联合 AT89C52单片机,设计出了混淆式步进电机驱动电路。

要点词:步进电机, AT89C52单片机, ULN2003AN驱动AbstractStepping motors is a kind of will convert angular displacement or electrical impulses signal line displacement of precision actuator, have fast start and stop characteristics. The driving speed and instructions pulse can strictly synchronization, which has high repositioning precision, and can realize the positive &negative and smooth adjustable speed. Its operation speed and step distance from supply voltage fluctuation and load effect, which have been widely applied in analog-to-digital conversion, speed control and the position control system. Based on the analysis of the stepper motor driving characteristics, a chopper constant-current subdivided driving principle and hybrid stepping motor drive chip ULN2003AN the performance, structure in the foundation, the union AT89C52 single chip computer, designed a hybrid stepping motor driver circuit.Key words: Stepping motor,AT89C52 single chip computer,ULN2003AN driver第1章概括步进电动机又称脉冲电动机或阶跃电动机,外国一般称为Steppingmotor、Pulse motor或Stepper servo,其应用发展已有约 80年的历史。

步进电机驱动器方案

步进电机驱动器方案

步进电机驱动器方案引言步进电机是一种能够将电力信号转化为机械运动的设备,被广泛应用于各种自动化系统中。

步进电机的驱动方式决定了其在系统中的性能和精度。

本文将介绍几种常见的步进电机驱动器方案,分析其特点和适用范围。

一、直流驱动器方案直流驱动器是一种最常见的步进电机驱动器方案之一。

它通过直流电源和H桥电路来控制步进电机的旋转。

该方案具有以下特点:1. 简单可靠:直流驱动器方案的电路相对简单,易于实现和维护。

2. 精度较低:由于直流驱动器方案无法提供闭环控制和精确的电流驱动,因此其驱动精度相对较低。

3. 适用范围广:直流驱动器方案适用于一些要求不那么高的应用场景,如低精度打印机、门禁系统等。

二、脉冲驱动器方案脉冲驱动器方案采用脉冲信号控制步进电机的运动。

它通过控制脉冲信号的频率、峰值和占空比来实现步进电机的转动。

该方案具有以下特点:1. 高精度:脉冲驱动器方案可以实现高精度的控制,可达到微步驱动,提高系统的运动精度。

2. 复杂控制:脉冲驱动器方案需要精确控制脉冲信号的参数,对控制系统的算法和硬件要求较高。

3. 应用广泛:脉冲驱动器方案适用于许多要求高精度控制的场景,如制造业中的自动化装配线、精密仪器等。

三、闭环控制驱动方案闭环控制驱动方案是一种通过反馈控制来实现步进电机控制的方案。

它通过传感器反馈步进电机的位置信息,实时调整驱动信号,以达到精确控制的目的。

该方案具有以下特点:1. 高精度:闭环控制驱动方案可以实现非常高的位置控制精度,减小步进电机的非线性误差和震动。

2. 复杂昂贵:闭环控制驱动方案的实现较为复杂,需要采用传感器进行位置反馈,同时增加了硬件和算法的成本。

3. 高要求应用:闭环控制驱动方案适用于对位置精度要求极高的场景,如医疗设备、半导体制造等。

结论在步进电机的驱动器方案中,直流驱动器方案简单可靠,适用于一些不对精度要求过高的应用场景。

脉冲驱动器方案具有较高的控制精度,适用于大多数精密控制应用。

步进电机细分驱动

技术文档-步进电机多级细分驱动方法研究步进电机作为电磁机械装置,其进给的分辨率取决于细分驱动技术。

采用软件细分驱动方式,由于编程的灵活性、通用性,使得步进细分驱动的成本低、效率高,要修改方案也易办到。

同时,还可解决步进电机在低速时易出现的低频振动和运行中的噪声等。

但单一的软件细分驱动在精度与速度兼顾上会有矛盾,细分的步数越多,精度越高,但步进电机的转动速度却降低;要提高转动速度,细分的步数就得减少。

为此,设计了多级细分驱动系统,通过不同的细分档位设定,实现不同步数的细分,同时保证了不同的转动速度。

1 细分驱动原理步进电机控制中已蕴含了细分的机理。

如三相步进电机按A→B→C……的顺序轮流通电,步进电机为整步工作。

而按A→AC→C→CB→B→BA→A……的顺序通电,则步进电机为半步工作。

以A→B为例,若将各相电流看作是向量,则从整步到半步的变换,就是在IA与IB之间插入过渡向量IAB,因为电流向量的合成方向决定了步进电机合成磁势的方向,而合成磁势的转动角度本身就是步进电机的步进角度。

