二次根式加减教案
二次根式的加减教案

二次根式的加减教案
二次根式的加减教学目标知识与技能: 1.了解同类二次根式的概念,会判断同类二次根式;
2.能正确合并同类二次根式,进行二次根式的加减运算。
过程与方法:经历类比二次根式的加减法中判断同类项教学重点和难点
1.合并被开方数相同的二次根式;
2.二次根式的加减法的实际应用。
教学过程:经理类比整式加减法中判断同类项和合并同类项的过程,理解同类项,合并二次根式运算,深入思考能力。
情感态度与价值观:培养探索新知识的方法和能力,增强学生学好数学的信心。
教学重点:同类二次根式的概念,及二次根式的加减运算。
教学难点:正确识别同类二次根式。
课型课时:新棵,第一课时教学手段:多媒体课件教学方法:探究实际问题,发现规律教学过程
一、创设情境,提出问题
1、复习回顾
问题:二次根式计算、化简的结果符合什么要求?(即最简二次根式的定义) 2、问题引入
问题:现有一块长、宽5 dm的木板,能否采用如教科书图16.3-1所示的方式,在这块木板上截出两个面积分别是8 dm2和18 dm2的正方形木板?
学生分组讨论,探究解决方案,教师倾听学生的交流,指导学生探究。
(1)比较之前,要知道两正方形的边长;
(2)比较最大正方形边长与木板的宽度5dm,看木板够不够宽?
(3)比较两正方形边长之和与木板的长的大小,看木板够不够长?。
二次根式的加减法教案

二次根式的加减法教案一、教学目标:1.掌握二次根式的加减法的定义与性质;2.能够灵活运用二次根式的加减法进行简化与化简运算;3.培养学生的数学思维和推理能力。
二、教学重点:1.二次根式的加减法的定义与性质;2.进行二次根式的加减法的简化与化简运算。
三、教学难点:1.运用二次根式的加减法进行复杂运算;2.培养学生的数学思维和推理能力。
四、教学准备:1.教师准备:黑板、彩色粉笔、教学课件;2.学生准备:教材、笔、纸。
五、教学过程:Step 1 自主探究:引入二次根式的加减法1.提问:你还记得二次根式的概念吗?2.学生回答:是指根号下有含有字母的式子。
3.教师解释:是的,二次根式是指根号下含有字母的式子。
那么,我们来思考一个问题:如果有两个二次根式,它们之间可以进行何种运算?Step 2 学习定义与性质1.教师板书:二次根式的加减法的定义。
2.学生默写:二次根式的加减法是指将两个二次根式进行加减运算,将其中的同类项进行合并。
3.教师解释:我们可以将二次根式看作是一种特殊的代数式,它们可以进行加法和减法运算。
在进行加减运算时,我们需要将二次根式中的同类项进行合并。
4.教师板书:二次根式的加减法的性质。
5.学生默写:二次根式的加减法具有交换律、结合律和分配律。
Step 3 进行实例讲解1.教师板书:根号2+根号2=?2.学生回答:2根号23.教师解释:很好,这里的根号2是同类项,可以进行合并。
所以,根号2+根号2=2根号24.教师板书:根号5-根号3=?5.学生回答:根号5-根号36.教师解释:是的,这里的根号5和根号3不是同类项,无法进行合并。
所以,根号5-根号3仍然是根号5-根号3Step 4 练习与巩固1.学生进行练习题,并把答案写在纸上。
2.教师进行点评与讲解。
Step 5 拓展与延伸1.教师提出拓展问题:如何进行复杂的二次根式的加减法运算?2.学生进行讨论。
3.教师展示解题方法与步骤。
六、教学总结1.复习本节课的学习内容;2.概括本节课的核心思想。
九年级数学上册《二次根式的加减法》教案、教学设计

2.通过二次根式的学习,让学生认识到数学知识在实际生活中的重要作用,提高学生对数学价值的认识。
3.培养学生严谨、求实的科学态度,使学生形成良好的学习习惯和道德品质。
在教学过程中,教师应关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重启发式教学,激发学生的学习兴趣,引导学生主动探究,提高学生的数学素养。在此基础上,结合以下教学内容,进行教学设计。
2.思维能力:九年级学生的抽象思维能力逐渐增强,但仍有部分学生依赖具体形象思维。在教学过程中,教师应注重培养学生的抽象思维能力,引导学生运用分类讨论等方法解决问题。
3.学习方法:学生在学习过程中,可能仍依赖模仿和记忆,缺乏主动探究和合作学习的能力。教师应引导学生转变学习方式,培养学生的自主学习能力和合作意识。
二、教学内容
1.二次根式的概念及性质
2.二次根式的书写与化简
3.二次根式的加减法运算
4.二次根式的实际应用
三、教学过程