显然,I AB的插入改变了合成磁势的转动大小,使得步进电机的步进角度由θb变为0.5 θb,从而也就实现了2步细分。

由此可见,步进电机的细分原理就是通过等角度有规律的插入电流合成向量,从而减小合成磁势转动角度,达到步进电机细分控制的目的。

如图1所示,在三相步进电机的A相与B相之间插入合成向量AB,则实现了2步细分。

要再实现4步细分,只需在A与AB之间插入3个向量I1、I2、I3,使得合成磁势的转动角度θ1=θ2=θ3=θ4,就实现了4步细分。

但4步细分与2步细分是不同的,由于I1、I2、I3 3个向量的插入是对电流向量IB的分解,故控制脉冲已变成了阶梯波。

细分程度越高,阶梯波越复杂。

图1 步进细分原理在三相步进电机整步工作时,实现2步细分合成磁势转动过程为IA→IAB→IB;实现4步细分转动过程为IA→I2→IAB……;而实现8步细分则转动过程为IA→I1→I2→I3→IAB……。

三德米克步进电机驱动器TMCM-1181 V3.0硬件说明书

MODULES FOR STEPPER MOTORSTRINAMIC Motion Control GmbH & Co. KGHamburg, GermanyHardware Version V3.0HARDWARE MANUAL+ ++ +U NIQUE F EATURES :Table of Contents1Features (3)2Order Codes (5)3Mechanical and Electrical Interfacing (6)3.1TMCM-1181 Dimensions and Mounting Holes (6)3.2Board mounting considerations (6)3.3Connectors of TMCM-1181 (7)3.3.1Power Connector (8)3.3.2Motor Connector (8)3.3.3Interface Connector (9)3.3.4In/Out Connector (10)3.3.5USB Connector (11)4On-board LEDs (12)5Operational Ratings (13)6Functional Description (14)7TMCM-1181 Operational Description (15)7.1Calculation: Velocity and Acceleration vs. Microstep and Fullstep Frequency (15)8Life Support Policy (17)9Revision History (18)9.1Document Revision (18)9.2Hardware Revision (18)10References (18)1FeaturesThe TMCM-1181 is a single axis controller/driver module for 2-phase bipolar stepper motors. It is highly integrated and can be used in many decentralized applications. The module can be mounted on the back of NEMA34 (86mm flange size) stepper motors and has been designed for coil currents up to 6.5A RMS (programmable) and 24V DC supply voltage. With its h igh energy efficiency from TRINAMIC’s coolStep™ technology cost for power consumption is kept down. The TMCL™ firmware supports both, standalone operation and direct mode.M AIN C HARACTERISTICSMotion controller-Motion profile calculation in real-time-On the fly alteration of motor parameters (e.g. position, velocity, acceleration)-High performance microcontroller for overall system control and serial communication protocol handling Bipolar stepper motor driver-Up to 256 microsteps per full step-High-efficient operation, low power dissipation-Dynamic current control-Integrated protection-stallGuard2 feature for stall detection-coolStep feature for reduced power consumption and heat dissipationEncoder-sensOstep magnetic encoder (max. 1024 increments per rotation) e.g. for step-loss detection under all operating conditions and positioning supervisionInterfaces-inputs for stop switches (left and right) and home switch- 2 analog inputs- 2 general purpose outputs (open collector with freewheeling diodes)-USB, RS485 communication interfacesSoftware-TMCL: s tandalone operation or remote controlled operation,program memory (non volatile) for up to 2048 TMCL commands, andPC-based application development software TMCL-IDE available for free.Electrical and mechanical data-Supply voltage: +24V DC nominal-Motor current: up to 6.5A RMS (programmable)Please see separate TMCM-1181 Firmware Manual for additional information regarding firmware functionality and TMCL programming.TRINAMIC S U NIQUE F EATURES – E ASY TO U SE WITH TMCLstallGuard2™stallGuard2 is a high-precision sensorless load measurement using the back EMF on the coils. It can be used for stall detection as well as other uses at loads below those which stall the motor. The stallGuard2 measurement value changes linearly over a wide range of load, velocity, and current settings. At maximum motor load, the value goes to zero or near to zero. This is the most energy-efficient point of operation for the motor.Load [Nm]stallG uard2Initial stallG uard2 (S G ) value: 100%Max. loadstallG uard2 (S G ) value: 0Maximum load reached. Motor close to stall. Motor stallsFigure 1.1 stallGuard2 load measurement SG as a function of loadcoolStep ™coolStep is a load-adaptive automatic current scaling based on the load measurement via stallGuard2 adapting the required current to the load. Energy consumption can be reduced by as much as 75%. coolStep allows substantial energy savings, especially for motors which see varying loads or operate at a high duty cycle. Because a stepper motor application needs to work with a torque reserve of 30% to 