1.导入:通过实际问题,引出二次根式的概念,激发学生的学习兴趣。
2.基本概念:讲解二次根式的定义,让学生理解并掌握二次根式的性质。
3.书写与化简:教授二次根式的书写方法,引导学生进行二次根式的化简。
2.应用提高题:完成课本第46页第7-10题,这些题目将考察学生对二次根式加减法的掌握程度。学生需要运用所学的运算规则,解决实际问题,提高数学应用能力。
3.拓展思维题:选择课本第47页第11题作为拓展题目,鼓励学生通过小组讨论或独立思考,解决具有一定难度的二次根式问题。这类题目旨在培养学生的逻辑思维和创新能力,激发学生对数学学习的兴趣。
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。针对以下问题进行讨论:
【精】《二次根式的加减》精品教案

《二次根式的加减》精品教案【教学目标】1.知识与技能(1)理解和掌握二次根式加减的方法;(2)含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用。
2.过程与方法先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解。
再总结经验,用它来指导根式的计算和化简。
3.情感态度和价值观通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识。
【教学重点】二次根式的乘除、乘方等运算规律。
【教学难点】最简二次根式的判断,及二次根式的混合运算。
【教学方法】自学与小组合作学习相结合的方法。
【课前准备】教学课件。
【课时安排】1课时【教学过程】一、复习导入【过渡】在之前的学习当中,我们学习了同类项的合并,大家还记得同类项合并的计算方法吗?我们来检测一下吧。
学生活动:计算下列各式。
(1)2x+3x;(2)2x5-5x5+5x5;(3)3x+2x+3y;(4)3a2-2a2+a3【过渡】上面题目的结果,实际上是我们以前所学的同类项合并。
同类项合并就是字母不变,系数相加减。
而我们本节内容,则主要是学习二次根式的加减,那么这两者之间有没有什么共同点呢?现在,就让我们一起来探究一下吧。
二、新课教学1.二次根式的加减【过渡】按照我们刚刚复习的同类项的合并,我们来试着思考一下,这样的同类项合并能否用于二次根式呢?我们来看看课本12页的思考题。
【过渡】问题是要判断能否截出两个正方形,转化为几何问题,即为判断两个正方形的边长和与长方形的边长的大小,若小于长方形的边长,则说明不能截出。
那么两个正方形的边长分别是√8和√18,两者之和为√8+√18。
该如何计算这个呢?(学生讨论回答)结合我们复习的同类项合并,可以这样计算。
课件展示计算过程。
【过渡】在这个问题之后,我们再来看几个简单的计算:(1)√5+3√5= (2)3√5-√5= (3)√8+√18= (4)√8-√18=(5)√2+√3= (6)√5+√3=【过渡】根据刚刚我们探究的内容,这几个计算很容易就能算出来,我们也发现,(5)(6)这两个是不能合并同类项的,而从(3)(4)中,在计算之前,我们需要将二次根式化简为最简根式。
16.3二次根式的加减二次根式的混合运算(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式的加减法则和混合运算的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在实践活动方面,我发现同学们对于实验操作非常感兴趣,这也让他们对二次根式的理解更加深刻。但在操作过程中,有些同学可能因为手法不熟练而影响了实验结果。为了提高实践活动的效果,我考虑在下次课前进行一次简短的实验技巧培训,让同学们在操作时更加得心应手。
最后,从学生的反馈来看,他们对于二次根式的学习还是充满热情的。但在教学过程中,我也发现了自己需要改进的地方,如在讲解难点时更加耐心、细致,关注每一个学生的掌握情况。同时,我还要在课后及时了解学生的疑问和困惑,以便在下一节课中进行针对性的解答。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的基本概念。二次根式是形如\( \sqrt{a} \)的表达式,其中\( a \)是一个非负实数。它在数学中有着广泛的应用,特别是在几何、物理和工程领域。
2.案例分析:接下来,我们来看一个具体的案例。假设我们需要计算\( \sqrt{18} + \sqrt{12} \),通过这个案例,我们将学习如何将不同的二次根式转换为同类项,并进行加减运算。
-处理含有分数和变量的二次根式运算:难点在于如何正确处理分数和变量在二次根式运算中的规则。
-例如:解决\( \frac{1}{4}\sqrt{8x^2} \times \sqrt{2x} \)的问题,强调先简化根号内的表达式,然后进行乘法运算。
16..3二次根式的加减法(教案)

3.培养学生的数学建模和数学应用能力,通过实际问题的引入,使学生能够将二次根式加减法应用于现实情境中,提高解决实际问题的能力。
在教学过程中,关注学生个体差异,引导学生主动参与、积极探究,培养学生独立思考、合作交流的良好习惯,全面提升学生的数学核心素养。
五、教学反思
在今天的教学中,我发现学生们对二次根式加减法的概念和应用有了初步的理解,但同时也暴露出一些问题。在讲解理论知识时,我注意到部分学生对于如何合并同类二次根式感到困惑,尤其是在涉及到根号内含有不同数字的情况下。为了帮助学生克服这个难点,我采用了更多的例题进行演示,并强调了化简根式时的关键步骤。
教学内容将围绕以下例题和练习展开:
(1)计算下列各式的值:
$$ \sqrt{3} + \sqrt{5} $$
$$ \sqrt{12} - \sqrt{2} $$
$$ 2\sqrt{6} + 3\sqrt{6} $$
$$ 5\sqrt{3} - 3\sqrt{2} $$
(2)化简下列各式:
$$ \frac{\sqrt{6}+\sqrt{8}}{\sqrt{2}} $$
3.重点难点解析:在讲授过程中,我会特别强调同类二次根式的合并和含有不同根号的二次根式的化简这两个重点。对于难点部分,我会通过举例和步骤讲解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式加减法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用纸片拼凑不同形状的图形,并计算其面积,从而演示二次根式加减法的基本原理。
数学教案-二次根式的加减法(第二课时)
数学教案-二次根式的加减法(第二课时)教学目标•理解二次根式的定义和性质;•掌握二次根式的加减法的基本方法;•运用二次根式的加减法解决实际问题。
教学内容1.二次根式的回顾2.二次根式的加法3.二次根式的减法4.实际问题解决教学步骤步骤一:二次根式的回顾•复习学生上节课的内容,回顾二次根式的定义和性质。
•提醒学生在计算二次根式时要注意化简和合并同类项的方法。
步骤二:二次根式的加法1.引导学生分析二次根式的加法规律。
2.通过示例,教授二次根式的加法运算方法。
–先合并同类项,然后进行化简;–若根号内有相同的项,则合并相同项。
3.再通过基础练习巩固学生对二次根式的加法的掌握程度。
–提醒学生在计算时要注意合并同类项和化简。
步骤三:二次根式的减法1.引导学生分析二次根式的减法规律。
2.通过示例,教授二次根式的减法运算方法。
–先合并同类项,然后进行化简;–若根号内有相同的项,则合并相同项。
3.再通过基础练习巩固学生对二次根式的减法的掌握程度。
–提醒学生在计算时要注意合并同类项和化简。
步骤四:实际问题解决1.提供一个实际问题,要求学生运用二次根式的加减法解决问题。
–问题示例:某户外广告牌的底座一边的长度是√5 米,另一边是√7 米,求广告牌底座的周长。
2.引导学生分析并解决实际问题。
–通过合并同类项求出底座的周长。
教学要点•二次根式的加法和减法的基本方法;•注意合并同类项和化简的步骤;•运用二次根式的加减法解决实际问题。
教学拓展1.深入讨论二次根式的加减法在实际问题中的应用。
–提供更复杂的问题,要求学生进行分析和解决。
2.引导学生通过练习进一步巩固二次根式的加减法的运算技巧。
总结•通过本节课的学习,学生理解了二次根式的加减法的基本方法,并能够灵活运用于实际问题。
•学生要注意合并同类项和化简的步骤,且在运用二次根式的加减法解决问题时,要善于进行问题分析和解决。
注意:以上教学内容及步骤为一种设置方式,仅供参考。
实际教学中,可以根据学生的实际情况和教学需要进行灵活调整。
人教版八年级数学下第16章16.3二次根式的加减(教案)
(1)掌握二次根式的定义及性质,理解二次根式中的“根号”表示的含义。
举例:理解√9和√(9a²)的含义,以及它们与3和3a的区别。
(2)熟练运用二次根式的加减法则,进行合并同类二次根式的运算。
举例:解决如下问题:√3 + √6 - √3,以及2√5 - √(20/4)。
(3)掌握将二次根式化简为最简形式的方法,包括分解质因数、提取平方因子等。