50%, even a constant-load application allows significant energy savings because coolStep automatically enables torque reserve when required. Reducing power consumption keeps the system cooler, increases motor life, and allows reducing cost.00,10,20,30,40,50,60,70,80,9050100150200250300350E fficiencyVelocity [R P M]E fficiency with coolS tepE fficiency with 50% torque reserveFigure 1.2 Energy efficiency example with coolStep2Order CodesTable 2.1: TMCM-1181 order codesA cable loom set is available for this module:Table 2.2 Cable loom order code3Mechanical and Electrical Interfacing3.1TMCM-1181 Dimensions and Mounting HolesThe dimensions of the controller/driver board are approx. 86mm x 86mm x 27mm in order to fit on the back of a 86mm stepper motor. Maximum component height (height above PCB level) is around 22mm above PCB level and 3mm below PCB level. There are four mounting holes for M4 screws (4.2mm diameter) for mounting the board to a NEMA34 / 86mm stepper motor.Figure 3.1: Dimensions of TMCM-1181 and position of mounting holes3.2Board mounting considerationsThe TMCM-1181 offers one metal plated mounting hole close to the power supply connector (marked yellow in figure 3.1 above). This mounting hole is connected to board supply ground. Please keep this in mind when mounting the board to the rear side of a motor. All other mounting holes are isolated.3.3 Connectors of TMCM-1181The TMCM-1181 offers five connectors including the motor connector which is used for attaching the motor coils to the electronics. There is one power connector, two connectors for serial communication (one for USB and one for RS485) and one connector for I/O signals and switches.Motor C onnector1412P ower connectorIn/O ut connector1814Interface connector US B connectorFigure 3.2 Overview connectors3.3.1Power ConnectorA 2pin JST VH series 3.96mm pitch connector is used for power supply.21Table 3.1 Connector for power supply3.3.1.1Power SupplyWhen using supply voltages near the upper limit, a regulated power supply is mandatory. The board includes around 2000µF / 35V of filtering capacitors. Nevertheless, especially at higher motor current settings it might be necessary to add additional filtering capacitors externally. Power supply ripple due to chopper operation of the driver should be kept at a maximum of a few 100mV.It is important that the upper supply voltage limit is never exceeded during operation as this might seriously damage the driver stage. In this context special care has to be taken with regard to motor energy being fed back into supply voltage line when the motor works as generator. This might happen during de-acceleration or brake conditions especially when the motor is moving a larger mass (high inertia). Additional capacitors which are able to absorb energy might help here. Beyond that suppressor diodes or even brake resistors might be a solution.Guidelines for power supply:-keep power supply cables as short as possible-use large diameters for power supply cables-add additional filter capacitors near the motor driver unit especially if the distance to the power supply is large (i.e. more than 2-3m)3.3.2Motor ConnectorA 4pin JST VH series 3.96mm pitch connector is used for motor connection.14Table 3.2: Motor connector14Table 3.3: Interface connectormicrocontrollerIN4Figure 3.3 Internal circuit of analog input IN418Table 3.4 In/Out connector* It is possible to enable / disables pull-ups (1k to +5V) in software for all three digital inputs. Pull-ups are always enabled / disabled for all three together / at the same time.microcontrollerO UT 0,O UT 1Figure 3.4 Internal circuit of OUT0 and OUT1IN0microcontrollerFigure 3.5 Internal circuit of analog input IN0IN1,IN2,IN3microcontroller (all)and T MC429 (IN_0, IN_1) Figure 3.6 Internal circuit of digital inputs IN1, IN2 and IN33.3.5USB Connector51Table 3.5 Mini USB connector4On-board LEDsThe board offers two LEDs in order to indicate board status. The function of both LEDs is dependent on the firmware version. With standard TMCL firmware the green LED should be slowly flashing during operation and the red LED should be off.When there is no valid firmware programmed into the board or during