3.培养学生数学抽象素养,让学生理解二次根式的概念,并能将其应用于实际问题,提高数学抽象素养。
4.培养学生数学建模素养,通过解决实际应用问题,使学生学会建立数学模型,运用所学知识解决现实问题。
5.培养学生合作交流能力,课堂讨论与小组合作中,提高学生表达、沟通、协作能力,增强团队意识。
三、教学难点与重点
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式的定义、性质、加减法则以及在实际生活中的应用。通过实践活动和小组讨论,我们加深了对二次根式的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在这次教授《二次根式的加减》的课程中,我发现学生们对于二次根式的概念和性质的理解总体上是比较顺利的。他们在课堂上能够跟随我的讲解,对于基本的运算法则也能够较快地掌握。然而,我也注意到了一些需要改进的地方。
另外,我也注意到,在学生小组讨论的环节,有些学生并不是很积极。为了鼓励他们更主动地参与到讨论中来,我打算在下次的课堂中尝试一些新的策略,比如设置更具挑战性的问题,或者引入一些竞争机制,激发学生的学习兴趣。
在课程的总结回顾环节,我觉得自己可以做得更好。我意识到,我应该更多地引导学生自己来总结今天的学习内容,这样不仅能够检验他们对于知识点的掌握情况,还能培养他们的自主学习能力。下次,我会尝试让学生们自己来总结二次根式的关键概念和运算规则,我来辅助补充和纠正。
二次根式的加减法 优秀教案
二次根式的加减法【教学目标】1.类比同类项概念,了解同类二次根式的意义,学会识别同类二次根式。
2.能熟练进行简单二次根式的运算。
【教学重点】1.同类二次根式的概念。
2.二次根式加减运算的方法【教学难点】熟练掌握二次根式的加减法运算。
【教学过程】一、情景导入与练习:1.同类项的特点?如何合并同类项?2.计算:a +a = ,a +2a = ,a +2b -b +2a = , 类似地:33+= ,323+= ,223+-32+= ,3.思考并尝试说明:你对以上加减法的理解?二、探究与训练:活动1:例题探究,计算:3233-,a a 23+学生根据前面的经验体验,讨论尝试,交流互助,达成共识教师引导学生归纳所感要点:①同类二次根式:根号和根号内的部分完全相同的根式就是同二次根式(分类区别标志,只需看根号内是否相同)②同类二次根式的合并方法:合并同类二次根式时,根号部分(视为一个整体)不变,只需将根号的系数相加减。
③利用整体思想和类比方法,合并同类项与合并二次根式实际上是同一种变形。
活动2:例题探究,计算:a b b a 4223-+-3223-,a b b a 2323-+-学生练习研究、分歧及争论教师引导学生叙述所思所得:非同类二次根式不能合并活动3:同类二次根式的识别:指出下列各组二次根式是否同类二次根式:2与22 2 与 -2 a b 与 b a ab b 与 ba a -8与22 b a b 2 与 2ab a (其中a 、b 是正数)8、50 与 -18 b a b 3 与 3ab a (其中a 、b 是正数)讨论:还能简单地认为“只有根号内完全相同的二次根式才是同类二次根式”吗? 究竟怎样的式子才是同类二次根式?教师点评:同类二次根式是化简后被开方数相同的根式。
如遇到还可以化简的根式,应化简后再作判断。
活动4:计算与训练:3250+18128-+ 453227-- 1827227+- 学生练习,教师综合点评,提醒学生注意相关要点。
二次根式教案【必备7篇】
二次根式教案【必备7篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、述职报告、讲话致辞、合同协议、条据文书、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work plans, work summaries, job reports, speeches, contract agreements, policy documents, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!二次根式教案【必备7篇】二次根式教案篇1教材分析:本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.3二次根式加减运算(教案)
一教学目标
(1)掌握二次根式加减运算的步骤和方法.