firmware update the red and green LEDs are permanently on.E rror LE D (red)S tatus LE D (green)Figure 4.1 on-board LEDs5Operational RatingsThe operational ratings shown below should be used as design values. In no case should the maximum values been exceeded during operation.Table 5.1 General operational ratings of the module*) limited by test equipment. Includes power-up / cold start at this temperature. It can be expected that the module will work down to -40°C.Table 5.2 Operational ratings of general purpose I/OsTable 5.3 Operational ratings of the RS485 interface6Functional DescriptionThe TMCM-1181 is a highly integrated controller/driver module which can be controlled via several serial interfaces. Communication traffic is kept low since all time critical operations (e.g. ramp calculations) are performed on board. The nominal supply voltage of the unit is 24V DC. The module is designed for both, standalone operation and direct mode. Full remote control of device with feedback is possible. The firmware of the module can be updated via any of the serial interfaces.In Figure 6.1 the main parts of the TMCM-1181 are shown.-the microprocessor, which runs the TMCL operating system (connected to TMCL memory),-the motion controller, which calculates ramps and speed profiles internally by hardware,-the power driver with its energy efficient coolStep feature,-the MOSFET driver stage, and-the sensOstep encoder with resolutions of 10bit (1024 steps) per revolution.) R S485[ROUTI N*Dir*)*) T he module offers two analog and three digital inputs.:F unctionality of the three digital inputs can be selected in software:a)S T O P_L / S T O P_R / HO MEb)S T E P/DIR interfacec) 3 general purpose inputs IN1 / IN2 / IN3Figure 6.1 Main parts of the TMCM-1181The PC based software development environment TMCL-IDE for the Trinamic Motion Control Language (TMCM) can be downloaded free of charge from the TRINAMIC website (). Using predefined TMCL high level commands like move to position a rapid and fast development of motion control applications is guaranteed. Please refer to the TMCM-1181 Firmware Manual for more information about TMCL commands.7 TMCM-1181 Operational Description7.1 Calculation: Velocity and Acceleration vs. Microstep and FullstepFrequencyThe values of the parameters sent to the TMC429 do not have typical motor values like rotations per second as velocity. But these values can be calculated from the TMC429 parameters as shown in this section.Table 7.1 TMC429 velocity parametersThe microstep-frequency of the stepper motor is calculated with3220482velocity]Hz [f ]Hz [usf div_pulse CLK ⋅⋅⋅= with usf: microstep-frequencyTo calculate the fullstep-frequency from the microstep-frequency, the microstep-frequency must be divided by the number of microsteps per fullstep.usrs 2]Hz [usf ]Hz [fsf = with fsf: fullstep-frequencyThe change in the pulse rate per time unit (pulse frequency change per second – the acceleration a ) is given by29div _ram p div _pulse m ax2CLK 2a f a ++⋅=This results in acceleration in fullsteps of:usrs 2a af = with af: acceleration in fullstepsExample:Hz31.12207032204821000M Hz 16msf 1=⋅⋅⋅=Hz34.1907231.122070]Hz [fsf 6==sMHz 21.11921000)Mhz 16(a 29112=⋅=++s MHz863.12s MHz21.119af 6==Calculation of the number of rotations:A stepper motor has e.g. 72 fullsteps per rotation.49.267234.1907rotation per fullsteps fsf RPS ===46.1589726034.1907rotation per fullsteps 60fsf RPM =⋅=⋅=8Life Support PolicyTRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & Co. KG.Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death.© TRINAMIC Motion Control GmbH & Co. KG 2015Information given in this data sheet is believed to be accurate and reliable. However neither responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties, which may result from its use.Specifications are subject to change without notice.All trademarks used are property of their respective owners.9Revision History9.1 Document RevisionTable 9.1 Document revision9.2Hardware RevisionTable 9.2 Hardware revision10References[TMCM-1181] TMCM-1181 TMCL Firmware Manual [TMC262] TMC262 Datasheet[TMC429] TMC429 Datasheet[TMCL-IDE] TMCL-IDE User ManualPlease refer to .。

3轴步进电机控制芯片TMC428

书山有路勤为径;学海无涯苦作舟
3轴步进电机控制芯片TMC428
3轴步进电机控制芯片-TMC428
目前许多设备上需要用到多个电机的控制,在设计开发过程中自然会增
加开发难度,而且难度随着控制轴数的增多而增大。

TMC428是TRINAMIC 公司开发的3轴步进电机控制芯片,它可以减少外围电路,减少电机控制
软件设计的工作量,降低开发成本,缩短研发时间。

TMC428具有系统所需的所有运动控制功能,以其为核心控制3个
TMC2X6或TMC2X9(该公司的驱动芯片)构成3轴步进系统的控制和驱动功能,该控制系统具有体积小,结构简单,内部可构成虚拟闭环等许多优点。

IO部分可以由其上位的微控制器来实现。

1.主要性能
TMC428是小尺寸、高性价比的二相步进电机控制芯片。

它带有二个独立的SPI口,可分别与微处理器和带有SPI接口的步进电机驱动器相连以构
成完整的系统。

其控制指令可由微处理器通过SPI接口给定。

TMC428提供了所有与数字运动控制有关的功能,包括位置控制、速度控制及微步控制
等步进电机常用的控制功能。

这些功能如果让微处理器来完成,则需占用
大量的系统资源,所以它的使用可将微处理器解放出来,以把资源用在接
专注下一代成长,为了孩子。

步进电机系统开发方案

步进电机系统开发方案
步进电机是一种通过控制电流大小和方向来驱动转子旋转的电机,它具有定位精度高、控制简单、响应迅速等优点,因此在许多自动化控制系统中得到了广泛应用。