(2)会灵活运用二次根式的有关性质进行二次根式的
二、教学过程设计
(一)创设情景,提出问题
问题1:现有一块长7.5dm,宽50dm的木板,能否采用如课本图16.3-1所示的方式 ,
在这块木板上截出两个面积分别是8dm2和18dm2的正方形木板?
师生活动:教师引导学生认真读题,分析题意.
追问1:满足什么条件才能截出两块正方形木板?你能用数学语言表示出来吗?
师生活动:学生讨论得出“长够、宽也够”,<5,<5,从而把问题转化为“长
是否够?”,即转化为比较+与7.5大小问题,这就需要计算+. 引出课
题“二次根式的加减”.
追问2:你认为可以怎样计算+?
师生活动:让学生讨论,教师了解学生的思路,有的学生提出可先估计两个正方形的边
长,再把它们的值与木板的长比较;有的提出可化简求和,教师适时给予肯定评价.
设计意图:用实际问题引出+是让学生感受学习二次根式加减运算的必要性和
意义. 通过分析如何计算+让学生了解到本课内容并不是孤立的全新知识,而与二
次根式的化简密切相关.
(二)探索新知,解决问题
问题2:化简结果是多少?
师生活动:学生回答,并复习合并同类项的方法.
追问1:你能化简吗?
师生活动:学生指出它们不是同类项不能合并,老师给予肯定评价.
追问2:你能化简吗?
师生活动:教师引导学生类比合并同类项,令,学生总结方法得出结果.
追问3:能化简吗?与上题区别在哪?
师生活动:学生讨论,教师引导,令,,得出结论:不能、的
被开方数不相同.
设计意图:让学生经历类比合并同类项的方法去探究二次根式加减运算的方法,
问题3:、都是最简二次根式,那、是最简二次根式吗?
师生活动:学生回答:不是、,教师给予肯定评价.
追问1:如何化简+?
师生活动:学生讨论得出,教师引导学生类比合并同类
项,总结得出二次根式加减运算的方法. “先化成最简二次根式。再把被开方数相同的二
次根式进行合并.”
追问2:你能解决问题情景中的实际问题吗?
师生活动:学生思考回答:<7.5.可以在这块木板上截出两个正方形,教师给
予肯定评价.
设计意图:让学生感受到合并同类项与二次根式加减运算的联系与区别,归纳概括出二
次根式加减运算的步骤.“一化简,二判断,三合并.”
问题3:化简
师生活动:学生独立思考计算,请学生板演,说出计算步骤与依据(二次根式的性质和
分配律).
设计意图:将具体数字的运算推广到含有字母的一般二次根式加减运算,渗透从特殊到
一般的转化思想,同时强化算理.
(三)典型例题
例1 计算(1); (2);
(3); (4).
师生活动:学生独立完成计算,教师强调步骤和算理,对出现的错误给予评价.
设计意图:通过例题的教学,使学生进一步巩固二次根式加减运算的步骤和算理.
练习1 下列计算是不正确?为什么?
(1); (2);
(3); (4).
练习2 计算
(1); (2);
(3); (4)
;
(5); (6).
设计意图:练习1可引导学生辨析计算中的常见错误;练习2加强对已学知识的复习,
检验本堂课教学的知识目标达成度.
三课堂小结
1.二次根式加减运算的一般步骤与依据是什么?
2.在二次根式加减运算中,有哪些地方易错?
设计意图:通过归纳总结,实现学生记忆的优化,知识的内化.
四、同步练习
1.填空
(1) (2)
=
(3) (4)
设计意图:用分配律做二次根式加减运算.
2.下列二次根式能与合并的是( )
① ② ③ ④
A. ①与② B. ②与③ C. ③与④ D. ①与④
(5); (6).
设计意图:练习1可引导学生辨析计算中的常见错误;练习2加强对已学知识的复习,
检验本堂课教学的知识目标达成度.
1