步进电机的系统开发方案主要包括硬件设计和软件编程两个方面。

首先是硬件设计方面,主要需要设计电机驱动电路、控制器和电源等。

1. 电机驱动电路:根据步进电机的特性,采用适当的驱动方式,如全步进驱动、半步进驱动或微步进驱动。

电机驱动电路可以选择使用集成驱动芯片,也可以使用离散元件组成的驱动电路。

2. 控制器:设计一个控制器来控制步进电机的运动,通常采用单片机作为控制器,通过读取传感器的反馈信号确定电机的位置,并根据预定的控制算法来驱动电机旋转。

3. 电源:选择合适的电源供应步进电机系统,电源的稳定性和功率大小需要满足电机系统的需求。

其次是软件编程方面,主要包括控制算法的设计和编程实现。

1. 控制算法设计:根据步进电机的运动特性和系统需求,设计合适的控制算法,确定电机应该如何旋转以达到预定位置。

2. 程序编写:使用编程语言编写程序,在控制器上实现控制算法。

程序需要读取传感器数据、控制驱动电路以及与外部设备进行通信。

最后是整体系统测试和调试。

进行系统集成后,需要进行综合测试,验证硬件和软件的功能正常,并且达到了预期的性能要求。

如果发现问题,需要进行调试和优化,直到系统能够稳定
可靠地运行。

在步进电机系统的开发过程中,需要充分考虑各个组件之间的配合和协作,选用合适的硬件和软件设计方案,并进行系统测试和调试,才能确保最终的步进电机系统性能优良、稳定可靠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TRINAMICTMC389三相步进马达驱动方案
TRINAMIC 公司的TMC389是三相步进马达驱动器,集成了低谐振的三相斩波器用于静态马达
工作,能直接驱动三个外接N/P沟双MOSFET,马达电流高达8A和60V,多达171个微步距,采用
基于自动负载调整马达电流的coolStep™s20,节能高达75%,主要用在精密三相步进马
达驱动,医疗和光学应用,机器人和舞台照明.本文介绍了TMC389主要特性和优势,方框图和
应用电路图,和高压大电流功率级电路图以及评估板TMC389–EVAL主要特性,应用框图,
电路图和PCB元件布局图.The TMC389 is an energy efficient three phase stepper motor
driver for high resolution microstepping applications. It integrates a low resonance
three phase chopper for quiet motor operation. Its step and direction interface allows
simple use. An SPI™ management interface allows for parameterization and
diagnostics. The TMC389 directly drives 3 external N/P channel dual MOSFETs for motor
currents up to 8A and up to 60V. Protection and diagnostic features further reduce
system cost and increase reliability.TMC389产品亮点: Up to 171 microsteps (256
sine wave steps) using step/direction interface or 20 Bit SPI™interface High
precision sensorless motor load measurement stallGuard2 Energy efficiency and
coolness by automatic load dependant motor current regulation coolStep™s20 :
Save up to 75% of energy! Internal microstep extrapolation allows 256 wave step
smoothness with low frequency step input Dual edge step option allows half step
frequency requirement, e.g. for opto-couplers Up to 8A Motor current using
external N&P channel MOSFET pairs Synchronous rectification reduces
transistor heating 9V to 60V operating voltage (peak) 3.3V or 5V interface
 QFN32 package for extremely small solution with superior thermal performance
 EMV optimized current controlled gate drivers – up to 45mA gate current
 Overcurrent, short to GND and overtemperature protection and diagnostics
integratedTMC389应用: Precision three phase stepper motor drives Stage
lighting Medical applications Optical applications RoboticsMotor type 3
phase Stepper图1.TMC389基本应用框图图2.TMC389方框图和应用电路图图2.TMC389采用
外接栅极驱动器的高压大电流功率级电路图图2.TMC429 StepDir控制器和SPI互连的示例图
TMC389评估板The TMC389 evaluation board features a TMC389 with external power
MOSFETs plus a microcontroller, which allows interfacing to a PC for visualization
and control of all parameters. The motor can be operated via the step and direction
interface, using either an external source, or using the integrated microcontroller
as a step pulse generator.The TMC389-EVAL allows you to explore all functions of the
TMC389. The evaluation board comes with a PC software which gives you access to every
function of the driver. It comes along with a Step&Direction interface, a RS232
and a USB port. The TMC389-Eval is a complete "plug and play" solution,
additionally only a motor, a PC and a power supply are required!TMC389评估板亮点:
 Evaluate all features of the TMC389 Use stallGuard2™ with your motor
 Use coolStep™ with your motor Control all parameters from a PC Motor
current can be set to up 6A depending on sense resistor selection. Supply voltage
up to 40V (MOSFETs can be exchanged against 60V 2A types) Access all pins of the
TMC389Motor type 3 phase StepperTMC389-EVAL containsTMC389-Evaluation BoardUSB
cable for connection to PCsoftware for Windows (downloadable)documentation, board
and circuit description and all datasheets (downloadable)图3.TMC389-EVAL评估板外
形图图4.TMC389-EVAL评估板应用框图图5.TMC389-EVAL评估板元件布局图图
6.TMC389-EVAL评估板电路图(1)图7.TMC389-EVAL评估板电路图(2)图8.TMC389-EVAL评估
板电路图(3)图9.TMC389-EVAL评估板电路图(4)详情请
见:/tmctechlibcd/integrated_circuits/TMC389/TMC389_datasheet.pdf和
/tmctechlibcd/integrated_circuits/TMC389/TMC389-EVAL/TMC389-EVAL_manual.pdf以及
/tmctechlibcd/integrated_circuits/TMC389/TMC389-EVAL/TMC389-EVAL_V10_schematic.p
df

相关文档
最新文档